JPH03257363A - Ultrasonic flaw detection apparatus - Google Patents

Ultrasonic flaw detection apparatus

Info

Publication number
JPH03257363A
JPH03257363A JP2056896A JP5689690A JPH03257363A JP H03257363 A JPH03257363 A JP H03257363A JP 2056896 A JP2056896 A JP 2056896A JP 5689690 A JP5689690 A JP 5689690A JP H03257363 A JPH03257363 A JP H03257363A
Authority
JP
Japan
Prior art keywords
flaw detection
ultrasonic
time
vibrators
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2056896A
Other languages
Japanese (ja)
Inventor
Kozo Ozaki
小崎 巧三
Mitsuo Yoshida
吉田 三男
Junichi Fujisawa
淳一 藤沢
Yukiro Sugimoto
幸郎 杉元
Yukio Mitani
三谷 幸雄
Ayumi Arakane
荒金 歩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Steel Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Steel Corp filed Critical Mitsubishi Electric Corp
Priority to JP2056896A priority Critical patent/JPH03257363A/en
Publication of JPH03257363A publication Critical patent/JPH03257363A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect various disorders and to enhance the reliability of each function by converging the ultrasonic beams of a plurality of vibrators to enhance sensitivity and using a reduced number of the vibrators less than the number of ones used at the time of flaw detection to perform the transmission and reception of an ultrasonic wave. CONSTITUTION:At the time of flaw detection, when vibrators 3a - 3c are selected by a transmission and reception selecting circuit 11 to be simultaneously driven, this state becomes same to such a state that a vibrator having an area three times equiva lently is driven and a narrow beam ultrasonic wave 4A is generated. When adjacent vibrators are selected like 3b - 3d' 3c - 3e by the circuit 11 and successively shifted at every definite time interval, the flaw detection of a material 1 to be inspected can be uniformly performed with high sensitivity by narrow beam ultrasonic waves 4A - 4D generated from respective vibrator groups. Next, when a reduced number of vibrators less than the number of ones used at the time of flaw detection, for example, only the vibrators 3b' 3e are driven at a time separate from flaw detection, ultrasonic beams 4b' 4e become wide in beam directional angle and, therefore, a stable surface reflected echo or bottom surface reflected echo is obtained. Therefore, the check of an acoustic coupling state or the tracking of a flaw detection gate position becomes possible.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、鉄鋼製造ラインにおいて鋼材内部に存在す
る欠陥の有無を超音波を利用して検査する超音波探傷装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an ultrasonic flaw detection device that uses ultrasonic waves to inspect the presence or absence of defects inside steel materials in a steel production line.

[従来の技術] 超音波探傷法は、一般に探触子と呼ばれる超音波センサ
ーから超音波を発信し、その超音波を水などの音響伝搬
媒体(接触媒質と呼ぶ。)を介して被検査材中に入射す
るとともに、被検査材中の欠陥からの反射エコーを受信
して欠陥の有無を検知するものであり、被検査材の形状
や寸法などに合わせて種々の装置が用いられており9例
えば特開昭58−61462号公報には複数の探触子に
よるビレットの超音波探傷方法および装置が開示されて
いる。
[Prior art] In the ultrasonic flaw detection method, an ultrasonic sensor generally called a probe emits ultrasonic waves, and the ultrasonic waves are transmitted through an acoustic propagation medium (called a couplant) such as water to a material to be inspected. The presence or absence of defects is detected by receiving reflected echoes from defects in the material to be inspected, and various devices are used depending on the shape and size of the material to be inspected9. For example, JP-A-58-61462 discloses an ultrasonic flaw detection method and apparatus for billets using a plurality of probes.

第5図は、従来の技術の一例として、角ビレツト用超音
波自動探傷装置の超音波探触子の配置と角ビレツト断面
における超音波ビームの概念を示すものである。
FIG. 5 shows, as an example of the prior art, the arrangement of ultrasonic probes of an automatic ultrasonic flaw detection device for square billets and the concept of ultrasonic beams in the cross section of square billets.

図において、(1)は被検査材である角ビレット(断面
図) 、 (2a)〜(2d)は上記の角ビレットの一
面に配置された超音波探触子群で(3a)〜(3d)は
それぞれ(2a)〜(2d)の各探触子に収納されてい
る振動子、 (4a) 〜(4dlはそれぞれ(3a)
 〜(3dlの各振動子が各振動子が発生する超音波の
角ビレット(1)内におけるビームの拡がり(探傷範囲
)を示すものである。また、  (5a) 〜(5dl
 、 (6a) 〜(6dl 。
In the figure, (1) is a square billet (cross-sectional view) that is the material to be inspected, and (2a) to (2d) are a group of ultrasonic probes arranged on one side of the square billet. ) are the transducers housed in each of the probes (2a) to (2d), and (4a) to (4dl are (3a), respectively)
~(3dl) Each transducer indicates the beam spread (flaw detection range) within the square billet (1) of the ultrasonic waves generated by each vibrator. Also, (5a) ~(5dl)
, (6a) ~(6dl.

(7a)〜(7d)はいずれも角ビレットの別の面に配
置されて探触子群を表しており、それぞれが(4a)〜
(4d)と同様な超音波ビーム(図においては省略)を
発生ずる。角ビレツト用超音波自動探傷装置では、この
図の紙面に垂直方向に角ビレットが搬送されることによ
って先端から後端までの全長にわたる探傷が実行される
(7a) to (7d) are all arranged on different sides of the square billet and represent probe groups, and (4a) to (7d) are respectively arranged on different sides of the square billet.
An ultrasonic beam (omitted in the figure) similar to (4d) is generated. In the automatic ultrasonic flaw detection device for square billets, flaw detection is performed over the entire length from the leading edge to the trailing edge by transporting the square billet in a direction perpendicular to the plane of the drawing.

第6図は角ビレットの搬送ラインにおける探傷機構の一
例を示したもので、第6図(a)は正面図、第6図(b
)は側面図である。図において。
Figure 6 shows an example of a flaw detection mechanism in a square billet conveyance line, with Figure 6 (a) being a front view and Figure 6 (b) being a front view.
) is a side view. In fig.

超音波探触子は上部探触子ホルダー(8a)および下部
探触子ホルダー(8b)に収納され、被検査材である角
ビレットが搬送されてくると上部追従機構(9a)およ
び下部追従機構(9b)を作“動させることによって、
その先端で探触子ホルダー(8al (8blが接材し
後端で離材する動作を繰り返しながら探傷される。
The ultrasonic probe is stored in an upper probe holder (8a) and a lower probe holder (8b), and when a square billet, which is the material to be inspected, is conveyed, the upper tracking mechanism (9a) and the lower tracking mechanism By activating (9b),
The probe holder (8al (8bl) contacts the material at the tip and releases the material at the rear end, which is repeated for flaw detection.

従来の超音波自動探傷装置においては、第5図に示すよ
うに角ビレットの内部欠陥の有無を検査するために2個
々の超音波探触子を角ビレットの各面に並べて配置する
が、角ビレットの平面寸法と探触子の幅とから並べられ
る探触子の数は自ずと制限を受け、−面当りの探触子数
は4個程度となるのが普通である。その場合、角ビレツ
ト内部にできるかぎり未探傷領域が発生しないようにす
るためには2図からも明らかなように個々の探触子の超
音波ビームが一定以上の幅を持って拡がっていることが
必要である。
In conventional automatic ultrasonic flaw detection equipment, two individual ultrasonic probes are placed side by side on each side of a square billet in order to inspect the presence or absence of internal defects in the square billet, as shown in Fig. 5. The number of probes that can be lined up is naturally limited by the planar dimensions of the billet and the width of the probes, and the number of probes per surface is usually about four. In that case, in order to prevent the occurrence of undetected areas inside the square billet as much as possible, the ultrasonic beam of each probe must spread out over a certain width, as is clear from Figure 2. is necessary.

方7通常の超音波自動探傷装置においては。Method 7: In normal ultrasonic automatic flaw detection equipment.

超音波探触子から出た超音波ビームが接触媒質を介して
被検査材の中に正常に入射されているかどうかを確認す
るために、被検査材の表面や底面から反射されてくる超
音波エコーのエコー高さのレベルによって判断する。装
置の動作チェック機能や音響結合状態のチェック機能を
具備しており。
In order to check whether the ultrasonic beam emitted from the ultrasonic probe is properly entering the material to be inspected via the couplant, the ultrasonic waves reflected from the surface or bottom of the material to be inspected are used. Judgment is made based on the echo height level of the echo. Equipped with a function to check the operation of the device and the state of acoustic coupling.

対象エコーとしては表面エコーや底面エコーを使用する
ことが多い。また接触媒質の厚さ(水ギャップ)や被検
査材の寸法の変動に対して、できるかぎり未探傷部分が
小さくなるように欠陥検出用ゲートの位置が追従して変
化するように、同じ表面エコーや底面エコーを用いて欠
陥検出ゲート位置のトラッキング機能を持っていののが
普通である。
A surface echo or a bottom echo is often used as the target echo. In addition, as the thickness of the couplant (water gap) and the dimensions of the inspected material change, the position of the defect detection gate changes accordingly so that the undetected area becomes as small as possible. It usually has a tracking function for the defect detection gate position using backplane echo.

従来の超音波自動探傷装置においては、鋼材内部にでき
るかぎり未探傷領域が発生しないようにするために、超
音波探触子が発生する超音波ビームはそれぞれが一定以
上の幅を持って拡がっていることが必要である。しかし
ながら、その結果として感度の低下をまねき、探触子か
らの距離が遠くなるにしたがって低下の度合が大きくな
るという問題点があり、特に超音波に対する減衰の大き
い材料などを検査対象とする場合は、 S−/N (信
号対雑音比)が確保できずに小さい欠陥は探傷できない
ということがあった。このような問題に対処するために
9例えば特公昭63−44195号(超音波探触子のリ
ニア電子走査方法)公報に開示されているように、平面
状に配列した複数個の振動子を隣接するN個の振動子を
単位としてこれを順次にずらせながら電子走査して超音
波を送受することで、ビームと等価的に集束させ、S/
Nを向−ヒさせる方法も採用されてきた。
In conventional automatic ultrasonic flaw detection equipment, the ultrasonic beams generated by the ultrasonic probe are each spread out over a certain width in order to minimize the occurrence of undetected areas inside the steel material. It is necessary to be present. However, this results in a decrease in sensitivity, and the problem is that the degree of decrease increases as the distance from the probe increases, especially when inspecting materials that have high attenuation of ultrasonic waves. , Small defects could not be detected because the S-/N (signal-to-noise ratio) could not be ensured. In order to deal with such problems,9 for example, as disclosed in Japanese Patent Publication No. 63-44195 (Linear electronic scanning method for ultrasonic probe), a plurality of transducers arranged in a plane are arranged adjacent to each other. By electronically scanning and transmitting and receiving ultrasound while sequentially shifting N transducers as a unit, the beam is focused equivalently to the S/
Methods to suppress N have also been adopted.

[発明が解決しようとする課題] 従来の超音波探傷装置において、感度およびS/N向上
のために、平面状に配列した複数個の振動子を同時に駆
動することによって、超音波ビームを拡げないで指向角
を小さくすると、鋼材表面の凹凸や超音波探触子と被検
査材間のギャップ変動などの影響を受けて1表面エコー
や底面エコーのレベルが変動し不安定になりやすい。こ
の発明が解決しようとする課題は、探傷感度の向上は達
成しつつ、装置の動作チェックや音響結合状態のチェッ
ク、欠陥検出ゲート位置のトラッキング機能は安定して
実行することである。
[Problem to be solved by the invention] In conventional ultrasonic flaw detection equipment, in order to improve sensitivity and S/N, multiple transducers arranged in a plane are simultaneously driven, thereby preventing the ultrasonic beam from spreading. If the directivity angle is made small, the level of the single surface echo and bottom echo tends to fluctuate and become unstable due to the effects of irregularities on the surface of the steel material and variations in the gap between the ultrasonic probe and the material to be inspected. The problem to be solved by this invention is to stably perform the function of checking the operation of the device, checking the acoustic coupling state, and tracking the position of the defect detection gate while improving the flaw detection sensitivity.

[課題を解決するための手段] この発明に係る超音波探傷装置は、一つの超音波探触子
の中に複数の振動子および対応する電極を並べて内蔵し
、そのなかの一部であらかじめ定められた数の互いに隣
接した複数電極に同時に電圧を加えることによって2等
価的に大きい一枚の振動子として動作させることで超音
波ビームを細く絞り、感度およびS/Nの向上を実現す
るとともに、探傷時とは別の時刻において、探傷時より
少ない数または一枚の適当な振動子を使用して超音波を
送受信し、より安定した表面エコーや底面エコーを得て
、装置の動作チェックや音響結合状態のチェック、欠陥
検出ゲート位置のトラッキングを行うようにしたもので
ある。
[Means for Solving the Problems] The ultrasonic flaw detection device according to the present invention has a plurality of transducers and corresponding electrodes arranged and built into one ultrasonic probe, and some of them have predetermined By simultaneously applying voltage to a set number of adjacent electrodes, the ultrasonic beam is narrowed down by operating it as one equivalently large transducer, improving sensitivity and S/N. Ultrasonic waves are transmitted and received at a different time from the time of flaw detection using fewer or one suitable transducer than during flaw detection to obtain more stable surface echoes and bottom echoes, which can be used to check the operation of the equipment and The bonding state is checked and the defect detection gate position is tracked.

[作用コ この発明においては、隣接した複数の電極に同時に電圧
を加えることによって9等価的に大きな振動子として動
作させ、結果的に超音波ビームを絞り感度の向上を実現
する超音波探傷装置において、底面エコーや表面エコー
を使用して装置の動作チェックや音響結合状態のチェッ
クおよび欠陥検出ゲート位置の1へラッキングを行う場
合は、探傷時とは別の時刻において、探傷時より少ない
数の適当な振動子を使用して超音波の送受信を行うこと
により、エコーレベルの変動を極力抑制し。
[Operations] In this invention, in an ultrasonic flaw detection device that simultaneously applies a voltage to a plurality of adjacent electrodes to operate as an equivalently large vibrator, the ultrasonic beam is narrowed and the sensitivity is improved. When checking the operation of the equipment, checking the acoustic coupling state, and racking to defect detection gate position 1 using bottom echo or surface echo, it is necessary to use a smaller number of appropriate sensors at a different time than during flaw detection. By using a transducer to transmit and receive ultrasonic waves, fluctuations in the echo level are suppressed as much as possible.

より安定した動作が可能となるようにしたものである。This allows for more stable operation.

[実施例] 第1図は、この発明による一実施例を示したものであり
、同図において(1)は被検査材、(2)は超音波探触
子、 (3al〜(3f)は超音波探触子(2)に収納
されている振動子、 (4A)〜(4D)は各振動子群
が発生する超音波ビーム、 (10a)〜(lof)は
それぞれ振動子(3a)〜(3f)の電極に接続されて
いる送受信回路、  (Illは送受信回路(10)の
中で任意の複数個の回路の送信を任意のタイミングで同
時に駆動すると共に、駆動された振動子からの受信信号
だけを合成して取り出すための送受信選択回路である。
[Example] Fig. 1 shows an example according to the present invention, in which (1) is a material to be inspected, (2) is an ultrasonic probe, and (3al to (3f) are The transducers housed in the ultrasonic probe (2), (4A) to (4D) are the ultrasonic beams generated by each transducer group, and (10a) to (lof) are the transducers (3a) to (4D), respectively. The transmitter/receiver circuit connected to the electrode (3f), (Ill) simultaneously drives the transmission of any plurality of circuits in the transmitter/receiver circuit (10) at an arbitrary timing, and also receives reception from the driven vibrator. This is a transmission/reception selection circuit that combines and extracts only signals.

また、Lは探触子と送受信回路を接続する同軸ケーブル
でTは送信指令信号、Rは受信信号を示している。
Further, L indicates a coaxial cable connecting the probe and the transmitter/receiver circuit, T indicates a transmission command signal, and R indicates a reception signal.

いま、上記のように構成された超音波探傷装置で2時刻
t1において送受信選択回路fillが送受信回路(l
oa)〜(tOC)を選択し、振動子(3a)〜(3c
)を同時に駆動するとともに反射してきた超音波を受信
することによって等価的に3倍の面積を持った振動子を
駆動したことと同じとなり、狭ビームの超音波(4A)
を発生させることで、−枚の振動子だけを駆動した場合
よりも高い感度で探傷することが可能となる。
Now, in the ultrasonic flaw detection apparatus configured as described above, at time 2 t1, the transmitter/receiver selection circuit fill is switched to the transmitter/receiver circuit (l
oa) to (tOC), and select transducers (3a) to (3c
) and receiving the reflected ultrasound at the same time, it is equivalent to driving a transducer with three times the area, and a narrow beam ultrasound (4A) is generated.
By generating this, it becomes possible to perform flaw detection with higher sensitivity than when only -1 transducers are driven.

次に時刻t2において、上記と同様に振動子(3b)〜
(3d)を同時に駆動することで超音波ビーム(4B)
が発生し、以下同じように時刻t3に振動子(3c)〜
(3e)を駆動して超音波ビーム(4G)が1時刻t4
に振動子(3d)〜(3f)を駆動して超音波ビーム(
4D)が発生する。このように一定の隣接する振動子を
一定の時間間隔ごとに順次シフトいくことによって、振
動子群から発生ずる超音波が狭ビームのままでつぎつぎ
に移動し、被検査材+11を高い感度で万偏なく探傷す
ることができるようになる。
Next, at time t2, the vibrator (3b) ~
Ultrasonic beam (4B) is generated by simultaneously driving (3d).
occurs, and in the same way, at time t3, the oscillator (3c) ~
(3e) and the ultrasonic beam (4G) is transmitted at time t4.
The ultrasonic beam (
4D) occurs. In this way, by sequentially shifting certain adjacent transducers at regular time intervals, the ultrasonic waves generated from the transducer group move one after another while maintaining a narrow beam, and the inspected material +11 can be inspected with high sensitivity. It becomes possible to perform flaw detection without bias.

なお、第1図においては、同時に駆動される振動子が3
枚の場合についての超音波ビームが示されているが、そ
の数が4枚や5枚などと異なっても同じ効果が得られる
ことは明らかである。
In Fig. 1, there are three vibrators driven simultaneously.
Although the ultrasonic beam is shown for the case of 4 or 5 ultrasonic beams, it is clear that the same effect can be obtained even if the number is different, such as 4 or 5.

一方、上記のように構成された超音波探傷装置において
は、超音波の指向角が小さくビームが鋭いために、欠陥
の検出能力は高いが7表面エコーや底面エコーは被検査
材表面の凹凸や被検査材と超音波探触子間のギャップ変
動等の影響を受けやすく不安定となりがちである。−数
的に超音波自動探傷装置においては、振動子から出た超
音波ビムが確実に被検査材に伝わっているかどうかをチ
ェックするために1表面や底面の反射エコーの高さを監
視して正常であることを確認する音響結合状態のチェッ
ク機能や、未探傷領域を小さくするために表面や底面の
反射エコー位置をモニターしながら欠陥検出用ゲートの
位置および範囲を表面や底面にできるかぎり近付けるゲ
ートトラッキング機能を具備しているのが普通である。
On the other hand, in the ultrasonic flaw detection device configured as described above, the directivity angle of the ultrasonic waves is small and the beam is sharp, so the defect detection ability is high. It is susceptible to changes in the gap between the inspected material and the ultrasonic probe, and tends to become unstable. - Numerically speaking, automatic ultrasonic flaw detection equipment monitors the height of reflected echoes from the surface and bottom surface in order to check whether the ultrasonic beam emitted from the transducer is reliably transmitted to the inspected material. There is a function to check the acoustic coupling state to confirm that it is normal, and to minimize the undetected area, the position and range of the defect detection gate is moved as close as possible to the surface and bottom while monitoring the position of reflected echoes on the surface and bottom. It is common to have a gate tracking function.

そこでこの発明においては、前記の探傷する時刻とは別
の時刻において、探傷時より少ない数の適当な振動子に
電圧を加えることによって指向角の広い超音波ビームを
発生させ、安定した表面反射エコーや底面反射エコーを
得て、音響結合状態のチェックや欠陥検出ゲート位置の
トラッキングを実施するようにしたものである。
Therefore, in this invention, an ultrasonic beam with a wide directivity angle is generated by applying voltage to a smaller number of suitable transducers than during flaw detection at a time different from the flaw detection time, and stable surface reflection echoes are generated. This system is designed to check the acoustic coupling state and track the position of the defect detection gate by obtaining the bottom surface reflection echo.

第2図はその時の超音波ビームの様子の一例を表したも
のであり、構成は第1図と同様である。
FIG. 2 shows an example of the state of the ultrasonic beam at that time, and the configuration is the same as that in FIG. 1.

図において、 (4b)は振動子(3b)のみを駆動し
たときの超音波ビームであり、また(4e)は振動子(
3e)のみを駆動したときの超音波ビームを示している
。図示されているように、第1図の場合と比べて超音波
ビームの指向角がひろくなり、安定した表面の反射エコ
ーや底面の反射エコーを得ることができる。また、同様
の効果は、他の振動子を駆動した場合も同じであること
は言うまでもない。
In the figure, (4b) is the ultrasonic beam when only the transducer (3b) is driven, and (4e) is the ultrasonic beam when the transducer (3b) is driven.
It shows the ultrasonic beam when only 3e) is driven. As shown in the figure, the directivity angle of the ultrasonic beam is wider than in the case of FIG. 1, and stable echoes reflected from the surface and reflected echoes from the bottom surface can be obtained. Furthermore, it goes without saying that similar effects are obtained when other vibrators are driven.

第3図は、この発明による第1図および第2図の超音波
探傷装置の送受信エコーの動作を時系列に示したもので
ある。図において、TI−T5は超音波探触子の送信エ
コー、 Sl−S5は超音波探触子と被検査材との境界
から反射してくる表面エコーB1−85は被検査材の底
面から反射してくる底面上(11) (12) コーである。ここで時刻tl 、t2.t3.t4にお
いては第1図に示したように、それぞれ3枚の振動子群
がシフトしながら順次駆動され、それぞれ(4Al 。
FIG. 3 shows, in chronological order, the operation of transmitting and receiving echoes of the ultrasonic flaw detection apparatus of FIGS. 1 and 2 according to the present invention. In the figure, TI-T5 is the transmitted echo of the ultrasonic probe, and Sl-S5 is the surface echo reflected from the boundary between the ultrasonic probe and the material to be inspected.B1-85 is the echo reflected from the bottom surface of the material to be inspected. On the bottom surface (11) (12) is Co. Here, time tl, t2. t3. At t4, as shown in FIG. 1, each of the three vibrator groups is sequentially driven while shifting, and each (4Al).

(4Bl 、 (4C) 、 (4D)の超音波ビーム
によって探傷が行われる。次に9時刻t5においては第
2図に一つの例として示したように1枚の振動子(第2
図では(3b)または(3el)が単独で駆動され、そ
の時の超音波ビーム(第2図では(4b)または(4e
))の安定して表面エコーや底面エコーによって音響結
合状態のチェックや欠陥検出ゲート位置のトラッキング
がおこなわれる。
Flaw detection is performed using the ultrasonic beams (4Bl, (4C), and (4D).Next, at time t5 of 9, one transducer (second
In the figure, (3b) or (3el) is driven independently, and the ultrasonic beam at that time ((4b) or (4e) in Figure 2 is
)) The acoustic coupling state is checked and the defect detection gate position is tracked by stable surface echoes and bottom echoes.

第4図は、その時の底面エコーによる欠陥検出ゲートの
終端位置のトラッキング動作を例示したもので、SGが
表面エコー検出用ゲート、FGが欠陥検出用ゲートであ
る。いま底面エコーB5の位置が何らかの要因によって
B5′の位置に移動した場合、その移動量に従って、欠
陥検出ゲートもFG(実線)からFG′ (破線)のよ
うに変化し、未探傷領域の発生や底面エコーの誤検出を
極力防止するように制御される。
FIG. 4 shows an example of the tracking operation of the end position of the defect detection gate using the bottom echo at that time, where SG is the surface echo detection gate and FG is the defect detection gate. If the position of the bottom echo B5 moves to the B5' position due to some reason, the defect detection gate will change from FG (solid line) to FG' (dashed line) according to the amount of movement, causing the occurrence of undetected areas and Control is performed to prevent false detection of bottom echoes as much as possible.

一方、この発明による超音波探傷装置のように一度に複
数の振動子を同時に駆動するような場合、その中の一枚
の振動子がケーブル断線などの何らかの原因によって不
具合を起こしていても現象としては感度が幾分低下する
のみで気がつかないことが多い。そこで、このような不
具合を事前にチェックし操作者に知らしめることは重要
であり、この発明においては探傷する時刻とは別の適当
な時刻において、各々の振動子に個別に電圧を加え、そ
の時の表面エコーによって感度をチェックすることで断
線などの不具合を検出可能としたものである。
On the other hand, when multiple transducers are driven at the same time as in the ultrasonic flaw detection device according to the present invention, even if one of the transducers is malfunctioning due to some reason such as a cable break, it is not a phenomenon. In many cases, the sensitivity is only slightly reduced and is not noticed. Therefore, it is important to check for such defects in advance and notify the operator.In this invention, a voltage is applied to each vibrator individually at an appropriate time other than the time of flaw detection, and the By checking the sensitivity using surface echoes, it is possible to detect defects such as wire breaks.

[発明の効果] 以上のように、この発明によれば集束された超音波ビー
ムを順次位置をシフトしながら鋼材に入射できるため、
高い性能で鋼材の検査を行うことができるようになる。
[Effects of the Invention] As described above, according to the present invention, a focused ultrasonic beam can be incident on a steel material while sequentially shifting its position.
It will be possible to inspect steel materials with high performance.

また、今までの説明においては垂直探触子を使用した場
合についてのみ説明したが、鋼材に斜めに超音波を入射
させる斜角探触子についても同様の効果が得られる。
Further, in the explanation so far, only the case where a vertical probe is used has been described, but the same effect can be obtained with an oblique probe that makes the ultrasonic wave obliquely enter the steel material.

さらに探傷時とは別の時刻において、−枚または探傷時
より少ない数の振動子を駆動することによって、安定し
た表面エコーや底面エコーが採取できるため、それらの
エコーを利用する音響結合状態のチェックや欠陥検出ゲ
ート位置のトラッキング、装置の動作不具合監視などの
各機能の信頼性を向上させることができる効果がある。
Furthermore, by driving - or a smaller number of transducers than during flaw detection at a different time from flaw detection, stable surface echoes and bottom echoes can be collected, making it possible to check the acoustic coupling state using these echoes. This has the effect of improving the reliability of various functions such as tracking of defect detection gate positions and monitoring of equipment malfunctions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明による実施例の構成と探傷時の超音
波ビームを示す図、第い2図は同じくこの発明による実
施例において音響結合状態チェック時や装置動作チェッ
ク時および欠陥グー1〜トラツキング時の超音波ビーム
を説明するための図。 第3図はこの発明による第1図および第2図の超音波探
傷装置の送受信エコーの動作を時系列に示した図、第4
図は欠陥ゲートトラッキング動作の一例を示す図、第5
図は従来技術の一例として角ビレツト用超音波自動探傷
装置における超音波探触子の配置と断面における超音波
ビームを示す図、第6図は角ビレットの搬送ラインにお
ける探傷機構の一例を示す図である。 図において、(1)は被検査材、(2)は超音波探触子
、(3)は振動子、(4)は超音波ビーム、(5)〜(
7)は超音波探触子、(8)は探触子ホルダー(9)は
追従機構、 (101は送受信回路、 fil)は送受
信選択回路である。 なお1図中同一符号は同一または相当部分を示している
Fig. 1 is a diagram showing the configuration of an embodiment according to the present invention and an ultrasonic beam during flaw detection, and Fig. 2 is a diagram showing the configuration of an embodiment according to the present invention and the ultrasonic beam during flaw detection. FIG. 3 is a diagram for explaining an ultrasonic beam during tracking. FIG. 3 is a diagram showing in chronological order the operation of transmitting and receiving echoes of the ultrasonic flaw detector shown in FIGS. 1 and 2 according to the present invention, and FIG.
Figure 5 shows an example of defective gate tracking operation.
The figure shows the arrangement of ultrasonic probes and the ultrasonic beam in cross section in an automatic ultrasonic flaw detection system for square billets as an example of conventional technology, and Figure 6 shows an example of a flaw detection mechanism in a conveyance line for square billets. It is. In the figure, (1) is the material to be inspected, (2) is the ultrasonic probe, (3) is the transducer, (4) is the ultrasonic beam, and (5) to (
7) is an ultrasonic probe, (8) is a probe holder (9) is a tracking mechanism, (101 is a transmission/reception circuit, and fil) is a transmission/reception selection circuit. Note that the same reference numerals in FIG. 1 indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)複数の振動子およびそれぞれの振動子に対応する
複数の電極とを内蔵してなる超音波探触子と、上記それ
ぞれの電極に接続された複数の送受信回路と、上記送受
信回路の中で任意の複数個の回路の送信部を任意のタイ
ミングで同時に動作させて上記振動子を駆動するととも
に、駆動された振動子からの受信信号だけを合成して取
り出すための送受信選択回路を具備し、上記超音波探触
子の中のあらかじめ定められた一部の互いに隣接した複
数電極に同時に電圧を加えることにより、上記複数の振
動子から発生する超音波ビームを等価的に集束し、その
集束された超音波ビームを鋼材に入射することによつて
鋼材の検査を行う超音波探傷装置において、前記の探傷
する時刻とは別の時刻に探傷時より少ない数の互いに隣
接する振動子または一枚の振動子を駆動し子、その時の
鋼材の表面または底面からの反射エコーを用いて超音波
探触子と鋼材との間の音響結合状態のチェックを行うこ
とを特徴とする超音波探傷装置。
(1) An ultrasonic probe that includes a plurality of transducers and a plurality of electrodes corresponding to each transducer, a plurality of transmitting/receiving circuits connected to each of the electrodes, and an inside of the transmitting/receiving circuit. The transducer is equipped with a transmission/reception selection circuit for simultaneously operating the transmitting parts of any plurality of circuits at any timing to drive the vibrator, and for synthesizing and extracting only the received signals from the driven vibrators. , by simultaneously applying voltage to a plurality of electrodes adjacent to each other in a predetermined part of the ultrasound probe, the ultrasound beams generated from the plurality of transducers are equivalently focused; In an ultrasonic flaw detection device that inspects steel materials by injecting an ultrasonic beam into the steel material, a smaller number of mutually adjacent transducers or one sheet is detected at a time different from the time of flaw detection. An ultrasonic flaw detection device characterized in that the acoustic coupling state between an ultrasonic probe and a steel material is checked by driving a transducer and using echoes reflected from the surface or bottom of the steel material at that time.
(2)前記の探傷時より少ない数の互いに隣接する振動
子または一枚の振動子を駆動した時の鋼材の表面または
底面からの反射エコーのエコー発生位置を検出する手段
を具備し、その検出した位置に追従するように鋼材中に
設定された欠陥検出用ゲートの位置を追従制御するよう
にしたことを特徴とする特許請求の範囲第1項記載の超
音波探傷装置。
(2) A means for detecting the echo generation position of the reflected echo from the surface or bottom of the steel material when a smaller number of adjacent vibrators or a single vibrator than in the flaw detection described above is driven; 2. The ultrasonic flaw detection apparatus according to claim 1, wherein the position of the defect detection gate set in the steel material is controlled to follow the position of the defect detection gate set in the steel material.
(3)前記の探傷する時刻とは別の時刻において、一つ
の振動子のみを駆動し、その時の超音波探触子の表面か
らの反射エコーを用いて、各々の振動子の動作および振
動子に接続された回路の動作のチェックを行うことを特
徴とする特許請求の範囲第1項記載の超音波探傷装置。
(3) At a time different from the above-mentioned flaw detection time, only one transducer is driven, and the operation of each transducer and the transducer are measured using the reflected echo from the surface of the ultrasonic probe at that time. 2. The ultrasonic flaw detection device according to claim 1, wherein the ultrasonic flaw detection device checks the operation of a circuit connected to the ultrasonic flaw detection device.
JP2056896A 1990-03-08 1990-03-08 Ultrasonic flaw detection apparatus Pending JPH03257363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2056896A JPH03257363A (en) 1990-03-08 1990-03-08 Ultrasonic flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2056896A JPH03257363A (en) 1990-03-08 1990-03-08 Ultrasonic flaw detection apparatus

Publications (1)

Publication Number Publication Date
JPH03257363A true JPH03257363A (en) 1991-11-15

Family

ID=13040210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2056896A Pending JPH03257363A (en) 1990-03-08 1990-03-08 Ultrasonic flaw detection apparatus

Country Status (1)

Country Link
JP (1) JPH03257363A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110900A1 (en) * 2006-03-24 2007-10-04 Ihi Corporation Defect inspecting device, and defect inspecting method
WO2009041313A1 (en) * 2007-09-28 2009-04-02 Krautkramer Japan Co., Ltd Ultrasonic flaw detecting method and its device
JP2009174999A (en) * 2008-01-24 2009-08-06 Hitachi Engineering & Services Co Ltd Ultrasonic flaw detector
JP2013156277A (en) * 2008-03-31 2013-08-15 Kjtd Co Ltd Ultrasonic flaw detection method and device thereof
JP2019113320A (en) * 2017-12-21 2019-07-11 大同特殊鋼株式会社 Flaw detection range determination method of ultrasonic flaw detection device
JP2019132663A (en) * 2018-01-30 2019-08-08 日本製鉄株式会社 Ultrasonic flaw detection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861462A (en) * 1981-10-07 1983-04-12 Nippon Steel Corp Method and device for ultrasonic flaw detection for square material
JPS58151555A (en) * 1982-03-05 1983-09-08 Sumitomo Metal Ind Ltd Ultrasonic flaw detecting method
JPS59148864A (en) * 1983-02-14 1984-08-25 Kobe Steel Ltd Ultrasonic flaw detecting method of square billet
JPS6055257A (en) * 1983-09-06 1985-03-30 Mitsubishi Electric Corp Ultrasonic testing device
JPS62191757A (en) * 1986-02-18 1987-08-22 Nippon Steel Corp Method for controlling divided-driving of array type probe
JPS62194456A (en) * 1986-02-20 1987-08-26 Nippon Steel Corp Method for checking array type probe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861462A (en) * 1981-10-07 1983-04-12 Nippon Steel Corp Method and device for ultrasonic flaw detection for square material
JPS58151555A (en) * 1982-03-05 1983-09-08 Sumitomo Metal Ind Ltd Ultrasonic flaw detecting method
JPS59148864A (en) * 1983-02-14 1984-08-25 Kobe Steel Ltd Ultrasonic flaw detecting method of square billet
JPS6055257A (en) * 1983-09-06 1985-03-30 Mitsubishi Electric Corp Ultrasonic testing device
JPS62191757A (en) * 1986-02-18 1987-08-22 Nippon Steel Corp Method for controlling divided-driving of array type probe
JPS62194456A (en) * 1986-02-20 1987-08-26 Nippon Steel Corp Method for checking array type probe

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110900A1 (en) * 2006-03-24 2007-10-04 Ihi Corporation Defect inspecting device, and defect inspecting method
JP4821848B2 (en) * 2006-03-24 2011-11-24 株式会社Ihi Defect inspection apparatus and defect inspection method
US8175820B2 (en) 2006-03-24 2012-05-08 Ihi Corporation Defect inspection apparatus and defect inspection method
WO2009041313A1 (en) * 2007-09-28 2009-04-02 Krautkramer Japan Co., Ltd Ultrasonic flaw detecting method and its device
JP2013148597A (en) * 2007-09-28 2013-08-01 Kjtd Co Ltd Ultrasonic flaw detection method and device thereof
JP5279090B2 (en) * 2007-09-28 2013-09-04 株式会社Kjtd Ultrasonic flaw detection method and apparatus
US8584526B2 (en) 2007-09-28 2013-11-19 Krautkramer Japan Co., Ltd. Ultrasonic flaw detection method and ultrasonic flaw detection equipment
JP2009174999A (en) * 2008-01-24 2009-08-06 Hitachi Engineering & Services Co Ltd Ultrasonic flaw detector
JP2013156277A (en) * 2008-03-31 2013-08-15 Kjtd Co Ltd Ultrasonic flaw detection method and device thereof
JP5288291B2 (en) * 2008-03-31 2013-09-11 株式会社Kjtd Ultrasonic flaw detection method and apparatus
JP2019113320A (en) * 2017-12-21 2019-07-11 大同特殊鋼株式会社 Flaw detection range determination method of ultrasonic flaw detection device
JP2019132663A (en) * 2018-01-30 2019-08-08 日本製鉄株式会社 Ultrasonic flaw detection method

Similar Documents

Publication Publication Date Title
US4821575A (en) Ultrasonic flaw detecting method and apparatus
US5431054A (en) Ultrasonic flaw detection device
US8584526B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection equipment
US7752913B2 (en) Method and device for detecting discontinuities in a material region
US6070466A (en) Device for ultrasonic inspection of a multi-layer metal workpiece
US3820387A (en) Probe system for ultrasonic nondestructive testing
JPH08502585A (en) Ultrasonic inspection head and operating method thereof
JPH03257363A (en) Ultrasonic flaw detection apparatus
US11408860B2 (en) Ultrasound probe with row-column addressed array
JP3671819B2 (en) Ultrasonic flaw detector for welded steel pipe
JP2009002832A (en) Ultrasonic flaw inspection device and ultrasonic flaw inspection method
JPH10185881A (en) Method and device for ultrasonic flaw detection
CN115380223B (en) Ultrasound probe with row and column addressing array
JPS59116541A (en) Method for detecting flaw of square steel piece by using both electronic sector scanning and electronic linear scanning
US7415865B2 (en) Determining the extent of a lateral shadow zone in an ultrasound inspection method
SU1290157A1 (en) Device for performing ultrasonic checking of articles
JPH09145697A (en) Composite probe device
JPH0760150B2 (en) Ultrasonic flaw detector
JPS62192653A (en) Ultrasonic flaw detecting method for steel tube weld seam part
JP2552178B2 (en) Ultrasonic flaw detection method for steel pipe welds
JP2003028845A (en) Method and apparatus for flaw detection by phased array
JPS62192655A (en) Ultrasonic flaw detecting method
RU1797043C (en) Method of ultrasonic defectoscopy of products with simultaneous acoustic contact quality control
JPS59116542A (en) Method for detecting flaw of square steel piece by electronic linear scanning
JPH06258294A (en) Ultrasonic flaw detector