JP2013002961A - Ultrasonic flaw detection method and device for round-bar steel - Google Patents

Ultrasonic flaw detection method and device for round-bar steel Download PDF

Info

Publication number
JP2013002961A
JP2013002961A JP2011134406A JP2011134406A JP2013002961A JP 2013002961 A JP2013002961 A JP 2013002961A JP 2011134406 A JP2011134406 A JP 2011134406A JP 2011134406 A JP2011134406 A JP 2011134406A JP 2013002961 A JP2013002961 A JP 2013002961A
Authority
JP
Japan
Prior art keywords
bar steel
round bar
flaw detection
round
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011134406A
Other languages
Japanese (ja)
Inventor
Takafumi Ozeki
孝文 尾関
Yukinori Iizuka
幸理 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011134406A priority Critical patent/JP2013002961A/en
Publication of JP2013002961A publication Critical patent/JP2013002961A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve flaw detection over the whole circumference with simple and inexpensive device constitution including a small number of vibrators and to achieve easy maintenance.SOLUTION: For internal defect detection of round-bar steel 30 through water immersion ultrasonic flaw detection, an array probe 1 is used which has a plurality of excitation elements arrayed on a probe surface having a substantially circumferential probe surface facing the round-bar steel and having its center at the center axis of the round-bar steel, and is arranged so that the probe surface and a surface of the round-bar steel are at a predetermined water distance. The array probe and round-bar steel are changed in relative position in round-bar steel length directions while flaw detection of an internal defect is carried out by forming a converged ultrasonic beam by transmitting an ultrasonic wave from the array probe into the round-bar steel and receiving it, and flaw detection results are saved by round-bar steel length directions. Flaw detection in the round-bar steel length directions are carried out a plurality of times while the array probe and round-bar steel are changed in relative position in a circumferential direction so that the converged ultrasonic beam is formed in the round-bar steel at different positions.

Description

本発明は、超音波探傷方法および装置に関する。特に、軸受鋼のような転がり疲労寿命が求められる高清浄度丸棒鋼の微小(<φ100μm)介在物の電子走査式アレイ探触子を用いた探傷に用いるのに好適な、丸棒鋼の超音波探傷方法および装置に関する。   The present invention relates to an ultrasonic flaw detection method and apparatus. In particular, ultrasonic waves of round bar steel suitable for flaw detection using electronic scanning array probe of fine (<φ100 μm) inclusions of high cleanliness round bar steel that requires rolling fatigue life such as bearing steel The present invention relates to a flaw detection method and apparatus.

近年、各種機械装置の高性能化にともない、転がり疲労寿命が求められる軸受鋼などを用いた機械部品や装置の使用環境は非常に厳しくなり、寿命の向上ならびに信頼性の向上が強く求められている。このような要求に対し、鋼材面からの対策としては、鋼成分の適正化や不純物元素の低減が行われ、寿命の向上ならびに信頼性の向上が図られている。   In recent years, with the improvement in performance of various mechanical devices, the use environment of machine parts and devices using bearing steel, etc. that require a rolling fatigue life has become extremely severe, and there is a strong demand for improved life and improved reliability. Yes. In response to such demands, as countermeasures from the steel material side, optimization of steel components and reduction of impurity elements are carried out to improve the life and reliability.

特許文献1によれば、20μm以上程度の非金属介在物が転がり疲労寿命に影響を及ぼすとされており、従ってこれらの介在物と同等サイズの欠陥探傷が求められている。ここで、特に転がり疲労寿命に優れた鋼においては20μmを超える非金属介在物の発生は極めてまれであり、従ってこれを検出するためには大きな体積、例えば一定深さの全領域を探傷する必要がある。   According to Patent Document 1, it is said that non-metallic inclusions of about 20 μm or more affect the rolling fatigue life, and therefore defect inspection of the same size as these inclusions is required. Here, the generation of non-metallic inclusions exceeding 20 μm is extremely rare especially in steels with excellent rolling fatigue life. Therefore, in order to detect this, it is necessary to detect the entire region of a large volume, for example, a constant depth. There is.

これに対し、丸棒鋼の欠陥探傷において、一定深さの全領域を高速に探傷する方法として、特許文献2に電子走査式超音波アレイ探触子(以降、アレイ探触子と表記)を用いた水浸超音波探傷法が提案されている。   On the other hand, in the defect inspection of round bar steel, an electronic scanning ultrasonic array probe (hereinafter referred to as an array probe) is used in Patent Document 2 as a method of detecting a whole area at a constant depth at high speed. A water immersion ultrasonic flaw detection method has been proposed.

また、最小で20μm程度の微小介在物を検出するための検出能向上としては、特許文献3や特許文献4にあるような超音波ビームの集束化が有効である。   Further, as an improvement in detection capability for detecting a minimum inclusion of about 20 μm, focusing of an ultrasonic beam as in Patent Document 3 and Patent Document 4 is effective.

ここで、例として点集束ビームの音圧について説明する。この場合、非特許文献1の47頁によれば、振動子から発せられる音圧をP0、焦点での音圧をPとすると、次式(非特許文献1の47頁(2.108)式参照)が成り立つ。 Here, the sound pressure of the point focused beam will be described as an example. In this case, according to Non-Patent Document 1, page 47, if the sound pressure emitted from the vibrator is P 0 and the sound pressure at the focal point is P, the following equation (see Non-Patent Document 1, page 47 (2.108)) ) Holds.

P/P0=π・J (1)
ここで、Jは集束係数で、次式(非特許文献1の47頁(2.109)式参照)で定義される。
J=D2/(4・λ・fOP) (2)
(D:振動子幅、λ:超音波の波長、fOP:焦点距離)
P / P 0 = π · J (1)
Here, J is a focusing coefficient, and is defined by the following equation (see non-patent document 1, page 47 (2.109)).
J = D 2 / (4 · λ · f OP ) (2)
(D: transducer width, λ: wavelength of ultrasonic wave, f OP : focal length)

即ち、この場合、集束係数Jに比例して焦点での音圧Pを高めることができ(非特許文献1の48頁の図2.50参照)、これによって焦点での欠陥検出能も高めることができる。   That is, in this case, the sound pressure P at the focal point can be increased in proportion to the focusing coefficient J (see FIG. 2.50 on page 48 of Non-Patent Document 1), thereby improving the defect detection ability at the focal point. .

上記の議論は送信についてであるが、非特許文献2の45頁1.4.4節によれば、一般に超音波伝搬について送信と受信でほぼ同様の議論が可能であることが知られており、従って受信についても集束係数Jに比例して焦点での欠陥検出能が高まることが知られている。   Although the above discussion is about transmission, according to Non-Patent Document 2, page 45, section 1.4.4, it is known that generally the same discussion can be made for transmission and reception of ultrasonic propagation. Regarding reception, it is known that the defect detection capability at the focal point increases in proportion to the focusing factor J.

超音波ビームの集束化は、特許文献2や特許文献4に記載があるようにアレイ探触子を用いた電子フォーカスによっても実行可能であり、従って、アレイ探触子と集束ビームを用いることにより微小介在物を大きな体積にわたって検査することができる。   The focusing of the ultrasonic beam can be performed by electronic focusing using an array probe as described in Patent Document 2 and Patent Document 4, and therefore, by using an array probe and a focused beam. Small inclusions can be inspected over a large volume.

特開2008−121035号公報JP 2008-121035 A 特開2010−133856号公報JP 2010-133856 A 特開2005−84036号公報JP 2005-84036 A 特開2007−170871号公報JP 2007-170871 A

社団法人日本非破壊検査協会 超音波探傷試験III 2001年版 47-48頁Japan Nondestructive Inspection Association Ultrasonic Flaw Test III 2001, pp. 47-48 株式会社日刊工業新聞社 超音波技術便覧(1980) 45頁Nikkan Kogyo Shimbun, Ltd. Ultrasonic Technology Handbook (1980), p. 45

しかし、上記に示したようなアレイ探触子と集束ビームの組合せには、探傷装置を構成する上で、次のような問題点があった。   However, the combination of the array probe and the focused beam as described above has the following problems in configuring the flaw detector.

非特許文献1によれば、(1)式と(2)式で記述されるビーム集束において、焦点におけるビーム太さdWは以下のように記述できる(非特許文献1の48頁(2.111)式参照)。 According to Non-Patent Document 1, in the beam focusing described by Expressions (1) and (2), the beam thickness d W at the focal point can be described as follows (page 48 (2.111) of Non-Patent Document 1). See formula).

W=(fOP・λ)/D (3) d W = (f OP · λ) / D (3)

従って、(2)式と(3)式から以下の関係が得られる。   Therefore, the following relationship is obtained from the equations (2) and (3).

J=D/(4・dW) (4) J = D / (4 · d W ) (4)

即ち、集束係数Jを大きくして検出能を向上させようとするとビーム太さdWを細くする必要がある。 That is, if the focusing coefficient J is increased to improve the detection capability, it is necessary to reduce the beam thickness d W.

ここで、探傷を隙間無く行なうためには、ビームピッチをビーム太さ以下にする必要がある。   Here, in order to perform flaw detection without gaps, it is necessary to make the beam pitch equal to or less than the beam thickness.

また、アレイ探触子による探傷においては一般に振動子ピッチと同じピッチでビームが形成されるため、つまり振動子ピッチをビーム太さ以下にする必要がある。   Further, in flaw detection using an array probe, a beam is generally formed at the same pitch as the transducer pitch, that is, the transducer pitch must be equal to or less than the beam thickness.

従って、直径Wの丸棒試験片全周の表面直下を隙間無く一回で探傷するためには、アレイ探触子の振動子数nは次式を満たす必要がある。   Therefore, in order to perform a single flaw detection immediately below the surface of the entire circumference of the round bar test piece having a diameter W, the number n of transducers of the array probe needs to satisfy the following equation.

n≧(π・W)/dW (5) n ≧ (π · W) / d W (5)

ここで、例として特許文献2を参考にD=10mm、λ=0.074mm(周波数20MHzに対応(水中))、fOP=20mm、W=30mmとすると、dW=0.15mm、n≧628となるため、628個以上の振動子で構成されるアレイ探触子が必要ということになる。 As an example, if D = 10 mm, λ = 0.074 mm (corresponding to a frequency of 20 MHz (underwater)), f OP = 20 mm, and W = 30 mm with reference to Patent Document 2, d W = 0.15 mm, n ≧ Therefore, an array probe composed of 628 or more transducers is necessary.

しかし、アレイ探触子のコストは振動子の個数におおよそ比例するため、一般的なアレイ探触子(特許文献2の段落0019では128個の振動子でアレイ探触子が構成されている。)と比べて高コストとなってしまうという問題があった。   However, since the cost of the array probe is approximately proportional to the number of transducers, an array probe is composed of a general array probe (in paragraph 0019 of Patent Document 2, 128 transducers). ) Has a problem that the cost is high.

また、全円周方向から探傷するためにアレイ探触子は被検体全円周方向を被う形となり、そのためメンテナンスがしにくいという問題もある。   In addition, since the flaw detection is performed from the entire circumferential direction, the array probe has a shape that covers the entire circumferential direction of the subject, which makes it difficult to perform maintenance.

本発明は、前記従来の問題点を解決するべくなされたもので、振動子数が少ない簡易で安価な装置構成で円周全体の探傷ができるようにすると共に、メンテナンスを容易化することを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and it is possible to perform flaw detection on the entire circumference with a simple and inexpensive apparatus configuration with a small number of vibrators and to facilitate maintenance. And

本発明は、水浸超音波探傷による丸棒鋼の内部欠陥探傷方法であって、前記丸棒鋼に対向し該丸棒鋼の中心軸を中心とした略円周面状の探触子面に複数の励起素子が整列し、前記探触子面と前記丸棒鋼の表面とが所定の水距離を有するように配置されたアレイ探触子を用い、該アレイ探触子から前記丸棒鋼内部へ超音波を送受して集束超音波ビームを形成し、内部欠陥の探傷を行ないながらアレイ探触子と前記丸棒鋼との丸棒鋼長さ方向の相対位置を変化させて丸棒鋼長さ方向毎の探傷結果を保存し、前記長さ方向の探傷を、前記集束超音波ビームが前記丸棒鋼内部で形成される位置がそれぞれ異なるように前記アレイ探触子と前記丸棒鋼周方向の相対位置を変化させつつ複数回行なうことにより、前記課題を解決したものである。   The present invention is a method for flaw detection of a round bar steel by water immersion ultrasonic flaw detection, wherein a plurality of probe surfaces having a substantially circumferential surface centering on the central axis of the round bar steel are opposed to the round bar steel. Using an array probe in which excitation elements are aligned and the probe surface and the surface of the round steel bar have a predetermined water distance, ultrasonic waves are generated from the array probe to the inside of the round steel bar. Is sent and received to form a focused ultrasonic beam, and the flaw detection results for each length of the round bar steel by changing the relative position in the length direction of the round bar steel between the array probe and the round bar steel while conducting the inspection of internal defects. And the relative position of the array probe and the round bar steel in the circumferential direction is changed so that the position where the focused ultrasonic beam is formed inside the round bar steel is different. The above-described problem is solved by performing the process a plurality of times.

本発明は、又、水浸超音波探傷による丸棒鋼の内部欠陥探傷装置であって、前記丸棒鋼内部へ超音波を送受して集束超音波ビームを形成するための、前記丸棒鋼に対向し該丸棒鋼の中心軸を中心とした略円周面状の探触子面に複数の励起素子が整列し、前記探触子面と前記丸棒鋼の表面とが所定の水距離を有するように配置されたアレイ探触子と、該アレイ探触子を用いて内部欠陥の探傷を行ないながら該アレイ探触子と前記丸棒鋼との丸棒鋼長さ方向の相対位置を変化させて丸棒鋼長さ方向毎の探傷結果を保存する手段と、前記長さ方向の探傷を、前記集束超音波ビームが前記丸棒鋼内部で形成される位置がそれぞれ異なるように前記アレイ探触子と前記丸棒鋼周方向の相対位置を変化させつつ複数回行なう手段と、を備えたことを特徴とする丸棒鋼の超音波探傷装置を提供するものである。   The present invention is also an internal defect inspection device for round bar steel by water immersion ultrasonic flaw detection, which is opposed to the round bar steel for transmitting and receiving ultrasonic waves into the round bar steel to form a focused ultrasonic beam. A plurality of excitation elements are aligned on a substantially circumferential probe surface centered on the central axis of the round steel bar, and the probe surface and the round steel bar surface have a predetermined water distance. A round bar steel length by changing the relative position in the length direction of the round bar steel between the array probe and the round bar steel while performing the inspection of internal defects using the array probe. Means for storing the flaw detection results for each length direction, and flaw detection in the length direction, so that the position where the focused ultrasonic beam is formed inside the round steel bar is different from each other. Means for performing multiple times while changing the relative position of the direction, and That is to provide an ultrasonic flaw detector round bar steel.

ここで、前記集束超音波ビームは、前記丸棒鋼内部において、該丸棒鋼の中心軸を中心とした円周面に対してビーム半径以下の間隔毎に形成され、かつ、前記複数回の長さ方向の探傷の結果として、前記円周面上のどの点においても少なくとも1回以上ビームが形成されるようにすることができる。   Here, the focused ultrasonic beam is formed at intervals of a beam radius or less with respect to a circumferential surface around the central axis of the round bar steel, and the length of the plurality of times is within the round bar steel. As a result of directional flaw detection, a beam can be formed at least once at any point on the circumferential surface.

又、前記複数回の長さ方向の探傷結果を合成することにより、丸棒鋼の全長及び全周についての欠陥分布を表示することができる。   Moreover, the defect distribution about the full length of a round bar steel and a perimeter can be displayed by synthesize | combining the flaw detection result of the said multiple times of length directions.

又、前記探傷結果の合成において、各々の探傷結果において前記丸棒鋼被検体長さ方向の端部を検出して、該端部の位置を基準に整列して合成することができる。   Further, in the synthesis of the flaw detection results, the end portions in the length direction of the round steel bar specimen can be detected in each flaw detection result, and the flaw detection results can be synthesized by aligning the positions of the end portions as a reference.

又、前記集束超音波ビームの前記丸棒鋼内部における集束深さを変えることができる。   In addition, the focusing depth of the focused ultrasonic beam inside the round bar steel can be changed.

本発明は、丸棒鋼(被検体とも称する)の円周の一部を探傷可能なアレイ探触子を用い、探傷する毎に丸棒鋼とアレイ探触子を相対的に回転させて複数回探傷することによって円周全体を探傷するようにしたので、振動子数が少ない簡易で安価な装置構成で円周全体の探傷ができるようになる。また、アレイ探触子は円周の一部角度に設置されるのみであるため、プローブの交換や調整など、メンテナンスも容易である。   The present invention uses an array probe capable of flaw detection on a part of the circumference of a round bar steel (also referred to as a subject), and rotates the round bar steel and the array probe relative to each other for each flaw detection. By doing so, the entire circumference is detected, so that the entire circumference can be detected with a simple and inexpensive apparatus configuration with a small number of vibrators. Also, since the array probe is only installed at a partial angle on the circumference, maintenance such as probe replacement and adjustment is easy.

本発明の概要を示す図The figure which shows the outline | summary of this invention 本発明の実施形態の構成を示す(a)横断面図及び(b)平面図(A) cross-sectional view and (b) plan view showing the configuration of an embodiment of the present invention 同じく集束深さを変える技術の概要を示す図Figure showing the outline of the technology that also changes the focusing depth 同じく詳細を示す図Figure showing details in the same way 同じく考え方を示す説明図Explanatory diagram showing the same way of thinking 同じく信号合成部の動作を示す説明図Similarly, an explanatory diagram showing the operation of the signal synthesis unit 前記実施形態の処理手順を示すフローチャートThe flowchart which shows the process sequence of the said embodiment. 同じく1領域探傷データの概要を示す図The figure which shows the outline of 1 area flaw detection data similarly 同じく探傷データ結合の概要を示す図Figure showing the outline of flaw detection data combination 同じくビーム形成の略図Also a schematic diagram of beam formation 実施例による探傷結果を示す平面図The top view which shows the flaw detection result by the Example 従来技術におけるビーム形成の略図Schematic diagram of beam forming in the prior art

以下、図面を参照して、本発明に係る実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に本発明の概念図を示す。本発明では、被検体30の円周の一部を探傷可能な、振動子数が少ないアレイ探触子1を用いて、1回の探傷で被検体30の円周方向の一部を探傷する。ここで、円周方向のビームピッチはビーム太さの半分以下とし、探傷領域内では探傷もれのないようにする。図1においては被検体30の表面から中心まですべての領域を探傷しているものとしているが、本発明はこれに限るものではなく、ある深さ領域のみ探傷するものでも良い。ただし、例えば特許文献4に記載の方法を用いて、異なる深さに対してビーム集束を行なうことができれば、より広い深さ領域において高検出能で探傷することが可能となる。1回の探傷領域は、円周方向の1/4以下程度にしておくと、構成上アレイ探触子の振動子数が少なくできることと、被っている角度が小さくなるのでアレイ探触子の交換等に有利である。探傷領域の下限については特に制約は無いが、必要以上に狭すぎると探傷回数が増えてしまうため、望ましくない。入手しやすく、探傷装置と接続する上でも扱いやすい振動子数(例えば96個)をまず選び、探傷したい欠陥の大きさにより決まる必要なビームピッチから、これと同じ振動子ピッチを決めるようにすれば探傷領域は自動的に決まる。   FIG. 1 shows a conceptual diagram of the present invention. In the present invention, using the array probe 1 having a small number of transducers capable of flaw detection on a part of the circumference of the subject 30, a part of the subject 30 in the circumferential direction is flawed by one flaw detection. . Here, the beam pitch in the circumferential direction is set to be less than half of the beam thickness so that no flaw detection is lost in the flaw detection area. In FIG. 1, it is assumed that all areas are detected from the surface to the center of the subject 30, but the present invention is not limited to this, and only a certain depth area may be detected. However, if beam focusing can be performed at different depths using, for example, the method described in Patent Document 4, flaw detection can be performed with a high detection capability in a wider depth region. If a single flaw detection area is set to about 1/4 or less in the circumferential direction, the number of transducers of the array probe can be reduced due to the configuration, and the covering angle becomes small. Etc. are advantageous. There is no particular limitation on the lower limit of the flaw detection area, but it is not desirable because the number of flaw detection increases if it is too narrow. Select the number of transducers that are readily available and easy to handle even when connected to the flaw detector (eg 96), and determine the same transducer pitch from the required beam pitch determined by the size of the defect you want to detect. The flaw detection area is automatically determined.

図2に本発明の実施形態に用いる装置構成の一例の概略図を示す。図2(a)の横断面図に示す如く、被検体30とアレイ探触子1は、共に接触媒質である水が充満された水槽32中に浸漬される。水槽32中の被検体30を移動させる被検体移動機構34があり、これによって被検体30が図中右側の開始位置から図中左側の終了位置まで直線移動する。これにより、アレイ探触子1によって長さ方向全体を探傷することが可能である。図2においては被検体30が移動するものとしたが、本発明はこれに限るものではなく、アレイ探触子1を移動させたり、被検体30とアレイ探触子1の両方を移動させても良い。探傷装置36ではアレイ探触子1と超音波信号送受を行なうとともに被検体移動機構34から信号を取得することにより被検体30の長さ方向位置を取得する。   FIG. 2 shows a schematic diagram of an example of a device configuration used in the embodiment of the present invention. As shown in the cross-sectional view of FIG. 2A, the subject 30 and the array probe 1 are both immersed in a water tank 32 filled with water as a contact medium. There is a subject moving mechanism 34 for moving the subject 30 in the water tank 32, and the subject 30 moves linearly from the start position on the right side in the figure to the end position on the left side in the figure. Thereby, the entire length direction can be detected by the array probe 1. In FIG. 2, the subject 30 is moved, but the present invention is not limited to this, and the array probe 1 is moved or both the subject 30 and the array probe 1 are moved. Also good. The flaw detector 36 transmits and receives ultrasonic signals to and from the array probe 1 and acquires a signal from the object moving mechanism 34 to acquire the position in the length direction of the object 30.

一方、深さ方向に関しては、図3に概要を示す如く、アレイ探触子1の一部または全ての超音波振動子から超音波を送波し、該送波された超音波によって生起された反射波を、前記アレイ探触子1の一部または全ての超音波振動子を用いて受波し、該受波された信号をディジタルの波形信号へ変換し、前記アレイ探触子1の中から選択された複数の超音波振動子で構成される超音波振動子群の各振動子と前記被検体30内部に形成するn個(n≧2)の受波焦点との距離に基づき、前記各振動子のディジタル化された受波信号から、前記n個の焦点毎に、その焦点形成に寄与する信号を抽出して、前記n個の焦点毎に抽出した信号を加算合成することにより、集束深さを変えて広い深さ範囲での探傷を可能とする。   On the other hand, with respect to the depth direction, as schematically shown in FIG. 3, ultrasonic waves are transmitted from some or all of the ultrasonic transducers of the array probe 1 and are generated by the transmitted ultrasonic waves. The reflected wave is received using a part or all of the ultrasonic transducers of the array probe 1, and the received signal is converted into a digital waveform signal. Based on the distance between each transducer of an ultrasound transducer group composed of a plurality of ultrasound transducers selected from n and n (n ≧ 2) receiving focal points formed inside the subject 30. From the digitized received signal of each transducer, for each of the n focal points, extract a signal that contributes to the formation of the focal point, and by adding and synthesizing the signals extracted for each of the n focal points, It enables flaw detection in a wide depth range by changing the focusing depth.

なお、図3〜図5においては、簡単のため、アレイ探触子1が直線的に配列されているが、実際には円弧状に配置する。   3 to 5, for the sake of simplicity, the array probes 1 are linearly arranged, but in actuality they are arranged in an arc shape.

ここでは、素子(超音波振動子)総数96個、受波集束ビームの形成に用いる1組の素子数を24個とした場合について説明する。本実施形態では、24個の素子を用いて、その配列の下方にビーム径が小さい1つの受波ビーム(以下、ニードルビーム)を形成し、更に96個の全素子から選択が可能な24個の素子群の配列下方に受波ニードルビームを同時に形成することにより、アレイ探触子1の下に受波ニードルビームが密に並んだ受波ニードルビームカーテンを形成する例を示している。なお、本実施形態では、前記受波ニードルビームを形成するため、アレイ探触子1からの距離が異なる8個(n=8)の位置にビームが集束して焦点となるように、各素子が受波した信号から、その焦点の近傍(ビーム焦点位置を中心とした所定領域)のみの信号を抽出して、それらを加算合成することにより、前記受波ニードルビームによる受波を実現している。   Here, a case will be described in which the total number of elements (ultrasonic transducers) is 96 and the number of elements in one set used to form a received focused beam is 24. In the present embodiment, 24 receiving elements are used to form one receiving beam (hereinafter referred to as a needle beam) having a small beam diameter below the arrangement, and 24 elements that can be selected from all 96 elements. An example is shown in which a receiving needle beam curtain in which receiving needle beams are closely arranged below the array probe 1 is formed by simultaneously forming a receiving needle beam below the arrangement of the element groups. In this embodiment, in order to form the receiving needle beam, each element is arranged so that the beam is focused at eight positions (n = 8) having different distances from the array probe 1 to be in focus. By extracting the signal only in the vicinity of the focal point (predetermined region centered on the beam focal point position) from the received signal, and adding and synthesizing them, the receiving by the receiving needle beam is realized. Yes.

図3(単純化図)及び図4(全体図)に示すように、本実施形態では、アレイ探触子1、該アレイ探触子1の各素子11〜196から超音波を送波するため、各素子11〜196に電気パルスを印加するパルサ21〜296、各素子11〜196が受波した超音波による信号を増幅するための受波増幅器31〜396、増幅後の受波した超音波による信号をディジタル信号へ変換するA/D変換器41〜496、ディジタル化された受波信号から受波ビーム焦点の受波信号のみを抽出する信号抽出部71〜796、抽出した信号を格納する波形メモリ81〜896、及び、記憶された抽出信号を加算合成して、一点(受波ビーム焦点ともいう)に集束した受波ビームにより受波するのと等価な受波合成信号を生成する加算合成処理部9、加算合成処理部9からの信号を時間的につなぎ合わせることにより、素子1iと1i+1との間の下に形成される1つのニードルビームによって受波するのと等価な受波信号を生成する信号合成部10を有する。即ち本実施形態では、アレイ探触子11〜196の素子毎に、パルサ21〜296、受波増幅器31〜396、A/D変換器41〜496、信号抽出部71〜796、及び、波形メモリ81〜896が備えられている。但し、パルサ21〜296、受波増幅器31〜396、A/D変換器41〜496、信号抽出部71〜796、波形メモリ81〜896、加算合成処理部91〜996、信号合成部101〜1096のうち、動作の説明に用いない構成要素の図示を略している。以下の図面でも動作の説明に用いない構成要素の図示を略した。 As shown in FIG. 3 (simplified view) and FIG. 4 (overall view), in this embodiment, ultrasonic waves are transmitted from the array probe 1 and the elements 1 1 to 1 96 of the array probe 1. to order, reception amplifier 3 1 to 3 for the pulser 2 1 to 2 96, the elements 1 1 to 1 96 amplifies the ultrasonic signal received by that apply electric pulses to elements 1 1 to 1 96 96 , A / D converters 4 1 to 4 96 for converting the signal of the received ultrasonic wave after amplification into a digital signal, a signal for extracting only the received signal of the received beam focus from the digitized received signal Extraction units 7 1 to 7 96 , waveform memories 8 1 to 8 96 for storing the extracted signals, and the received signals that are synthesized by adding and synthesizing the stored extracted signals and converging to one point (also referred to as a received beam focus) And an addition synthesis processing unit 9 for generating a reception synthesis signal equivalent to reception by the addition synthesis processing unit 9 By joining the al signal temporally, the signal synthesizing unit for generating an equivalent received signal and for reception by a single needle beam is formed under between the elements 1 i and 1 i + 1 10 That is, in this embodiment, each element of the array probe 1 1 to 1 96, pulsers 2 1 to 2 96, reception amplifier 3 1 to 3 96, A / D converter 41 to 96, the signal extracting section 7 1 to 7 96 and waveform memories 8 1 to 8 96 are provided. However, pulsers 2 1 to 2 96 , receiving amplifiers 3 1 to 3 96 , A / D converters 4 1 to 4 96 , signal extraction units 7 1 to 7 96 , waveform memories 8 1 to 8 96 , addition synthesis processing unit Of the components 9 1 to 9 96 and the signal synthesizers 10 1 to 10 96 , illustration of components that are not used for explanation of the operation is omitted. In the following drawings, illustration of components that are not used in the description of the operation is omitted.

図5は本実施形態における受波ニードルビーム形成の考え方を示している。アレイ探触子1の全素子11〜196から超音波を送波する。また、被検体30からの超音波の反射信号(エコー)を、アレイ探触子1の全素子11〜196を用いて受波する。各素子11〜196によって受波された超音波による信号は、それぞれ図3に示した受波増幅器31〜396によって増幅された後、A/D変換器41〜496によってディジタル信号に変換される。これらディジタル化された信号の位相合わせを行ったのち、加算合成を行うことにより、図5に示したような受波集束ビームを形成できる。本実施形態では、被検体30の断面を分解能高く検査するためには、図5に破線の丸印で示した部位からの反射信号のみを抽出すればよいことに着目した。具体的には、A/D変換器41〜496によって変換された受波ディジタル信号から、信号抽出部71〜796を用いて、各素子1i-12〜1i+11と円形領域との距離に相当する時間範囲に受波された信号のみを抽出して、加算合成を行えばよい。なお、信号抽出部7は、設定部20から入力された各素子1i-12〜1i+11と円形領域との距離、および媒体中の音速などの情報にもとづき、抽出条件パラメータを設定される。図5における一点鎖線上で、破線の丸印で示した領域を複数とり、図3に示すような円形領域が切れ目なく、並ぶようにした上で(領域が切れ目なく並ぶように複数の焦点距離FRを設定する)、これら複数の領域から受波される信号のみを抽出して、加算合成を行えば、前記一点鎖線の近傍のみからの信号を受波することができる。このとき、形成される受波ビームは一点鎖線を中心とした集束ビーム径に対応した細い領域に局在するニードルビームといえる。 FIG. 5 shows the concept of receiving needle beam formation in this embodiment. Ultrasonic waves are transmitted from all the elements 1 1 to 1 96 of the array probe 1. Ultrasonic reflected signals from the subject 30 (echoes) are received using all of the elements 1 1 to 1 96 of the array probe 1. Signal by ultrasonic wave reception by the elements 1 1 to 1 96 is amplified by the reception amplifier 3 1 to 3 96 shown in FIG. 3, respectively, digital by the A / D converter 41 to 96 Converted to a signal. After performing phase alignment of these digitized signals, addition reception synthesis can be performed to form a received focused beam as shown in FIG. In the present embodiment, attention is paid to the fact that in order to inspect the cross section of the subject 30 with high resolution, it is only necessary to extract the reflected signal from the portion indicated by the dotted circle in FIG. Specifically, from the received digital signals converted by the A / D converters 4 1 to 4 96 , each element 1 i-12 to 1 i + 11 and the circular shape are obtained using the signal extraction units 7 1 to 7 96. What is necessary is just to extract only the signal received in the time range corresponding to the distance with an area | region, and to perform addition composition. The signal extraction unit 7 is set with extraction condition parameters based on information such as the distance between each element 1 i-12 to 1 i + 11 and the circular area input from the setting unit 20 and the speed of sound in the medium. The On the one-dot chain line in FIG. 5, a plurality of regions indicated by broken-line circles are taken, and circular regions as shown in FIG. 3 are arranged without breaks (a plurality of focal lengths so that regions are arranged without breaks). F R is set), and only signals received from the plurality of regions are extracted and added and synthesized, so that signals from only the vicinity of the one-dot chain line can be received. At this time, it can be said that the received beam formed is a needle beam localized in a narrow region corresponding to the focused beam diameter centered on the one-dot chain line.

図3は、上記の一点鎖線を中心とした細い領域に局在する受波ニードルビームを1本形成する単純化された構成を示している。アレイ探触子1の素子1i-12〜1i+11から距離FRS〜FREの間に受波ニードルビームを形成できるよう、受波ビームが集束する8個の領域(実線で示した円形領域)を設定している。具体的な動作は以下のとおりである。アレイ探触子1の全素子11〜196から超音波を送波する。また、被検体からの超音波の反射信号(エコー)を、アレイ探触子1の全素子11〜196を用いて受波する。各素子1i-12〜1i+11によって受波された超音波による信号は、それぞれ受波増幅器3i-12〜3i+11によって増幅された後、A/D変換器4i-12〜4i+11によってディジタル信号に変換される。信号抽出部7i-12〜7i+11は、8個の領域の中心に集束された受波ビームを形成するため、それぞれの領域から受波された信号を抽出して波形メモリ8i-12〜8i+11へ送付する。波形メモリ8i-12〜8i+11は、8個の領域(図3では8種類の模様を用いて表示)に分かれており、8個の領域から受波された信号をそれぞれ記憶するようになっている。波形メモリ8i-12〜8i+11に記録された信号は、加算合成処理部9へ送られて、加算合成される。図3において、同じ模様の波形メモリを1本の線を用いて加算合成処理部9の同じ模様の箇所へ接続しているのは、同じ領域から受波された信号を加算合成処理部9へ導いていることを表している。なお、加算合成処理においては、各素子1i-12〜1i+11と焦点との位置関係に応じて、波形メモリ8i-12〜8i+11に記憶された信号に重み付けを行なってから加算合成してもよい。このようにして加算合成処理によって得られた8個の領域に集束した受波ビームによる受波信号が信号合成部10へ送られて、1つの受波信号にまとめられる。 FIG. 3 shows a simplified configuration in which one receiving needle beam localized in a thin region centered on the one-dot chain line is formed. Eight regions (indicated by solid lines) where the receiving beam is focused so that the receiving needle beam can be formed between the elements 1 i-12 to 1 i + 11 of the array probe 1 and the distances F RS to F RE (Circular area) is set. The specific operation is as follows. Ultrasonic waves are transmitted from all the elements 1 1 to 1 96 of the array probe 1. Ultrasonic reflected signals from the object (echo) are received using all of the elements 1 1 to 1 96 of the array probe 1. The ultrasonic signals received by the respective elements 1 i-12 to 1 i + 11 are amplified by the receiving amplifiers 3 i-12 to 3 i + 11 , respectively, and then A / D converter 4 i-12. ~ 4 i + 11 is converted to a digital signal. Since the signal extraction units 7 i-12 to 7 i + 11 form reception beams focused at the centers of the eight regions, the signal extraction units 7 i-12 to 7 i + 11 extract the signals received from the respective regions and perform waveform memory 8 i−. It is sent to 12 ~8 i + 11. The waveform memories 8 i-12 to 8 i + 11 are divided into eight areas (displayed using eight kinds of patterns in FIG. 3), and store signals received from the eight areas, respectively. It has become. The signals recorded in the waveform memories 8 i−12 to 8 i + 11 are sent to the addition / synthesis processing unit 9 to be added / synthesized. In FIG. 3, the waveform memory having the same pattern is connected to the same pattern portion of the addition / combination processing unit 9 using a single line. The signal received from the same region is supplied to the addition / combination processing unit 9. It shows that it is guiding. In addition, in addition synthesis processing, the signals stored in the waveform memories 8 i-12 to 8 i + 11 are weighted according to the positional relationship between the elements 1 i-12 to 1 i + 11 and the focal point. May be added and synthesized. In this way, the received signals by the received beams focused on the eight regions obtained by the addition synthesis processing are sent to the signal synthesis unit 10 and combined into one received signal.

次に、図6を用いて信号合成部10の動作を説明する。8個の領域のそれぞれを領域k(k=1、2、3、‥、8)と表示して識別すると、各領域kに集束した受波ビームによって得られた信号は、例えば、図6のk=1〜k=8までに示したような抽出した領域の大きさに相当する時間幅をもった信号となる。アレイ探触子1とそれぞれの領域との距離が異なるため、各領域からアレイ探触子1により受波される信号は、時間的に異なるタイミングであらわれる。信号合成部10は、これら信号を加算することにより、1つの受波信号を生成する。このようにして距離FRS〜FREの間に形成された受波ニードルビームによって受波された信号が得られる。 Next, the operation of the signal synthesis unit 10 will be described with reference to FIG. When each of the eight regions is displayed and identified as a region k (k = 1, 2, 3,..., 8), the signal obtained by the received beam focused on each region k is, for example, in FIG. The signal has a time width corresponding to the size of the extracted region as shown in k = 1 to k = 8. Since the distance between the array probe 1 and each region is different, signals received by the array probe 1 from each region appear at different timings. The signal synthesizer 10 adds these signals to generate one received signal. In this way, a signal received by the receiving needle beam formed between the distances F RS to F RE is obtained.

図4は、アレイ探触子1の素子の下方に受波ニードルビームを同時に並べて受波ニードルビームカーテンを形成する構成を示している。この構成では、アレイ探触子1のうち、素子1j〜1j+1(j=12、13、14、‥‥、82、83、84)の下方に合計73本の受波ニードルビームが形成される。図4では、図面の煩雑化を避けるため、素子1i-13〜1i+10、素子1i-12〜1i+11、および素子1i-11〜1i+12の3箇所の位置それぞれの下に受波ニードルビームを形成する様子を示している。素子1i-13〜1i+10により形成される受波ニードルビームをNBi-1、素子1i-12〜1i+11により形成される受波ニードルビームをNBi、素子1i-11〜1i+12により形成される受波ニードルビームをNBi+1とする。アレイ探触子1、パルサ2、受波増幅器3、およびA/D変換器4の動作は既に図3を用いて説明したものと同等である。アレイ探触子1の1つの素子が同時に24箇所の位置での24本の受波ニードルビーム形成に用いられるため、合計24×8個の受波ビーム焦点近傍からの信号を各素子に接続された波形メモリに記憶する必要がある。このため、波形メモリ81〜896は24×8個の領域に分かれている。波形メモリ8へ受波信号を送り出す信号抽出部7は、各素子と24×8個の受波ビームを集束させる領域との距離に応じて、受波信号から24×8個の信号を取り出して波形メモリ8へ送付する。波形メモリ8に記録された受波信号から、例えば受波ニードルビームNBi-1による受波信号を得るためには、波形メモリ8i-13〜8i+10に記録された受波信号の中から、素子1i-13〜1i+10の下(詳しくは、素子1i-2と素子1i-1との中間の下)に設定した8個の受波ビーム焦点近傍(焦点位置を基準とした所定領域)からの信号を加算合成処理部9へ送る。これら信号は加算合成処理部9において、加算合成される。このようにして得られた8個の領域に集束した受波ビームによって得られた信号が信号合成部10へ送られて、1つの受波信号にまとめられる。このようにして距離FRS〜FREの間に形成された受波ニードルビームNBi-1によって受波された信号が得られる。他の受波ニードルビームにより受波された信号も同様のプロセスを用いて得ることができる。 FIG. 4 shows a configuration in which a receiving needle beam curtain is formed by simultaneously arranging a receiving needle beam below the elements of the array probe 1. In this configuration, a total of 73 receiving needle beams are arranged below the elements 1 j to 1 j + 1 (j = 12, 13, 14,..., 82, 83, 84) of the array probe 1. It is formed. In FIG. 4, three positions of elements 1 i-13 to 1 i + 10 , elements 1 i-12 to 1 i + 11 , and elements 1 i-11 to 1 i + 12 are shown in order to avoid complication of the drawing. A state in which a receiving needle beam is formed under each of them is shown. The receiving needle beam formed by the elements 1 i-13 to 1 i + 10 is NB i-1 , the receiving needle beam formed by the elements 1 i-12 to 1 i + 11 is NB i , and the element 1 i- NB i + 1 is a receiving needle beam formed by 11 to 1 i + 12 . The operations of the array probe 1, the pulser 2, the receiving amplifier 3, and the A / D converter 4 are the same as those already described with reference to FIG. Since one element of the array probe 1 is used to form 24 receiving needle beams at 24 positions simultaneously, signals from a total of 24 × 8 receiving beam focal points are connected to each element. Need to be stored in the waveform memory. For this reason, the waveform memories 8 1 to 896 are divided into 24 × 8 areas. The signal extraction unit 7 for sending the received signal to the waveform memory 8 extracts 24 × 8 signals from the received signal according to the distance between each element and the region where the 24 × 8 received beams are focused. It is sent to the waveform memory 8. In order to obtain, for example, a received signal from the received needle beam NB i-1 from the received signal recorded in the waveform memory 8, the received signals recorded in the waveform memories 8 i-13 to 8 i + 10 are obtained. From among the eight receiving beam focal points (focal positions) set below elements 1 i-13 to 1 i + 10 (specifically, below the middle point between elements 1 i-2 and 1 i-1 ) A signal from a predetermined area) is sent to the addition / synthesis processing unit 9. These signals are added and synthesized in the addition and synthesis processing unit 9. The signals obtained by the received beams focused on the eight regions thus obtained are sent to the signal synthesis unit 10 and combined into one received signal. In this way, a signal received by the receiving needle beam NB i-1 formed between the distances F RS to F RE is obtained. Signals received by other receiving needle beams can be obtained using a similar process.

本実施形態では、説明の煩雑化を避けるため、1種類の媒体のなかで前記受波ニードルビームによる受波を行う構成を示した。金属材料の水浸探傷などのように媒体が2種類以上ある場合には、上記した距離の計算において、超音波の屈折を考慮することは言うまでもない。   In the present embodiment, in order to avoid complication of explanation, a configuration is shown in which reception by the receiving needle beam is performed in one type of medium. Needless to say, when there are two or more types of media such as a water immersion flaw detection of a metal material, the refraction of ultrasonic waves is taken into consideration in the above-described distance calculation.

又、本実施形態では、24個の素子の下に8個の受波ビーム焦点を設定して受波ニードルビームを形成する方法を示した。これは一例であって、ビーム形成に用いる素子の数は4以上であればいくつでもよい。また、設定する受波ビーム焦点の数も被検体の厚さや必要とされる分解能・検出能に応じて自由に変更することができる。   In the present embodiment, a method of forming a receiving needle beam by setting eight receiving beam focal points under 24 elements has been described. This is an example, and any number of elements used for beam forming may be used as long as it is four or more. Also, the number of received beam focal points to be set can be freely changed according to the thickness of the subject and the required resolution and detection capability.

更に、本実施形態では、受波ビームの焦点をほぼ等間隔に一定に設定している。これも一例であって、設定する受波ビームの焦点間の距離を不等間隔とすることも可能である。一般に受波ビームの送波方向での集束範囲は、焦点とアレイ探触子との距離に応じて大きくなるので、これに応じて受波ビーム焦点間の距離を定めるようにするとよい。   Furthermore, in the present embodiment, the focal points of the received beam are set to be constant at substantially equal intervals. This is also an example, and the distances between the focal points of the received beam to be set can be set at unequal intervals. In general, the focusing range in the transmission direction of the received beam becomes larger according to the distance between the focal point and the array probe. Therefore, the distance between the received beam focal points should be determined accordingly.

なお、焦点位置における超音波のビーム太さdWは、概ね次式のように表される。 The ultrasonic beam thickness d W at the focal position is approximately expressed by the following equation.

W=(λ・fOP)/D’ (6)
ここに、λ:超音波の波長、fOP:集束ビームの焦点距離、D’:グループ化された振動子の幅(素子ピッチ×素子数に相当)
d W = (λ · f OP ) / D ′ (6)
Where λ: wavelength of ultrasonic wave, f OP : focal length of focused beam, D ′: width of grouped transducers (corresponding to element pitch × number of elements)

従って、振動子幅D’を一定としたまま、焦点距離fOPを大きくすると、ビーム太さdWが大きくなるので、焦点距離fOPに応じて所望のビーム径となるように振動子幅D’を変更する構成も可能である。具体的には、焦点距離fOPに応じて受波ニードルビーム形成に用いる素子の数を変更するとよい。 Accordingly, if the focal length f OP is increased while the transducer width D ′ is kept constant, the beam thickness d W increases, so that the transducer width D so as to obtain a desired beam diameter according to the focal length f OP. A configuration in which 'is changed is also possible. Specifically, the number of elements used for forming the receiving needle beam may be changed according to the focal length f OP .

図7に本発明における探傷の一例の手順を示す。   FIG. 7 shows an exemplary procedure for flaw detection in the present invention.

まず、ステップ100で、被検体30に対する角度マーキング(図1参照)を行なう(必要な場合のみ)。これは被検体30の角度設定を手動で行なう場合に必要となるものであり、探傷回数毎の角度設定をマーキングしておく。   First, in step 100, angle marking (see FIG. 1) is performed on the subject 30 (only when necessary). This is necessary when manually setting the angle of the subject 30, and the angle setting for each number of times of flaw detection is marked.

次いで、ステップ110で、被検体30を、図2(b)中に例示した所定開始位置に配置・設定する(角度設定含む)。この配置・設定は手動でも自動でも良い。自動化すれば作業を簡略化・高速化できる。一方、手動で行なうことにすれば、被検体移動機構34による動作を被検体30又は/及びアレイ探触子1の直線動作のみとすることができ、装置を簡素化できる。   Next, in step 110, the subject 30 is placed and set at the predetermined start position illustrated in FIG. 2B (including angle setting). This arrangement / setting may be manual or automatic. Automation can simplify and speed up work. On the other hand, if it is performed manually, the movement of the subject moving mechanism 34 can be only the linear movement of the subject 30 and / or the array probe 1, and the apparatus can be simplified.

次いで、ステップ120で、被検体30又は/及びアレイ探触子1を移動させて被検体30全長をスキャンする。   Next, in step 120, the subject 30 or / and the array probe 1 are moved to scan the entire length of the subject 30.

次いで、ステップ110、120を、被検体30全周の探傷が完了するまで行なう。   Next, steps 110 and 120 are performed until flaw detection on the entire circumference of the subject 30 is completed.

全周分の探傷データが取得できたら、ステップ140で、そのデータを結合する(必要な場合のみ)。データの結合は角度毎のデータ取得後に行なっても良いし、角度毎のデータ取得と同時に行なっても良い。   If the flaw detection data for the entire circumference can be acquired, the data are combined in step 140 (only when necessary). The data combination may be performed after the data acquisition for each angle or may be performed simultaneously with the data acquisition for each angle.

ここで、探傷を繰り返し行なう上で、探傷方向については往復で探傷しても良いし、1方向でのみ探傷することとしても良い。   Here, when performing flaw detection repeatedly, the flaw detection direction may be reciprocated, or flaw detection may be performed only in one direction.

次にステップ140のデータ結合の方法の一例を、図8、図9を用いて詳細に説明する。   Next, an example of the data combination method in step 140 will be described in detail with reference to FIGS.

図8は1回のスキャンで得られる1領域データの平面表示を示したものである。この表示は、被検体の長さ方向位置及び円周方向位置(角度)(アレイ探触子の使用振動子により決定)毎に欠陥エコー高さを抽出し、表示することにより得られる。欠陥エコーの検出ゲートは、例えば表面エコーを基準に設定する。また、図8では表面エコーの有無により被検体端部を検出している。即ち、被検体が存在しない図8(a)では表面エコーが存在せず、被検体内に欠陥が存在しない図8(b)では表面エコーのみが存在し、被検体内に欠陥がある図8(c)では表面エコーと欠陥エコーが存在する。   FIG. 8 shows a planar display of one area data obtained by one scan. This display is obtained by extracting and displaying the height of the defect echo for each length position and circumferential position (angle) of the subject (determined by the transducer used by the array probe). The defect echo detection gate is set based on, for example, a surface echo. In FIG. 8, the end of the subject is detected by the presence or absence of surface echo. That is, there is no surface echo in FIG. 8A where there is no subject, and only the surface echo exists in FIG. 8B where there is no defect in the subject, and there is a defect in the subject. In (c), there are surface echoes and defect echoes.

図9は領域毎のデータを結合する方法の概要である。領域毎のデータを円周方向に結合することによって全円周の探傷データの平面図が得られる。このとき、図9では、被検体端部を基準にデータの整列(平行移動+伸縮)を行なっている。これにより、各領域毎に長さ方向位置にずれがあっても正しくデータを結合することができ、従って図2における被検体スキャン開始位置等にずれがあっても正しくデータを結合することができる。   FIG. 9 is an outline of a method for combining data for each region. By combining the data for each region in the circumferential direction, a plan view of flaw detection data for the entire circumference can be obtained. At this time, in FIG. 9, data alignment (parallel movement + expansion / contraction) is performed with reference to the subject end. Thereby, even if there is a deviation in the position in the length direction for each region, the data can be correctly combined. Therefore, even if there is a deviation in the subject scan start position in FIG. 2, the data can be correctly combined. .

なお、ステップ140のデータ結合については必須ではなく、1領域データ毎に別々に評価しても良い。又、長さ方向についても、用途によっては全長を探傷しなくても良い。   Note that the data combination in step 140 is not essential and may be evaluated separately for each area data. Also, in the length direction, the entire length may not be detected depending on the application.

図10に本発明の一実施例におけるビーム形成の略図を示す。図11に前記実施例により取得した被検体の全長・半周の探傷結果を示す。   FIG. 10 shows a schematic diagram of beam forming in one embodiment of the present invention. FIG. 11 shows flaw detection results for the full length and half circumference of the subject acquired by the above example.

本実施例において使用したアレイ探触子は、周波数50MHz、φ58mm、0.29mmピッチ、振動子数96である。図3〜図6に示される方法を用い、32個の振動子による受信ビームを、被検体中心に向けて65本形成している。ビームピッチは角度で表すと0.57°であり、1回の探傷での円周方向探傷領域は37.2°である。被検体はφ32mm×1000mmの丸棒鋼試験片であり、φ0.3mm、φ0.5mm、φ1.0mmの平底穴人工欠陥を複数作製している。   The array probe used in this example has a frequency of 50 MHz, φ58 mm, 0.29 mm pitch, and 96 transducers. Using the method shown in FIGS. 3 to 6, 65 reception beams from 32 transducers are formed toward the center of the subject. The beam pitch is expressed as an angle of 0.57 °, and the circumferential flaw detection area in one flaw detection is 37.2 °. The object is a round bar steel test piece of φ32 mm × 1000 mm, and a plurality of flat bottom hole artificial defects of φ0.3 mm, φ0.5 mm, and φ1.0 mm are produced.

本実施例では円周方向を図1と同様に10分割して、それぞれの領域に対して探傷を行ない、結果を結合した。結合したデータのピッチは、長さ方向0.062mm,円周方向0.57°であり、データ点数は長さ方向16501点(被検体端部外を含む)×円周方向650点(円周方向領域37.2°>36°による重複を含む)である。   In this embodiment, the circumferential direction is divided into 10 parts as in FIG. 1, flaw detection is performed for each region, and the results are combined. The pitch of the combined data is 0.062 mm in the length direction and 0.57 ° in the circumferential direction, and the number of data points is 16501 points in the length direction (including outside the end of the subject) × 650 points in the circumferential direction (circumference) Direction region 37.2 °> includes overlap by 36 °).

ゲートは表面より深さ2mm(表面不感帯分を除く)〜16mmと設定した。この場合、深さ2mmでの円周方向データピッチは0.14mmとなる。   The gate was set to a depth of 2 mm (excluding the surface dead zone) to 16 mm from the surface. In this case, the circumferential data pitch at a depth of 2 mm is 0.14 mm.

図11において、一部の欠陥指示が円周方向に広がっているのは、人工欠陥が中心に近く、どの角度でも検出されるためである。円周方向の探傷を半周としたのは、ドリルで反対側から形成した人工欠陥の側面からの反射を避けるためである。   In FIG. 11, the reason why some defect instructions spread in the circumferential direction is that the artificial defect is close to the center and is detected at any angle. The reason why the circumferential flaw detection is set to a half circle is to avoid reflection from the side surface of the artificial defect formed from the opposite side with a drill.

図12に従来技術によるビーム形成の略図を示す。従来技術では全周に振動子を配置する必要があるため、本実施例と同等のビームピッチで探傷するためには、全周アレイの場合632個(=360°÷0.57°)の振動子が、特許文献1に記載の千鳥配置では960個(=96×10)の振動子が必要になる。振動子が増えれば各振動子に対する配線や送受信装置、信号変換装置(A/D変換など)なども比例して増えていくため、従来技術による探傷では装置構成は非常に繁雑かつ高コストとなる。   FIG. 12 shows a schematic diagram of beam forming according to the prior art. Since it is necessary to arrange vibrators on the entire circumference in the prior art, 632 vibrations (= 360 ° ÷ 0.57 °) are required in the case of an all-around array in order to perform flaw detection with the same beam pitch as in this embodiment. In the staggered arrangement described in Patent Document 1, 960 (= 96 × 10) vibrators are required. As the number of transducers increases, the number of wiring, transmission / reception devices, signal conversion devices (A / D conversion, etc.) for each transducer also increases proportionately, so that the device configuration becomes very complicated and expensive in conventional flaw detection. .

1…アレイ探触子
30…被検体(丸棒鋼)
32…水槽
34…被検体移動機構
36…探傷装置
1 ... Array probe 30 ... Subject (round bar steel)
32 ... Water tank 34 ... Subject movement mechanism 36 ... Flaw detection apparatus

Claims (10)

水浸超音波探傷による丸棒鋼の内部欠陥探傷方法であって、
前記丸棒鋼に対向し該丸棒鋼の中心軸を中心とした略円周面状の探触子面に複数の励起素子が整列し、前記探触子面と前記丸棒鋼の表面とが所定の水距離を有するように配置されたアレイ探触子を用い、
該アレイ探触子から前記丸棒鋼内部へ超音波を送受して集束超音波ビームを形成し、
内部欠陥の探傷を行ないながらアレイ探触子と前記丸棒鋼との丸棒鋼長さ方向の相対位置を変化させて丸棒鋼長さ方向毎の探傷結果を保存し、
前記長さ方向の探傷を、前記集束超音波ビームが前記丸棒鋼内部で形成される位置がそれぞれ異なるように前記アレイ探触子と前記丸棒鋼周方向の相対位置を変化させつつ複数回行なうことを特徴とする丸棒鋼の超音波探傷方法。
An internal defect inspection method for round steel bars by water immersion ultrasonic inspection,
A plurality of excitation elements are arranged on a substantially circumferential probe surface facing the round bar steel and centered on the central axis of the round bar steel, and the probe surface and the surface of the round bar steel have a predetermined surface. Using an array probe arranged to have a water distance,
Sending and receiving ultrasonic waves from the array probe to the inside of the round bar steel to form a focused ultrasonic beam,
While performing the inspection of internal defects, the relative position of the array bar and the round bar steel in the length direction of the round bar steel is changed, and the results of the flaw detection in the length direction of the round bar steel are stored.
The length direction flaw detection is performed a plurality of times while changing the relative positions of the array probe and the round bar steel in the circumferential direction so that the positions at which the focused ultrasonic beam is formed inside the round bar steel are different from each other. An ultrasonic flaw detection method for round steel bars.
前記集束超音波ビームは、前記丸棒鋼内部において、該丸棒鋼の中心軸を中心とした円周面に対してビーム半径以下の間隔毎に形成され、かつ、
前記複数回の長さ方向の探傷の結果として、前記円周面上のどの点においても少なくとも1回以上ビームが形成されていることを特徴とする請求項1に記載の丸棒鋼の超音波探傷方法。
The focused ultrasonic beam is formed inside the round bar steel at intervals equal to or less than the beam radius with respect to the circumferential surface centered on the central axis of the round bar steel, and
2. The ultrasonic inspection of a round bar steel according to claim 1, wherein a beam is formed at least once at any point on the circumferential surface as a result of the plurality of lengthwise inspections. Method.
前記複数回の長さ方向の探傷結果を合成することにより、丸棒鋼の全長及び全周についての欠陥分布を表示することを特徴とする請求項2に記載の丸棒鋼の超音波探傷方法。   3. The ultrasonic inspection method for round bar steel according to claim 2, wherein the defect distribution for the entire length and the entire circumference of the round bar steel is displayed by synthesizing the plurality of lengthwise flaw detection results. 前記探傷結果の合成において、各々の探傷結果において前記丸棒鋼被検体長さ方向の端部を検出して、該端部の位置を基準に整列して合成することを特徴とする請求項3に記載の丸棒鋼の超音波探傷方法。   4. In the synthesis of the flaw detection results, an end portion in the length direction of the round bar steel specimen is detected in each flaw detection result, and the alignment is performed with the position of the end portion aligned as a reference. The ultrasonic flaw detection method of the described round bar steel. 前記集束超音波ビームの前記丸棒鋼内部における集束深さを変えることを特徴とする請求項2〜4のいずれかに記載の丸棒鋼の超音波探傷方法。   5. The ultrasonic inspection method for round bar steel according to claim 2, wherein a focal depth of the focused ultrasonic beam inside the round bar steel is changed. 水浸超音波探傷による丸棒鋼の内部欠陥探傷装置であって、
前記丸棒鋼内部へ超音波を送受して集束超音波ビームを形成するための、前記丸棒鋼に対向し該丸棒鋼の中心軸を中心とした略円周面状の探触子面に複数の励起素子が整列し、前記探触子面と前記丸棒鋼の表面とが所定の水距離を有するように配置されたアレイ探触子と、
該アレイ探触子を用いて内部欠陥の探傷を行ないながら該アレイ探触子と前記丸棒鋼との丸棒鋼長さ方向の相対位置を変化させて丸棒鋼長さ方向毎の探傷結果を保存する手段と、
前記長さ方向の探傷を、前記集束超音波ビームが前記丸棒鋼内部で形成される位置がそれぞれ異なるように前記アレイ探触子と前記丸棒鋼周方向の相対位置を変化させつつ複数回行なう手段と、
を備えたことを特徴とする丸棒鋼の超音波探傷装置。
An internal defect inspection device for round steel bar by water immersion ultrasonic inspection,
A plurality of probe surfaces having a substantially circumferential surface centered on the central axis of the round bar steel and facing the round bar steel for transmitting and receiving ultrasonic waves into the round bar steel to form a focused ultrasonic beam. An array probe in which excitation elements are aligned, and the probe surface and the surface of the round bar steel are arranged to have a predetermined water distance;
While detecting internal defects using the array probe, the relative position of the array probe and the round bar steel in the round bar steel length direction is changed to store the flaw detection results for each round bar steel length direction. Means,
Means for performing the lengthwise flaw detection a plurality of times while changing the relative position in the circumferential direction of the array probe and the round bar steel so that the positions where the focused ultrasonic beam is formed inside the round bar steel are different from each other. When,
A round bar steel ultrasonic flaw detector characterized by comprising:
前記集束超音波ビームは、前記丸棒鋼内部において、該丸棒鋼の中心軸を中心とした円周面に対してビーム半径以下の間隔毎に形成され、かつ、
前記複数回の長さ方向の探傷の結果として、前記円周面上のどの点においても少なくとも1回以上ビームが形成されていることを特徴とする請求項6に記載の丸棒鋼の超音波探傷装置。
The focused ultrasonic beam is formed inside the round bar steel at intervals equal to or less than the beam radius with respect to the circumferential surface centered on the central axis of the round bar steel, and
The ultrasonic inspection of a round bar steel according to claim 6, wherein a beam is formed at least once at any point on the circumferential surface as a result of the plurality of inspections in the length direction. apparatus.
前記複数回の長さ方向の探傷結果を合成することにより、丸棒鋼の全長及び全周についての欠陥分布を表示することを特徴とする請求項7に記載の丸棒鋼の超音波探傷装置。   8. The ultrasonic inspection apparatus for round bar steel according to claim 7, wherein the defect distribution about the entire length and the entire circumference of the round bar steel is displayed by synthesizing the plurality of flaw detection results in the length direction. 前記探傷結果の合成において、各々の探傷結果において前記丸棒鋼被検体長さ方向の端部を検出して、該端部の位置を基準に整列して合成することを特徴とする請求項8に記載の丸棒鋼の超音波探傷装置。   9. In the synthesis of the flaw detection results, an end portion in the length direction of the round steel bar specimen is detected in each flaw detection result, and is synthesized by aligning with the position of the end portion as a reference. An ultrasonic flaw detector for the described round bar steel. 前記集束超音波ビームの前記丸棒鋼内部における集束深さを変える手段を備えたことを特徴とする請求項7〜9のいずれかに記載の丸棒鋼の超音波探傷装置。   The ultrasonic flaw detector for a round bar steel according to any one of claims 7 to 9, further comprising means for changing a focusing depth of the focused ultrasonic beam inside the round bar steel.
JP2011134406A 2011-06-16 2011-06-16 Ultrasonic flaw detection method and device for round-bar steel Pending JP2013002961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011134406A JP2013002961A (en) 2011-06-16 2011-06-16 Ultrasonic flaw detection method and device for round-bar steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011134406A JP2013002961A (en) 2011-06-16 2011-06-16 Ultrasonic flaw detection method and device for round-bar steel

Publications (1)

Publication Number Publication Date
JP2013002961A true JP2013002961A (en) 2013-01-07

Family

ID=47671678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134406A Pending JP2013002961A (en) 2011-06-16 2011-06-16 Ultrasonic flaw detection method and device for round-bar steel

Country Status (1)

Country Link
JP (1) JP2013002961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044876A (en) * 2016-09-15 2018-03-22 Jfeスチール株式会社 Ultrasonic inspection method and ultrasonic inspection apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861462A (en) * 1981-10-07 1983-04-12 Nippon Steel Corp Method and device for ultrasonic flaw detection for square material
JP2002122573A (en) * 2000-10-16 2002-04-26 Sumitomo Electric Ind Ltd Method and apparatus for inspection of defect of round material
JP2007170871A (en) * 2005-12-19 2007-07-05 Jfe Steel Kk Method and device for inspection of cross section by ultrasonic wave
JP2009063309A (en) * 2007-09-04 2009-03-26 Daido Steel Co Ltd Ultrasonic flaw detector and ultrasonic flaw detecting method
JP2010160052A (en) * 2009-01-08 2010-07-22 Jun Ueno Ultrasonic flaw detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861462A (en) * 1981-10-07 1983-04-12 Nippon Steel Corp Method and device for ultrasonic flaw detection for square material
JP2002122573A (en) * 2000-10-16 2002-04-26 Sumitomo Electric Ind Ltd Method and apparatus for inspection of defect of round material
JP2007170871A (en) * 2005-12-19 2007-07-05 Jfe Steel Kk Method and device for inspection of cross section by ultrasonic wave
JP2009063309A (en) * 2007-09-04 2009-03-26 Daido Steel Co Ltd Ultrasonic flaw detector and ultrasonic flaw detecting method
JP2010160052A (en) * 2009-01-08 2010-07-22 Jun Ueno Ultrasonic flaw detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044876A (en) * 2016-09-15 2018-03-22 Jfeスチール株式会社 Ultrasonic inspection method and ultrasonic inspection apparatus

Similar Documents

Publication Publication Date Title
KR101144692B1 (en) Ultrasonic section inspection method and device
JP5721770B2 (en) Ultrasonic flaw detection method and apparatus
Clay et al. Experimental study of phased array beam steering characteristics
KR101218473B1 (en) Ultrasonic measurement device and ultrasonic measurement method
KR102251819B1 (en) Device and method for non-destructive control of tubular products using electroacoustic phased networks, in particular on site
JP5590249B2 (en) Defect detection apparatus, defect detection method, program, and storage medium
CN102047106B (en) Method and device for the non-destructive ultrasonic testing of a test piece with flat surfaces at an angle to each other
JP5731765B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
Joo et al. Development of ultrasonic waveguide sensor for under-sodium inspection in a sodium-cooled fast reactor
JP2019039902A (en) Linear scan ultrasonic flaw detector and linear scan ultrasonic flaw detection method
JP5565904B2 (en) Method for identifying surface shape of ultrasonic testing specimen, identification program, aperture synthesis processing program, and phased array testing program
JP2008232627A (en) Ultrasonic flaw inspection device and method
JP5910641B2 (en) Ultrasonic imaging method and ultrasonic imaging apparatus
JP2004150875A (en) Method and system for imaging internal flaw using ultrasonic waves
JP2015031637A (en) Defect inspection device, defect inspection method, program and storage medium
JP2013002961A (en) Ultrasonic flaw detection method and device for round-bar steel
JP2019078558A (en) Reference test piece and supersonic phased array flaw testing method
JP2008261889A (en) Imaging method of internal defect by ultrasonic wave, and its device
JP5145783B2 (en) Ultrasonic cross-section inspection method and apparatus
Maclauchlan et al. Application of large aperture EMATs to weld inspection
Gebhardt An ultrasonic phased array system for defect classification and reconstruction
JPH02171652A (en) Ultrasonic flaw detection for internal surface of pipe
JP2013029434A (en) Ultrasonic flaw detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150721