JPH09257759A - C-scanning ultrasonic flaw detecting method and apparatus therefor - Google Patents

C-scanning ultrasonic flaw detecting method and apparatus therefor

Info

Publication number
JPH09257759A
JPH09257759A JP8063015A JP6301596A JPH09257759A JP H09257759 A JPH09257759 A JP H09257759A JP 8063015 A JP8063015 A JP 8063015A JP 6301596 A JP6301596 A JP 6301596A JP H09257759 A JPH09257759 A JP H09257759A
Authority
JP
Japan
Prior art keywords
ultrasonic
wave
transmitter
receiver
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8063015A
Other languages
Japanese (ja)
Other versions
JP3612849B2 (en
Inventor
Hajime Takada
一 高田
Susumu Moriya
進 守屋
Fumihiko Ichikawa
文彦 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP06301596A priority Critical patent/JP3612849B2/en
Publication of JPH09257759A publication Critical patent/JPH09257759A/en
Application granted granted Critical
Publication of JP3612849B2 publication Critical patent/JP3612849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detecting method suitably used in the detection of the internal flaw of about 10-100μm of a sample cut from a rolled metal panel. SOLUTION: A first process superposing the linearly converged ultrasonic beam from an ultrasonic transmitter 21 and the linearly converged receiving beam of an ultrasonic receiver 22 one upon another to detect a flaw and a second process allowing the linearly converged ultrasonic beam from the ultrasonic transmitter 21 to cross the linearly converged receiving beam of the ultrasonic receiver 22 at a right angle to detect a flaw are combined. By this constitution, the internal flaw of a panel 10 to be inspected can be detected inclusive of the form of the flaw without generating an insensitive zone in the vicinity of the surface thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、Cスキャン超音
波探傷方法および装置に係り、特に圧延金属板の切出し
サンプルのなかの10〜 100μm 程度の内部欠陥の検出に
用いるのに好適なCスキャン超音波探傷方法および装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a C-scan ultrasonic flaw detection method and apparatus, and more particularly, to a C-scan ultra-sonic detector suitable for use in detecting internal defects of about 10 to 100 μm in a cut sample of a rolled metal plate. The present invention relates to an ultrasonic flaw detection method and apparatus.

【0002】[0002]

【従来の技術】近年、自動車や缶などの素材となる薄鋼
板は、軽量化、素材コストの削減などの要請で薄肉化が
進むととともに、部品点数を削減して製作コストを低減
するため、プレス、絞り等の加工において素材の著しい
変形を伴う強い加工が施されるようになっている。鋼板
に強い加工を施すとき、変形の著しい部分に非金属介在
物等からなる内部欠陥が存在すると割れが発生するが、
鋼板の肉厚が小さいほど内部欠陥による割れの発生は顕
著となり、かつ、割れの原因となる内部欠陥のサイズも
微小化する。また、欠陥の形態と割れの発生にも関係が
あり、欠陥形態として球状の単体、一方向に伸延した単
体、微小球状欠陥の集合体などがあるが、それぞれによ
って割れの発生しやすさには違いがみられる。また、サ
ワーガス用のラインパイプに用いられる厚鋼板など使用
条件の厳しい製品も増加し、10μm以上の大きさから水
素誘起割れの原因となって有害とされ、欠陥形態によっ
ても水素誘起割れの発生しやすさは相違する。このよう
なことから、前記した鋼板では内部欠陥を極力少なくす
ること、欠陥形態を割れの発生しにくいものとすること
などが要求され、製品の内部欠陥の発生レベルおよびそ
の形態を微小欠陥まで含め評価することが必要になって
いる。
2. Description of the Related Art In recent years, thin steel sheets, which are materials for automobiles and cans, have become thinner due to demands for weight reduction and material cost reduction. In processing such as pressing and drawing, strong processing accompanied by remarkable deformation of the material has been performed. When subjecting a steel sheet to strong processing, cracks will occur if internal defects such as non-metallic inclusions are present in the part that is significantly deformed.
The smaller the thickness of the steel sheet, the more remarkable the occurrence of cracks due to internal defects, and the size of the internal defects that cause the cracks becomes smaller. There is also a relationship between the form of defects and the occurrence of cracks, and there are spherical simple substances, simple substances extending in one direction, and aggregates of minute spherical defects as defect forms. You can see the difference. In addition, products with severe operating conditions, such as thick steel plates used for sour gas line pipes, have increased, and from the size of 10 μm or more, they are considered to be harmful as they cause hydrogen-induced cracking, and hydrogen-induced cracking also occurs depending on the defect form. Ease is different. Therefore, in the above-mentioned steel sheet, it is required to reduce internal defects as much as possible, and to make the defect morphology less likely to cause cracks. It is necessary to evaluate.

【0003】このような鋼板の内部欠陥検出およびその
形態の評価手段として、製品の一部をサンプルとして切
出し、このサンプルのなかの内部欠陥をCスキャン超音
波探傷装置と称される装置を用いて探傷することが広く
用いられてきた。図6に従来のCスキャン超音波探傷装
置による探傷法を示す。すなわち、溶媒液中に浸漬され
た被検査板101 の上方の点集束型超音波送受信子102
は、コントローラ114 の信号によって移動する走査装置
104 によって走査され、かつ電気パルス発生器116 から
一定時間間隔で送信される電気パルスを超音波に変換
し、被検査板101 に向けて略垂直に超音波ビーム103 を
送信するとともに、被検査板101 の内部欠陥、表面およ
び裏面などの反射波を受信し、電気信号に変換する。受
信した信号は受信増幅器111 で増幅され、ゲート回路11
2 で欠陥からの反射波が抽出される。抽出された信号は
ピーク値検出回路113 に送られ、ここで欠陥反射波の振
幅が検出され、コントローラ114 に送信される。コント
ローラ114 は前記欠陥反射波の振幅と前記走査装置104
の位置信号とを表示器115 に出力し、表示器115 は内部
欠陥の2次元分布図を表示し、このようにして内部欠陥
を検出する。
As a means for detecting such internal defects of a steel sheet and evaluating the form thereof, a part of a product is cut out as a sample, and the internal defect in this sample is measured by using a device called a C-scan ultrasonic flaw detector. Testing has been widely used. FIG. 6 shows a flaw detection method using a conventional C-scan ultrasonic flaw detector. That is, the point-focusing ultrasonic wave transceiver 102 above the plate 101 to be inspected immersed in the solvent liquid.
Is a scanning device that is moved by a signal from the controller 114
The electric pulse scanned by 104 and transmitted from the electric pulse generator 116 at constant time intervals is converted into ultrasonic waves, and the ultrasonic beam 103 is transmitted substantially vertically toward the inspection plate 101, and at the same time, the inspection plate is inspected. It receives the internal defects of 101, reflected waves from the front and back, and converts them into electrical signals. The received signal is amplified by the reception amplifier 111, and the gate circuit 11
At 2, the reflected wave from the defect is extracted. The extracted signal is sent to the peak value detection circuit 113, where the amplitude of the defect reflected wave is detected and sent to the controller 114. The controller 114 controls the amplitude of the defect reflection wave and the scanning device 104.
And the position signal of 1) are output to the display unit 115, and the display unit 115 displays a two-dimensional distribution map of the internal defects and detects the internal defects in this way.

【0004】このような1つの点集束型の超音波送受信
子102 で被検査板101 に略垂直に超音波を送信し、被検
査板からの反射波を受信して欠陥を検出する方法では、
超音波ビームが表面に入射したとき、大振幅であり、か
つ、残響がしばらく持続する表面反射波が発生するた
め、表面近傍の欠陥反射波が前記表面エコーあるいはそ
の残響と重なり、その存在が識別できなくなり、表面近
傍の欠陥が検出できないという問題があった。
In such a method of detecting ultrasonic waves by transmitting ultrasonic waves substantially perpendicularly to the plate 101 to be inspected by one point-focusing ultrasonic wave transceiver 102 and receiving reflected waves from the plate to be inspected,
When an ultrasonic beam is incident on the surface, a surface reflection wave with a large amplitude and reverberation lasts for a while is generated, so the defect reflection wave near the surface overlaps with the surface echo or its reverberation, and its existence is identified. There is a problem in that it becomes impossible to detect defects near the surface.

【0005】また、Cスキャン超音波探傷方法あるいは
装置に関する従来技術としては、高周波の超音波を用い
る特開昭59−17153 号公報あるいは特開平5−333000号
公報が挙げられる。前者は30〜100MHz、後者は15〜50MH
z の何れも高周波数の超音波を用いビーム径を小さくす
ることにより、分解能を向上させ、内部欠陥の検出能を
向上させたものである。また、後者は、超音波周波数、
焦点距離および被検査板と焦点位置との関係を最適化す
ることにより、表面近傍に存在する微小欠陥の検出を確
実にし、探傷結果の定量的評価を可能としたものであ
る。
Further, as the prior art relating to the C-scan ultrasonic flaw detection method or apparatus, there are JP-A-59-17153 and JP-A-5-333000 which use high-frequency ultrasonic waves. The former is 30-100MHz, the latter is 15-50MH
In each of z, high-resolution ultrasonic waves are used to reduce the beam diameter to improve resolution and detectability of internal defects. The latter is the ultrasonic frequency,
By optimizing the focal length and the relationship between the plate to be inspected and the focal position, it is possible to ensure the detection of minute defects existing near the surface and to quantitatively evaluate the flaw detection result.

【0006】[0006]

【発明が解決しようとする課題】しかし、特開平5−33
3000号公報では表面直下の不感帯が低減されているとは
いえ、皆無とは言えず、垂直探傷法によるCスキャン超
音波探傷には依然として表面近傍に存在する微小欠陥が
検出できないという問題が残されている。また、点集束
型の送受信子を用いたCスキャン超音波探傷では、超音
波送受信子を2次元的に走査して内部欠陥の検出を行う
ため、探傷に時間がかかるという問題点がある。
[Patent Document 1] Japanese Patent Application Laid-Open No. 5-33
Although the dead zone just below the surface is reduced in the 3000 publication, it cannot be said that there is no dead zone, and the problem remains that microscopic defects existing in the vicinity of the surface cannot be detected in C scan ultrasonic flaw detection by the vertical flaw detection method. ing. Further, in C-scan ultrasonic flaw detection using a point-focusing type transceiver, there is a problem in that flaw detection takes time because the ultrasonic transducer is two-dimensionally scanned to detect internal defects.

【0007】ところで、本発明者らは、既に特開平7−
253414号公報において、被検査板を挟んでラインフォー
カス超音波送信子と前記超音波ビームの幅方向に複数の
超音波振動子を並べてなる1次元アレー型超音波受信子
とを対向配置し、前記送信子から帯状超音波ビームを被
検査板に向けてほぼ垂直に送信し、被検査板に入射した
超音波によって生起された内部欠陥からの反射波を前記
1次元アレー型超音波受信子によって受信し、受信され
た超音波を増幅し、反射波のみを抽出した後に所定の振
幅に達した反射波の有無を検出することを特徴とする超
音波探傷方法および装置を提案し、これにより、表面直
下の不感帯なしに、板厚方向の全域にわたり一度に一定
幅の線状の領域を高速に探傷することが可能になった。
By the way, the inventors of the present invention have already disclosed in JP-A-7-
In 253414, a line focus ultrasonic transmitter and a one-dimensional array ultrasonic receiver having a plurality of ultrasonic transducers arranged in the width direction of the ultrasonic beam are arranged to face each other with a plate to be inspected, A band-shaped ultrasonic beam is transmitted from the transmitter almost vertically to the plate to be inspected, and the reflected wave from the internal defect caused by the ultrasonic waves incident on the plate to be inspected is received by the one-dimensional array type ultrasonic receiver. Then, it proposes an ultrasonic flaw detection method and device characterized by detecting the presence or absence of a reflected wave that has reached a predetermined amplitude after amplifying the received ultrasonic wave and extracting only the reflected wave. It became possible to detect a linear area of a constant width at a high speed at a time over the entire area in the plate thickness direction without a dead zone directly below.

【0008】しかしながら、この方法では、微小な欠陥
までその有無は明瞭にわかるものの、送受信する超音波
が2次元的に集束していないため、集束していない超音
波ビームの幅方向の分解能が低く、欠陥の形態を判別す
ることができないという問題があった。この発明は、前
記したような従来技術の有する課題を解消すべくなされ
たもので、Cスキャン超音波探傷において、被検査板の
表面近くの不感帯がなく、板厚方向全断面の探傷が高速
にでき、かつ、微細な内部欠陥の形態まで検出すること
が可能なCスキャン超音波探傷方法および装置を提供す
ることを目的とする。
However, according to this method, although the presence or absence of even minute defects can be clearly seen, the ultrasonic waves to be transmitted and received are not two-dimensionally focused, so that the resolution of the unfocused ultrasonic beam in the width direction is low. However, there is a problem that the form of the defect cannot be determined. The present invention has been made to solve the above-described problems of the prior art, and in C-scan ultrasonic flaw detection, there is no dead zone near the surface of the plate to be inspected, and flaw detection of the entire cross section in the plate thickness direction is performed at high speed. An object of the present invention is to provide a C-scan ultrasonic flaw detection method and apparatus capable of detecting even the form of a fine internal defect.

【0009】[0009]

【課題を解決するための手段】本発明は、液中に浸漬さ
れた被検査板を挟んで、ラインフォーカス型の超音波送
信子とラインフォーカス型の超音波受信子とを対向配置
して走査するとともに、前記超音波送信子から線状に集
束した超音波ビームを被検査板内に略垂直に入射し、前
記超音波ビームの透過波と前記超音波ビームによって生
起された内部欠陥からの反射波とを前記超音波受信子で
受信し、受信された信号に基づいて被検査板の内部欠陥
を検出する方法であって、前記超音波送信子からの線状
に集束した超音波ビームと前記超音波受信子の線状に集
束した受信ビームとが重なるようにして探傷する第1の
工程と、前記超音波送信子からの線状に集束した超音波
ビームと前記超音波受信子の線状に集束した受信ビーム
とが直交するようにして探傷する第2の工程と、からな
ることを特徴とするCスキャン超音波探傷方法である。
According to the present invention, a line focus type ultrasonic transmitter and a line focus type ultrasonic receiver are arranged to face each other with a plate to be inspected immersed in a liquid sandwiched therebetween for scanning. At the same time, the ultrasonic beam linearly focused from the ultrasonic transmitter is made to enter the plate to be inspected substantially vertically, and the transmitted wave of the ultrasonic beam and the reflection from the internal defect caused by the ultrasonic beam are reflected. A method for detecting an internal defect of a plate to be inspected on the basis of a received signal by receiving a wave and the ultrasonic wave receiver, wherein the ultrasonic beam linearly focused from the ultrasonic wave transmitter and the A first step of flaw detection such that the linearly focused reception beam of the ultrasonic receiver overlaps, and the linearly focused ultrasonic beam from the ultrasonic transmitter and the linear shape of the ultrasonic receiver So that the received beam focused on A second step of flaw detection by, it is C-scan ultrasonic flaw detection method comprising consisting.

【0010】また、本発明は、被検査板の表面に超音波
を略垂直に送信するラインフォーカス型の超音波送信子
と、被検査板を挟んで前記超音波送信子と対向する位置
に配置し、超音波の反射波と、超音波によって生起され
た内部欠陥からの反射波とを受信するラインフォーカス
型の超音波受信子と、前記超音波送信子からの線状に集
束した超音波ビームと前記超音波受信子の線状に集束し
た受信ビームとを重なる位置から直交する位置にまで、
前記超音波送信子および/または前記超音波受信子を回
転する回転機構と、前記超音波送信子と前記超音波受信
子とを被検査板を挟んで支持する支持アームと、該支持
アームを走査する走査装置と、前記超音波受信子からパ
ルス状の超音波ビームを送信するための電気パルスを発
生する電気パルス発生装置と、前記超音波受信子からの
受信信号を増幅する受信増幅器と、増幅された信号から
内部欠陥からの反射波を抽出するゲート手段と、を備え
たことを特徴とするCスキャン超音波探傷装置である。
Further, according to the present invention, a line focus type ultrasonic transmitter for transmitting ultrasonic waves substantially perpendicularly to the surface of the plate to be inspected and a position facing the ultrasonic transmitter with the plate to be inspected interposed therebetween. Then, a line focus type ultrasonic wave receiver for receiving the reflected wave of the ultrasonic wave and the reflected wave from the internal defect caused by the ultrasonic wave, and the ultrasonic beam linearly focused from the ultrasonic wave transmitter. And from the position where the reception beam converged linearly of the ultrasonic receiver overlaps the position orthogonal to
A rotating mechanism for rotating the ultrasonic transmitter and / or the ultrasonic receiver, a support arm for supporting the ultrasonic transmitter and the ultrasonic receiver with a plate to be inspected, and scanning the support arm. A scanning device, an electric pulse generator that generates electric pulses for transmitting a pulsed ultrasonic beam from the ultrasonic receiver, a reception amplifier that amplifies a reception signal from the ultrasonic receiver, and an amplifier And a gate means for extracting a reflected wave from the internal defect from the generated signal, and a C-scan ultrasonic flaw detector.

【0011】[0011]

【発明の実施の形態】以下、図面を用いて本発明の実施
例を詳細に説明する。図1は本発明の構成と第1の工程
のビームの状態を示す、一部斜視図を含むブロック線図
であり、図2は本発明の第2の工程のビームの状態を示
す斜視図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a block diagram including a partial perspective view showing the structure of the present invention and the beam state of the first step, and FIG. 2 is a perspective view showing the beam state of the second step of the present invention. is there.

【0012】これらの図において、21は振動子幅がWと
されるラインフォーカス型の超音波送信子(以下、単に
超音波送信子という)、22は同じく振動子幅がWとされ
るラインフォーカス型の超音波受信子(以下、単に超音
波受信子という)で、薄鋼板の被検査板10を挟んで対向
配置される。23は超音波送信子21、超音波受信子22を支
持するコの字状の支持アームである。24は超音波受信子
22と支持アーム23との間に介装されて超音波受信子22を
90°回転させるための回転機構である。25は支持アーム
23を走査する走査装置である。なお、超音波送信子21お
よび超音波受信子22と被検査板10との間には、超音波伝
播媒質として好適に使用される水が介在されている。
In these figures, 21 is a line focus type ultrasonic transmitter having a transducer width of W (hereinafter, simply referred to as an ultrasonic transmitter), and 22 is a line focus having a transducer width of W. Type ultrasonic receivers (hereinafter, simply referred to as ultrasonic receivers), which are arranged to face each other with the thin steel plate 10 to be inspected. Reference numeral 23 is a U-shaped support arm that supports the ultrasonic transmitter 21 and the ultrasonic receiver 22. 24 is an ultrasonic receiver
The ultrasonic receiver 22 is interposed between the support arm 23 and the support arm 23.
It is a rotating mechanism for rotating 90 °. 25 is a support arm
It is a scanning device for scanning 23. Water, which is preferably used as an ultrasonic propagation medium, is interposed between the ultrasonic transmitter 21 and the ultrasonic receiver 22 and the plate 10 to be inspected.

【0013】31は内蔵したクロック回路(図示せず)か
ら、一定の時間間隔で電気パルスを超音波送信子21に内
蔵した圧電振動子(図示せず)に送信する電気パルス発
生器である。32は超音波受信子22からの信号を受信する
受信増幅器、33はゲート回路、34はピーク値検出回路、
35はコントローラ、36は表示器、37はメモリ装置であ
る。
Reference numeral 31 is an electric pulse generator for transmitting electric pulses from a built-in clock circuit (not shown) to a piezoelectric vibrator (not shown) built in the ultrasonic transmitter 21 at regular time intervals. 32 is a reception amplifier that receives the signal from the ultrasonic receiver 22, 33 is a gate circuit, 34 is a peak value detection circuit,
Reference numeral 35 is a controller, 36 is a display, and 37 is a memory device.

【0014】超音波送信子21は、電気パルス発生器31か
ら一定の時間間隔で送信された電気パルスを超音波に変
換し、水を介して被検査板10に略垂直に送信ラインフォ
ーカスビーム(以下、単に送信ビームという)40を送信
する。超音波受信子22は、被検査板10に入射した超音波
によって生起された内部欠陥からの反射波を受信ライン
フォーカスビーム(以下、単に受信ビームという)50に
よって水を介して受信する。受信増幅器32で増幅された
受信信号はゲート回路33に送られ、ゲート回路33は内部
欠陥からの反射波を、前記受信信号から抽出する。抽出
した信号はピーク値検出回路34に送信され、ピーク値検
出回路34では前記反射波の振幅を検出して、アナログ量
またはディジタル量としてコントローラ35に出力する。
そして、支持アーム23はコントローラ35からの信号で駆
動される走査装置25によって走査され、これによって対
向配置された超音波送信子21と超音波受信子22を被検査
板10の面を方形走査し、その内部欠陥を探傷する。
The ultrasonic transmitter 21 converts an electric pulse transmitted from the electric pulse generator 31 at a constant time interval into an ultrasonic wave, and transmits a transmission line focus beam (substantially perpendicular to the plate 10 to be inspected through the water). Hereinafter, it will be simply referred to as a transmission beam) 40 is transmitted. The ultrasonic receiver 22 receives a reflected wave from an internal defect caused by the ultrasonic wave incident on the plate 10 to be inspected through water by a reception line focus beam (hereinafter, simply referred to as a reception beam) 50. The reception signal amplified by the reception amplifier 32 is sent to the gate circuit 33, and the gate circuit 33 extracts the reflected wave from the internal defect from the reception signal. The extracted signal is transmitted to the peak value detection circuit 34, and the peak value detection circuit 34 detects the amplitude of the reflected wave and outputs it to the controller 35 as an analog amount or a digital amount.
Then, the support arm 23 is scanned by the scanning device 25 driven by a signal from the controller 35, and thereby the ultrasonic transmitter 21 and the ultrasonic receiver 22 arranged to face each other are square-scanned on the surface of the plate 10 to be inspected. , To detect its internal defects.

【0015】そこで、探傷の第1の工程では、図1に示
したように、超音波受信子22の受信ビーム50は超音波送
信子21から送信される送信ビーム40と平行になるように
され、ラインフォーカスビームの幅Wをインデックス送
り量として2次元走査がなされる。このとき、コントロ
ーラ35は欠陥反射波の振幅と走査装置25の位置信号とを
表示器36に出力し、内部欠陥の2次元分布図を作成する
とともに、一定のしきい値以上の振幅の欠陥反射波が検
出された位置をメモリ装置37に記憶する。
Therefore, in the first step of flaw detection, as shown in FIG. 1, the reception beam 50 of the ultrasonic receiver 22 is made parallel to the transmission beam 40 transmitted from the ultrasonic transmitter 21. Two-dimensional scanning is performed with the width W of the line focus beam as the index feed amount. At this time, the controller 35 outputs the amplitude of the defect reflected wave and the position signal of the scanning device 25 to the display 36 to create a two-dimensional distribution map of the internal defects, and at the same time, to reflect the defects reflected with an amplitude of a certain threshold or more. The position where the wave is detected is stored in the memory device 37.

【0016】次に、探傷の第2の工程では、図2に示す
ように、支持アーム23と超音波受信子22との間に介装さ
せた回転機構24によって超音波受信子22を90°回転さ
せ、超音波受信子22の受信ビーム50が超音波送信子21か
ら送信される送信ビーム40と直交するようにし、メモリ
装置37に記憶された内部欠陥の位置の近傍で微小な測定
ピッチ、たとえば0.1mm 以下(検出すべき内部欠陥の大
きさにより変える)で2次元走査がなされる。このと
き、コントローラ35は欠陥反射波の振幅と走査装置25の
位置信号とを表示器36に出力し、内部欠陥の形態を示す
2次元分布図を作成する。この第2の工程は、探傷の第
1の工程で検出された欠陥すべてについて実施がなされ
ることにより、内部欠陥を形態まで含め、検出すること
が可能となる。
Next, in the second step of flaw detection, as shown in FIG. 2, the ultrasonic receiver 22 is rotated by 90 ° by the rotating mechanism 24 interposed between the support arm 23 and the ultrasonic receiver 22. Rotate so that the reception beam 50 of the ultrasonic receiver 22 is orthogonal to the transmission beam 40 transmitted from the ultrasonic transmitter 21, and a minute measurement pitch near the position of the internal defect stored in the memory device 37, For example, two-dimensional scanning is performed with 0.1 mm or less (it varies depending on the size of the internal defect to be detected). At this time, the controller 35 outputs the amplitude of the reflected wave of the defect and the position signal of the scanning device 25 to the display 36 to create a two-dimensional distribution map showing the form of the internal defect. This second step is carried out for all the defects detected in the first step of flaw detection, so that it becomes possible to detect internal defects including their forms.

【0017】ここで、内部欠陥が、図3に示すように被
検査板10の表面近く、すなわち被検査板10の表面11から
の距離dがt/2(t;被検査板10の厚さ)以下に存在
する場合の検出方法について、具体的に説明する。すな
わち、超音波送信子21から送信された超音波の送信ビー
ム40は、水中を伝播し、被検査板10の表面11に達する
と、被検査板10に入射し、その内部に伝播する。このと
き、被検査板10の内部に伝播した超音波は、内部欠陥13
が超音波の伝播経路に存在すると、最初に該内部欠陥13
で1回反射し、表面11に向かい、表面11で反射して、被
検査板10の厚さt内を1回( 0.5往復または片道)伝播
し、裏面12から水中に伝播して超音波受信子22に受信さ
れる反射波52と、最初に被検査板10の厚さt内を1回
( 0.5往復または片道)伝播し、裏面12で反射し、内部
欠陥13に向かい、内部欠陥13で1回反射した後、裏面12
から水中に伝播し受信される反射波53が生起される。な
お、上記の反射波52および53は、さらに裏面12で1回以
上反射し、被検査板10の厚さt内を1往復以上して、超
音波受信子22に受信される反射波が生起されるが、図示
を略した。
Here, the internal defect is near the surface of the inspection plate 10 as shown in FIG. 3, that is, the distance d from the surface 11 of the inspection plate 10 is t / 2 (t; the thickness of the inspection plate 10). ) A specific description will be given of the detection method when it exists below. That is, the ultrasonic transmission beam 40 transmitted from the ultrasonic transmitter 21 propagates in water, reaches the surface 11 of the inspection plate 10, enters the inspection plate 10, and propagates inside. At this time, the ultrasonic waves propagated inside the inspection plate 10 have internal defects 13
Is present in the ultrasonic propagation path, the internal defect 13
Reflected once on the surface 11, reflected on the surface 11, propagated once within the thickness t of the plate 10 to be inspected (0.5 round trips or one way), propagated from the back surface 12 into the water and received ultrasonic waves. The reflected wave 52 received by the child 22 propagates once (0.5 round trips or one way) in the thickness t of the plate 10 to be inspected, is reflected by the back surface 12, goes to the internal defect 13, and then the internal defect 13 After reflecting once, back side 12
A reflected wave 53 is generated which is propagated from and received in the water. The reflected waves 52 and 53 described above are further reflected once or more on the back surface 12 and make one or more round trips within the thickness t of the plate 10 to be inspected to generate reflected waves received by the ultrasonic receiver 22. However, the illustration is omitted.

【0018】前出の図3に示したように、内部欠陥13が
被検査板10の表面11の近く、すなわち表面からの距離d
がt/2以下に存在する場合は、反射波53が反射波52よ
りも遅れて超音波受信子22に達することになる。さら
に、超音波受信子22で受信される信号の時間的な動きに
ついて、図4で説明する。この図4において、符号51は
被検査板10の厚さt内を1回( 0.5往復または片道)伝
播した直接透過波の信号であり、符号54は被検査板10の
厚さt内を1回( 0.5往復または片道)伝播し、さらに
被検査板10を1往復した2次透過波の信号である。ま
た、τ0 は被検査板10の厚さt内を1回( 0.5往復また
は片道)伝播した直接透過波51が超音波受信子22に到達
した時刻、τ1 は超音波が被検査板10の厚さtを伝播す
るのに要する時間である。
As shown in FIG. 3 described above, the internal defect 13 is near the surface 11 of the inspection plate 10, that is, the distance d from the surface.
Is less than t / 2, the reflected wave 53 reaches the ultrasonic receiver 22 later than the reflected wave 52. Further, the temporal movement of the signal received by the ultrasonic receiver 22 will be described with reference to FIG. In FIG. 4, reference numeral 51 is a signal of a direct transmitted wave propagating once in the thickness t of the plate 10 to be inspected (0.5 round trip or one way), and reference numeral 54 is 1 in the thickness t of the plate 10 to be inspected. This is a secondary transmitted wave signal that propagates once (0.5 round trips or one way) and then makes one round trip on the plate 10 to be inspected. Further, τ 0 is the time when the direct transmitted wave 51 propagated once (0.5 round trips or one way) in the thickness t of the inspection plate 10 reaches the ultrasonic receiver 22, and τ 1 is the ultrasonic wave. Is the time required to propagate the thickness t.

【0019】符号52,53は前記したように内部欠陥13に
よる反射波であり、反射波53の伝播距離が反射波52の伝
播距離よりも大きいために、反射波53が遅れて受信され
る。この図より、内部欠陥13による反射波53は被検査板
10の厚さt内を1回( 0.5往復または片道)伝播した直
接透過波51が超音波受信子22に到達した時刻τ0 から超
音波が被検査板10の厚さtを伝播するのに要する時間τ
1 経過した以後であって、直接透過波51およびその残響
による不感帯領域から外れたところに現れ、かつ、時刻
τ0 から(2×τ1 )経過以前であって、2次透過波54
よりも早い時間に現れる。また、内部欠陥が表面に近く
なるほどτ2 (τ2 ;超音波が被検査板10中を距離2d
だけ伝播するのに要する時間)が小さくなるが、2次透
過波54よりも早い時間に現れる。そのため、内部欠陥13
が表面の直下に存在しても、本発明により、内部欠陥13
による反射波53を明瞭に識別して抽出できるので、確実
に内部欠陥の検出が可能である。
Reference numerals 52 and 53 are reflected waves from the internal defect 13 as described above. Since the propagation distance of the reflected wave 53 is larger than that of the reflected wave 52, the reflected wave 53 is received with a delay. From this figure, the reflected wave 53 due to the internal defect 13 is
From the time τ 0 when the direct transmitted wave 51 propagated once (0.5 round trips or one way) within the thickness t of 10 reaches the ultrasonic receiver 22, ultrasonic waves propagate through the thickness t of the plate 10 to be inspected. Time required τ
After one lapse of time, the direct transmitted wave 51 and the reverberation appear outside the dead zone region, and before (2 × τ 1 ) from the time τ 0 , and the secondary transmitted wave 54
Appears earlier than. Further, the closer the internal defect is to the surface, τ 22 ;
However, it appears earlier than the secondary transmitted wave 54. Therefore, internal defects 13
According to the present invention, the internal defects 13
Since the reflected wave 53 due to can be clearly identified and extracted, the internal defect can be surely detected.

【0020】以上は、内部欠陥13が表面近くに存在する
場合について説明したが、次に裏面12の近く、すなわち
表面11からの距離dがt/2以上に存在する場合につい
て説明する。この場合、図4と異なり内部欠陥による反
射波52の伝播距離が反射波53の伝播距離よりも大きくな
るので、反射波52が遅れて受信される。この反射波52が
前述したと同様に、直接透過波51による不感帯領域から
外れたところに現れ、また、2次透過波54よりも早い時
間に現れる。そのため、内部欠陥13が裏面12の直下に存
在しても、本発明により、内部欠陥13による反射波52を
明瞭に識別して抽出できるので内部欠陥13が検出できる
のである。このことから、内部欠陥13が表面の直下およ
び裏面の直下を含むいずれの位置にあっても、本発明に
よれば、表面の不感帯がなく、内部欠陥からの反射波を
明瞭に識別して抽出できるので、内部欠陥を確実に検出
できるのである。
The case where the internal defect 13 exists near the front surface has been described above. Next, the case where the internal defect 13 exists near the rear surface 12, that is, the distance d from the front surface 11 is t / 2 or more will be described. In this case, unlike FIG. 4, the propagation distance of the reflected wave 52 due to the internal defect becomes larger than the propagation distance of the reflected wave 53, so the reflected wave 52 is received with a delay. As described above, the reflected wave 52 appears at a position outside the dead zone due to the direct transmitted wave 51, and appears earlier than the secondary transmitted wave 54. Therefore, even if the internal defect 13 exists immediately below the back surface 12, the reflected wave 52 due to the internal defect 13 can be clearly identified and extracted according to the present invention, so that the internal defect 13 can be detected. From this, even if the internal defect 13 is located at any position including immediately below the front surface and immediately below the back surface, according to the present invention, there is no dead zone on the surface, and the reflected wave from the internal defect is clearly identified and extracted. Therefore, the internal defect can be reliably detected.

【0021】このようにして、探傷の第1の工程におい
ては、内部欠陥13の検出のみを目的とし、超音波送信子
21から送信される送信ビーム40と超音波受信子22の受信
ビーム50が平行に重なるようにして探傷を行う。両ビー
ムが重なりあっている部分の内部欠陥を検出できるの
で、1回の超音波送受信で両ビームが重なりあっている
領域の探傷が可能である。例えば、周波数25MHz 、振動
子幅6mmのラインフォーカス型の超音波送信子21および
超音波受信子22を用いると、探傷し得る幅も約6mmとな
る。ところで、通常の点集束型超音波送受信子を用いた
Cスキャン探傷では、y方向に測定ピッチ0.1mm 以下で
2次元走査する必要があり、60回以上のストローク走査
が必要である。したがって、本発明の第1の探傷の工程
では、従来法に比べ、1/60以下の短時間で高速に欠陥
の検出が可能である。
Thus, in the first step of flaw detection, the ultrasonic transmitter is used only for the purpose of detecting the internal defect 13.
The flaw detection is performed by making the transmission beam 40 transmitted from 21 and the reception beam 50 of the ultrasonic receiver 22 overlap in parallel. Since the internal defect in the portion where the two beams overlap can be detected, flaw detection can be performed in the region where the two beams overlap with each other by one ultrasonic wave transmission / reception. For example, if a line focus type ultrasonic wave transmitter 21 and an ultrasonic wave receiver 22 having a frequency of 25 MHz and a transducer width of 6 mm are used, the flaw detection width is about 6 mm. By the way, in the C-scan flaw detection using a normal point-focusing ultrasonic wave transceiver, it is necessary to perform two-dimensional scanning in the y direction at a measurement pitch of 0.1 mm or less, and stroke scanning of 60 times or more is required. Therefore, in the first flaw detection process of the present invention, it is possible to detect defects at a high speed in a short time of 1/60 or less as compared with the conventional method.

【0022】しかし、この第1の工程のみでは、送受信
する超音波ビームが2次元的には集束していないため、
集束していない方向での分解能が低く、欠陥の有無は明
瞭にわかるものの、欠陥の形態まで検出することはでき
ない。そこでこの発明では、探傷の第2の工程におい
て、超音波受信子22を90°回転して超音波送信子21から
送信される送信ビーム40と超音波受信子22の受信ビーム
50が直交するようにして、前記第1段階の探傷において
欠陥が検出された部位の近傍のみの探傷を行う。この場
合、ラインフォーカスビームの交差によって、超音波ビ
ームを2次元的に集束させるのと同様の分解能が得られ
るので、欠陥の形態まで分解能よく検出することが可能
になる。この第2の工程では、ラインフォーカスビーム
の交差点を被検査板10に対して、例えば測定ピッチ0.1m
m 以下で2次元走査する必要があるが、探傷の第1の工
程で検出された内部欠陥10の近傍のみでこの走査を行え
ばよいので、走査が必要な領域の面積は小さく、被検査
板全面を2次元走査する場合の所要時間よりもはるかに
少ない時間で探傷が可能である。
However, in this first step only, the ultrasonic beams to be transmitted and received are not focused two-dimensionally,
Although the resolution in the non-focusing direction is low and the presence / absence of a defect can be clearly seen, it is not possible to detect even the form of the defect. Therefore, according to the present invention, in the second step of flaw detection, the ultrasonic beam 22 is rotated by 90 ° and the transmitted beam 40 transmitted from the ultrasonic wave transmitter 21 and the received beam of the ultrasonic wave receiver 22 are transmitted.
50 is orthogonal to each other, and the flaw detection is performed only in the vicinity of the portion where the defect is detected in the flaw detection in the first stage. In this case, since the same resolution as that when the ultrasonic beam is two-dimensionally focused can be obtained by the intersection of the line focus beams, it becomes possible to detect even the form of the defect with high resolution. In this second step, the intersection of the line focus beam is measured with respect to the plate 10 to be inspected with a measurement pitch of 0.1 m, for example.
It is necessary to perform two-dimensional scanning at m or less, but since this scanning needs to be performed only in the vicinity of the internal defect 10 detected in the first step of flaw detection, the area of the region requiring scanning is small and It is possible to detect flaws in a time much shorter than the time required for two-dimensional scanning of the entire surface.

【0023】なお、上記の態様は、超音波受信子22を回
転機構24を介して支持アーム23に取り付け、探傷の第1
の工程が終了した後、超音波受信子22を90°回転させた
後に第2の工程を行う場合について説明したが、本発明
はこれに限られるものでなく、超音波送信子21を回転機
構24を介して支持アーム23に取り付けて超音波送信子21
を回転させるようにしてもよい。
In the above embodiment, the ultrasonic receiver 22 is attached to the support arm 23 via the rotating mechanism 24 to detect the first flaw.
Although the case where the second step is performed after rotating the ultrasonic receiver 22 by 90 ° after the above step is completed, the present invention is not limited to this, and the ultrasonic transmitter 21 is rotated by a rotating mechanism. The ultrasonic transmitter 21 is attached to the support arm 23 via 24.
May be rotated.

【0024】また、回転機構24は、図示しない駆動装置
によって超音波送信子21または超音波受信子22を回転さ
せるものでもよい。また、回転機構24は手動によって超
音波送信子21または超音波受信子22を90°回転可能なよ
うに支持アーム23に超音波送信子21または超音波受信子
22を取り付けたものでもよい。また、上記の例では支持
アーム23により被検査板10に対して対向配置された超音
波送信子21と超音波受信子22を走査するようにしたが、
被検査板10を走査するように構成してもよいことはいう
までもない。
Further, the rotation mechanism 24 may rotate the ultrasonic transmitter 21 or the ultrasonic receiver 22 by a driving device (not shown). In addition, the rotation mechanism 24 includes a support arm 23 on which the ultrasonic transmitter 21 or the ultrasonic receiver 22 can be manually rotated by 90 ° so that the ultrasonic transmitter 21 or the ultrasonic receiver 22 can be rotated by 90 °.
It may be one with 22 attached. In the above example, the support arm 23 scans the ultrasonic transmitter 21 and the ultrasonic receiver 22 arranged to face the plate 10 to be inspected,
It goes without saying that the plate to be inspected 10 may be configured to scan.

【0025】[0025]

【実施例】厚さ 4.0mmの薄鋼板を探傷する際に、本発明
を適用した。このとき、超音波送信子21および超音波受
信子22には、ラインフォーカス型で超音波の周波数が25
MHz 、振動子幅Wが6mm、水中での焦点距離Fが38mmの
ものを用いた。そして、まず、超音波送信子21から送信
される送信ビーム40と超音波受信子22の受信ビーム50が
平行に重なるようにして探傷を行った。このときの超音
波送信子21と超音波受信子22との位置関係は、図5に示
すように、超音波送信子21と被検査板10である薄鋼板と
の距離L1 を11mm、また超音波受信子22と薄鋼板との距
離L2 を11mmとし、送信ビーム40の振動子幅と受信ビー
ム50の振動子幅を一致させるようにして設置した。
[Example] The present invention was applied to the flaw detection of a thin steel plate having a thickness of 4.0 mm. At this time, the ultrasonic transmitter 21 and the ultrasonic receiver 22 are line-focused and have an ultrasonic frequency of 25
MHz, a transducer width W of 6 mm, and a focal length F in water of 38 mm were used. Then, first, flaw detection was performed by making the transmission beam 40 transmitted from the ultrasonic transmitter 21 and the reception beam 50 of the ultrasonic receiver 22 overlap in parallel. The positional relationship between the ultrasonic transmitter 21 and the ultrasonic receiver 22 at this time is, as shown in FIG. 5, a distance L 1 between the ultrasonic transmitter 21 and the thin steel plate which is the plate to be inspected 11 mm, or The distance L 2 between the ultrasonic receiver 22 and the thin steel plate was set to 11 mm, and the transducer width of the transmission beam 40 and the transducer width of the reception beam 50 were set to match.

【0026】この第1工程の探傷を行った後、回転機構
24を操作して超音波受信子22を90°回転させて、送信ビ
ーム40と受信ビーム50とを直交させ、第1工程で検出さ
れた欠陥の近くを測定ピッチ 0.002mmとして第2工程の
探傷を行った。その結果、欠陥の厚さ方向の位置によら
ず、10μmφの円盤状の超微小欠陥を形態まで含めて検
出することができた。
After performing the flaw detection in the first step, the rotation mechanism
24 is operated to rotate the ultrasonic receiver 22 by 90 °, the transmission beam 40 and the reception beam 50 are made orthogonal to each other, and the vicinity of the defect detected in the first step is set to a measurement pitch of 0.002 mm and the flaw detection in the second step is performed. I went. As a result, it was possible to detect a disc-shaped ultra-fine defect of 10 μmφ including its form regardless of the position of the defect in the thickness direction.

【0027】[0027]

【発明の効果】以上説明したように、この発明によれ
ば、圧延金属板などの被検査板のなかの微細な介在物等
の内部欠陥を、表面近くの不感帯なく、短時間で検出す
ることが可能となり、また、欠陥の形態も詳細に評価で
きるという優れた効果が得られる。
As described above, according to the present invention, it is possible to detect internal defects such as fine inclusions in a plate to be inspected such as a rolled metal plate in a short time without a dead zone near the surface. It is also possible to obtain the excellent effect that the form of the defect can be evaluated in detail.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成と第1の工程のビームの状態を示
す一部斜視図を含むブロック線図である。
FIG. 1 is a block diagram including a partial perspective view showing a configuration of the present invention and a state of a beam in a first step.

【図2】本発明の第2の工程のビームの状態を示す斜視
図である。
FIG. 2 is a perspective view showing a state of a beam in a second step of the present invention.

【図3】内部欠陥からの反射波の伝播経路を示す断面図
である。
FIG. 3 is a cross-sectional view showing a propagation path of a reflected wave from an internal defect.

【図4】受信される超音波信号と時間との関係を示す説
明図である。
FIG. 4 is an explanatory diagram showing a relationship between a received ultrasonic signal and time.

【図5】本発明の超音波送信子と超音波受信子の位置関
係を示す説明図である。
FIG. 5 is an explanatory diagram showing a positional relationship between an ultrasonic transmitter and an ultrasonic receiver according to the present invention.

【図6】従来例を示す一部斜視図を含むブロック図であ
る。
FIG. 6 is a block diagram including a partial perspective view showing a conventional example.

【符号の説明】[Explanation of symbols]

10 被検査板 11 表面 12 裏面 13 内部欠陥 21 超音波送信子(ラインフォーカス型の超音波送信
子) 22 超音波受信子(ラインフォーカス型の超音波受信
子) 23 支持アーム 24 回転機構 25 走査装置 31 電気パルス発生器 32 受信増幅器 33 ゲート回路 34 ピーク値検出回路 35 コントローラ 36 表示器 37 メモリ装置 40 送信ビーム(送信ラインフォーカスビーム) 50 受信ビーム(受信ラインフォーカスビーム) 51 直接透過波 52 内部欠陥からの反射波 53 内部欠陥からの反射波 54 2次透過波
10 Inspected Plate 11 Front Surface 12 Back Surface 13 Internal Defect 21 Ultrasonic Transmitter (Line Focus Ultrasonic Transmitter) 22 Ultrasonic Receiver (Line Focus Ultrasonic Receiver) 23 Support Arm 24 Rotation Mechanism 25 Scanning Device 31 Electric pulse generator 32 Receive amplifier 33 Gate circuit 34 Peak value detection circuit 35 Controller 36 Display 37 Memory device 40 Transmit beam (transmit line focus beam) 50 Receive beam (receive line focus beam) 51 Direct transmission wave 52 From internal defect Reflected wave of the light 53 Reflected wave from the internal defect 54 Secondary transmitted wave

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液中に浸漬された被検査板を挟んで、ラ
インフォーカス型の超音波送信子とラインフォーカス型
の超音波受信子とを対向配置して走査するとともに、前
記超音波送信子から線状に集束した超音波ビームを被検
査板内に略垂直に入射し、前記超音波ビームの透過波と
前記超音波ビームによって生起された内部欠陥からの反
射波とを前記超音波受信子で受信し、受信された信号に
基づいて被検査板の内部欠陥を検出する方法であって、 前記超音波送信子からの線状に集束した超音波ビームと
前記超音波受信子の線状に集束した受信ビームとが重な
るようにして探傷する第1の工程と、前記超音波送信子
からの線状に集束した超音波ビームと前記超音波受信子
の線状に集束した受信ビームとが直交するようにして探
傷する第2の工程と、からなることを特徴とするCスキ
ャン超音波探傷方法。
1. A line focus type ultrasonic wave transmitter and a line focus type ultrasonic wave receiver are arranged so as to face each other with a plate to be inspected immersed in a liquid sandwiched therebetween, and the ultrasonic wave transmitter is also used. An ultrasonic beam that is linearly focused into the plate to be inspected substantially perpendicularly to the plate to be inspected, and the transmitted wave of the ultrasonic beam and the reflected wave from the internal defect caused by the ultrasonic beam are received by the ultrasonic receiver. In the method of detecting an internal defect of the plate to be inspected based on the received signal, the ultrasonic beam linearly focused from the ultrasonic transmitter and the ultrasonic receiver linearly. The first step of detecting flaws by making the focused reception beam overlap with each other, and the linearly focused ultrasonic beam from the ultrasonic transmitter and the linearly focused reception beam of the ultrasonic receiver are orthogonal to each other. Second step to detect flaws by doing , C scan ultrasonic testing method characterized by comprising the.
【請求項2】 被検査板の表面に超音波を略垂直に送信
するラインフォーカス型の超音波送信子と、 被検査板を挟んで前記超音波送信子と対向する位置に配
置し、超音波の反射波と、超音波によって生起された内
部欠陥からの反射波とを受信するラインフォーカス型の
超音波受信子と、 前記超音波送信子からの線状に集束した超音波ビームと
前記超音波受信子の線状に集束した受信ビームとを重な
る位置から直交する位置にまで、前記超音波送信子およ
び/または前記超音波受信子を回転する回転機構と、 前記超音波送信子と前記超音波受信子とを被検査板を挟
んで支持する支持アームと、 該支持アームを走査する走査装置と、 前記超音波送信子からパルス状の超音波ビームを送信す
るための電気パルスを発生する電気パルス発生装置と、 前記超音波受信子からの受信信号を増幅する受信増幅器
と、 増幅された信号から内部欠陥からの反射波を抽出するゲ
ート手段と、を備えたことを特徴とするCスキャン超音
波探傷装置。
2. A line focus type ultrasonic transmitter for transmitting ultrasonic waves substantially perpendicularly to the surface of the plate to be inspected, and an ultrasonic wave which is arranged at a position facing the ultrasonic transmitter with the plate to be inspected therebetween. Line focus type ultrasonic receiver for receiving the reflected wave from the internal defect caused by the ultrasonic wave, and the ultrasonic beam linearly focused from the ultrasonic transmitter and the ultrasonic wave. A rotation mechanism that rotates the ultrasonic transmitter and / or the ultrasonic receiver from a position where the linearly focused reception beam of the receiver overlaps to a position where the reception beam is orthogonal to the ultrasonic transmitter, and the ultrasonic transmitter and the ultrasonic wave. A support arm for supporting the receiver with the plate to be inspected, a scanning device for scanning the support arm, and an electric pulse for generating an electric pulse for transmitting a pulsed ultrasonic beam from the ultrasonic transmitter. A generator, A C-scan ultrasonic flaw detector, comprising: a reception amplifier that amplifies a reception signal from the ultrasonic receiver, and a gate unit that extracts a reflected wave from an internal defect from the amplified signal.
JP06301596A 1996-03-19 1996-03-19 C-scan ultrasonic flaw detection method and apparatus Expired - Fee Related JP3612849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06301596A JP3612849B2 (en) 1996-03-19 1996-03-19 C-scan ultrasonic flaw detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06301596A JP3612849B2 (en) 1996-03-19 1996-03-19 C-scan ultrasonic flaw detection method and apparatus

Publications (2)

Publication Number Publication Date
JPH09257759A true JPH09257759A (en) 1997-10-03
JP3612849B2 JP3612849B2 (en) 2005-01-19

Family

ID=13217081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06301596A Expired - Fee Related JP3612849B2 (en) 1996-03-19 1996-03-19 C-scan ultrasonic flaw detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3612849B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6557255B2 (en) * 1999-04-21 2003-05-06 Central States Industrial Equipment & Services, Inc. Method of constructing a transfer panel assembly
JP2007271267A (en) * 2006-03-30 2007-10-18 Sumiju Shiken Kensa Kk Method of inspecting damage and corrosion thickness reduction phenomenon, caused by hydrogen
JP2015145872A (en) * 2006-11-29 2015-08-13 ビーダブリューエクス・テクノロジーズ・インコーポレイテッド Ultrasonic immersion inspection of member having arbitrary surface contour
JP2016217780A (en) * 2015-05-15 2016-12-22 Jfeスチール株式会社 Cleanliness evaluation method of steel material and cleanliness evaluation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6557255B2 (en) * 1999-04-21 2003-05-06 Central States Industrial Equipment & Services, Inc. Method of constructing a transfer panel assembly
JP2007271267A (en) * 2006-03-30 2007-10-18 Sumiju Shiken Kensa Kk Method of inspecting damage and corrosion thickness reduction phenomenon, caused by hydrogen
JP4511487B2 (en) * 2006-03-30 2010-07-28 住重試験検査株式会社 Inspection method of damage and corrosion thinning phenomenon caused by hydrogen
JP2015145872A (en) * 2006-11-29 2015-08-13 ビーダブリューエクス・テクノロジーズ・インコーポレイテッド Ultrasonic immersion inspection of member having arbitrary surface contour
JP2016217780A (en) * 2015-05-15 2016-12-22 Jfeスチール株式会社 Cleanliness evaluation method of steel material and cleanliness evaluation device

Also Published As

Publication number Publication date
JP3612849B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
US6105431A (en) Ultrasonic inspection
Cawley et al. The use of Lamb waves for the long range inspection of large structures
WO2007058391A1 (en) Pipe ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
JP2005274557A (en) Ultrasonic flaw detecting method and device
KR101746922B1 (en) Apparatus and method for full-field pulse-echo laser ultrasonic propagation imaging
US4760737A (en) Procedure for flaw detection in cast stainless steel
Peters et al. Non‐contact inspection of composites using air‐coupled ultrasound
JP6460136B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2014077708A (en) Inspection device and inspection method
JPH09257759A (en) C-scanning ultrasonic flaw detecting method and apparatus therefor
Takada et al. On-line detection system for internal flaws in as-hot-rolled steel strip using ultrasonic probe array
JP3165888B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP4633268B2 (en) Ultrasonic flaw detector
JP3653785B2 (en) C-scan ultrasonic flaw detection method and apparatus
JP3241519B2 (en) Ultrasonic flaw detection method and apparatus
Kays et al. Air-coupled ultrasonic non-destructive testing of aerospace components
JP3629908B2 (en) Line focus type ultrasonic flaw detection method and apparatus
JP4175762B2 (en) Ultrasonic flaw detector
JP3821149B2 (en) C-scan ultrasonic flaw detection method and apparatus
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP2002277447A (en) Ultrasonic flaw detection method and apparatus
JP2002323481A (en) Ultrasonic flaw detection method and device
Farlow et al. Advances in air coupled NDE for rapid scanning applications
JP2003057214A (en) Ultrasonic flaw detection method and apparatus in fillet welding section
JPH04256852A (en) Ultrasonic flaw detecting method for thin plate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees