JPS62191757A - Method for controlling divided-driving of array type probe - Google Patents

Method for controlling divided-driving of array type probe

Info

Publication number
JPS62191757A
JPS62191757A JP61033253A JP3325386A JPS62191757A JP S62191757 A JPS62191757 A JP S62191757A JP 61033253 A JP61033253 A JP 61033253A JP 3325386 A JP3325386 A JP 3325386A JP S62191757 A JPS62191757 A JP S62191757A
Authority
JP
Japan
Prior art keywords
type probe
ultrasonic
divided
array type
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61033253A
Other languages
Japanese (ja)
Inventor
Shoji Murota
室田 昭治
Youichi Fujikake
洋一 藤懸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61033253A priority Critical patent/JPS62191757A/en
Publication of JPS62191757A publication Critical patent/JPS62191757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To perform high speed flaw detection by enhancing the repeated frequency of the transmission and reception of an array type probe, by dividing the minute vibrators constituting the array type probe into a plurality of groups and driving the divided groups in parallel under control to perform the ultrasonic scanning of an object to be inspected. CONSTITUTION:Minute vibrators 19-50 are provided to an array type probe 51 and divided into a plurality of groups, for example, each consisting of 8 adjacent vibrators to form a divided parallel driving start group. The minute vibrators are excited by a transmission control part 81 through a pulser 79 and ultrasonic beams 66, 66' are parallelly emitted from each vibrator divided group to be successively transmitted to a steel pipe 65. The scanning ultrasonic waves from the steel pipe 65 are successively received by each vibrator divided group and processed by an adding processing part 84 to be displayed on a display device 86. The transmitting and receiving timing of ultrasonic waves is controlled by an operational processing part 83 and a beam incident angles thetagamma are equally controlled. Because the minute vibrators of the array type probe are divided into a plurality of divided groups to be subjected to driving control in parallel, the repeated frequency of flaw detection is enhanced to enable high speed flaw detection.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波フェイズドアレイ装置におけるアレイ
形探触子の超音波ビーム制御方法の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in an ultrasonic beam control method for an array probe in an ultrasonic phased array device.

〔従来の技術〕[Conventional technology]

アレイ形探触子を用いた超音波探傷法(以下、超音波フ
ェイズドアレイ法と称する)は、アレイ形探触子を構成
する複数個の微小振動子の送信タイミング及び被検体か
らの反射信号の受信タイミングを制御することにより、
各振動子による超音波信号の位相の重ね合わせにより、
超音波を特定の方向に偏向、集束させたり、あるいは、
高速で走査することが可能であり、また、特定方向の反
射信号を検出することによって探傷を行うものである。
The ultrasonic flaw detection method using an array type probe (hereinafter referred to as the ultrasonic phased array method) is based on the transmission timing of multiple microscopic transducers that make up the array type probe and the reflection signal from the object. By controlling the reception timing,
By superimposing the phases of the ultrasonic signals from each transducer,
Deflect or focus ultrasound waves in a specific direction, or
It is possible to scan at high speed, and detects flaws by detecting reflected signals in a specific direction.

この様な、超音波フェイズドアレイ法において、アレイ
形探触子からの超音波を送受信する場合、アレイ形探触
子を構成する微小振動子の複数個を群として、かつ、微
小振動子の一個づつをづらしながら、アレイ形探触子の
一端から他端に向けて順次、超音波を送受信してゆく、
いわゆる、リニア走査という公知の超音波ビーム制御が
よく用いられる。例えば、特願昭59−140321に
も記載されている鋼管の超音波探傷における超音波ビー
ム制御方法では、超音波のリニア走査を使用している。
In such an ultrasonic phased array method, when transmitting and receiving ultrasonic waves from an array type probe, multiple micro oscillators making up the array type probe are grouped, and one micro oscillator is Ultrasonic waves are transmitted and received sequentially from one end of the array type probe to the other end while moving one by one.
A known ultrasonic beam control called so-called linear scanning is often used. For example, an ultrasonic beam control method for ultrasonic flaw detection of steel pipes, which is also described in Japanese Patent Application No. 59-140321, uses ultrasonic linear scanning.

第2図は、超音波フェイズドアレイ法による超音波ビー
ムのリニア走査を用いた鋼管斜角探傷例を示している。
FIG. 2 shows an example of steel pipe oblique flaw detection using linear scanning of an ultrasonic beam by the ultrasonic phased array method.

この図において9([lilの小型撮動子1〜9で構成
されるアレイ形探触子10は隣接する3個の振動子を一
組として探触子の一端より他端に向け、振動子を一つづ
つずらしながら超音波の送信及び受信を行なう。この場
合特定の方向αに偏向した細い超音波ビーム11〜17
がアレイ形探触子IOの一端から他端まで走査され、か
つ走査方向の超音波信号が逐次受信される。偏向角αは
、探傷にもちいる屈折角θrに基づいて決定される。屈
折角θrを与える超音波ビームの入射角をθiとすると
、偏向角αで偏向するよう3つの振動子から出る超音波
は各々位相制御され、超音波ビーム11〜17が鋼管1
8の表面に向けて順次送受信されるのである。
In this figure, an array-type probe 10 composed of small-sized imagers 1 to 9 of Ultrasonic waves are transmitted and received while shifting the beams one by one.In this case, thin ultrasonic beams 11 to 17 deflected in a specific direction α are transmitted and received.
is scanned from one end of the array probe IO to the other end, and ultrasonic signals in the scanning direction are successively received. The deflection angle α is determined based on the refraction angle θr used for flaw detection. When the incident angle of the ultrasonic beam giving the refraction angle θr is θi, the phase of the ultrasonic waves emitted from the three oscillators is controlled so that they are deflected at the deflection angle α, and the ultrasonic beams 11 to 17 are directed to the steel pipe 1.
The information is transmitted and received sequentially toward the surface of the 8.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

通常の単一の振動子からなる超音波探触子と全体の有効
サイズは同じアレイ形探触子を用いてリニア走査探傷を
行うと、前者の探触子では単一の振動子であるから高い
繰り返し周波数での送受信が可能であるが、後者のアレ
イ形探触子では一端から他端まで多数回の送受信を繰り
返してはじめて前者の探触子と同じ探傷対象領域を探傷
したことになる。即ち、アレイ形探触子の場合超音波を
送受信する繰り返し周波数が低くならざるを得ない。こ
の繰り返し周波数の高低は、探傷対象材が長くかつ連続
的に移送される場合、その探傷速度に大きく影響するこ
とは明らかである。したがって、被検材の移送速度によ
っては、超音波フェイズドアレイ法では探傷困難となる
ケースが生じてしまう。
When performing linear scanning flaw detection using an array type probe that has the same overall effective size as a normal ultrasonic probe consisting of a single transducer, the former probe has a single transducer. Although it is possible to transmit and receive at a high repetition frequency, the latter array type probe detects the same flaw detection area as the former probe only after repeating transmission and reception many times from one end to the other. That is, in the case of an array type probe, the repetition frequency for transmitting and receiving ultrasonic waves must be low. It is clear that the height of this repetition frequency greatly affects the flaw detection speed when the flaw detection target material is transported continuously over a long period of time. Therefore, depending on the transport speed of the material to be inspected, there may be cases where flaw detection is difficult using the ultrasonic phased array method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、アレイ形探触子からの超音波ビーム送受信に
当り、該アレイ形探触子を構成する微小振動子の駆動開
始点を被数個所となるよう分割駆動することによって分
割駆動状況分の繰り返し周波数を高めることができる。
In transmitting and receiving ultrasonic beams from an array type probe, the present invention separates the divided drive state by dividing and driving the drive start points of the micro oscillators constituting the array type probe into a number of points. The repetition frequency can be increased.

〔作用〕[Effect]

本発明によれば、超音波フェイズドアレイ法でのリニア
走査探傷において、アレイ形探触子への送受信の繰り返
し周波数を高めることができるため、より高速で移送さ
れる被検材あるいは、逆に、停止した長さを有する被検
材上を高速でアレイ形探触子を移動することにより、通
常の単一の超音波探触子での探信速度に近い高速探傷が
実現できる。
According to the present invention, in linear scanning flaw detection using the ultrasonic phased array method, it is possible to increase the repetition frequency of transmission and reception to the array type probe. By moving the array type probe at high speed over a specimen having a stopped length, high-speed flaw detection can be achieved that is close to the detection speed of a single ordinary ultrasonic probe.

〔実施例〕〔Example〕

以下、具体的実施例を用いて詳細に説明する。 Hereinafter, a detailed explanation will be given using specific examples.

第1図は、本発明によるアレイ形探触子での分割駆動に
よるリニア走査時の超音波ビーム制御方法の説明図であ
る。第1図(alは、アレイ形探触子の各微小振動子群
についての分割駆動状況の説明図であり、第1図(b)
は、アレイ形探触子の各微小振動子群から分割駆動によ
って発射される超音波ビームが鋼管に投入される状況を
模擬した説明図である。
FIG. 1 is an explanatory diagram of an ultrasonic beam control method during linear scanning using divided driving in an array type probe according to the present invention. Figure 1 (al is an explanatory diagram of the divided drive situation for each micro-oscillator group of the array type probe; Figure 1 (b)
1 is an explanatory diagram simulating a situation in which ultrasonic beams emitted from each micro-oscillator group of an array type probe by split drive are injected into a steel pipe.

第1図(alでは、3211i1の微小1辰動子19〜
50で構成されるアレイ形探触子51は8個の微小振動
子群52′〜64’、52”〜62“の52′。
Figure 1 (in al, 3211i1 minute 1st axis
The array type probe 51 is composed of eight micro-oscillator groups 52' to 64' and 52' of 52'' to 62''.

52“の振動子群を分割並行駆動開始群として、64′
、64“の振動子群に向けて順次超音波の送受信を行な
ってゆ(ことを示している。第1図(blでは、上記、
アレイ形探触子51の分割並行駆動群によって鋼管65
に向けて順次、送信される超音波ビーム66〜78.6
6′〜78′を示しており、66“〜78” 、  6
6”〜78″は分割並行駆動によって送信された超音波
ビームの入射点を示している。この様に、アレイ形探触
子51を二分割駆動して探傷を行なえば、従来のリニア
走査探傷に比べ2倍の繰り返し周波数での探傷が可能と
なる。第3図は超音波フェイズドアレイ装置での鋼管探
傷のブロック図を示す。
The 52" transducer group is used as a divided parallel drive starting group, and the 64'
, 64". This shows that ultrasonic waves are sequentially transmitted and received toward the transducer group of 64".
The steel pipe 65 is driven by the divided parallel drive group of the array probe 51.
Ultrasonic beams 66 to 78.6 are sequentially transmitted toward
6' to 78' are shown, 66" to 78", 6
6'' to 78'' indicate the incident points of the ultrasonic beams transmitted by the divided parallel drive. In this way, by performing flaw detection by driving the array probe 51 in two parts, flaw detection can be performed at twice the repetition frequency compared to conventional linear scanning flaw detection. Figure 3 shows a block diagram of steel pipe flaw detection using an ultrasonic phased array device.

上記第1図(a)、 fblで述べた32個の微小振動
子19〜50からなるアレイ形探触子51をもちいて隣
接する8個の微小振動子を一群として探傷する場合を説
明する。第3図で79は微小1辰動子19〜50に励振
するためのパルサー、80は微小振動子19〜50で受
けた超音波信号を受信、増幅するレシーバ−181は各
振動子の励振タイミングを制御する送信制御部、82は
各振動子の受信タイミングを制御する受信制御部であり
、83は送受タイミングの演算および演算結果にしたが
って各部を制御する演算処理部、84は各振動子の受信
した信号を加算し、特定方向の信号を抽出するための加
算処理部、85は超音波ビーム走査断面の映像を形成す
るための表示制御部、86はこれを表示するための表示
器である。
A case will be described in which flaws are detected as a group of eight adjacent micro-vibrators using the array type probe 51 made up of the 32 micro-vibrators 19 to 50 described above in FIG. In Fig. 3, 79 is a pulser for exciting one minute oscillator 19 to 50, 80 is a receiver that receives and amplifies the ultrasonic signal received by minute oscillators 19 to 50, and 181 is the excitation timing of each oscillator. 82 is a reception control unit that controls the reception timing of each transducer, 83 is a calculation processing unit that calculates the transmission and reception timing and controls each part according to the calculation result, and 84 is a reception control unit that controls the reception timing of each transducer. 85 is a display control section for forming an image of the ultrasonic beam scanning cross section, and 86 is a display for displaying this.

まず、演算処理部83において、鋼管65とアレイ形探
触子51の幾何学的配置、探傷条件に基づき、各振動子
群より出る超音波ビームの鋼管表面への入射角をすべて
等しくする送信タイミング時間と、これと対応した受信
タイミング時間を演算する。微小振動子19〜50から
なる各振動子群より出る超音波ビームの偏向角が、演算
結果により決定され、超音波ビームが偏向されるよう、
送信制御部81によりパルサー79の励振タイミングが
制御される。微小振動子19〜50で受信された信号は
、レシーバ80を通り、前記演算結果に従って各振動子
からの受信信号が加算されるように受信制御部82で制
御され、それら信号は加算処理部84で加算されること
により、超音波の偏向方向の超音波信号を抽出できる。
First, in the arithmetic processing unit 83, based on the geometrical arrangement of the steel pipe 65 and the array probe 51, and the flaw detection conditions, the transmission timing is set to equalize the incident angles of the ultrasonic beams emitted from each transducer group onto the steel pipe surface. The time and the corresponding reception timing time are calculated. The deflection angle of the ultrasonic beam emitted from each transducer group consisting of the micro transducers 19 to 50 is determined by the calculation result, and the ultrasonic beam is deflected.
The transmission control unit 81 controls the excitation timing of the pulser 79. The signals received by the micro oscillators 19 to 50 pass through a receiver 80, and are controlled by a reception control unit 82 so that the received signals from each oscillator are added according to the calculation results, and these signals are added to an addition processing unit 84. By adding them, it is possible to extract the ultrasonic signal in the deflection direction of the ultrasonic wave.

この様な動作を各振動子群52′〜64′、52″〜6
4“において、52′ と52“を並行駆動して順次超
音波ビームをずらしていくことにより、26本の超音波
ビームが走査される。走査される各超音波ビームに対応
した該加算後の受信信号に基づき、表示制御部85によ
り表示器86上に、超音波ビーム走査断面の映像が表示
され、探傷結果を通常のリニア走査探傷の場合に比べて
、2倍の繰り返し周波数で得ることができる。
This kind of operation is carried out in each transducer group 52' to 64', 52'' to 6
4'', 26 ultrasonic beams are scanned by driving 52' and 52'' in parallel and sequentially shifting the ultrasonic beams. Based on the received signals after addition corresponding to each scanned ultrasonic beam, the display control unit 85 displays an image of the ultrasonic beam scanning cross section on the display 86, and compares the flaw detection results with normal linear scanning flaw detection. This can be achieved with twice the repetition frequency compared to the conventional case.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、超音波フェイズドアレ
イ装置でのリニア走査探傷において、アレイ形探触子の
分割駆動数倍だけ探傷の繰り返し周波数を高めることが
でき、より高速探傷が可能となる。なお実施例では、探
傷対象材として鋼管を用いて説明しているが、他の板、
棒、角材等の探傷にも本発明は有効である。また、第1
図(a)。
As described above, according to the present invention, in linear scanning flaw detection using an ultrasonic phased array device, the repetition frequency of flaw detection can be increased by the number of divided drives of the array type probe, making it possible to perform faster flaw detection. Become. In the example, a steel pipe is used as the material to be tested, but other plates,
The present invention is also effective for flaw detection on rods, square timbers, etc. Also, the first
Figure (a).

fb)ではアレイ形探触子を二分割並行駆動として説明
しているがこの分割数に制限はない。
fb) describes the array type probe as being driven in parallel by two divisions, but there is no limit to the number of divisions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるアレイ形探触子での分書(1駆動
によるリニア走査時の超音波ビーム制御方法の説明図で
、第1図(alはアレイ形探触子の各微小振動子群につ
いての分割駆動状況の説明図、第1図fblは、アレイ
形探触子の各微小振動子群から分割駆動によって発射さ
れる超音波ビームが鋼管に投入される状況を模擬した説
明図である。 第2図は、超音波フェイズドアレイ法による超音波ビー
ムのリニア走査を用いた2、4管斜角探傷例を示す説明
図、第3図は超音波フェイズドアレイ装置での鋼管探傷
のブロック図である。 出 願 人  新日本製鐵株式会社 代理人弁理士  青 柳    稔 手続補正書(自発) 昭和61年 5月 8日 特許庁長官 宇 賀 道 部 殿 1、事件の表示 昭和61年特許願第33253号 2発明の名称 アレイ形探触子の分割駆動制御方法 3、補正をする者 事件との関係  特許出願人 住所  東京都千代田区大手町二丁目6番3号名称 (
665)新日本製鐵株式会社 代表者 武 1)  豊 4、代理人 〒101 住 所  東京都千代田区岩本町3丁目4番5号第−東
ビル氏 名  (7017)弁理士  青  柳   
 稔8、補正の内容 (1)明細書第2頁14行の「重ね合わせによ如、」を
「重ね合わせが可能である。故に、」に補正する。 (2)同第5頁4行の「被数個所」を「複数個所」に補
正する。 (3)同第6頁8行の「52“〜62“」を「52″〜
64″」に補正する。 (4)図面第3図を別紙のとおり補正する。
FIG. 1 is an explanatory diagram of an ultrasonic beam control method during linear scanning with an array type probe according to the present invention (1 drive). Figure 1fbl is an explanatory diagram of the divided drive situation for groups, and is an explanatory diagram simulating the situation in which the ultrasonic beams emitted by the divided drive from each micro-oscillator group of an array type probe are thrown into a steel pipe. Figure 2 is an explanatory diagram showing an example of oblique flaw detection for two or four pipes using linear scanning of an ultrasonic beam using the ultrasonic phased array method, and Figure 3 is a block diagram of steel pipe flaw detection using an ultrasonic phased array device. Applicant Minoru Aoyagi, patent attorney representing Nippon Steel Corporation Procedural amendment (spontaneous) May 8, 1986 Michibe Uga, Commissioner of the Japan Patent Office 1, Indication of the case 1986 patent Application No. 33253 2 Name of the invention Split drive control method for array type probe 3 Relationship with the case of the person making the amendment Patent applicant address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (
665) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4, Agent 101 Address No. 4-5 Iwamotocho, Chiyoda-ku, Tokyo, Higashi Building Name (7017) Patent attorney Aoyagi
Minoru 8, Contents of the amendment (1) "As per superimposition," on page 2, line 14 of the specification is amended to "superposition is possible. Therefore." (2) Correct the ``number place'' on page 5, line 4 to ``multiple places.'' (3) Change “52” to 62” on page 6, line 8 of the same page to “52” to
Correct to 64″. (4) Figure 3 of the drawings will be amended as shown in the attached sheet.

Claims (1)

【特許請求の範囲】[Claims] 多数の微小振動子で構成されるアレイ形探触子と該アレ
イ形探触子を励振するパルサーと、前記アレイ形探触子
の受けた信号を受信するレシーバと、アレイ形探触子を
構成する個々の振動子毎の超音波の送信タイミングを制
御する送信制御部と、該振動子毎の受信タイミングを制
御する受信制御部と、該受信制御部により制御された各
振動子の受信信号を加算する加算処理部と、該加算処理
部からの信号に基づいて被検材断面の映像を表示するた
めの制御をする表示制御部と、被検材断面の映像を表示
する表示器と、探傷条件にあわせて送信制御部、受信制
御部、加算処理部、表示制御部に対し、最適な制御値を
演算し、各部の動作を制御する演算処理部とからなる超
音波フェイズドアレイ装置において、アレイ形探触子を
構成する微小振動子を複数の群に分割し、該分割群を並
列に駆動制御することによって、超音波の高速走査を行
なうことを特徴とした超音波ビーム制御方法。
The array-type probe includes an array-type probe composed of a large number of micro-oscillators, a pulser that excites the array-type probe, and a receiver that receives signals received by the array-type probe. a transmission control section that controls the transmission timing of ultrasonic waves for each transducer; a reception control section that controls the reception timing of each transducer; and a reception control section that controls the reception signal of each transducer controlled by the reception control section. an addition processing section that performs addition; a display control section that performs control to display an image of a cross section of a test material based on a signal from the addition processing section; a display that displays an image of a cross section of a test material; In an ultrasonic phased array device that consists of an arithmetic processing section that calculates optimal control values for the transmission control section, reception control section, addition processing section, and display control section according to conditions and controls the operation of each section, the array An ultrasonic beam control method characterized by dividing minute transducers constituting a shaped probe into a plurality of groups and driving and controlling the divided groups in parallel to perform high-speed ultrasonic scanning.
JP61033253A 1986-02-18 1986-02-18 Method for controlling divided-driving of array type probe Pending JPS62191757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61033253A JPS62191757A (en) 1986-02-18 1986-02-18 Method for controlling divided-driving of array type probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61033253A JPS62191757A (en) 1986-02-18 1986-02-18 Method for controlling divided-driving of array type probe

Publications (1)

Publication Number Publication Date
JPS62191757A true JPS62191757A (en) 1987-08-22

Family

ID=12381335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61033253A Pending JPS62191757A (en) 1986-02-18 1986-02-18 Method for controlling divided-driving of array type probe

Country Status (1)

Country Link
JP (1) JPS62191757A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269654A (en) * 1988-09-05 1990-03-08 Hitachi Constr Mach Co Ltd Ultrasonic wave inspecting device
JPH03257363A (en) * 1990-03-08 1991-11-15 Mitsubishi Electric Corp Ultrasonic flaw detection apparatus
KR100814091B1 (en) 2005-06-13 2008-03-14 주식회사 인디시스템 An Apparatus For Detecting Butt Joint of Pipe Using Parallel Connected Element And Method Thereof
KR100814089B1 (en) 2005-06-13 2008-03-14 주식회사 인디시스템 An Apparatus For Detecting Butt Joint of Pipe Using Parallel Connected Transducers And Method Thereof
JP2019174239A (en) * 2018-03-28 2019-10-10 日本製鉄株式会社 Ultrasonic flaw detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396285A (en) * 1977-02-02 1978-08-23 Hitachi Medical Corp Ultrasonic diagnosing device
JPS6118860A (en) * 1984-07-06 1986-01-27 Nippon Steel Corp Ultrasonic beam control method for ultrasonic flaw detection of steel pipe using array type probe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396285A (en) * 1977-02-02 1978-08-23 Hitachi Medical Corp Ultrasonic diagnosing device
JPS6118860A (en) * 1984-07-06 1986-01-27 Nippon Steel Corp Ultrasonic beam control method for ultrasonic flaw detection of steel pipe using array type probe

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269654A (en) * 1988-09-05 1990-03-08 Hitachi Constr Mach Co Ltd Ultrasonic wave inspecting device
WO1990002945A1 (en) * 1988-09-05 1990-03-22 Hitachi Construction Machinery Co., Ltd. Ultrasonic wave inspecting apparatus
EP0396761A1 (en) * 1988-09-05 1990-11-14 Hitachi Construction Machinery Co., Ltd. Ultrasonic wave inspecting apparatus
US5117697A (en) * 1988-09-05 1992-06-02 Hitachi Construction Machinery Co., Ltd. Ultrasonic flaw detector
JPH03257363A (en) * 1990-03-08 1991-11-15 Mitsubishi Electric Corp Ultrasonic flaw detection apparatus
KR100814091B1 (en) 2005-06-13 2008-03-14 주식회사 인디시스템 An Apparatus For Detecting Butt Joint of Pipe Using Parallel Connected Element And Method Thereof
KR100814089B1 (en) 2005-06-13 2008-03-14 주식회사 인디시스템 An Apparatus For Detecting Butt Joint of Pipe Using Parallel Connected Transducers And Method Thereof
JP2019174239A (en) * 2018-03-28 2019-10-10 日本製鉄株式会社 Ultrasonic flaw detection method

Similar Documents

Publication Publication Date Title
KR101144692B1 (en) Ultrasonic section inspection method and device
US6789427B2 (en) Phased array ultrasonic inspection method for industrial applications
JP4542814B2 (en) Ultrasonic inspection method
JPH0215821B2 (en)
JPS62191757A (en) Method for controlling divided-driving of array type probe
US11415554B2 (en) Ultrasonic inspection method
JP3606132B2 (en) Ultrasonic flaw detection method and apparatus
JP2005351718A (en) Omnidirectional flaw detection probe
JP3635453B2 (en) Ultrasonic shear wave oblique angle flaw detection method and apparatus
CN113994204B (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, and steel manufacturing method
JP4633268B2 (en) Ultrasonic flaw detector
JP4175762B2 (en) Ultrasonic flaw detector
JP2001255308A (en) Method and apparatus for ultrasonic flaw detection
JP5145783B2 (en) Ultrasonic cross-section inspection method and apparatus
JPH0440360A (en) Ultrasonic flaw detecting method for composite material
JPS62192653A (en) Ultrasonic flaw detecting method for steel tube weld seam part
JPS6027853A (en) Ultrasonic wave flaw detector
JPS6228862B2 (en)
JPH01126543A (en) Sector scan type ultrasonic flaw detector
JPH09257759A (en) C-scanning ultrasonic flaw detecting method and apparatus therefor
JPH08327613A (en) Method and system for electron scanning ultrasonic inspection
JPH02208557A (en) Array type skew probe
JP2006208326A (en) Method and device for inspection of cross section by ultrasonic wave
JPS62192655A (en) Ultrasonic flaw detecting method
JP2001215220A (en) Ultrasonic flaw detector, and method for ultrasonic flaw detection