JPS6055257A - Ultrasonic testing device - Google Patents

Ultrasonic testing device

Info

Publication number
JPS6055257A
JPS6055257A JP58163623A JP16362383A JPS6055257A JP S6055257 A JPS6055257 A JP S6055257A JP 58163623 A JP58163623 A JP 58163623A JP 16362383 A JP16362383 A JP 16362383A JP S6055257 A JPS6055257 A JP S6055257A
Authority
JP
Japan
Prior art keywords
ultrasonic
circuit
signal processing
acoustic coupling
receiving circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58163623A
Other languages
Japanese (ja)
Inventor
Tetsuo Miyoshi
哲夫 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58163623A priority Critical patent/JPS6055257A/en
Publication of JPS6055257A publication Critical patent/JPS6055257A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To remove a harmful ultrasonic wave signal due to acoustic coupling status monitoring and to attain proper testing by forming transmission pulses for the acoustic coupling status monitoring independently of testing transmission pulses. CONSTITUTION:Ultrasonic wave vibrators 2a, 2b excited by transmission circuits 1a, 1b generate ultrasonic beams and make the beams incident on a material 4. The transmission circuits 1a, 1b have timing exciting the ultrasonic vibrators 2a, 2b simultaneously and timing exciting only the vibrator 2b independently. The vibrators 2a, 2b receive ultrasonic wave signals obtained by reflecting the ultrasonic beams on the surface and the inside of the material 4 and input the received signals to respective receiving circuits 7a, 7b, the outputs of the receiving circuits 7a, 7b are added by an adder 10 and the added result is inputted to a signal processing circuit 8a to discriminate a defect. On the other hand, the output of the circuit 7b is inputted to a signal processing circuit 8b independently to monitor acoustic coupling status or the like. Consequently, a harmful ultrasonic wave signal due to the monitoring of the acoustic coupling status is removed and proper testing using ultrasonic waves can be attained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は超音波を使用して材料内部を検査する検査装置
に関するものであり、超音波を発生するトランスデユー
サ−(以後探触子と称する)が発生した超音波が材料中
に確実に入射(−たことを確認する有効な装置を提供す
るものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an inspection device for inspecting the inside of a material using ultrasonic waves. The present invention provides an effective device for confirming that the ultrasonic waves generated by () are incident (-) into the material.

〔従来技術J 従来超音波探触子が発生した超音波が材料中に確実に入
射したことを確認することを音響結合状態のモニターと
称しこれを実現する方法として超音波が材料中を透過し
あるいは材料中又は材料表面の反射源によって反射し、
再び材料のある表面に超音波が到達する位置に検出用の
探触子を設置し、到達した超音波信号の大きさをモニタ
ーする方法や探触子が発生した超音波が材料表面で反射
してきた表面反射エコーをモニターする方法等がとられ
ている。前者の方法は材料中を透過又は反射してきた超
音波が再び材料のある面に到達したときの到達位置が既
知であれば採用可能であるがこの到達位置が未知である
場合はこの方法の採用は非常に困難である。又板状の材
料の一面から超音波を入射し他面で反射されてきた超音
波反射エコーをモニターする場合等のように入射超音波
が再び同じ位置にかえってくるような反射源が材料中に
ある場合を除いては発生用の探触子とモニター用の探触
子が別々に必要となるため、構造上複雑であり又高価格
となる。従って後者の方法を採用する場合が多い。後者
の場合実際に材料に入射した超音波を検出しているわけ
ではないため、完全な方法とは言えないが超音波の材料
中への入射が損われる原因のほとんどが探触子と材料の
間の接触媒質が適切に形成されていないことによるため
材料表面まで超音波が到達していることを確認すればほ
ぼ間違いなく材料中に超音波が入射されたとみなして良
い。
[Prior Art J Conventionally, the process of confirming that the ultrasonic waves generated by an ultrasonic probe have definitely entered the material is called monitoring the acoustic coupling state, and the method for achieving this is to make sure that the ultrasonic waves are transmitted through the material. or reflected by a reflective source in the material or on the surface of the material,
A detection probe is placed at the position where the ultrasonic wave reaches the surface of the material again, and the magnitude of the ultrasonic signal that arrives is monitored. Methods such as monitoring surface reflection echoes have been adopted. The former method can be adopted if the arrival position when the ultrasonic wave that has been transmitted or reflected through the material reaches a certain surface of the material again is known, but if this arrival position is unknown, this method should be adopted. is extremely difficult. In addition, when ultrasonic waves are incident on one side of a plate-shaped material and the ultrasonic echoes reflected from the other side are monitored, there may be a reflection source in the material that causes the incident ultrasonic waves to return to the same position. Except in certain cases, a generation probe and a monitoring probe are required separately, resulting in a complex structure and high cost. Therefore, the latter method is often adopted. In the latter case, the ultrasonic waves actually incident on the material are not detected, so although it cannot be said to be a perfect method, most of the reasons why the ultrasonic waves entering the material are impaired are due to the interference between the probe and the material. This is because the couplant in between is not properly formed, so if it is confirmed that the ultrasonic waves have reached the surface of the material, it can almost certainly be assumed that the ultrasonic waves have entered the material.

第1図は上記後者の方法の一例を示す図である。FIG. 1 is a diagram showing an example of the latter method.

この例は鉄等の金属の溶接部の溶接不良を検出する目的
で超音波を材料に斜めに入射し、溶接不良部から反射さ
れてかえってくる反射エコーな検出して溶接不良があっ
たことを知る超音波探傷法の例である。図において(1
)は送信回路、 (2a)は探傷用の振動子、 (21
))は音響結合状態モニター用振動子、(3)は振動子
(2a)、 (2b)と材料の間の音の伝搬を行うくさ
び、14)は検査される材料、(5)は材料(4)の溶
接部、(6)は探触子、f7)は受信回路、 (8a)
は第一の信号処理回路、 (8b)は第二の信号処理回
路。
In this example, in order to detect welding defects in metals such as iron, ultrasonic waves are applied obliquely to the material, and the reflected echoes that are reflected from the welding defects are detected to detect welding defects. This is an example of the ultrasonic flaw detection method. In the figure (1
) is a transmitting circuit, (2a) is a vibrator for flaw detection, (21
)) is a vibrator for monitoring the acoustic coupling state, (3) is a wedge for sound propagation between the vibrator (2a), (2b) and the material, 14) is the material to be inspected, and (5) is the material ( 4) welded part, (6) the probe, f7) the receiving circuit, (8a)
(8b) is the first signal processing circuit, and (8b) is the second signal processing circuit.

(9a)は第一の出力回路、 (9b)は第二の出力回
路。
(9a) is a first output circuit, (9b) is a second output circuit.

Fは溶接部(5)の溶接不良である。F is a welding defect in the welded portion (5).

第1図に示す従来例の動作について説明する。The operation of the conventional example shown in FIG. 1 will be explained.

送信回路(1)によって励振された超音波振動子(2a
)。
The ultrasonic transducer (2a) excited by the transmission circuit (1)
).

(2b)は超音波ビームを発生し、くさび(3)及び図
示されていない接触媒質を経由し材料(4)に超音波ビ
ームを入射する。振動子(2a)が発生した超音波ビー
ムは材料(4)に対し斜めに入射し、溶接部(5)に到
達する。溶接部(5)にもし溶接不良等の欠陥Fがあれ
ばこの欠陥Fによって超音波が反射され再び探触子(6
)Kもとってくるため、超音波振動子(2a)によって
反射エコーが受信され受信回路(7)に入力される。受
信回路(7)は受信信号を増幅し、第一の信号処理回路
(8a)は欠陥判定等の信号処理を行い。
(2b) generates an ultrasonic beam and injects the ultrasonic beam into the material (4) via the wedge (3) and a couplant (not shown). The ultrasonic beam generated by the vibrator (2a) is obliquely incident on the material (4) and reaches the weld (5). If there is a defect F such as a poor weld in the welding part (5), the ultrasonic wave is reflected by this defect F and returns to the probe (6).
) K is also obtained, so the reflected echo is received by the ultrasonic transducer (2a) and input to the receiving circuit (7). The receiving circuit (7) amplifies the received signal, and the first signal processing circuit (8a) performs signal processing such as defect determination.

第一の出力回路(9a)はその結果を表示、出力する回
路である。
The first output circuit (9a) is a circuit that displays and outputs the results.

一方振動子(2b)が発生した超音波ビームは材料(4
)に対し垂直に入射し、材料表面及び底面にて反射され
再び探触子(6ンにもどってくるため、超音波振動子(
2b)によってこの反射エコーが受信され受信回路(7
)に入力される。受信回路(7)は受信信号を増幅し、
第二の信号処理回路(8b)は音響結合状態のモニター
等の信号処理を行い、第二の出力回路(9b)はその結
果を表示、出方する回路である。
On the other hand, the ultrasonic beam generated by the transducer (2b) is
), the ultrasonic transducer (
This reflected echo is received by the receiver circuit (7b).
) is entered. The receiving circuit (7) amplifies the received signal,
The second signal processing circuit (8b) performs signal processing such as monitoring the acoustic coupling state, and the second output circuit (9b) is a circuit for displaying and outputting the results.

ところがここに示す従来例では次に述べるような問題点
があった。すなわち、音響結合状態をモニターするため
に設けられた超音波振動子(2b)の発生する超音波ビ
ームが材料(4)の底面反射等により超音波振動子(2
a)に受信されてしまうためこれが有害な信号として本
来の溶接不良信号のノイズとなってしまうことである。
However, the conventional example shown here has the following problems. That is, the ultrasonic beam generated by the ultrasonic transducer (2b) provided for monitoring the acoustic coupling state is reflected by the bottom surface of the material (4), etc.
(a) Since this is received as a harmful signal, it becomes noise that is the original welding defect signal.

〔発明の概要〕[Summary of the invention]

本発明は従来のこのような欠点を改善するためになされ
たもので9本来の超音波信号に対して有害なノイズとな
らないように音響結合状態のモニターを行う超音波検査
装置を提供するものである。
The present invention has been made in order to improve these conventional drawbacks, and provides an ultrasonic inspection device that monitors the acoustic coupling state so as not to cause harmful noise to the original ultrasonic signal. be.

(発明の実施例〕 第2図は本発明の一実施例を示す図である。図において
(1a)は第一の送信回路、(1b)は第二の送信回路
、(2a)、 (2b)は超音波振動子7(3)はくさ
び。
(Embodiment of the invention) Fig. 2 is a diagram showing an embodiment of the present invention. In the figure, (1a) is a first transmitting circuit, (1b) is a second transmitting circuit, (2a), (2b) ) is an ultrasonic transducer 7 (3) is a wedge.

(4)は材料、(5Jは溶接部、(61は探触子、(7
a)は第一の受信回路、 (7b)は第二の受信回路、
 (8a)は第一の信号処理回路、 (8b)は第二の
信号処理回路、(9a)は第一の出力回路、 (9b)
は第二の出力回路1oeは加算回路、Fは溶接部(5)
の溶接不良である。又第3図は第2図に示す装置の送信
パルス及び受信信号を示す図である。図においてAは振
動子(2a)に加えられる送信パルス波形、Bは振動子
(2b)に加えられる送信パルス波形、Cは加算回路Q
1の出力波形、Dは第二の受信回路(7b)の出力波形
である。
(4) is the material, (5J is the welded part, (61 is the probe, (7
a) is the first receiving circuit, (7b) is the second receiving circuit,
(8a) is the first signal processing circuit, (8b) is the second signal processing circuit, (9a) is the first output circuit, (9b)
is the second output circuit 1oe is the addition circuit, F is the welding part (5)
Welding is defective. FIG. 3 is a diagram showing the transmitted pulses and received signals of the apparatus shown in FIG. 2. In the figure, A is the transmission pulse waveform applied to the vibrator (2a), B is the transmission pulse waveform applied to the vibrator (2b), and C is the adder circuit Q.
1 is the output waveform, and D is the output waveform of the second receiving circuit (7b).

SoはT。に、 E’abはTa及びTbに対応する材
料(4)の表面からかえってくる表面エコー+FQはT
。に。
So is T. , E'ab is the surface echo returned from the surface of material (4) corresponding to Ta and Tb + FQ is T
. To.

’abはTa、およびTbに対応する欠陥Fのエコーで
ある。
'ab is the echo of defect F corresponding to Ta and Tb.

次に動作に9いて説明する。Next, the operation will be explained.

第一の送信回路(1a)及び第二の送信回路(1b)に
より励振された超音波振動子(2a)、 (2b)は超
音波ビームを発生し、(さび(3)及び図示されていな
い接触媒質を経由し、材料(4)に超音波ビームな入射
する。振動子(2a)及び(2b)は近接して設置され
ており同時に励振するとちょうど一枚の振動子と同等の
挙動を示すようになっている。次に本発明では振動子(
2a)及び(2b)を同時に励振するタイミングとは別
に振動子(2b)を単独で励振するタイミングを有して
おりこの振動子(2b)は寸法を小さくしであるため指
向角が広くかつ超音波エネルギーが小さい超音波ビーム
が発生する。指向角が広いため材料(4)の表面からも
反射エコーが十分得られ。
The ultrasonic transducers (2a) and (2b) excited by the first transmitting circuit (1a) and the second transmitting circuit (1b) generate ultrasonic beams, and An ultrasonic beam is incident on the material (4) via the couplant.The oscillators (2a) and (2b) are installed close to each other, and when excited at the same time, they exhibit the same behavior as just one oscillator. Next, in the present invention, the vibrator (
Apart from the timing of exciting 2a) and 2b at the same time, there is a timing of exciting the vibrator (2b) independently.Since the size of the vibrator (2b) is small, it has a wide beam angle and an ultra-high beam angle. An ultrasonic beam with low acoustic energy is generated. Since the directivity angle is wide, sufficient reflected echoes can be obtained even from the surface of the material (4).

逆に材料中に入射されていく超音波ビームは振動分小さ
くなる。従って有害な超音波信号とはならない。さて、
振動子(2a)は振動子(2a)及び(2b)の発生し
た超音波ビームが材料表面及び材料中にて反射されもど
ってきた超音波信号を受信し、第一の受信回路(7a)
に入力される。同様に振動子(2b)により受信された
超音波信号も第二の受信回路(7b)に入力される。第
一の受信回路(7a)および第二の受信回路(7′o)
の出力は加算回路Cl11によって加算され第一の信号
処理回路(8a)に入力され欠陥判定等の信号処理を行
い第一の出力回路(9a)によりその結果が出力される
。一方第二の受信回路(7b)の出力は単独で第二の信
号処理回路(8b)に入力され音響結合状態のモニター
等の信号処理が行われ、その結果が第二の出力回路(9
b)にて出方される。すなわち、第3図A、Bに示すよ
うに振動子(2a)を励振する励振パルスT2と振動子
(2b)の励振パルスTbとが同じタイミングであり、
これとは別に振動子(2b)だげを励振する励振パルス
Tcがあるため第一の信号処理回路(8a)の入力波形
はO,Dのよ5にT。に対応する材料表面エコーSCは
振動子(2a)側では小さく振動子(2b)側では大き
くなる。又+TOに対応する材料内部からの反射エコー
はT、及びTbが作る反射エコーにくらべ十分に小さい
ため有害なノイズ成分とはならない。本発明の実施例で
はToはTbの前顛あるがT。はTbの後にあっても同
様の効果を発揮する。又、 TbよりもToの強度な小
さくすればさらにその効果を増すことは言うまでもない
ことである。一方加算回路四を省略しても振動子(2b
)が振動子(2a)にくらべ十分小さかったりT。が’
rbにくらべ十分に小さいなどの工夫を行うことによっ
て同様の効果が期待できる。又。
Conversely, the ultrasonic beam that enters the material becomes smaller by the amount of vibration. Therefore, it does not become a harmful ultrasonic signal. Now,
The transducer (2a) receives the ultrasonic beams generated by the transducers (2a) and (2b) and returns after being reflected on the material surface and inside the material, and is connected to the first receiving circuit (7a).
is input. Similarly, the ultrasonic signal received by the transducer (2b) is also input to the second receiving circuit (7b). First receiving circuit (7a) and second receiving circuit (7'o)
The outputs are added by an adder circuit Cl11 and inputted to a first signal processing circuit (8a), where signal processing such as defect determination is performed, and the result is outputted by a first output circuit (9a). On the other hand, the output of the second receiving circuit (7b) is inputted alone to the second signal processing circuit (8b), where signal processing such as monitoring of the acoustic coupling state is performed, and the result is sent to the second output circuit (9b).
b) will be issued. That is, as shown in FIGS. 3A and 3B, the excitation pulse T2 for exciting the vibrator (2a) and the excitation pulse Tb for the vibrator (2b) are at the same timing,
In addition to this, there is an excitation pulse Tc that excites only the vibrator (2b), so the input waveform of the first signal processing circuit (8a) is O, D, T5, T. The material surface echo SC corresponding to is small on the transducer (2a) side and large on the transducer (2b) side. Further, the reflected echo from inside the material corresponding to +TO is sufficiently smaller than the reflected echoes produced by T and Tb, and therefore does not become a harmful noise component. In the embodiment of the present invention, To is the predecessor of Tb, but T. Even after Tb, the same effect is exhibited. Moreover, it goes without saying that the effect will be further increased if the strength of To is made smaller than that of Tb. On the other hand, even if adding circuit 4 is omitted, the oscillator (2b
) is sufficiently smaller than the vibrator (2a) or T. but'
A similar effect can be expected by making it sufficiently smaller than rb. or.

探触子(6)が複数の振動子をプレイ状に配したアレイ
探触子であった場合も本発明の効果が通用できることは
当然のことである。この場合T。の送信が行われる振動
子が複数個あったとしても本発明の要旨はなんら損われ
ることはない。この場合第一の送信回路(1a)及び第
二の送信回路(1b)が複数個により構成されたり、前
記複数個の振動子に対して検査及び音響結合状態のモニ
ターに都合の良−・配線がなされて使用されたとしても
同じ効果が得られることは言うまでもない。
It goes without saying that the effects of the present invention can also be applied when the probe (6) is an array probe in which a plurality of transducers are arranged in a play shape. In this case T. Even if there are a plurality of transducers to which transmission is performed, the gist of the present invention is not impaired in any way. In this case, the first transmitting circuit (1a) and the second transmitting circuit (1b) may be composed of a plurality of pieces, or the wiring may be convenient for inspecting the plurality of transducers and monitoring the acoustic coupling state. It goes without saying that the same effect can be obtained even if it is made and used.

又9本発明の実施例として超音波探傷によって溶接部を
探傷する例を挙げたが、この発明の効果はこの例にとど
まらず材料表面から戻ってくる表面エコーを使用して音
響結合状態をモニターする超音波検査装置すべてに適用
可能である。
In addition, as an embodiment of the present invention, an example was given in which a welded part is detected by ultrasonic flaw detection, but the effects of this invention are not limited to this example, but the effect of this invention is not limited to this example. Applicable to all ultrasonic inspection equipment.

〔本発明の効果〕[Effects of the present invention]

以上述べたように本発明は本来の検査を行うための送信
パルスとは別に音響結合状態をモニターするだめの送信
パルスを設けることにより、音響結合状態をモニターす
ることによる有害な超音波信号を取り除き、良好な超音
波による検査を行うことができる。
As described above, the present invention eliminates harmful ultrasonic signals caused by monitoring the acoustic coupling state by providing a transmitting pulse for monitoring the acoustic coupling state separately from the transmitting pulse for performing the original inspection. , it is possible to conduct a good ultrasound examination.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の超音波検査装置の構成を示す図。 第2図は本発明の超音波検査装置の構成を示す図。 第3図は第2図に示す図の送信パルス及び受信信号を示
す図である。図において、(I)は送信回路。 (2a)、 (2b)は振動子、(3)はくさび、(4
)は材料7(6)は探触子、(力は受信回路、 (8a
)、 (8b)は信号処理回路、 (9a)、 (9b
)は出力回路である。 なお9図中同一あるいは相当部分には同一符号を付して
示しである。 代理人大岩増雄 第1図
FIG. 1 is a diagram showing the configuration of a conventional ultrasonic inspection apparatus. FIG. 2 is a diagram showing the configuration of the ultrasonic testing apparatus of the present invention. FIG. 3 is a diagram showing the transmitted pulse and received signal of the diagram shown in FIG. 2. In the figure, (I) is a transmitting circuit. (2a), (2b) are oscillators, (3) are wedges, (4
) is material 7 (6) is the probe, (force is the receiving circuit, (8a
), (8b) are signal processing circuits, (9a), (9b
) is the output circuit. Note that the same or corresponding parts in FIG. 9 are designated by the same reference numerals. Agent Masuo Oiwa Figure 1

Claims (1)

【特許請求の範囲】 複数の超音波振動子を有する超音波トランスデユーサ−
と、前記超音波振動子に対し所定の接続方法で配線され
た一個又は複数個の第一の送信回路又は送信回路群と、
前記第一の送信回路又は送信回路群と一対一に配線され
た第一の受信回路又は受信回路群と、前記第一の受信回
路又は受信回路群の出力を信号処理し超音波による材料
内部を検査し判定結果な出力する第一の信号処理回路と
。 前記第一の信号処理回路の信号処理結果を出力する第一
の出力回路と、前記超音波振動子に対し所定の接続方法
で配線された一個又は複数個の第二の送信回路又は送信
回路群と、前記第二の送信回路又は送信回路群と一対一
に配線された第二の受信回路又は受信回路群と、前記第
二の受信回路又は受信回路群の出力を信号処理し前記材
料と前記超音波トランスデユーサ−の間の音響結合状態
のモニターし判定結果を出力する第二の信号処理回路と
、前記第二の信号処理回路の信号処理結果を出力する第
二の出力回路とを有することを特徴とする超音波検査装
置。
[Claims] Ultrasonic transducer having multiple ultrasonic transducers
and one or more first transmitting circuits or a group of transmitting circuits wired to the ultrasonic transducer in a predetermined connection method;
A first receiving circuit or receiving circuit group wired one-to-one with the first transmitting circuit or transmitting circuit group, and signal processing of the output of the first receiving circuit or receiving circuit group to detect the inside of the material using ultrasonic waves. and a first signal processing circuit that inspects and outputs judgment results. a first output circuit that outputs the signal processing result of the first signal processing circuit; and one or more second transmitting circuits or a group of transmitting circuits wired to the ultrasonic transducer in a predetermined connection method. , a second receiving circuit or receiving circuit group wired one-to-one with the second transmitting circuit or transmitting circuit group, and signal processing of the output of the second receiving circuit or receiving circuit group to connect the material and the receiving circuit group. It has a second signal processing circuit that monitors the acoustic coupling state between the ultrasonic transducers and outputs a determination result, and a second output circuit that outputs the signal processing result of the second signal processing circuit. An ultrasonic inspection device characterized by:
JP58163623A 1983-09-06 1983-09-06 Ultrasonic testing device Pending JPS6055257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58163623A JPS6055257A (en) 1983-09-06 1983-09-06 Ultrasonic testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58163623A JPS6055257A (en) 1983-09-06 1983-09-06 Ultrasonic testing device

Publications (1)

Publication Number Publication Date
JPS6055257A true JPS6055257A (en) 1985-03-30

Family

ID=15777443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58163623A Pending JPS6055257A (en) 1983-09-06 1983-09-06 Ultrasonic testing device

Country Status (1)

Country Link
JP (1) JPS6055257A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257363A (en) * 1990-03-08 1991-11-15 Mitsubishi Electric Corp Ultrasonic flaw detection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257363A (en) * 1990-03-08 1991-11-15 Mitsubishi Electric Corp Ultrasonic flaw detection apparatus

Similar Documents

Publication Publication Date Title
CN103901108A (en) Phased-array ultrasonic detection method for interfacial de-bonding of composite material
JPS601554A (en) Ultrasonic inspection apparatus
JP2011163814A (en) Ultrasonic flaw detection testing method
JP4602421B2 (en) Ultrasonic flaw detector
JP3635453B2 (en) Ultrasonic shear wave oblique angle flaw detection method and apparatus
JP6870980B2 (en) Ultrasonic inspection equipment, ultrasonic inspection method, and manufacturing method of joint block material
JP2002062281A (en) Flaw depth measuring method and its device
JP2019078558A (en) Reference test piece and supersonic phased array flaw testing method
JPS6055257A (en) Ultrasonic testing device
JP4098070B2 (en) Ultrasonic flaw detector
JP2004347572A (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JPH03261858A (en) Acoustic coupling checking method of ultrasonic flaw detector
JP2001255308A (en) Method and apparatus for ultrasonic flaw detection
JP2978708B2 (en) Composite angle beam probe
Mustafa et al. Imaging of disbond in adhesive joints with lamb waves
JPH01187447A (en) Two-split type vertical probe
JPH05188046A (en) Ultrasonic probe and ultrasonic diagnosis method
JP3341824B2 (en) Electronic scanning ultrasonic flaw detector
JPH09145697A (en) Composite probe device
JPS6228862B2 (en)
JP3456953B2 (en) Ultrasonic flaw detector
Tzaferis et al. The effect of complex corrosion profiles on remaining wall thickness quantification using shear horizontal guided waves
JP2585658B2 (en) Ultrasonic probe
JP2507467B2 (en) Oblique angle ultrasonic flaw detector
JPH10128238A (en) Ultrasonic angle beam probe and its use method