JPS5861462A - Method and device for ultrasonic flaw detection for square material - Google Patents

Method and device for ultrasonic flaw detection for square material

Info

Publication number
JPS5861462A
JPS5861462A JP56159969A JP15996981A JPS5861462A JP S5861462 A JPS5861462 A JP S5861462A JP 56159969 A JP56159969 A JP 56159969A JP 15996981 A JP15996981 A JP 15996981A JP S5861462 A JPS5861462 A JP S5861462A
Authority
JP
Japan
Prior art keywords
flaw detection
gate
square steel
probe
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56159969A
Other languages
Japanese (ja)
Inventor
Koji Inazaki
稲崎 宏治
Kozo Ozaki
小崎 巧三
Mitsuo Yoshida
吉田 三男
Tsugio Matsumoto
松本 次男
Kenichi Oriki
大力 健市
Sadahiko Ono
大野 貞彦
Hirotsugu Tanaka
洋次 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Steel Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Steel Corp filed Critical Mitsubishi Electric Corp
Priority to JP56159969A priority Critical patent/JPS5861462A/en
Publication of JPS5861462A publication Critical patent/JPS5861462A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates

Abstract

PURPOSE:To permit flaw detection with high accuracy by changing an ultrasonic flaw detecting area at each fluctuation in the sectional size or shape of square steel by following up to said fluctuations even when said size and shape fluctuate. CONSTITUTION:The transmission pulse output Ta from a signal transmission part 10 is converted to ultrasonic waves by a probe (a). Said ultrasonic waves are transmitted toward square steel 1. The ultrasonic waves reflected from the steel 1 are received by the probe (a), where the waves are converted again to an electric signal. The signal is amplified up to a prescribed value by a signal receiving amplifier 13, whereby R signals, that is, signals of a transmission echoes (T), surface echoes (S), bottom echoes (B1, B2...) are obtained. Wall thickness signals E1, E2 are obtained by a generating part 14 for wall thickness signals by the use of said receiving signals R and the S echo gate Gs1, B echo gate Gs2 of said generating part 11. The signals E1 and E2 obtained here indicate the sectional size of the square steel, and said size is measured by counting said signals with a counter 16 via a flip-flop circuit 15, etc. A control part 17 for flaw detection gates determines the beginning and end points of the flaw detection gate by subtracting the predetermined depth Wa of the dead zone in the surface layer part and the thickness Wb of the dead zone in the bottom layer part from the size value of the wall thickness of said square steel. Thus the flaw detection gate is controlled always to the specified depths of the dead zones in the surface and bottom layer parts in accordance with the wall thickness size of the square steel.

Description

【発明の詳細な説明】 本発明は断面が正方形成は正方形に類似した形状の長尺
角材(以下角鋼と云う)の超音波探傷方法及び装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection method and apparatus for long square bars (hereinafter referred to as square steel) having a square cross section or a shape similar to a square.

最近の圧延鋼材は連続鋳造法の普及により連鋳材が主体
となってきてお如、鋼材中における非金属介在物等の内
部欠陥はインゴツト材が比較的中心部に偏在するのに対
し連鋳材はほぼ均等に分布する傾向がある。従って、超
音波探傷による内部検査においてインゴツト材であれば
中心部だけの探傷によって内部欠陥のはとんどが検出出
来たものが、連鋳材では欠陥の分布が均等なため中心部
だけの探傷では内部欠陥を見逃す危険性が大きくなって
きた。
Recently, continuous casting has become the main type of rolled steel products due to the spread of continuous casting, and internal defects such as non-metallic inclusions in steel products are relatively unevenly distributed in the center, whereas in continuous casting. The wood tends to be approximately evenly distributed. Therefore, in internal inspection using ultrasonic flaw detection, if it is an ingot material, most of the internal defects can be detected by testing only the center, but with continuous casting materials, the distribution of defects is even, so it is possible to detect most of the internal defects by testing only the center. There is a growing risk of overlooking internal defects.

さらに最近P L (Product Liablli
ty )問題等から鋼材の品質要求保証レベルがきわめ
て高度化し、一部高級劇では部品換算での許容が0.0
01 %というものまで生じており、この保証レベルを
満足するためKは前記中心部のみの探傷では不十分であ
り表面直下部を含めた鋼材の全面を探傷することが必要
不可欠となってきている@ この様な状況に対して従来の角鋼の超音波探傷は、第1
図に示すように鞍型の倣い機構に2分割探触子を備えて
角鋼1の2面方向から垂直に超音波2を発信し角鋼1の
内部を探傷する装置、又は水を満たしたタンク内に1探
々触子を備えて、角鋼の上面2方向から垂直法によって
探傷する装置により、角鋼の内部探傷が行われていた。
More recently, P L (Product Liabli)
ty) Due to issues such as this, the quality requirements and assurance level for steel materials has become extremely sophisticated, and in some high-end dramas, the tolerance in terms of parts is 0.0.
01%, and in order to satisfy this guarantee level, it is insufficient to detect defects in only the central part of the steel, and it has become essential to detect defects in the entire surface of the steel material, including directly below the surface. @ For such situations, conventional ultrasonic flaw detection of square steel is the first
As shown in the figure, a device equipped with a saddle-shaped tracing mechanism and a two-split probe transmits ultrasonic waves 2 perpendicularly from two sides of the square steel 1 to detect flaws inside the square steel 1, or inside a tank filled with water. Internal flaw detection of square steel was carried out using a device that was equipped with one probing probe and used a vertical method to detect flaws from two directions on the top of the square steel.

図中3は内部欠陥を示し、5Aは探傷エコーを示す。In the figure, 3 indicates an internal defect, and 5A indicates a flaw detection echo.

しかし、これら垂直法による探傷は一般に被検材表底階
部に不感帯Wa、Wbを伴う欠点を有していた。即ち浅
層部不感帯Waは被検材表面からの反射エコーとの分離
が困難なことによるものであシ、底層部不感帯wbは、
角鋼の形状変動等圧伴う裏面からの反射エコーの位置変
動に基づくものである。特に角鋼では、厚板、パイプ等
に比べてタイプと称する形状不良、曲プ、捻れ等の形状
変動が大きく、さらに表面性状も悪いため、表層部で深
さ約20諺の不感帯Wa及び底層部で深さ約5糊の不感
帯wbを生じていた。又、第2図(a) K示すように
、従来の探傷ゲートtの設定は、一般にゲートの始点及
び終点を固定するゲート固定方式、又は同図−)K示す
ようにゲートの始点が表面エコーの位置変動ととも忙移
動しゲートの長さを一定とする表面エコートラッキング
方式にょシ行われていた。従りて第2 flJ (a)
ではゲートの始点6、終点7が設定されると、水膜の厚
さ変動によって表面エコー4ム、底面エコー5ムの位置
が変動してもそれとは無関係に固定のままであり、同図
(b)では表面エコーが4ムから4Bと位置変動すると
ゲートの始点は6から6ムに移動して常に表面エコーの
立上9位置から一定の距離Lmの間隔を保って直往する
ので水腹の厚さ変動には対応出来るが、終点7は底面エ
コー5A、5Bの位置とは無関係にゲートの始点6ムの
位置から一定の間隔tの長さで固定のままであった。従
って第2図(、)、(b)両方式とも探傷ゲートの終点
7を底面エコーの極く近くまで設定しようとすると角鋼
に肉厚変動があった場合に底面エコーが探傷ゲート内に
入シ込んで欠陥と誤判定する恐れがあり、その危険性を
避けるためKは肉厚変動による底面エコーの位置変動の
余裕分を見て設定しなければならず、そのため底層部の
不感帯を小さくすることが出来なかった。また、探触子
1個当りのビーム幅は通常20〜30畷であシ、角鋼断
面の探傷エリアを拡大するためには、断面の横方向に複
数個の探触子を配置する必要があるが、角鋼Kld、前
述の様にタイプ等の形状変動が大で、その形状変化によ
る各プローブにおける底面エコーの位置変動が大きく不
感帯を一層増大させる原因となっていた。
However, flaw detection using these vertical methods generally has the drawback of dead zones Wa and Wb at the bottom surface of the test material. That is, the shallow dead zone Wa is due to the difficulty in separating the reflected echo from the surface of the test material, and the bottom dead zone Wb is
This is based on the change in the position of the echo reflected from the back surface due to the change in the shape of the square steel. In particular, square steel has larger shape fluctuations such as defective shapes called types, bends, and twists than thick plates, pipes, etc., and also has poor surface properties, so there is a dead zone Wa about 20 degrees deep in the surface layer and a dead zone Wa in the bottom layer. A dead zone wb with a depth of about 5 glue was created. In addition, as shown in Fig. 2 (a) K, the conventional flaw detection gate t is generally set using a gate fixed method in which the starting and ending points of the gate are fixed, or as shown in Fig. 2 (a) K, the gate starting point is set to A surface echo tracking method was used in which the length of the gate was kept constant while the gate moved rapidly as the gate's position changed. Therefore, the second flJ (a)
In the figure, when the starting point 6 and ending point 7 of the gate are set, even if the positions of the surface echo 4m and the bottom echo 5m change due to changes in the thickness of the water film, they remain fixed regardless of the changes in the thickness of the water film. In b), when the surface echo changes its position from 4m to 4B, the starting point of the gate moves from 6m to 6m and always keeps a constant distance Lm from the rising position 9 of the surface echo, so it is a water belly. However, the end point 7 remained fixed at a constant distance t from the starting point 6m of the gate, regardless of the positions of the bottom echoes 5A and 5B. Therefore, in both methods shown in Fig. 2 (, ) and (b), if the end point 7 of the flaw detection gate is set very close to the bottom echo, if there is a change in the wall thickness of the square steel, the bottom echo will enter the flaw detection gate. In order to avoid this risk, K must be set taking into account the margin of positional variation of the bottom echo due to wall thickness variation, and therefore the dead zone in the bottom layer should be made small. I couldn't do it. In addition, the beam width per probe is usually 20 to 30 mm, and in order to expand the flaw detection area of a square steel cross section, it is necessary to arrange multiple probes in the horizontal direction of the cross section. However, as mentioned above, the shape of the square steel Kld varies greatly depending on the type, etc., and the positional variation of the bottom echo in each probe due to the shape change is large, causing a further increase in the dead zone.

本発明はこのような状況に鑑みてなされたもので、角鋼
等長尺角材の超音波探傷時に生じる表面の深い不感帯W
aを、底面の浅い不感帯wbの値にまで低減させかつ不
感帯Wa及びwbが被検材の形状により変動するのを防
止し精度のよい超音波探傷を行うことを目的とするもの
であって1(1)角鋼の面からパルス反射法にて入射面
に垂直に超音波を発受信し角材の内部欠陥を探傷する方
法において、角鋼の各面に倣うように配置し九複数個の
探触子から超音波を発受信して角鋼の表面反射波と底面
反射波から角鋼の断面寸法を算出し、この寸法から予め
定めた表層部不感帯深さと底層部不感帯深さの値を差引
いてゲートを算出し、このゲート内における内部欠陥を
探傷することを特徴とする角鋼の超音波探傷方法、(2
)角鋼をパルス反射法にて入射面に垂直に超音波を発受
信して探傷を行う超音波探傷装置において、角鋼の相対
する2方向から角鋼の隣接する2面に倣いかつ角鋼1面
画シ複数個の探触子を配置してなる一対の鞍型探傷ヘッ
ドと、各探触子からの反射信号により表面反射波及び底
面反射波の位置を探触子毎に検出するゲート回路と、各
ゲート回路により検出したそれぞれの反射波に基づき探
傷用ゲートの位置を定めるゲート設定回路を設けたこと
を%徴とする角鋼の超音波探傷装置、(3)前記探触子
は個々に角鋼の表面に倣いその面きを変えうるように配
置されている前記第(2)項に基づく装置、を要旨とす
るものである。
The present invention was made in view of the above situation, and is aimed at reducing the deep dead zone W on the surface that occurs during ultrasonic flaw detection of long square materials such as square steel.
The purpose of the present invention is to reduce a to the value of a shallow dead zone wb at the bottom, prevent the dead zones Wa and wb from varying depending on the shape of the test material, and perform ultrasonic flaw detection with high accuracy. (1) In a method of detecting internal defects in a square piece of steel by emitting and receiving ultrasonic waves perpendicular to the plane of incidence from the surface of the square piece of steel using the pulse reflection method, nine or more probes are placed so as to follow each side of the square piece of steel. Transmits and receives ultrasonic waves from the square steel, calculates the cross-sectional dimensions of the square steel from the surface reflected waves and bottom reflected waves, and calculates the gate by subtracting the predetermined surface dead zone depth and bottom dead zone depth from this dimension. and an ultrasonic flaw detection method for square steel, which is characterized by detecting internal defects within the gate (2).
) In an ultrasonic flaw detection device that detects flaws by emitting and receiving ultrasonic waves perpendicular to the incident surface of a square steel using the pulse reflection method, the system traces two adjacent surfaces of the square steel from two opposing directions and scans one screen of the square steel. A pair of saddle-shaped flaw detection heads consisting of a plurality of probes, a gate circuit that detects the position of the surface reflected wave and the bottom reflected wave for each probe based on the reflected signal from each probe, and An ultrasonic flaw detection device for square steel characterized by a gate setting circuit that determines the position of the flaw detection gate based on each reflected wave detected by the gate circuit, (3) the probe individually detects the surface of the square steel; The gist of this invention is a device based on the above item (2), which is arranged so that its surface can be changed according to the following.

以下図面に基づき本発明を説明する。第3図tよ本発明
の実施例を示す一部断面をもって示す正面図であり、第
4図は本発明の実施例を示すブロック線図、第5図は本
発明による超音波探傷を例示する図である。
The present invention will be explained below based on the drawings. Fig. 3 is a partially sectional front view showing an embodiment of the present invention, Fig. 4 is a block diagram showing an embodiment of the present invention, and Fig. 5 is an example of ultrasonic flaw detection according to the present invention. It is a diagram.

本発明は角鋼を断面でみて相対する2方向から角鋼の面
に倣う一対の鞍型探傷ヘッドを有する。
The present invention has a pair of saddle-shaped flaw detection heads that follow the surface of the square steel from two opposing directions when the square steel is viewed in cross section.

即ち、第3図に示すように本発明に係る鞍型探傷ヘッド
30.40は、角鋼1を挾んで相対する方向例えば上下
方向に、角鋼1の隣接する2面に跨り及び角鋼1を受け
て角鋼の面に倣うように設置する。鞍型探傷ヘッド30
は角鋼1のA面及び8面にそれぞれ垂直に超音波探傷を
行うためのものであって、A面探傷用ヘッド31と8面
探傷用ヘッド32を有し、A面探傷用ヘッド31は角鋼
1の表面に倣って角鋼1内へ超音波を発信及び受信する
複数個の探触子a、 b、 e、 dを角鋼の幅方向に
並設している。8面探傷用ヘッド32も同様に複数個の
探触子”*’*に+hを有している。
That is, as shown in FIG. 3, the saddle-type flaw detection head 30.40 according to the present invention straddles two adjacent surfaces of the square steel 1 and receives the square steel 1 in opposing directions, for example, in the vertical direction. Install it so that it follows the surface of the square steel. Saddle type flaw detection head 30
is for carrying out ultrasonic flaw detection perpendicularly to the A side and the 8th side of the square steel 1, and has an A side flaw detection head 31 and an 8 side flaw detection head 32, and the A side flaw detection head 31 is for the square steel. A plurality of probes a, b, e, and d are arranged in parallel in the width direction of the square steel 1 for transmitting and receiving ultrasonic waves into the square steel 1 following the surface of the square steel 1. Similarly, the eight-sided flaw detection head 32 has +h on a plurality of probes "*'*.

一方、鞍型探傷ヘッド40は角鋼1のC,D面を探傷す
るためのもので、前記鞍型探傷ヘッド30と同様に、C
面から超音波探傷を行う0面探傷用ヘッド41と0面探
傷用ヘッド42とからなり、ヘッド41はLj−ksL
の探触子、ヘッド42はm、+a、o、pの探触子を有
しており、それぞれの探触子から超音波を発信及び受信
することKより角鋼1の超音波探傷を行う、探触子a 
−pは後述するように個々に独立して角鋼1の面に倣う
ようにそれぞれの探傷用ヘッドに設置されており、それ
ぞれの探触子の機能は同等である。
On the other hand, the saddle-type flaw detection head 40 is for flaw-detecting C and D surfaces of the square steel 1, and similarly to the saddle-type flaw detection head 30,
It consists of a zero-plane flaw detection head 41 and a zero-plane flaw detection head 42 that conduct ultrasonic flaw detection from the surface, and the head 41 is Lj-ksL.
The head 42 has m, +a, o, and p probes, and transmits and receives ultrasonic waves from each probe to perform ultrasonic flaw detection on the square steel 1. Probe a
-p are individually installed on each flaw detection head so as to follow the surface of the square steel 1, as will be described later, and the functions of the respective probes are the same.

いま探触子dについて説明すると、探触子dがら発信さ
れた超音波はDlで示すように角鋼1の内部を進み、C
面で反射して再び探触子dへ戻り、この間にDlで示し
た領域における探傷を行う。
Now to explain the probe d, the ultrasonic waves emitted from the probe d travel inside the square steel 1 as shown by Dl, and C
It is reflected by the surface and returns to the probe d, during which flaw detection is performed in the area indicated by Dl.

探触子tについても同様であって、角鋼1のC面から超
音波を発信及び受信することによりLlで示す領域の探
傷を行う。他の探触子についても全く同様である。角鋼
1の表面からの探傷において探触子dによる超音波探傷
では表面の皮下KWa(t&)で示す表層部不感帯と、
相対するC面にはwb(zb)で示す底層部不感帯が生
じるが、C面からは探触子tCよる超音波探傷を行うこ
とにより、深い不感帯Wa(ta)は探触子lによる探
傷でWa(Lc)の記号で示す底層部不感帯の値まで低
減せしめることができる。従って角鋼1の4面から探触
子a −p Kよプ角鋼1内の超音波探傷を行うことK
よって深い表層部不感帯Waを浅い不感帯wbの値Kま
で低減でき、それだけ角鋼断面における超音波探傷可能
領域は拡大する。
The same applies to the probe t, and by transmitting and receiving ultrasonic waves from the C surface of the square steel 1, flaw detection is performed in the area indicated by Ll. The same applies to other probes. In ultrasonic flaw detection using probe d in flaw detection from the surface of square steel 1, the surface dead zone shown by subcutaneous KWa(t&) of the surface,
A bottom dead zone indicated by wb (zb) occurs on the opposing C surface, but by performing ultrasonic flaw detection with probe tC from the C surface, the deep dead zone Wa (ta) can be detected by flaw detection with probe l. It can be reduced to the value of the bottom dead zone indicated by the symbol Wa (Lc). Therefore, the ultrasonic flaw detection inside the square steel 1 should be performed from the four sides of the square steel 1 using the probe a-p K.
Therefore, the deep surface dead zone Wa can be reduced to the value K of the shallow dead zone wb, and the area in which ultrasonic flaw detection is possible in the cross section of the square steel is expanded accordingly.

しかしながら、角鋼は通常圧砥によって製造するので断
面の基準寸法に対して変動を有し又長さ方向でも変動を
有する。更に前述したように各面の形状も平坦とは限ら
ず凹凸や表面欠陥等があって長さ方向及び幅方向で変動
し、長さ方向では長尺物特有の曲りやねじれといった形
状不良がある。
However, since square steel is usually produced by rolling, it has variations with respect to the standard dimensions of its cross section, and also varies in its length direction. Furthermore, as mentioned above, the shape of each surface is not necessarily flat, but has unevenness, surface defects, etc., and varies in the length and width directions, and in the length direction, there are shape defects such as bending and twisting that are characteristic of long objects. .

このような角鋼を連続的に超音波探傷する場合断面寸法
や表面形状の変動による超音波探傷領域の変動が生じる
ので従来の超音波探傷のように探傷領域を固定のものと
した探傷では精度のよい探傷はできない。
When ultrasonic flaw detection is carried out continuously on such square steel, the ultrasonic flaw detection area changes due to changes in cross-sectional dimensions and surface shape, so conventional ultrasonic flaw detection with a fixed flaw detection area has poor accuracy. Good flaw detection is not possible.

本発明は角鋼の断面寸法や形状に変動が生じてもその変
動に追随して超音波探傷領域をその都度変化させ高精度
の探傷を可能ならしめたものである。即ち、本発明は第
4図に示すように角鋼1の各面にそれぞれ複数個配置し
た探触子a、 b、 @−・・pにより角鋼1内を超音
波探傷する際、各探触子から超音波を発信及び受信して
各探触子の探傷領域内の角鋼の断面寸法を先ず測定し、
その測定値に基づいて超音波探傷領域即ちゲートを設定
し、その後前記設定したゲート内の超音波探傷を行うも
のである・ 第4図は本発明の実施例を示すプルツク線図であシ、#
I5図は第4図の動作を示す図であるが、今探触子aK
よる探傷について第4図、第5図によ〕説明する。
The present invention enables highly accurate flaw detection by changing the ultrasonic flaw detection area each time to follow the change in cross-sectional dimensions and shape of square steel. That is, in the present invention, as shown in FIG. First, the cross-sectional dimensions of the square steel within the flaw detection area of each probe are measured by transmitting and receiving ultrasonic waves from the
An ultrasonic flaw detection area, ie, a gate, is set based on the measured value, and then ultrasonic flaw detection is performed within the set gate. FIG. #
Figure I5 is a diagram showing the operation of Figure 4, but now the probe aK
The flaw detection will be explained with reference to FIGS. 4 and 5.

第4図において8は後述する各種の構成要素を各々互い
に関連をもたせて制御する機能と、ゲートの位置及び巾
を設定する機能をもつ主制御部、9は主制御部8からの
信号を受けて所定の周期で第5図に示すような同期出力
波形Tu+を発生する同期部、10は同期部9の信号T
mK同期して送信パルスTaを発生する送信部である。
In FIG. 4, 8 is a main control unit which has the function of controlling various components described later in relation to each other, and the function of setting the position and width of the gate, and 9 is a main control unit that receives signals from the main control unit 8. 10 is a signal T of the synchronizer 9, which generates a synchronous output waveform Tu+ as shown in FIG.
This is a transmitter that generates a transmission pulse Ta in synchronization with mK.

11は主制御部8にて設定されたゲートの起点信号Gs
+g、 Ggzg及びゲートの幅信号G1z、 Gsz
t K基づいて2種のゲートGll + Gll2を出
力するゲート発生部であり、ゲー) Gllは角鋼1の
表面部深さを中心として任意の幅で設定される表面エコ
ーゲートであり、ゲ−) G、、は角鋼1の底面部を中
心として任意の幅で設定される底面エコーゲートである
11 is a gate starting point signal Gs set by the main controller 8
+g, Ggzg and gate width signals G1z, Gsz
It is a gate generation unit that outputs two types of gates Gll + Gll2 based on tK, and Gll is a surface echo gate set with an arbitrary width centered on the surface depth of the square steel 1, and Gll is a gate generator that outputs two types of gates Gll + Gll2 based on t G, , is a bottom echo gate set with an arbitrary width around the bottom of the square steel 1.

探触子aは前記送信部10に接続されており、送信部1
0からの送信パルス出力T、は探触子a[よシ超音波に
変換されて角鋼1に向けて送信される・角鋼1から反射
された超音波は探触子aによって受信され、ここで再び
電気信号に変換されて受信アンプ13によって所定の値
まで増幅され、第5図の8信号即ち送信エコー(T)、
表面エコー(S)、底面エコー(B1 v Bt m 
”−−−−)等の信号が得られる。この受信信号Rと前
記ゲート発生部11の8エコーゲートG11、Bエコー
ゲートG12とを使用して肉厚信号発生部14によりて
肉厚信号E、、E、が得られる。ここで得られた信号胸
と為とが角鋼の断面寸法を示し、これは以下に記述する
方法によって精度よく計測される。
The probe a is connected to the transmitting section 10, and the transmitting section 1
The transmitted pulse output T from 0 is converted to an ultrasonic wave by the probe a and transmitted toward the square steel 1.The ultrasonic wave reflected from the square steel 1 is received by the probe a, where It is again converted into an electrical signal and amplified to a predetermined value by the reception amplifier 13, and the eight signals shown in FIG. 5, namely the transmission echo (T),
Surface echo (S), bottom echo (B1 v Bt m
”----) etc. is obtained. Using this reception signal R and the 8 echo gates G11 and B echo gates G12 of the gate generation section 11, the thickness signal generation section 14 generates the thickness signal E. , , E are obtained. The signal width and width obtained here indicate the cross-sectional dimensions of the square steel, which can be measured with high accuracy by the method described below.

即ち、15は7リツプ7pツブ回路であり、ζこで前記
Rの送信波TでセットされE、でリセット・される矩形
波G1と、Rの送信波Tでセットされ鳥でリセットされ
る矩形波G、を発生し、これらの幅は主クロツクパルス
発生部18で微小間隔で発生するクロック(cb)をカ
クンター16にょシ計数する事で測定される。これKよ
りてElと絢の間隔即ち表面エコーと底面エコーの間隔
が精度よく検出される。探傷ゲート制御部17はこの角
鋼の肉厚寸法値から予め定めた表層部不感帯深さWaと
底層部不感帯深さwbとを差引いて探傷ゲートの始点及
び終点を決める。このようにして探傷ゲートは角鋼の肉
厚寸法に基づいて常に一定の表層部及び底層部不感帯深
さにて制御される。
That is, 15 is a 7-rip, 7-p tube circuit, which generates a rectangular wave G1 that is set by the R transmission wave T and reset by E, and a rectangle wave G1 that is set by the R transmission wave T and reset by the bird. The width of these waves is measured by counting the clocks (cb) generated at minute intervals by the main clock pulse generator 18 using the counter 16. From this K, the interval between El and Aya, that is, the interval between the surface echo and the bottom echo can be detected with high accuracy. The flaw detection gate control unit 17 determines the start and end points of the flaw detection gate by subtracting a predetermined surface dead zone depth Wa and bottom dead zone depth Wb from the wall thickness value of the square steel. In this way, the flaw detection gate is always controlled at a constant dead zone depth in the surface layer and bottom layer based on the wall thickness of the square steel.

このように本制御法によればくり返し周波数毎に表面エ
コ−S1底面エコーB1のエコー深さから角鋼の断面寸
法を算出し、それに基づいて極めて高精度にて探傷ゲー
トを設定し、制御する事が可能で、例えば主クロツクパ
ルス発生部18で発生するクロック(CL)を32MH
zとするとff度はa1■となる。これは探触子息だけ
でなく残シの探触子b−pの全てKついて前記探傷ゲー
トの制御を行う事によって、角鋼の形状の変動にかかわ
らずn度のよい全断面の探傷が可能となる。尚、仁の探
傷ゲート制御は、<シ返し周波数毎に行う方法の他、必
要に応じて数回毎の平均値を求めその値に基づいて制御
する等の方法を用いてもよい。
In this way, according to this control method, the cross-sectional dimensions of the square steel are calculated from the echo depth of the surface echo S1 and the bottom echo B1 for each repetition frequency, and the flaw detection gate can be set and controlled with extremely high precision based on this. For example, the clock (CL) generated by the main clock pulse generator 18 can be set to 32MH.
When z, the ff degree is a1■. By controlling the above-mentioned flaw detection gate not only for the probe son but also for all the remaining probes b-p, it is possible to detect flaws in the entire cross section with a good n degree regardless of changes in the shape of the square steel. Become. In addition to the method of controlling the flaw detection gate for each repetition frequency, if necessary, a method of obtaining an average value every few times and controlling based on that value may be used.

次に角鋼の1面当り複数個の探触子の配置が可能な鞍型
探傷ヘッドの機構について説明する・第6図は角鋼の1
面当如4個の探触子が収納可能な鞍型探傷ヘッドの正面
図、第7図(イ)は本発明に係る探傷用ヘッド31の平
面図、第7図(ロ)は一部断面で示す正面図を示す。第
6図及び第7図(イ)、(鴫に示すように探触子dは各
々ジンバル機構19に収められこのジンバルはx −x
’軸を中心として回動可能な構造であり、又スプリング
Yを介して設置されているので、角鋼1の幅方向の形状
変化(タイコ等)K倣う事が出来る。又、4個の探触子
ハホルダー20に収納されており、このホルダーはz−
z’軸を中心として回動可能に設置されているものであ
る。これ忙よって角鋼の長手方向の形状変化に倣う事が
出来る。さらにホルダー20はv−v’軸を中心として
回動出来るように設置されているので角鋼の面の大きな
変化に倣う事が出来る。
Next, we will explain the mechanism of the saddle-type flaw detection head that allows multiple probes to be placed on one side of square steel. Figure 6 shows one side of square steel.
A front view of a saddle-shaped flaw detection head that can accommodate four probes per surface, FIG. 7(A) is a plan view of the flaw detection head 31 according to the present invention, and FIG. 7(B) is a partial cross-section. The front view shown in is shown. 6 and 7 (A), (as shown in the figure, the probes d are each housed in a gimbal mechanism 19, and this gimbal is
Since it has a structure that can be rotated about the axis and is installed via a spring Y, it is possible to imitate the shape change (such as a tycoon) in the width direction of the square steel 1. In addition, four probes are housed in a holder 20, and this holder is
It is installed so that it can rotate around the z' axis. This allows it to imitate the shape change in the longitudinal direction of the square steel. Further, since the holder 20 is installed so as to be rotatable about the v-v' axis, it is possible to follow large changes in the surface of the square steel.

尚、探触子には各々角鋼の幅方向に移動可能にしておく
と角鋼のサイズが変わっても探触子をスライドする事に
よって対応出来る。
If each probe is made movable in the width direction of the square steel, even if the size of the square steel changes, it can be handled by sliding the probe.

以上図示説明したように本発明方法及び装置によれば、
従来に比べ探傷エリアを飛躍的に拡大出来、角鋼の品質
保証上きわめて大きな効果を奏するものである。
According to the method and apparatus of the present invention as illustrated and explained above,
The flaw detection area can be expanded dramatically compared to conventional methods, and it has an extremely large effect on quality assurance of square steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の探傷を示す説明図、第3図、4
図、5図、6図および7図は本発明方法及び装置を示す
説明図である・ 1:角 鋼       15ニアリップフロップ2:
超音波ビーム    16:カウンター3:欠 陥  
     17:探傷ゲート制御部4:表面エコー  
   18:主クロックパルス発生部5:底面エコー 
    19ニシンパル機構6:探傷ゲート開始点  
20:ホルダー出願人  新日本製鐵株式会社(他1名
)代理人弁理士   青  柳      稔第]図 第2図 10  yα  L ε c3       の CI’)、  〜 −〜」
ヒヒ α 00田田OΦ0 第1頁の続き 0発 明 者 田中洋次 鎌倉市上町屋325番地三菱電機 株式会社鎌倉製作所内 ■出 願 人 三菱電機株式会社 東京都千代田区丸の内2丁目2 番3号
Figures 1 and 2 are explanatory diagrams showing conventional flaw detection, Figures 3 and 4.
Figures 5, 6 and 7 are explanatory diagrams showing the method and apparatus of the present invention. 1: Square steel 15 near rip-flop 2:
Ultrasonic beam 16: Counter 3: Defect
17: Flaw detection gate control section 4: Surface echo
18: Main clock pulse generator 5: Bottom echo
19 Nishinpal mechanism 6: Flaw detection gate starting point
20: Holder Applicant: Nippon Steel Corporation (and 1 other person) Representative Patent Attorney: Minoru Aoyagi] Figure 2, Figure 2, CI' of yα L ε c3 ), 〜 −〜」
Baboon α 00 Tada OΦ0 Continued from page 1 0 Author: Yoji Tanaka, 325 Kamimachiya, Kamakura City, Mitsubishi Electric Corporation, Kamakura Works ■Applicant: Mitsubishi Electric Corporation, 2-2-3 Marunouchi, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】 (1)  角材の面からパルス反射法にて入射面に垂直
に超音波を発受信し角材の内部欠陥を探傷する方法にお
いて、角材の各面に倣うように配置した複数の探触子か
ら超音波を発受信して角材の表面反射波と底面反射波か
ら角材の断面寸法を算出し、この寸法から予め定めた表
層部不感帯深さと底層部不感帝深さの値を差引いてゲー
トを算出し、このゲート内における内部欠陥を探傷する
ことを特徴とする角材の超音波探傷方法0(2) 角材
をパルス反射法にて入射面に垂直に超音波を発受信して
探傷を行う超音波探傷装置において、角材の相対する2
方向から角材の隣接する2面に倣いかつ角材1面当り複
数個の探触子を配置して表る一対の鞍型探傷ヘッドと、
各探触子からの反射信号により表面反射波及び底面反射
波の位置を探触子毎に検出するゲート回路と、各ゲート
回路によシ検出したそれぞれの反射波に基づき探傷用ゲ
ートの位置を定めるゲート設定回路を設けたことを特徴
とする角材の超音波探傷装置。 (3)  前記探触子は個々に角材表面に倣いその向き
を変えうるように設置されている特許請求の範囲第2項
に記載の超音波探傷装置◎
[Scope of Claims] (1) In a method for detecting internal defects in a square timber by transmitting and receiving ultrasonic waves perpendicular to the incident plane from the surface of the square timber using a pulse reflection method, a plurality of ultrasonic waves arranged to follow each surface of the square timber are used. Ultrasonic waves are emitted and received from the probe, and the cross-sectional dimensions of the square timber are calculated from the waves reflected from the surface and the bottom of the square timber. From these dimensions, the predetermined values of the dead zone depth of the surface layer and the dead zone depth of the bottom layer are calculated. An ultrasonic flaw detection method for square timber, characterized by calculating the gate by subtracting the gate, and detecting internal defects within the gate. In an ultrasonic flaw detection device that performs flaw detection,
a pair of saddle-shaped flaw detection heads that follow two adjacent sides of the square timber from the direction and arrange a plurality of probes per side of the square timber;
A gate circuit detects the position of the surface reflected wave and bottom reflected wave for each probe using the reflected signal from each probe, and the position of the flaw detection gate is determined based on the reflected waves detected by each gate circuit. An ultrasonic flaw detection device for square timber, characterized by being equipped with a gate setting circuit. (3) The ultrasonic flaw detection device according to claim 2, wherein the probes are installed so that they can individually follow the surface of the square timber and change their directions.
JP56159969A 1981-10-07 1981-10-07 Method and device for ultrasonic flaw detection for square material Pending JPS5861462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56159969A JPS5861462A (en) 1981-10-07 1981-10-07 Method and device for ultrasonic flaw detection for square material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56159969A JPS5861462A (en) 1981-10-07 1981-10-07 Method and device for ultrasonic flaw detection for square material

Publications (1)

Publication Number Publication Date
JPS5861462A true JPS5861462A (en) 1983-04-12

Family

ID=15705120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56159969A Pending JPS5861462A (en) 1981-10-07 1981-10-07 Method and device for ultrasonic flaw detection for square material

Country Status (1)

Country Link
JP (1) JPS5861462A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257363A (en) * 1990-03-08 1991-11-15 Mitsubishi Electric Corp Ultrasonic flaw detection apparatus
JPH05203630A (en) * 1992-01-28 1993-08-10 Mitsubishi Electric Corp Ultrasonic flaw detection for square steel
JP2008070325A (en) * 2006-09-15 2008-03-27 Sumitomo Metal Ind Ltd Method and apparatus for ultrasonic flaw detection, and steel product
JP2013002961A (en) * 2011-06-16 2013-01-07 Jfe Steel Corp Ultrasonic flaw detection method and device for round-bar steel
CN105223270A (en) * 2014-06-26 2016-01-06 上海金艺检测技术有限公司 Eliminate the detection method of square steel Inner Defect Testing system fillet scanning blind area
US20160054266A1 (en) * 2013-04-02 2016-02-25 Jfe Steel Corporation Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
RU2589491C1 (en) * 2012-12-20 2016-07-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method of analysing defects and device for investigation of defects
RU2598777C1 (en) * 2013-01-22 2016-09-27 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method for correction of position of the defect
RU2606452C1 (en) * 2013-02-01 2017-01-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method of defects control and apparatus for defects control
DE102012016607B4 (en) 2011-08-23 2019-05-09 Olympus Ndt Inc. Method and apparatus for performing the calibration of phased array shear wave channels for testing square bars

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135383A (en) * 1974-09-20 1976-03-25 Nippon Kokan Kk Choonpatanshoki no geetojidosetsuteihoho
JPS5312683A (en) * 1976-07-22 1978-02-04 Tokyo Keiki Kk Pillet automatic flaw detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135383A (en) * 1974-09-20 1976-03-25 Nippon Kokan Kk Choonpatanshoki no geetojidosetsuteihoho
JPS5312683A (en) * 1976-07-22 1978-02-04 Tokyo Keiki Kk Pillet automatic flaw detector

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257363A (en) * 1990-03-08 1991-11-15 Mitsubishi Electric Corp Ultrasonic flaw detection apparatus
JPH05203630A (en) * 1992-01-28 1993-08-10 Mitsubishi Electric Corp Ultrasonic flaw detection for square steel
JP2008070325A (en) * 2006-09-15 2008-03-27 Sumitomo Metal Ind Ltd Method and apparatus for ultrasonic flaw detection, and steel product
JP2013002961A (en) * 2011-06-16 2013-01-07 Jfe Steel Corp Ultrasonic flaw detection method and device for round-bar steel
DE102012016607B4 (en) 2011-08-23 2019-05-09 Olympus Ndt Inc. Method and apparatus for performing the calibration of phased array shear wave channels for testing square bars
RU2589491C1 (en) * 2012-12-20 2016-07-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method of analysing defects and device for investigation of defects
RU2598777C1 (en) * 2013-01-22 2016-09-27 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method for correction of position of the defect
RU2606452C1 (en) * 2013-02-01 2017-01-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method of defects control and apparatus for defects control
US20160054266A1 (en) * 2013-04-02 2016-02-25 Jfe Steel Corporation Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
CN105223270A (en) * 2014-06-26 2016-01-06 上海金艺检测技术有限公司 Eliminate the detection method of square steel Inner Defect Testing system fillet scanning blind area

Similar Documents

Publication Publication Date Title
US3944963A (en) Method and apparatus for ultrasonically measuring deviation from straightness, or wall curvature or axial curvature, of an elongated member
US4821575A (en) Ultrasonic flaw detecting method and apparatus
US3575044A (en) Ultrasonic inspection system for welds
EP1043584A1 (en) Method and apparatus for ultrasonic flaw detection of weld portion
JPS5861462A (en) Method and device for ultrasonic flaw detection for square material
US3636778A (en) Method and means for dimensional inspection of tubing
US3820387A (en) Probe system for ultrasonic nondestructive testing
GB1559469A (en) Method and apparatus for automatic ultrasonic flaw detection
US3805597A (en) Ultrasonic flaw detector
JPS6236527B2 (en)
JP2001194137A (en) Non-contact measuring method and apparatus for material thickness
RU2651431C1 (en) Method of industrial ultrasound diagnostics of vertically oriented defects of prismatic metal products and device for its implementation
US3942361A (en) Arrangement for testing thick-walled specimens by the ultrasonic pulse-echo method
KR20220004195A (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, steel manufacturing equipment heat, steel manufacturing method, and steel quality assurance method
CN113075297A (en) Titanium alloy phased array linear array ultrasonic detection sound field model construction method
US3166930A (en) Ultrasonic testing
JPS5642136A (en) Ultrasonic flaw detecting method
JPH0146027B2 (en)
JPS55135767A (en) Depth measuring system
SU1290157A1 (en) Device for performing ultrasonic checking of articles
JPS593254A (en) Ultrasonic flaw detecting apparatus
RU2761415C1 (en) SENSOR CARRIER FOR PIPELINE CONTROL USING TIME DIFFRACTIONAL ToFD METHOD
GB1166717A (en) Method of Testing Metal Parts by means of Ultra-Sonic Waves
JPH0727551A (en) Tube inner shape inspecting device
JPS6411143B2 (en)