JPS59148864A - Ultrasonic flaw detecting method of square billet - Google Patents

Ultrasonic flaw detecting method of square billet

Info

Publication number
JPS59148864A
JPS59148864A JP58023526A JP2352683A JPS59148864A JP S59148864 A JPS59148864 A JP S59148864A JP 58023526 A JP58023526 A JP 58023526A JP 2352683 A JP2352683 A JP 2352683A JP S59148864 A JPS59148864 A JP S59148864A
Authority
JP
Japan
Prior art keywords
flaw detection
square billet
probe
square steel
steel piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58023526A
Other languages
Japanese (ja)
Inventor
Masayoshi Iwasaki
岩崎 全良
Akio Suzuki
紀生 鈴木
Hitoshi Uchiumi
仁 内海
Kazuo Miyake
三宅 和郎
Kenji Yuya
油谷 憲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58023526A priority Critical patent/JPS59148864A/en
Publication of JPS59148864A publication Critical patent/JPS59148864A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve the performance of the detection of an extremely small defect by setting an electron array type probe 1 in a plane perpendicular to the axial direction of a square billet, at specific distance from the surface of the square billet, and at a specific angle to the surface of the square billet. CONSTITUTION:When internal flaw detection is performed, the electron array type probe 1 is set in the plane perpendicular to the axial direction of the square billet 2, at the specific distance from the surface of the square billet and at the specific angle to the surface of th square billet. Said probe 1 makes an electron linear scan to perform the vertical internal flaw detection of the square billet 2. Then, the number (n) of elements (a) of the probe 1 used for ultrasonic wave transmission and reception and the convergence of an ultrasonic wave beam S are controlled according to the size of an internal defect of the square billet 2 to be detected. This method improves the detection performance to an extremely small defect.

Description

【発明の詳細な説明】 本発明は角鋼片の超音波探傷法に関し、角鋼片の品質保
証をするだめのオンライン探傷設備の簡略化を図ったも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection method for square steel pieces, and is intended to simplify online flaw detection equipment for ensuring the quality of square steel pieces.

従来、角鋼片の品質保証には磁粉探傷忙よる表面探傷と
垂直二分割探触子による内部探傷とが用いられているが
、探傷装置が夫々独立であるため。
Conventionally, surface flaw detection using magnetic particle flaw detection and internal flaw detection using a vertical two-piece probe have been used to ensure the quality of square steel slabs, but this is because each flaw detection device is independent.

個別の探傷ラインに設けるか、タンデムに装置を設置す
る必要があり、大きなスペースが必要である。また現状
垂直二分割探触子による内部探傷では表面皮下は不感帯
となり、全断面に亘っての品質保証は行なえないため、
表面層の探傷には斜角探傷法の応用が考えられているが
、同手法による探傷装置を導入すると、さらに大きな設
置スペースが必要となる。しかもこの場合内部欠陥、皮
下欠陥1表面欠陥を弁別処理するために各探傷装置間の
インターフェイスが必要となる。さらに各々が独立した
設備であると、各装置による欠陥位置検出の相対的な異
差により検出精度の劣化を招く原因ともなる。
It is necessary to install the devices on separate flaw detection lines or in tandem, which requires a large amount of space. In addition, in the current internal flaw detection using a vertical two-piece probe, the subcutaneous area on the surface becomes a dead zone, and quality assurance over the entire cross section cannot be performed.
The application of angle angle flaw detection is being considered for flaw detection on the surface layer, but if a flaw detection device using this method is introduced, a larger installation space will be required. Furthermore, in this case, an interface between each flaw detection device is required to discriminate between internal defects, subcutaneous defects, and surface defects. Furthermore, if each device is independent, the relative differences in defect position detection by each device may cause deterioration in detection accuracy.

大発明は上記問題点を解消したものである。The great invention solves the above problems.

まず、大発明の実施例の概要を説明すると、電子走査型
超音波探傷装置には、超音波ビームを任意にフォーミン
グすることができ(収束1発散。
First, to explain the outline of the embodiment of the great invention, the electronic scanning type ultrasonic flaw detection device can arbitrarily form the ultrasonic beam (convergence, divergence, etc.).

偏向)、また超音波ビームを高速走査することができる
という特徴があるので、この電子走査型超音波探傷装置
を用いて角鋼片の全断面探傷を行なうよう忙したもので
、電子プレイ型探触子を用い。
Since the ultrasonic beam can be scanned at high speed, this electronic scanning type ultrasonic flaw detection device has been used to perform full cross-section flaw detection of square steel slabs. using children.

電子走査することKよって同一探傷子で内部探傷。Internal flaw detection using the same flaw detector by electronic scanning.

表面層探傷1表面探傷を次の限定条件で順次〈す返すの
である。。
Surface Layer Flaw Detection 1 Surface flaw detection is carried out sequentially under the following limiting conditions. .

(+)  検査対象材は角鋼片である。(+) The material to be inspected is a square steel piece.

(11)  探傷子を、角鋼片の軸方向に垂直な面内で
角鋼片表面から所定の距離で、かつまた角鋼片表面に対
して所定の角度でセットする。
(11) Set the flaw detector at a predetermined distance from the surface of the square steel piece in a plane perpendicular to the axial direction of the square steel piece, and at a predetermined angle to the surface of the square steel piece.

(1111角鋼片を全MK亘って探傷するため如は角鋼
片を搬送する。
(In order to inspect the 1111 square steel piece over the entire MK, the square steel piece is transported.

次に、角鋼片の内部、表面層及び表面を探傷する方法に
つき説明する。
Next, a method for detecting flaws in the interior, surface layer, and surface of a square steel piece will be described.

内部探傷の場合、第1図に示すように電子アレイ型探触
子Tllを電子リニア走査することによって。
In the case of internal flaw detection, as shown in FIG. 1, by electronic linear scanning of the electronic array type probe Tll.

角鋼片(2)を垂直内部探傷する。検出したい角鋼片1
2)の内部欠陥の大きさによって、超音波送受に用いる
探触子filのエレメント(IL)のIn及び超音波ビ
ームC檜の収束制御を行なう。即ち送受に用いるエレメ
ント数nが多くなれば、有効振動子径が大きくなり、超
音波ビーム(匂の指向性が向上し欠陥検出レベルも向上
する。各エレメント(→の遅延時間を制御すること傾よ
ってもさらに微細な欠陥に対する検出能を上げることが
できる。内部欠陥のうる欠陥の大きさに比べて大きなも
のであるため。
Perform vertical internal flaw detection on the square steel piece (2). Square steel piece 1 to be detected
Depending on the size of the internal defect (2), convergence control of the element (IL) of the probe fil used for transmitting and receiving ultrasonic waves and the ultrasonic beam C is performed. In other words, as the number n of elements used for transmission and reception increases, the effective transducer diameter increases, the directivity of the ultrasonic beam (scent) improves, and the defect detection level also improves. Therefore, the detection ability for even finer defects can be improved, since they are larger than the size of internal defects.

表面層探傷時はど超音波ビーム(勅を紋る必要はないの
で、探傷速度との関係で条件を決めればよい(ビーム(
梼をこれば絞るほど走査ピッチを細かくしないと、内部
全体の探傷ができなくなり時間がかかる)。なお1図に
おいて鋼片f1)の斜線部分(21k)は探傷領域を示
している。
When detecting flaws in the surface layer, use an ultrasonic beam (there is no need to use an ultrasonic beam, so the conditions can be determined in relation to the flaw detection speed).
The narrower the lever, the finer the scanning pitch, or the more time it takes to detect flaws in the entire interior.) In addition, in FIG. 1, the shaded area (21k) of the steel piece f1) indicates the flaw detection area.

表面層探傷の場合、探触子fi+を、電子リニア走査、
電子セクター走査(第2図(1)参照)または電子セク
ター+リニア走査(第2図(la)(lbXIc)参照
)することKよって、鋼片(2)を斜角探傷する。この
表面層については微細な欠陥まで検出する必要があるの
で、収束超音波ビームを用いる。鋼片(2)め超音波ビ
ーム入射面に隣接する側面の表面層を探傷領域(ga)
とするときは、屈折角αが15°〜60’の範囲で、底
面の表面層を探傷領域(2&)とするときは屈折角αは
25°〜45°の範囲内で選定すれば表面から不感帯な
く探傷できる。
In the case of surface layer flaw detection, the probe fi+ is used for electronic linear scanning,
The steel piece (2) is subjected to oblique angle flaw detection by electronic sector scanning (see FIG. 2(1)) or electronic sector+linear scanning (see FIG. 2(la) (lbXIc)). Since it is necessary to detect even minute defects in this surface layer, a focused ultrasonic beam is used. The surface layer of the side surface of the steel piece (2) adjacent to the ultrasonic beam incident surface is detected in the flaw detection area (ga).
When selecting the refraction angle α within the range of 15° to 60', and when the bottom surface layer is the flaw detection area (2&), the refraction angle α should be selected within the range of 25° to 45°. Flaw detection is possible without a dead zone.

表面の探傷は、第3図に示すように表面波(8′)を用
いて行なう。表面波(S′)を発生させるだめの超音波
ビーム(s)の入射角1は次式で求まる。
Surface flaw detection is performed using a surface wave (8') as shown in FIG. The incident angle 1 of the ultrasonic beam (s) for generating the surface wave (S') is determined by the following equation.

I i = a r cgin (−sin 90°)C。I i = a r cgin (-sin 90°)C.

c、=入射側媒質(水)の音速 c、−屈折側媒質(W4序)の音速 ここで、水中音速CI= 148 餌/μsea%鋼片
中表面波音速(4= 298 tsm/μsecより、
表面波発生の入射角(=29.8°、入射点(o)で最
も超音波ビーム(8)が絞られだ伏態となるよう各エレ
メント(iの遅延時間を制御し1M電子リニア走査る。
c, = sound speed of the incident side medium (water) c, - sound speed of the refracting side medium (W4 order) where, Underwater sound speed CI = 148 Bait/μsea% Surface wave sound speed in steel billet (4 = 298 tsm/μsec From
The incident angle of surface wave generation (=29.8°, the delay time of each element (i) is controlled so that the ultrasonic beam (8) is most focused at the incident point (o) and 1M electronic linear scanning is performed. .

表面波(S′)は水中での減衰が大きいため表面探傷が
可能な探傷領域(2a)は、SLエコーによる不感帯域
により先の+数波畏の範囲である。よって電子リニア走
査のピッチは十波侵稈度にする。
Since the surface wave (S') has a large attenuation in water, the detection area (2a) in which surface flaw detection is possible is within the range of + several waves due to the dead band caused by the SL echo. Therefore, the pitch of electronic linear scanning is set to ten wave invasiveness.

次に、超音波ビームフォーミングのための制御法につき
説明する。第4図に示す一般的なパルス型探傷器(4)
では、第5図に示すように繰り返し周波数fpで決まる
一定時間間隔T = l / fpで発生している送信
パルス(功ごとに、振動子(5)の上下面に付けた電極
(al t7)間に電圧を加えて振動子;6)を励振さ
せ、送信波(q)を送信している。
Next, a control method for ultrasonic beamforming will be explained. General pulse type flaw detector (4) shown in Figure 4
Now, as shown in Fig. 5, the transmission pulses (electrodes (alt7) attached to the upper and lower surfaces of the vibrator (5) A voltage is applied between them to excite the vibrator (6), and a transmission wave (q) is transmitted.

電子走査型探傷装置の場合は、第6図に示すように送信
パルス(Po)を基準にして、所望のビームフォーミン
グが行なえるように各エレメント(&□)(a□)・・
・・・・・・・ (al)(°°°°°(an)ごとに
設定された遅延時間ΔT D’(1)後に、各エレメン
ト(al)(a−)・・・・・・(ai)・・・・・(
an)(C対応した送信パルス(1(pm)・・・・・
・(Pl)・・・・・・(Pn)が送られ励振され、探
触子fll全体として送信波(Q)のビーム偏向、収束
を行なっている。受信時には各ニレメン) (ai)の
受信波に送信時と同じ遅延をあたえ、その合成波形を観
察する。
In the case of electronic scanning flaw detection equipment, as shown in Figure 6, each element (&□) (a□)...
...... (al) (After the delay time ΔT D' (1) set for each °°°°° (an), each element (al) (a-)... ai)・・・・・・(
an) (C compatible transmission pulse (1 (pm)...
・(Pl)...(Pn) is sent and excited, and the beam deflection and convergence of the transmitted wave (Q) are performed by the probe flll as a whole. At the time of reception, give the same delay to the received wave of each (ai) as at the time of transmission, and observe the combined waveform.

ここで超音波ビームフォーミングのための各ニレメン)
 (a、)(a、)・・・・・・(al)・・・・・・
(an)の遅延時間ΔTDの算出の例を示す。第7図に
示すようにエレメント幅をW、エレメント間スペースM
、偏向角θ、集束距離りとすると、エレメント(al)
から集走点(乃までの路程L(1)は。
Here each element for ultrasonic beamforming)
(a,) (a,)... (al)...
An example of calculating the delay time ΔTD of (an) is shown. As shown in Figure 7, the element width is W, and the inter-element space M
, the deflection angle θ, and the focusing distance, the element (al)
The distance L(1) from to the gathering point (no) is.

B = −(n −1) (W+M )路稈L(1)の
最大値をL(i)max  とすると、各ニレメン)(
al)Ic設定する遅延時間ΔTn(i)は、T、(i
) max −I、(i) Δ’I’D(1) =       −C=媒質の音速 で表わせる。
B = −(n −1) (W+M) If the maximum value of the culm L(1) is L(i)max, each elm)(
al) The delay time ΔTn(i) to set Ic is T,(i
) max -I, (i) Δ'I'D (1) = -C = speed of sound in the medium.

次に、同一探触子で角鋼片の内部1表面層及び表面探傷
をするだめの制、両法につき説明する。前述のように電
子走査型探傷装置では、送信パルス0ごとに超音波ビー
ム(S)を任意にフォーミングすることができる。すな
わちある送信パルス(PIでは内部探傷用のフォーミン
グ、次の送信パルスDでは表面層探傷用のフォーミング
、また次の送信パルス口では表面探傷用のフォーミング
というように同一探触子F1)で三種の探傷を行なうこ
とができる。ここで幅155flの角鋼片(2)K対し
て5 MHzの探触子T1)を角鋼片(2)の軸方向に
垂直な面内で該角鋼片(2)の表面に平行に配置して、
内部、表面層及び表面探傷を行なう場合の制御例′を示
す。音響結合は水浸方式とし、探傷領域(2&)内に8
.エコーが入らないような水距離を選定する。第8図に
示すように内部探傷は送信波(りの3dBダウンの超音
波ビーム(S)の広がりが底面側で50鱈程度になるよ
うに使用ニレメン)(a)の遅延時間ΔTDを制御し、
4ステツプでリニア走査(第1図)する。表面層探傷は
超音波ビーム(鴫を鋼片(2)中央から入射し、入射面
に隣接する両側面下半分を探傷領域(2a)での送信波
(ωの3dBダウンの超音波ビーム(S)の広がりが1
0.稈度になるように使用ニレメン) (a)の遅延表
面探傷は入射面を全域探傷するには探傷ピッチが10波
長すなわち約6Bより155/6=26ステツプでリニ
ア走査(第3図)する。これらを1回のシーケンスとし
て探傷するように送信パルス[F]を、第8図に示す如
く内部探傷用パルス(Pa)、表面層探傷用パルス(、
Pb)及び表面探傷用パルス(Pc)に振り分ければよ
い。すなわち送信パルス(Bの46(=4−1−8−)
−8−)−26’)パルスで1回のシーケンスとなす。
Next, a description will be given of the method for detecting flaws on the inner surface layer and the surface of a square steel piece using the same probe. As described above, in the electronic scanning flaw detection device, the ultrasonic beam (S) can be arbitrarily formed for each transmission pulse 0. In other words, three types of transmission pulses (PI: forming for internal flaw detection, the next transmission pulse D: forming for surface layer flaw detection, and the next transmission pulse opening: forming for surface flaw detection; the same probe F1) can be used for three types. Can perform flaw detection. Here, a 5 MHz probe T1) is placed parallel to the surface of the square steel piece (2) in a plane perpendicular to the axial direction of the square steel piece (2) with respect to the square steel piece (2) K with a width of 155 fl. ,
An example of control when performing internal, surface layer, and surface flaw detection is shown below. Acoustic coupling is by water immersion method, and 8
.. Select a water distance that will prevent echoes. As shown in Figure 8, for internal flaw detection, the delay time ΔTD of the transmitted wave (a) was controlled so that the spread of the ultrasonic beam (S) down 3 dB was about 50 mm on the bottom side. ,
Linear scanning is performed in 4 steps (Fig. 1). For surface layer flaw detection, an ultrasonic beam (S) is applied from the center of the steel strip (2), and the lower half of both sides adjacent to the incident surface is transmitted to the flaw detection area (2a) using an ultrasonic beam (S) with a 3 dB reduction in ω. ) has a spread of 1
0. In the delayed surface flaw detection (a), in order to detect the entire area of the entrance surface, the flaw detection pitch is 10 wavelengths, that is, approximately 6B, and linear scanning is performed at 155/6=26 steps (Fig. 3). The transmission pulse [F] is divided into an internal flaw detection pulse (Pa), a surface layer flaw detection pulse (Pa), and a surface layer flaw detection pulse (,
Pb) and surface flaw detection pulse (Pc). That is, the transmission pulse (46 (=4-1-8-) of B
-8-)-26') Make one sequence with pulses.

この1回のシーケンスで第9図(、) (b)(、)に
示す探傷領域(2a)を同時に探傷できることになる。
In this one sequence, the flaw detection area (2a) shown in FIG. 9(,)(b)(,) can be simultaneously detected.

この場合必要となる探傷子(11のサイズは最もI範囲
が広く、偏向角θも大きくとらなければならない表面探
傷によって限定される。即ち入射面全面を表面探傷する
ためには、鋼片(2)のサイズと同じ155鰐は必要と
なる。これに必要有効振動子径全考慮して超音波ビーム
(s)の広がりに寄与する。
In this case, the size of the flaw detector (11) required is limited by surface flaw detection, which has the widest I range and requires a large deflection angle θ.In other words, in order to perform surface flaw detection on the entire entrance surface, the size of the steel piece (2 ) is required, which contributes to the spread of the ultrasonic beam (s), taking into account the entire required effective transducer diameter.

あ壕りビーム(s)が細いと軸方向の探傷ピッチを細・
かく取らないと全長に亘って探傷できなくなるので、2
0fl稈度とする。次にエレメント幅Wであるとすると
If the trench beam (s) is thin, the axial flaw detection pitch will be fine.
If you don't scrape it off, you won't be able to detect flaws along the entire length, so
The culm degree is 0 fl. Next, assume that the element width is W.

−sinθ=15 W=エレメント幅 λ=波長 に=2T、/λ 指向角θ′が30−波長λが14875のとき。−sinθ=15 W = element width λ = wavelength = 2T, /λ When the directivity angle θ' is 30-the wavelength λ is 14875.

W=15λ/πsinθ″= 15 X (14875
)/πsin 30cL−Q28よってエレメント幅W
は% Q25鯖とする。
W=15λ/πsinθ″=15X (14875
)/πsin 30cL-Q28 Therefore, element width W
is % Q25 mackerel.

次に、角鋼片の全断面の探傷を行なうための探触子の配
置につき説明する。幅155 mの角鋼片(2)の全断
面探傷を行なうための探触子(1)の配置例を第10図
(1)(Ia)(Ib)に示す。前述したサイズの探触
子(1)を前記と同一条件で各面に配置すればよい。
Next, the arrangement of the probe for flaw detection of the entire cross section of the square steel piece will be explained. FIG. 10 (1) (Ia) (Ib) shows an example of the arrangement of the probe (1) for performing full cross-sectional flaw detection of a square steel piece (2) with a width of 155 m. The probes (1) of the size described above may be placed on each surface under the same conditions as described above.

ここで軸方向の配置については4個とも同一断面に配置
する方法(第10図(la))と、軸方向に各々ずらし
て配置する方法(第10図(lb))とがある。第10
図(Ia)の配置の場合には、各探触子(1)は同一タ
イミングで励振すると互いに干渉するの゛で、単純には
繰返し周波数fpを1個の探触子(++の場合の4倍に
なるが、角鋼片(2)の軸方向の搬送スピードを1/4
にしないと粗な探傷となる。・しかしながら探傷ライン
のスペースは少なくて済む。第10図(Ib)の配置の
場合、各探触子(1)をずらすことKよって各探触子m
を同一タイミングで励振しても互いに干渉することはな
い。また第10図(■&)の配置の場合より探傷スピー
ドのアップがし易い。
Regarding the arrangement in the axial direction, there are two methods: a method in which all four are arranged in the same cross section (FIG. 10(la)), and a method in which they are arranged offset from each other in the axial direction (FIG. 10(lb)). 10th
In the case of the arrangement shown in Figure (Ia), if the probes (1) are excited at the same timing, they will interfere with each other. However, the axial conveyance speed of the square steel piece (2) is reduced to 1/4.
Otherwise, the flaw detection will be rough.・However, the flaw detection line requires less space. In the case of the arrangement shown in FIG. 10 (Ib), by shifting each probe (1), each probe m
Even if they are excited at the same timing, they will not interfere with each other. Furthermore, it is easier to increase the flaw detection speed than in the case of the arrangement shown in FIG. 10 (■&).

内部探傷については、一方向或いは隣接する2個の探触
子filによる2方向からの探傷でも全断面探傷を行な
っていることになる。
Regarding internal flaw detection, full cross-section flaw detection is performed either in one direction or in two directions using two adjacent probes fil.

以上のように、大発明によれば電子アレイ型探触子を電
子走査することによって、角鋼片の内部探傷1表面層探
傷及び表面探傷を順次くり返すので、角鋼片の全断面の
探傷が1つの探傷装置で行なうこ吉ができ、従って探傷
ラインのスペースが非常に小さくて済み、設備費も安価
になる。しかも探傷情報を内部、皮下1表面欠陥に弁別
するときの精度が著しく向上する。
As described above, according to the great invention, internal flaw detection, surface layer flaw detection, and surface flaw detection of a square steel piece are sequentially repeated by electronic scanning with an electronic array type probe, so that flaw detection of the entire cross section of the square steel piece is carried out in one step. It is possible to perform the test using only one flaw detection device, so the space required for the flaw detection line is extremely small, and the equipment cost is also low. Furthermore, the accuracy when discriminating flaw detection information into internal and subcutaneous surface defects is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は大発明の内部探傷方法を示す図、第、2図は同
表面層探傷方法を示す図、第3図は同表面探傷方法を示
す図、第4図はパルス型探傷器の構成図、第5図は同探
傷器の送信パルス及び送信波を示す波形図、第6図はア
レイ型探触子の励振タイミングを示す波形図、第7図は
アレイ型探触子の各エレメントの遅延時間の算出例を示
す図、第8図は同一探触子て内部1表面層および表面探
傷による探傷領域を示す図、第10図は角鋼片を全断面
探傷するための探触子の配置を示す図である。 (1)′・・・電子アレイ型探触+l5(2)・・・角
鋼片。 特 許 出 願 人  株式会社神戸製鋼所手続補正書
(自発) 昭和58年3 月240 1 ・lff11の表示 昭和58年 特許願第23526  号2、発   明
  の名称 角鋼片の超音波探傷法 3、補正をする者 ii f’lとの関係  特許出願人 (119)  体弐会社神戸製鋼所 4代T!11人 畢577 6 補11:、の対象 7、 補正の内容 il+  明細臀第6頁第19行目の rL(t)=!θ十B −(t−1)(W”M ))”
」を 」と訂正する。 (2)同第7頁第1行目の 「、、L(1)=D2+(D―θ十%(W−M )(n
−21+1))”」を と訂正する。 (3)同第7頁第4行目の[L’(1)max J f
 「L(1)max」と訂正する。 (4)同第8頁第2行目から第3行目の「第8図に示す
ように」を削除する。 (6)同第9頁第8行目の「考慮して」の次に「長さ1
70mm程度が必要である。探触子の幅(鋼片軸方向の
長さ)は鋼片軸方向の」を挿入する。 (6)  同第1O頁第14行目の1なるが」を「する
か」と訂正する。
Figure 1 shows the internal flaw detection method of the great invention, Figures 2 and 2 show the surface layer flaw detection method, Figure 3 shows the surface flaw detection method, and Figure 4 shows the configuration of the pulse type flaw detector. Figure 5 is a waveform diagram showing the transmission pulse and transmission wave of the same flaw detector, Figure 6 is a waveform diagram showing the excitation timing of the array type probe, and Figure 7 is a waveform diagram showing the excitation timing of the array type probe. A diagram showing an example of calculating the delay time, Figure 8 is a diagram showing the internal first surface layer and the flaw detection area by surface flaw detection using the same probe, and Figure 10 is a diagram showing the arrangement of the probe for testing the entire cross section of a rectangular steel piece. FIG. (1)'...Electronic array type probe + l5 (2)...Square steel piece. Patent applicant: Kobe Steel, Ltd. Procedural amendment (voluntary) March 1980 240 1 ・Indication of lff11 1988 Patent application No. 23526 2 Title of invention Ultrasonic flaw detection method for square steel billet 3 Person making the amendment ii Relationship with f'l Patent applicant (119) Company 2 Company Kobe Steel, Ltd. 4th generation T! 11 people 红577 6 Supplement 11:, Target 7, Correction content il+ rL(t)=! on page 6, line 19 of the specification. θ1B −(t−1)(W”M ))”
” to be corrected. (2) Page 7, line 1: “, L(1)=D2+(D−θ10%(W−M)(n
-21+1))” is corrected. (3) [L'(1) max J f on page 7, line 4]
Correct it to "L(1)max". (4) Delete "as shown in Figure 8" from the second to third lines of page 8. (6) On page 9, line 8, after “taking into consideration” “length 1
Approximately 70 mm is required. For the width of the probe (length in the axial direction of the steel piece), insert the width of the probe in the axial direction of the steel piece. (6) In the same page, page 10, line 14, ``1 naruga'' is corrected to ``suruka.''

Claims (1)

【特許請求の範囲】 1 電子アレイ型探触子を、角鋼片の軸方向に垂直な面
内でその角鋼片表面から所定の距離で。 かつ角鋼片表面に対して所定の角度でセットし。 該探触子を電子走査することによって、角鋼片の内部探
傷1表面層探傷及び表面探傷を順次くり返すことを特徴
とする角鋼片の超音波探傷法。
[Claims] 1. An electronic array type probe at a predetermined distance from the surface of a square steel piece in a plane perpendicular to the axial direction of the square steel piece. and set at a specified angle to the surface of the square steel piece. An ultrasonic flaw detection method for a square steel piece, characterized by sequentially repeating internal flaw detection, surface layer flaw detection, and surface flaw detection of the square steel piece by electronically scanning the probe.
JP58023526A 1983-02-14 1983-02-14 Ultrasonic flaw detecting method of square billet Pending JPS59148864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58023526A JPS59148864A (en) 1983-02-14 1983-02-14 Ultrasonic flaw detecting method of square billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58023526A JPS59148864A (en) 1983-02-14 1983-02-14 Ultrasonic flaw detecting method of square billet

Publications (1)

Publication Number Publication Date
JPS59148864A true JPS59148864A (en) 1984-08-25

Family

ID=12112885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58023526A Pending JPS59148864A (en) 1983-02-14 1983-02-14 Ultrasonic flaw detecting method of square billet

Country Status (1)

Country Link
JP (1) JPS59148864A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257363A (en) * 1990-03-08 1991-11-15 Mitsubishi Electric Corp Ultrasonic flaw detection apparatus
DE102008027228A1 (en) * 2008-05-29 2009-12-03 Ge Inspection Technologies Gmbh Method and device for the non-destructive ultrasound examination of a test piece with mutually angled, flat surfaces
DE102009027598A1 (en) * 2009-07-09 2011-01-13 Ge Sensing & Inspection Technologies Gmbh Improved non-destructive inspection of high-pressure lines
JP2019109208A (en) * 2017-12-20 2019-07-04 日本製鉄株式会社 Surface flaw depth determination device
JP2021148440A (en) * 2020-03-16 2021-09-27 日本製鉄株式会社 Ultrasonic flaw detection system and ultrasonic flaw detection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642136A (en) * 1979-09-14 1981-04-20 Toshiba Corp Ultrasonic flaw detecting method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642136A (en) * 1979-09-14 1981-04-20 Toshiba Corp Ultrasonic flaw detecting method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257363A (en) * 1990-03-08 1991-11-15 Mitsubishi Electric Corp Ultrasonic flaw detection apparatus
DE102008027228A1 (en) * 2008-05-29 2009-12-03 Ge Inspection Technologies Gmbh Method and device for the non-destructive ultrasound examination of a test piece with mutually angled, flat surfaces
DE102008027228B4 (en) * 2008-05-29 2018-12-13 Ge Inspection Technologies Gmbh Method and device for the non-destructive ultrasound examination of a test piece with mutually angled, flat surfaces
DE102009027598A1 (en) * 2009-07-09 2011-01-13 Ge Sensing & Inspection Technologies Gmbh Improved non-destructive inspection of high-pressure lines
US8375795B2 (en) 2009-07-09 2013-02-19 Ge Sensing & Inspection Technologies Gmbh Non-destructive inspection of high-pressure lines
JP2019109208A (en) * 2017-12-20 2019-07-04 日本製鉄株式会社 Surface flaw depth determination device
JP2021148440A (en) * 2020-03-16 2021-09-27 日本製鉄株式会社 Ultrasonic flaw detection system and ultrasonic flaw detection method

Similar Documents

Publication Publication Date Title
US5526691A (en) Detection of corrosion fatigue cracks in membrane boiler tubes
US4435984A (en) Ultrasonic multiple-beam technique for detecting cracks in bimetallic or coarse-grained materials
Kupperman et al. Ultrasonic NDE of cast stainless steel
JP2010266416A (en) Method of processing phased array aperture synthesis and method of evaluating application effect thereof
JPS59148864A (en) Ultrasonic flaw detecting method of square billet
Karaojiuzt et al. Defect detection in concrete using split spectrum processing
US4596142A (en) Ultrasonic resonance for detecting changes in elastic properties
KR870001259B1 (en) Steel piece inspection using electronic beam
Hörchens et al. Ultrasound imaging of stress corrosion cracking
Aanes et al. Inline-inspection crack detection for gas pipelines using a novel technology
US3218845A (en) Ultrasonic inspection method for inaccessible pipe and tubing
Hesse et al. Defect detection in rails using ultrasonic surface waves
Stepinski et al. Ultrasonic technique for imaging welds in copper
JPH10221308A (en) Method and device of detecting ruptured part in metal and probe
JPS6262287B2 (en)
Willems et al. Recent improvements regarding ultrasonic crack inspection of pipelines
JPS59122944A (en) Probe and ultrasonic wave flaw detecting method
GB2143036A (en) Ultrasonic resonance for detecting changes in elastic properties
JP2513013B2 (en) Ultrasonic flaw detection method
Hayward et al. New ultrasonic array structure for fixed condition monitoring in solid media
Schmitz et al. Practical experiences with LSAFT
RU1824574C (en) Method for ultrasonic testing of pipeline surface
Kachanov et al. Features of applying the method of focusing to a point in ultrasonic testing of products manufactured from complexly structured materials
JPS59148866A (en) Ultrasonic flaw detecting method of round steel bar
JPS59116543A (en) Method for detecting flaw of square steel piece by electronic sector scanning