JP2019109208A - Surface flaw depth determination device - Google Patents

Surface flaw depth determination device Download PDF

Info

Publication number
JP2019109208A
JP2019109208A JP2017244171A JP2017244171A JP2019109208A JP 2019109208 A JP2019109208 A JP 2019109208A JP 2017244171 A JP2017244171 A JP 2017244171A JP 2017244171 A JP2017244171 A JP 2017244171A JP 2019109208 A JP2019109208 A JP 2019109208A
Authority
JP
Japan
Prior art keywords
depth
flaw
surface flaw
signal processing
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017244171A
Other languages
Japanese (ja)
Other versions
JP7091646B2 (en
Inventor
和孝 穴山
Kazutaka Anayama
和孝 穴山
文鶴 程
Wen He Cheng
文鶴 程
康平 岡本
Kohei Okamoto
康平 岡本
佳央 上田
Yoshihisa Ueda
佳央 上田
計助 前田
Keisuke Maeda
計助 前田
翼 笠井
Tsubasa Kasai
翼 笠井
慶 黒河
Kei Kurokawa
慶 黒河
哲也 宿口
Tetsuya Yadoguchi
哲也 宿口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017244171A priority Critical patent/JP7091646B2/en
Publication of JP2019109208A publication Critical patent/JP2019109208A/en
Application granted granted Critical
Publication of JP7091646B2 publication Critical patent/JP7091646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

To provide a surface flaw depth determination device capable of accurately determining the depth of even a surface flaw such as a surface crack with a relatively steep shape change that can occur in a steel piece.SOLUTION: A surface flaw depth determination device 100 includes shape measurement devices 2 arranged along lateral faces of a steel piece B for measuring the shapes of the lateral faces of the steel piece by one-dimensional array ultrasonic probes 1 and an optical cutting method, and a signal processing device 3 for generating a two-dimensional image relating to a cross section in a direction orthogonal to a longitudinal direction of the steel piece by applying signal processing to a flaw detection signal outputted from the ultrasonic probe, and determining the depth of a surface flaw that has occurred on a lateral face of the steep piece. The signal processing device detects a surface flaw that occurred on a lateral face of the steel piece on the basis of shape measurement data acquired by the shape measurement devices, and determines the depth of the detected surface flaw on the basis of shape measurement data in the vicinity of the detected surface flaw and the density of the two-dimensional image.SELECTED DRAWING: Figure 3

Description

本発明は、表面きずの深さ判定装置に関する。特に、本発明は、鋼片に発生する比較的急峻な形状変化を伴う表面割れなどの表面きずであっても、その深さを精度良く判定可能な表面きずの深さ判定装置に関する。   The present invention relates to a surface flaw depth determination apparatus. In particular, the present invention relates to a surface flaw depth judging device capable of accurately judging the depth of a surface flaw such as a surface crack accompanied by a relatively sharp shape change generated in a steel piece.

従来、鋼片の品質保証を行うために、超音波探傷方法が広く利用されている。
近年、超音波探傷方法の中でも、発生したきずの位置を精度良く判定可能な方法として、複数の振動子を具備する一次元アレイ型超音波探触子を利用した2次元画像化手法を用いた超音波探傷方法が注目されている。
Conventionally, ultrasonic flaw detection methods are widely used to guarantee the quality of billets.
In recent years, as a method capable of accurately determining the position of generated flaws among ultrasonic flaw detection methods, a two-dimensional imaging method using a one-dimensional array-type ultrasonic probe having a plurality of transducers is used. Ultrasonic flaw detection methods are attracting attention.

具体的には、一次元アレイ型超音波探触子を鋼片の側面に沿って配置し、一次元アレイ型超音波探触子が鋼片からエコーを受信することで出力される探傷信号に信号処理(開口合成処理やTFM(Total Focusing Method)など)を施すことで、鋼片の長手方向に直交する方向の断面についての2次元画像を生成し、この2次元画像を用いてきずを検出する超音波探傷方法が提案されている(例えば、特許文献1、2参照)。2次元画像化手法として用いられる開口合成処理やTFMは、一次元アレイ型超音波探触子に対向する方向の鋼片等の被探傷材の断面の座標空間をメッシュに分割し、一次元アレイ型超音波探触子で同時に多点計測した反射源からの探傷信号の伝搬時間と振幅値を、被探傷材と一次元アレイ型超音波探触子との位置関係及び音速情報に基づいて、所定のメッシュ内に積算させることで、反射源の像を再構成する手法である。
上記の2次元画像化手法を用いた超音波探傷方法によれば、高い空間分解能を有する2次元画像を生成できるため、各一次元アレイ型超音波探触子の探傷領域内において、きずの位置を精度良く判定可能である。
Specifically, a one-dimensional array type ultrasonic probe is disposed along the side of a steel piece, and a flaw detection signal is output when the one-dimensional array type ultrasonic probe receives an echo from the steel piece By applying signal processing (aperture synthesis processing, TFM (Total Focusing Method), etc.), a two-dimensional image of a cross section in a direction orthogonal to the longitudinal direction of the steel piece is generated, and this two-dimensional image is used to detect defects. An ultrasonic flaw detection method is proposed (see, for example, Patent Documents 1 and 2). Aperture synthesis processing or TFM used as a two-dimensional imaging method divides the coordinate space of the cross section of the test material such as a steel piece in the direction opposite to the one-dimensional array ultrasonic probe into meshes, The propagation time and amplitude value of the flaw detection signal from the reflection source simultaneously measured at multiple points with the probe type ultrasound probe based on the positional relationship between the material to be detected and the one-dimensional array type ultrasound probe and the sound velocity information This is a method of reconstructing the image of the reflection source by integrating in a predetermined mesh.
According to the ultrasonic flaw detection method using the above two-dimensional imaging method, since a two-dimensional image having high spatial resolution can be generated, the position of the flaw in the flaw detection region of each one-dimensional array type ultrasonic probe Can be accurately determined.

しかしながら、上記の2次元画像化手法を用いた超音波探傷方法においては、表層(鋼片の側面)において生じるノイズ(底面エコー等)の影響により、2次元画像における表層から深さ方向(表層に垂直な方向)の所定の範囲が、探傷周波数に応じた不感帯とされるのが一般的である。例えば、探傷周波数が3MHzの場合には、表層から2mm程度が不感帯とされる。このため、例えば、表層から深さ方向への形状変化を伴う表面割れが鋼片に発生していた場合、表面割れの深さを実際よりも小さく評価したり、表層ではなく鋼片内部に発生したきずであると誤判定するおそれもある。また、表面割れを検出できないおそれもある。   However, in the ultrasonic flaw detection method using the above two-dimensional imaging method, the depth direction (from the surface layer to the surface layer) in the two-dimensional image is caused by the influence of noise (bottom surface echo etc.) generated in the surface layer (side surface of steel). In general, a predetermined range in the vertical direction is considered as a dead zone corresponding to a flaw detection frequency. For example, when the flaw detection frequency is 3 MHz, about 2 mm from the surface layer is considered as a dead zone. For this reason, for example, when a surface crack accompanied by a shape change from the surface layer to the depth direction is generated in the steel piece, the depth of the surface crack is evaluated smaller than the actual, or not generated in the surface layer but generated inside the steel piece. There is also a possibility that it may be misjudged to be a flaw. There is also a possibility that surface cracks can not be detected.

表面割れのように表層から深さ方向への形状変化を伴うきずを検出するには、超音波探傷方法ではなく、レーザ光源及び撮像手段を具備し光切断法によって鋼片の側面の形状を測定する形状測定装置を用い、この形状測定装置で測定した形状変化に基づき、きずを検出することが考えられる。   In order to detect flaws accompanied by a shape change from the surface to the depth direction like surface cracks, not the ultrasonic flaw detection method but the laser light source and the imaging means are provided and the shape of the side of the steel is measured by the light cutting method It is conceivable to detect a flaw based on the shape change measured by this shape measuring device using a shape measuring device.

しかしながら、鋼片に発生する表面割れは、比較的急峻な形状変化を伴う場合が多い。このため、図1(a)に示すように、表面きず(表面割れ)の形状と撮像手段の向きとの関係に応じて、きずの形状を正確に測定できる場合がある一方で、図1(b)に示すように、きずの深部については形状を測定できない場合がある。すなわち、撮像手段の視野から外れることで、形状測定データが欠損している箇所(図1(b)に白丸で示す箇所)が生じる場合がある。
形状測定データが欠損していると、たとえ表面きずの検出が可能であったとしても、その深さを実際よりも小さく判定するおそれがある。すなわち、形状測定装置を単独で用いたのでは、鋼片に発生する表面きずの深さを精度良く判定することが難しい場合がある。
なお、図1において、鋼片には符号Bを、鋼片Bの長手方向には符号Yを付している。後述の図2についても同様である。
However, surface cracks that occur in billets often involve relatively sharp shape changes. For this reason, as shown in FIG. 1A, depending on the relationship between the shape of the surface flaw (surface crack) and the direction of the imaging means, the shape of the flaw may be able to be measured accurately. As shown in b), it may not be possible to measure the shape of the deep part of the flaw. That is, by leaving the field of view of the imaging means, there may be a location where the shape measurement data is missing (a location indicated by a white circle in FIG. 1B).
If the shape measurement data is missing, even if it is possible to detect surface flaws, the depth may be determined smaller than the actual depth. That is, when the shape measuring device is used alone, it may be difficult to accurately determine the depth of surface flaws generated in the steel piece.
In addition, in FIG. 1, the code | symbol B is attached | subjected to the steel piece and the code | symbol Y is attached | subjected to the longitudinal direction of the steel piece B. As shown in FIG. The same applies to FIG. 2 described later.

図2は、以上に説明した従来の2次元画像化手法を用いた超音波探傷方法による表面きずの深さ判定における問題点及び光切断法による表面きずの深さ判定における問題点を説明する説明図である。図2(a)は表面きずの深さが浅い場合の光切断法の問題点を、図2(b)は表面きずの深さが中程度の場合の光切断法の問題点を、図2(c)は表面きずの深さが深い場合の光切断法の問題点を示す。図2(d)は表面きずの深さが浅い場合の超音波探傷方法の問題点を、図2(e)は表面きずの深さが中程度の場合の超音波探傷方法の問題点を、図2(f)は表面きずの深さが深い場合の超音波探傷方法の問題点を示す。具体的には、図2(d)〜(f)は超音波探傷方法によって生成される鋼片の断面の2次元画像の例を示す。また、図2においてハッチングを施した領域は、超音波探傷方法における表層部(例えば、探傷周波数が3MHzの場合、表層(鋼片の側面)から2mm程度の範囲)の不感帯を意味する。   FIG. 2 illustrates the problems in the surface flaw depth determination by the ultrasonic flaw detection method using the conventional two-dimensional imaging method described above and the problems in the surface flaw depth determination by the light cutting method FIG. Fig.2 (a) shows the problem of the light cutting method when the surface flaw depth is shallow, and Fig.2 (b) shows the problem of the light cutting method when the surface flaw depth is medium, (C) shows the problem of the light cutting method when the depth of surface flaws is deep. Fig. 2 (d) shows the problems of the ultrasonic flaw detection method when the surface flaw depth is shallow, and Fig. 2 (e) shows the problems of the ultrasonic flaw detection method when the surface flaw depth is medium, FIG. 2 (f) shows the problem of the ultrasonic flaw detection method when the depth of surface flaws is deep. Specifically, FIGS. 2 (d) to 2 (f) show an example of a two-dimensional image of a cross section of a steel slab generated by the ultrasonic flaw detection method. Further, the hatched area in FIG. 2 means a dead zone in a surface layer portion (for example, in a range of about 2 mm from the surface layer (side surface of a steel slab) when the flaw detection frequency is 3 MHz) in the ultrasonic flaw detection method.

図2(a)〜(c)に示すように、光切断法によれば、撮像手段の視野から外れることで、形状測定データが欠損している箇所(図2(a)〜(c)に白丸で示す箇所)が生じ、表面きずの検出自体は可能であったとしても、その深さを実際よりも小さく判定し、いずれの表面きずについても同等の深さであると誤判定するおそれがある。
また、図2(d)に示す例では、表面きず全体が表層部の不感帯に位置するため、超音波探傷方法によって表面きずを検出することができない。
さらに、図2(e)、(f)に示すように、超音波探傷方法によれば、表面きずのうち、表層部の不感帯よりも内部に位置する深部については検出できたとしても、不感帯に位置する表層部が検出できないため、表面きずの深さを実際よりも小さく判定したり、表層部ではなく鋼片内部に発生したきずであると誤判定するおそれがある。
As shown in FIGS. 2 (a) to 2 (c), according to the light-section method, the shape measurement data is deficient (FIG. 2 (a) to 2 (c)) by being out of the field of view of the imaging means. Even if it is possible to detect the surface flaw itself, the depth may be determined to be smaller than the actual depth, and any surface flaw may be erroneously determined to be equivalent depth even if the detection of the surface flaw itself is possible. is there.
Further, in the example shown in FIG. 2D, since the entire surface flaw is located in the dead zone of the surface layer portion, the surface flaw can not be detected by the ultrasonic flaw detection method.
Furthermore, as shown in FIGS. 2 (e) and 2 (f), according to the ultrasonic flaw detection method, even if it is possible to detect the deep portion located inside the dead zone of the surface layer among the surface flaws, Since the surface layer part located can not be detected, there is a possibility that the depth of the surface flaw may be judged smaller than the actual, or it may be erroneously judged as the flaw generated not inside the surface layer part but inside the steel piece.

特開2011−203037号公報JP, 2011-203037, A 特開2009−236668号公報JP, 2009-236668, A

そこで、本発明は、鋼片に発生する比較的急峻な形状変化を伴う表面割れなどの表面きずであっても、その深さを精度良く判定可能な表面きずの深さ判定装置を提供することを課題とする。   Therefore, the present invention is to provide a surface flaw depth judging device capable of accurately judging the depth of surface flaws such as surface cracks with relatively sharp shape change generated in steel slabs. As an issue.

前記課題を解決するため、本発明者らは鋭意検討した結果、2次元画像化手法を用いた超音波探傷方法及び光切断法の双方を実行可能で、2次元画像化手法を用いた超音波探傷方法の長所(表面きずの深部の位置を精度良く判定可能)と光切断法の長所(表面きずの表層部の位置及び形状を精度良く判定可能)とを組み合わせることで、表面きずの深さを精度良く判定可能であることに想到し、本発明を完成した。   In order to solve the above problems, as a result of intensive investigations by the present inventors, it is possible to execute both an ultrasonic flaw detection method using a two-dimensional imaging method and an optical cutting method, and an ultrasonic wave using a two-dimensional imaging method The depth of the surface flaw is obtained by combining the advantages of the flaw detection method (the position of the deep portion of the surface flaw can be accurately determined) and the advantages of the light cutting method (the position and the shape of the surface layer of the surface flaw can be accurately determined). In the present invention, the present invention has been completed.

すなわち、前記課題を解決するため、本発明は、鋼片の側面に沿って配置された一次元アレイ型超音波探触子と、前記鋼片の側面に沿って配置され、光切断法によって前記鋼片の側面の形状を測定する形状測定装置と、前記一次元アレイ型超音波探触子から出力される探傷信号に対して信号処理を施すことで、前記鋼片の長手方向に直交する方向の断面についての2次元画像を生成し、前記形状測定装置によって前記鋼片の側面の形状を測定することにより得られた形状測定データと、前記生成した2次元画像とに基づき、前記鋼片の側面に生じた表面きずの深さを判定する信号処理装置と、を備えることを特徴とする表面きずの深さ判定装置を提供する。   That is, in order to solve the above problems, according to the present invention, there is provided a one-dimensional array type ultrasonic probe disposed along a side surface of a steel billet, and the present invention is arranged along a side surface of the steel billet according to a light cutting method. A shape measuring device for measuring the shape of the side surface of the steel piece and signal processing on the flaw detection signal outputted from the one-dimensional array ultrasonic probe, a direction orthogonal to the longitudinal direction of the steel piece A two-dimensional image of the cross section of the steel piece, and measuring the shape of the side surface of the steel piece by the shape measuring device, based on the shape measurement data obtained and the generated two-dimensional image; And a signal processing device that determines the depth of surface flaws generated on the side surface.

本発明に係る表面きずの深さ判定装置によれば、信号処理装置は、光切断法を用いた形状測定装置によって得られた形状測定データに基づき、鋼片の側面に生じた表面きずの表層部を精度良く検出可能(表面きずの表層部の位置及び形状を精度良く判定可能)である。また、信号処理装置は、一次元アレイ型超音波探触子から出力される探傷信号を用いて生成した2次元画像に基づき、鋼片の側面に生じた表面きずの深部を精度良く検出可能(表面きずの深部の位置を精度良く判定可能)である。このため、信号処理装置は、形状測定データに基づき検出した表面きず(表面きずの表層部)の近傍における形状測定データ(形状測定データのうち、表面きずの表層部近傍に位置する部分のデータ)に基づき、表面きずの表層部の深さを判定することが可能である。また、検出した表面きずの近傍における2次元画像の濃度(2次元画像を構成する画素のうち、表面きずの表層部近傍に位置する画素の濃度)に基づき、表面きずの深部の深さを判定することが可能である。すなわち、所定のしきい値以上の濃度を有する画素は、表面きずに相当する画素であると考えることができるため、この表面きずに相当する画素に基づき、表面きずの深部の深さを判定することが可能である。したがい、形状測定データに基づき判定した表面きずの表層部の深さと、2次元画像の濃度に基づき判定した表面きずの深部の深さとを加味して、表面きずの深さを精度良く判定可能である。
なお、本発明に係る表面きずの深さ判定装置においては、形状測定データを表面きず検出のトリガーにする(すなわち、先に形状測定データに基づき表面きずの表層部を検出した後、この検出した位置近傍の2次元画像の濃度を用いて表面きずの深さを判定する)ため、従来のように2次元画像の表層近傍を不感帯にする必要がない。
According to the surface flaw depth judging device according to the present invention, the signal processing device is based on the shape measurement data obtained by the shape measuring device using the light cutting method, the surface layer of the surface flaw generated on the side of the steel piece It is possible to detect the part accurately (the position and the shape of the surface layer part of the surface flaw can be accurately determined). In addition, the signal processing device can accurately detect the deep portion of the surface flaw generated on the side of the steel piece based on the two-dimensional image generated using the flaw detection signal output from the one-dimensional array ultrasonic probe ( The position of the deep part of the surface flaw can be determined with high accuracy). For this reason, the signal processing apparatus measures shape measurement data in the vicinity of the surface flaw (surface layer portion of the surface flaw) detected based on the shape measurement data (data of a portion positioned in the vicinity of the surface layer portion of the surface flaw). It is possible to determine the depth of the surface layer of surface flaws based on In addition, the depth of the surface flaw is determined based on the density of the two-dimensional image in the vicinity of the detected surface flaw (the density of pixels located in the vicinity of the surface layer of the surface flaw among the pixels constituting the two-dimensional image) It is possible. That is, since a pixel having a density equal to or higher than a predetermined threshold can be considered to be a pixel corresponding to a surface flaw, the depth of the surface flaw is determined based on the pixel corresponding to the surface flaw. It is possible. Therefore, the depth of the surface flaw can be determined with high accuracy by taking into consideration the depth of the surface layer of the surface flaw determined based on the shape measurement data and the depth of the depth of the surface flaw determined based on the density of the two-dimensional image is there.
In the surface flaw depth determination apparatus according to the present invention, the shape measurement data is used as a trigger for surface flaw detection (that is, the surface layer portion of the surface flaw is first detected based on the shape measurement data and then detected). Since the depth of the surface flaw is determined using the density of the two-dimensional image in the vicinity of the position), it is not necessary to make the vicinity of the surface layer of the two-dimensional image a dead zone as in the prior art.

具体的には、前記信号処理装置は、前記形状測定データが欠損している箇所を検出して起点とする第1ステップと、前記2次元画像を構成する画素のうち、前記起点に対して前記鋼片の深さ方向に位置し、且つ、所定のしきい値以上の濃度を有する画素を特定する第2ステップと、前記第2ステップで特定された画素のうち、前記鋼片の側面から最も離間した画素の位置に基づき、前記表面きずの深さを判定する第3ステップとを実行する、ことが好ましい。   Specifically, the signal processing device detects a portion where the shape measurement data is missing and uses the first step as a starting point, and the pixels constituting the two-dimensional image with respect to the starting point. A second step of identifying a pixel located in the depth direction of the billet and having a concentration equal to or more than a predetermined threshold value, and of the pixels identified in the second step, the most from the side face of the billet Preferably, the method further comprises the third step of determining the depth of the surface flaw based on the position of the separated pixel.

上記の好ましい構成によれば、信号処理装置が実行する第1ステップにより、形状測定データが欠損するほど急峻な形状変化を伴う表面割れのような表面きずを検出可能(表面きずの表層部の位置である起点を検出可能)である。次いで、鋼片に発生する表面割れのような表面きずは鋼片の深さ方向に進展しているので、信号処理装置が実行する第2ステップにより、2次元画像を構成する画素のうち、第1ステップで検出した表面きずに相当する画素を特定することが可能である。最後に、信号処理装置が実行する第3ステップにより、最も離間した画素の位置、すなわち、表面きずの最深部に相当する画素を特定することで、表面きずの深さを精度良く判定することが可能である。   According to the above preferable configuration, the first step performed by the signal processing device enables detection of surface flaws such as surface cracks accompanied by a sharp shape change such that shape measurement data is lost (position of surface layer portion of surface flaws) (The point of origin can be detected). Next, since surface flaws such as surface cracks generated in the steel piece progress in the depth direction of the steel piece, the second step performed by the signal processing device is the first of the pixels constituting the two-dimensional image. It is possible to specify a pixel corresponding to the surface flaw detected in one step. Finally, in the third step performed by the signal processing apparatus, the depth of the surface flaw can be accurately determined by specifying the position of the most distant pixel, that is, the pixel corresponding to the deepest portion of the surface flaw. It is possible.

好ましくは、前記第2ステップにおいて、前記鋼片の側面からの距離に応じた複数のしきい値を設定し、該複数のしきい値は、前記鋼片の側面から離間するほど小さい。   Preferably, in the second step, a plurality of threshold values are set according to the distance from the side surface of the billet, and the plurality of threshold values are smaller as they are separated from the side surface of the billet.

鋼片に発生する表面割れのような表面きずの探傷信号を2次元画像化した場合、深部になるほど、探傷信号の強度が小さくなる傾向となる。このため、上記の好ましい構成のように、鋼片の側面から離間するほど小さいしきい値を設定することで、表面きずに相当する画素を精度良く特定し、ひいては表面きずの深さを精度良く判定することが可能である。   When a flaw detection signal of a surface flaw such as a surface crack generated in a steel piece is two-dimensionally imaged, the strength of the flaw detection signal tends to decrease as the depth increases. For this reason, as in the above-described preferable configuration, by setting the threshold value smaller as it is separated from the side surface of the steel piece, the pixel corresponding to the surface flaw is accurately identified, and the depth of the surface flaw is accurate. It is possible to determine.

本発明によれば、鋼片に発生する比較的急峻な形状変化を伴う表面割れなどの表面きずであっても、その深さを精度良く判定可能である。   According to the present invention, it is possible to accurately determine the depth of a surface crack such as a surface crack accompanied by a relatively sharp shape change generated in a steel piece.

光切断法による表面きずの深さ判定における問題点を説明する説明図である。It is explanatory drawing explaining the problem in the depth determination of the surface flaw by the light cutting method. 従来の2次元画像化手法を用いた超音波探傷方法による表面きずの深さ判定における問題点及び光切断法による表面きずの深さ判定における問題点を説明する説明図である。It is explanatory drawing explaining the problem in the depth determination of the surface flaw by the ultrasonic flaw detection method using the conventional two-dimensional imaging method, and the problem in the depth determination of the surface flaw by the light cutting method. 本発明の一実施形態に係る表面きずの深さ判定装置の概略構成図である。It is a schematic block diagram of the depth judging device of a surface crack concerning one embodiment of the present invention. 図3に示す信号処理装置が実行する各ステップを説明する説明図である。It is explanatory drawing explaining each step which the signal processing apparatus shown in FIG. 3 performs.

以下、添付図面を参照しつつ、本発明の一実施形態について説明する。
図3は、本発明の一実施形態に係る表面きずの深さ判定装置の概略構成図である。図3(a)は、全体構成図である。図3(b)は、図3(a)の矢符Y方向から見た一次元アレイ型超音波探触子の拡大図である。図3(c)は、図3(a)の矢符Y方向から見た形状測定装置の拡大図である。
図3に示すように、本実施形態に係る表面きず深さ判定装置(以下、適宜、「深さ判定装置」という)100は、一次元アレイ型超音波探触子1と、形状測定装置2と、信号処理装置3とを備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the attached drawings.
FIG. 3 is a schematic block diagram of a surface flaw depth determination apparatus according to an embodiment of the present invention. FIG. 3A is an overall configuration diagram. FIG. 3B is an enlarged view of the one-dimensional array ultrasonic probe as viewed in the direction of arrow Y in FIG. 3A. FIG.3 (c) is an enlarged view of the shape measuring apparatus seen from the arrow mark Y direction of Fig.3 (a).
As shown in FIG. 3, the surface flaw depth determination device (hereinafter, appropriately referred to as “depth determination device”) 100 according to the present embodiment includes a one-dimensional array type ultrasonic probe 1 and a shape measurement device 2. And the signal processing device 3.

本実施形態の一次元アレイ型超音波探触子(以下、適宜、「超音波探触子」という)1は、搬送ロールRによって搬送される断面略矩形の鋼片(以下、ビレットという)Bの各側面に沿って4つ配置されている。超音波探触子1は、一方向に配列された複数(例えば64個)の振動子11を具備する。超音波探触子1は、振動子11の配列方向がビレットBの各側面に略平行となるように配置されている。
また、超音波探触子1には、樹脂製のシュー(図示せず)が取り付けられており、シューとビレットBの側面との間に水などの接触媒質が導入される。超音波探触子1から送信された超音波は、シュー及び接触媒質を介して、超音波探触子1に対向するビレットBの側面からビレットBの内部に入射され、ビレットBに存在する欠陥で反射したエコーは、接触媒質及びシューを介して超音波探触子1に受信される。
The one-dimensional array type ultrasonic probe (hereinafter referred to as “ultrasound probe” as appropriate) 1 of the present embodiment is a steel piece (hereinafter referred to as billet) B having a substantially rectangular cross section conveyed by the conveyance roll R There are four arranged along each side of. The ultrasound probe 1 includes a plurality of (for example, 64) transducers 11 arranged in one direction. The ultrasound probe 1 is disposed such that the arrangement direction of the transducers 11 is substantially parallel to the side surfaces of the billet B.
Further, a shoe (not shown) made of resin is attached to the ultrasonic probe 1, and a contact medium such as water is introduced between the shoe and the side surface of the billet B. The ultrasonic wave transmitted from the ultrasonic probe 1 is incident on the inside of the billet B from the side surface of the billet B facing the ultrasonic probe 1 via the shoe and the contact medium, and the defect present in the billet B The echo reflected at the point is received by the ultrasound probe 1 through the contact medium and the shoe.

本実施形態の形状測定装置2は、ビレットBの各側面に沿って4つ配置されている。形状測定装置2は、ビレットBの側面に沿ってビレットBの長手方向(Y方向)に直交する方向(X方向又はZ方向)に延びるレーザスリット光2Lを照射するレーザ光源(図示せず)と、レーザスリット光2Lを撮像する撮像手段(図示せず)とを備え、光切断法によってビレットBの側面の形状を測定する装置である。   The four shape measurement devices 2 of the present embodiment are arranged along each side surface of the billet B. The shape measuring device 2 is provided with a laser light source (not shown) for emitting a laser slit light 2L extending in the direction (X direction or Z direction) orthogonal to the longitudinal direction (Y direction) of the billet B along the side of the billet B And an imaging unit (not shown) for imaging the laser slit light 2L, and is an apparatus for measuring the shape of the side surface of the billet B by a light cutting method.

本実施形態の信号処理装置3は、4つの各超音波探触子1からの超音波の送受信や、4つの各形状測定装置2からのレーザスリット光2Lの照射や撮像を制御する。また、信号処理装置3は、4つの各超音波探触子1から出力される探傷信号に対して信号処理を施すことで、ビレットBの長手方向(Y方向)に直交する方向の断面についての2次元画像を生成する。信号処理装置3は、必要に応じて、生成された超音波探触子1毎の2次元画像(計4つの2次元画像)を合成し、ビレットBの一断面全体の全体2次元画像を生成することも可能である。
本実施形態の信号処理装置3は、信号処理として開口合成処理を実施し、2次元画像として開口合成像を生成する。また、本実施形態の信号処理装置3は、全体2次元画像(全体開口合成像)は生成せずに、超音波探触子1毎の4つの開口合成像を個別に用いて、開口合成像毎に後述の判定を行う。
信号処理装置3は、ロールRによってビレットBが長手方向(矢符Yの方向)に搬送されている状態で、長手方向に複数の開口合成像を生成する。具体的には、ビレットBの長手方向に、例えば10mmピッチで、複数の開口合成像を生成する。
The signal processing device 3 of the present embodiment controls transmission and reception of ultrasonic waves from each of the four ultrasonic probes 1 and irradiation and imaging of the laser slit light 2 L from each of the four shape measurement devices 2. In addition, the signal processing device 3 performs signal processing on flaw detection signals output from the four ultrasonic probes 1 to obtain a cross section in a direction orthogonal to the longitudinal direction (Y direction) of the billet B. Generate a two-dimensional image. The signal processing device 3 combines the generated two-dimensional images (total four two-dimensional images) of each ultrasonic probe 1 as necessary to generate an entire two-dimensional image of the entire one cross section of the billet B It is also possible.
The signal processing device 3 according to the present embodiment performs aperture combining processing as signal processing, and generates an aperture combined image as a two-dimensional image. In addition, the signal processing device 3 of the present embodiment does not generate an entire two-dimensional image (whole aperture synthetic image), but uses four aperture synthetic images for each ultrasonic probe 1 individually to produce an aperture synthetic image. The following determination is made each time.
The signal processing device 3 generates a plurality of aperture composite images in the longitudinal direction in a state where the billet B is conveyed in the longitudinal direction (direction of arrow Y) by the roll R. Specifically, a plurality of aperture composite images are generated in the longitudinal direction of the billet B, for example, at a pitch of 10 mm.

信号処理装置3は、パルサー、レシーバー、増幅器、A/D変換器、波形メモリなど、いわゆる探傷器が具備する公知の手段を備えることで上記の超音波の送受信を制御する。また、信号処理装置3は、波形メモリに記憶された探傷信号に対して開口合成処理を施すことで開口合成像を生成する。そして、信号処理装置3は、形状測定装置2によってビレットBの側面の形状を測定することにより得られた形状測定データと、生成した開口合成像とに基づき、ビレットBの側面に生じた表面きずの深さを判定するために、後述の各ステップを実行する所定のプログラムがインストールされている。なお、開口合成処理については、例えば、前述の特許文献2に記載のような公知の内容を適用できるため、ここではその具体的内容の記載を省略する。   The signal processing device 3 controls the transmission and reception of the above-mentioned ultrasonic waves by including known means provided in a so-called flaw detector such as a pulser, a receiver, an amplifier, an A / D converter, and a waveform memory. Further, the signal processing device 3 generates an aperture composite image by performing aperture combining processing on the flaw detection signal stored in the waveform memory. Then, the signal processing device 3 generates surface flaws generated on the side surface of the billet B based on the shape measurement data obtained by measuring the shape of the side surface of the billet B by the shape measurement device 2 and the generated aperture composite image. In order to determine the depth of the program, a predetermined program that executes each step described later is installed. In addition, since the well-known content as described in the above-mentioned patent document 2 is applicable, for example about the opening synthetic | combination processing, description of the specific content is abbreviate | omitted here.

信号処理装置3は、ビレットBの側面に生じた表面きずの深さを判定するために、以下に述べる第1〜第3ステップを実行する。以下、図4を適宜参照しつつ、信号処理装置3が実行する各ステップについて順に説明する。   The signal processing device 3 performs the following first to third steps in order to determine the depth of surface flaws generated on the side surface of the billet B. Hereinafter, each step performed by the signal processing device 3 will be sequentially described with reference to FIG. 4 as appropriate.

<第1ステップ>
第1ステップでは、信号処理装置3は、4つの各形状測定装置2によってビレットBの各側面の形状を測定することにより得られた形状測定データが欠損している箇所を検出して起点とする。
具体的には、図4(a)に示すように、信号処理装置3は、プロセスコンピュータ(図示せず)から入力された情報に基づき、ビレットBのサイズに応じたコーナー部の標準的な曲率半径rを特定する。次いで、信号処理装置3は、4つの形状測定装置3によって得られた4つの形状測定データを合成した形状測定データに曲率半径rの円(図4(a)に符号rで示す円)を最小二乗法等によってフィッティングし、各円rと各形状測定データとの接点間に位置するビレットBの平坦な側面(きずが無ければ平坦な側面)に相当する部分の形状測定データ(平坦部測定データ)を特定する。最後に、信号処理装置3は、平坦部測定データを基準とする深さ方向の許容領域内(図4(a)に示すハッチングを施した領域)において、形状測定データが存在しない箇所を検出してこれを起点S0とする。
<First step>
In the first step, the signal processing device 3 detects a point where the shape measurement data obtained by measuring the shape of each side of the billet B by the four shape measuring devices 2 is detected as a starting point .
Specifically, as shown in FIG. 4A, the signal processing device 3 has a standard curvature of the corner according to the size of the billet B based on the information input from the process computer (not shown). Identify the radius r. Next, the signal processing device 3 minimizes the circle with the radius of curvature r (the circle indicated by a symbol r in FIG. 4A) in the shape measurement data obtained by combining the four shape measurement data obtained by the four shape measurement devices 3 Shape measurement data (flat portion measurement data) of a portion corresponding to the flat side surface (flat side surface if there is no crack) of the billet B located between the contacts of each circle r and each shape measurement data after fitting by the square method or the like Identify). Finally, the signal processing device 3 detects a portion where there is no shape measurement data in the allowable area in the depth direction (the hatched area shown in FIG. 4A) based on the flat portion measurement data. Let this be the starting point S0.

なお、信号処理装置3は、形状測定装置2によって得られた形状測定データを開口合成像の分解能に合わせてリサンプリングし、開口合成像との位置合わせを行う。本実施形態では、前述のように、ビレットBが長手方向(Y方向)に搬送されている状態で、例えば10mmピッチで複数の開口合成像を生成するため、開口合成像の分解能は、何れの超音波探触子1についても、Y方向が10mm/ボクセルとなる。また、図3のX方向に対向する一対の超音波探触子1について生成される開口合成像の分解能は、振動子11の配列方向(図3のZ方向)の分解能が2.5mm/ボクセルで、超音波の送信方向(X方向)の分解能が0.15mm/ボクセルである。同様に、Z方向に対向する他対の超音波探触子1について生成される開口合成像の分解能は、振動子11の配列方向(X方向)の分解能が2.5mm/ボクセルで、超音波の送信方向(Z方向)の分解能が0.15mm/ボクセルである。信号処理装置3は、上記開口合成像の分解能に合わせて、同じ分解能で形状測定データをリサンプリングし、開口合成像を構成するボクセルとの位置合わせ(X方向、Y方向及びZ方向の位置合わせ)を行う。X方向及びZ方向の位置合わせには、XZ平面内における超音波探触子1と形状測定装置2との幾何学的な位置関係が用いられる。また、Y方向の位置合わせには、Y方向についての超音波探触子1と形状測定装置2との幾何学的な位置関係と、速度センサ(図示せず)によって測定したビレットBの搬送速度が用いられる。一般的に、形状測定装置23によって得られる形状測定データの分解能は、開口合成像の分解能よりも高いので、上記のリサンプリングの際、必要に応じて、形状測定データに級数展開を適用してデータ補間することが望ましい。   The signal processing device 3 resamples the shape measurement data obtained by the shape measurement device 2 according to the resolution of the aperture synthetic image, and aligns the position measurement data with the aperture synthetic image. In the present embodiment, as described above, in the state where the billet B is transported in the longitudinal direction (Y direction), a plurality of aperture composite images are generated at a pitch of 10 mm, for example. The ultrasonic probe 1 also has a Y direction of 10 mm / voxel. Further, the resolution of the aperture synthetic image generated for the pair of ultrasonic probes 1 facing in the X direction in FIG. 3 is 2.5 mm / voxel in resolution direction of the transducers 11 (Z direction in FIG. 3). The resolution of the ultrasonic wave transmission direction (X direction) is 0.15 mm / voxel. Similarly, the resolution of the aperture synthetic image generated for the other pair of ultrasonic probes 1 facing in the Z direction is 2.5 mm / voxel in resolution of the arrangement direction (X direction) of the transducers 11, The resolution of the transmission direction (Z direction) of is 0.15 mm / voxel. The signal processing device 3 resamples the shape measurement data with the same resolution in accordance with the resolution of the aperture composite image, and aligns with the voxels forming the aperture composite image (alignment in the X, Y, and Z directions) )I do. The geometrical positional relationship between the ultrasonic probe 1 and the shape measuring device 2 in the XZ plane is used for the alignment in the X direction and the Z direction. In addition, for alignment in the Y direction, the geometrical positional relationship between the ultrasonic probe 1 and the shape measuring device 2 in the Y direction and the transport speed of the billet B measured by a speed sensor (not shown) Is used. In general, since the resolution of the shape measurement data obtained by the shape measuring device 23 is higher than the resolution of the aperture synthetic image, a series expansion is applied to the shape measurement data as necessary in the above resampling. It is desirable to interpolate data.

<第2ステップ>
第2ステップでは、信号処理装置3は、開口合成像を構成する画素(本実施形態では、ビレットBが長手方向に搬送されている状態で開口合成像が生成されるため、開口合成像を構成する画素はボクセルとなる。以下では、開口合成像を構成する画素がボクセルである場合について説明する。)のうち、起点S0に対してビレットBの深さ方向に位置し、且つ、所定のしきい値以上の濃度を有するボクセルを特定する。
具体的には、図4(b)に示すように、信号処理部装置3は、起点S0に対して起点S0の直下に位置する開口合成像の各ボクセルBi(i≧1)の濃度と、予め設定したしきい値とを、ボクセルB1から順に比較し、設定したしきい値以上の濃度を有するボクセルBiを特定する。この際、本実施形態では、ビレットBの側面(起点S0が存在する側面)からの距離に応じた複数のしきい値を設定し、該複数のしきい値は、ビレットBの側面から離間するほど小さいものとされている。
Second step
In the second step, the signal processing device 3 forms an aperture synthetic image because the aperture synthetic image is generated in a state in which the billet B is conveyed in the longitudinal direction, which constitutes the aperture synthetic image. In the following description, the case where the pixels constituting the aperture composite image are voxels will be described)), which is located in the depth direction of the billet B with respect to the starting point S0, and Identify voxels having a density above the threshold.
Specifically, as shown in FIG. 4B, the signal processing unit 3 determines the density of each voxel Bi (i.gtoreq.1) of the aperture composite image located immediately below the starting point S0 with respect to the starting point S0. A threshold value set in advance is compared in order from voxel B1, and a voxel Bi having a density equal to or higher than the set threshold value is specified. At this time, in the present embodiment, a plurality of threshold values are set according to the distance from the side surface of the billet B (the side surface where the starting point S0 exists), and the plurality of threshold values are separated from the side surface of the billet B It is considered to be small.

より具体的には、本実施形態では、2つのしきい値Th1、Th2が設定されており、Th2<Th1となっている。信号処理装置3は、最も起点S0に近いボクセルB1から順に各ボクセルBiの濃度としきい値Th1とを比較し、しきい値Th1以上の濃度を有するボクセルBiを特定する。そして、しきい値Th1以上の濃度を有するボクセルBiが存在しなくなった場合に、しきい値Th1をしきい値Th2に切り替える。信号処理装置3は、しきい値Th1以上の濃度を有し且つビレットBの側面から最も離間した位置にあるボクセルBiよりも下方に位置するボクセルBiについては、各ボクセルBiの濃度としきい値Th2とを比較し、しきい値Th2以上の濃度を有するボクセルBiを特定する。
図4(b)に示す例では、ボクセルB1、B2がしきい値Th1以上の濃度を有し、ボクセルB3、B4がしきい値Th2以上の濃度を有するボクセルとして特定されている。
More specifically, in the present embodiment, two threshold values Th1 and Th2 are set, and Th2 <Th1. The signal processing device 3 compares the density of each voxel Bi with the threshold Th1 in order from the voxel B1 closest to the starting point S0, and specifies the voxel Bi having a density equal to or higher than the threshold Th1. Then, when there is no voxel Bi having a density equal to or higher than the threshold Th1, the threshold Th1 is switched to the threshold Th2. The signal processing device 3 determines the concentration of each voxel Bi and the threshold Th2 for the voxel Bi located below the voxel Bi which has a concentration equal to or higher than the threshold Th1 and is located farthest from the side surface of the billet B. And a voxel Bi having a density equal to or greater than a threshold Th2 is identified.
In the example shown in FIG. 4B, voxels B1 and B2 are specified as voxels having a density equal to or higher than the threshold Th1, and voxels B3 and B4 are specified to have a density equal to or higher than the threshold Th2.

<第3ステップ>
第3ステップでは、信号処理装置3は、第2ステップで特定されたボクセルBiのうち、ビレットBの側面から最も離間したボクセルBiの位置に基づき、表面きずの深さを判定する。
具体的には、図4(c)に示す例では、信号処理装置3は、第2ステップで特定されたボクセルB1〜B4のうち、ビレットBの側面から最も離間したボクセルB4の位置に基づき、表面きずの深さを判定する。より具体的には、起点S0の座標をボクセルB4の座標に置換することで、図4(c)に太線で示すように、形状測定データを補正し、該補正した形状測定データに基づき、表面きずの深さHを判定する。
<Third step>
In the third step, the signal processing device 3 determines the depth of the surface flaw based on the position of the voxel Bi most distant from the side surface of the billet B among the voxels Bi specified in the second step.
Specifically, in the example shown in FIG. 4C, the signal processing device 3 selects one of the voxels B1 to B4 specified in the second step, based on the position of the voxel B4 most distant from the side surface of the billet B. Determine the surface flaw depth. More specifically, by replacing the coordinates of the starting point S0 with the coordinates of the voxel B4, as shown by a thick line in FIG. 4C, the shape measurement data is corrected, and the surface is corrected based on the corrected shape measurement data. Determine the flaw depth H.

以上に説明した本実施形態に係る深さ判定装置100によれば、信号処理装置3は、光切断法を用いた形状測定装置2によって得られた形状測定データに基づき、ビレットBの側面に生じた表面きずの表層部を精度良く検出可能(表面きずの表層部の位置及び形状を精度良く判定可能)である。また、信号処理装置3は、超音波探触子1から出力される探傷信号を用いて生成した開口合成像に基づき、ビレットBの側面に生じた表面きずの深部を精度良く検出可能(表面きずの深部の位置を精度良く判定可能)である。このため、信号処理装置3は、形状測定データに基づき検出した表面きず(表面きずの表層部)の近傍における形状測定データ(形状測定データのうち、表面きずの表層部近傍に位置する部分のデータ)に基づき、表面きずの表層部の深さを判定することが可能である。また、検出した表面きずの近傍における開口合成像の濃度(開口合成像を構成するボクセルのうち、表面きずの表層部近傍に位置する画素の濃度)に基づき、表面きずの深部の深さを判定することが可能である。すなわち、所定のしきい値Th1、Th2以上の濃度を有するボクセルは、表面きずに相当する画素であると考えることができるため、この表面きずに相当するボクセルに基づき、表面きずの深部の深さを判定することが可能である。
したがい、前述のように補正した形状測定データに基づき(換言すれば、形状測定データに基づき判定した表面きずの表層部の深さと、開口合成像の濃度に基づき判定した表面きずの深部の深さとを加味することで)、表面きずの深さHを精度良く判定可能である。
According to the depth determination device 100 according to the present embodiment described above, the signal processing device 3 is generated on the side surface of the billet B based on the shape measurement data obtained by the shape measurement device 2 using the light cutting method. It is possible to accurately detect the surface layer portion of the surface flaw (determine the position and shape of the surface layer portion of the surface flaw with high accuracy). In addition, the signal processing device 3 can accurately detect the deep portion of the surface flaw generated on the side surface of the billet B based on the aperture composite image generated using the flaw detection signal output from the ultrasonic probe 1 (surface flaw The position of the deep part of can be determined with high accuracy). For this reason, the signal processing device 3 detects the shape measurement data in the vicinity of the surface flaw (surface layer portion of the surface flaw) detected based on the shape measurement data (data of the portion located in the vicinity of the surface layer portion of the surface flaw). It is possible to determine the depth of the surface layer portion of the surface flaw on the basis of. In addition, the depth of the surface flaw is determined based on the density of the aperture synthetic image in the vicinity of the detected surface flaw (the density of pixels located in the vicinity of the surface layer of the surface flaw among the voxels constituting the aperture synthetic image) It is possible. That is, since it is possible to consider that a voxel having a density equal to or higher than a predetermined threshold value Th1 or Th2 is a pixel corresponding to a surface flaw, the depth of a deep portion of the surface flaw is determined based on the voxel corresponding to the surface flaw. It is possible to determine
Therefore, based on the shape measurement data corrected as described above (in other words, the depth of the surface layer portion of the surface flaw determined based on the shape measurement data and the depth of the surface flaw deep as determined based on the density of the aperture composite image And the depth H of the surface flaw can be determined with high accuracy.

1・・・一次元アレイ型超音波探触子
2・・・形状測定装置
3・・・信号処理装置
100・・・表面きずの深さ判定装置
B・・・ビレット(鋼片)
1 ··· One-dimensional array type ultrasonic probe 2 ··· Shape measuring device 3 ··· Signal processing device 100 ··· Surface flaw depth judging device B ··· Billet (steel billet)

Claims (3)

鋼片の側面に沿って配置された一次元アレイ型超音波探触子と、
前記鋼片の側面に沿って配置され、光切断法によって前記鋼片の側面の形状を測定する形状測定装置と、
前記一次元アレイ型超音波探触子から出力される探傷信号に対して信号処理を施すことで、前記鋼片の長手方向に直交する方向の断面についての2次元画像を生成し、前記形状測定装置によって前記鋼片の側面の形状を測定することにより得られた形状測定データと、前記生成した2次元画像とに基づき、前記鋼片の側面に生じた表面きずの深さを判定する信号処理装置と、
を備えることを特徴とする表面きずの深さ判定装置。
A one-dimensional array type ultrasound probe disposed along the side of the billet,
A shape measuring device which is disposed along the side of the billet and measures the shape of the side of the billet by a light cutting method;
A signal processing is performed on a flaw detection signal output from the one-dimensional array type ultrasonic probe to generate a two-dimensional image of a cross section in a direction orthogonal to the longitudinal direction of the steel piece, and the shape measurement Signal processing to determine the depth of surface flaws generated on the side surface of the steel piece based on the shape measurement data obtained by measuring the shape of the side surface of the steel piece using the device and the generated two-dimensional image A device,
A surface flaw depth determination apparatus comprising:
前記信号処理装置は、
前記形状測定データが欠損している箇所を検出して起点とする第1ステップと、
前記2次元画像を構成する画素のうち、前記起点に対して前記鋼片の深さ方向に位置し、且つ、所定のしきい値以上の濃度を有する画素を特定する第2ステップと、
前記第2ステップで特定された画素のうち、前記鋼片の側面から最も離間した画素の位置に基づき、前記表面きずの深さを判定する第3ステップとを実行する、
ことを特徴とする請求項1に記載の表面きずの深さ判定装置。
The signal processing device
A first step of detecting and detecting a portion where the shape measurement data is missing;
A second step of identifying, among the pixels constituting the two-dimensional image, a pixel located in the depth direction of the steel slab with respect to the origin and having a density equal to or greater than a predetermined threshold value;
Performing a third step of determining the depth of the surface flaw based on the position of the pixel most distant from the side surface of the steel piece among the pixels specified in the second step;
The surface flaw depth judging device according to claim 1 characterized by things.
前記第2ステップにおいて、前記鋼片の側面からの距離に応じた複数のしきい値を設定し、該複数のしきい値は、前記鋼片の側面から離間するほど小さい、
ことを特徴とする請求項2に記載の表面きずの深さ判定装置。
In the second step, a plurality of threshold values are set according to the distance from the side surface of the billet, and the plurality of threshold values are smaller as they are separated from the side surface of the billet,
The surface flaw depth determination apparatus according to claim 2, wherein the surface flaw is determined.
JP2017244171A 2017-12-20 2017-12-20 Surface scratch depth determination device Active JP7091646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017244171A JP7091646B2 (en) 2017-12-20 2017-12-20 Surface scratch depth determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017244171A JP7091646B2 (en) 2017-12-20 2017-12-20 Surface scratch depth determination device

Publications (2)

Publication Number Publication Date
JP2019109208A true JP2019109208A (en) 2019-07-04
JP7091646B2 JP7091646B2 (en) 2022-06-28

Family

ID=67179578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017244171A Active JP7091646B2 (en) 2017-12-20 2017-12-20 Surface scratch depth determination device

Country Status (1)

Country Link
JP (1) JP7091646B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143293A (en) * 1977-05-18 1978-12-13 Kobe Steel Ltd Supersonic crack detecting apparatus for casting with multifarious curved surfaces
JPS59148864A (en) * 1983-02-14 1984-08-25 Kobe Steel Ltd Ultrasonic flaw detecting method of square billet
JPH06102258A (en) * 1991-04-19 1994-04-15 Kawasaki Heavy Ind Ltd Method and equipment for ultrasonic flaw detection
JPH11326580A (en) * 1998-05-15 1999-11-26 Toshiba Corp Automatic shroud inspection device
JP2000230926A (en) * 1999-02-10 2000-08-22 Kawasaki Steel Corp Method and apparatus for inspecting defect
JP2001194351A (en) * 2000-01-07 2001-07-19 Nissan Motor Co Ltd Defective condition display device, and its method
JP2002214204A (en) * 2001-01-19 2002-07-31 Toshiba Corp Ultrasonic flaw detector and method using the same
JP2005077389A (en) * 2003-09-04 2005-03-24 Nippon Kogyo Kensa Kk Shape echo discrimination method using optical measuring device in ultrasonic inspection, and shape echo discrimination device characterized by device
JP2007309690A (en) * 2006-05-16 2007-11-29 Daido Steel Co Ltd Flaw detection method and flaw detector
JP2009058238A (en) * 2007-08-30 2009-03-19 Jfe Steel Kk Method and device for defect inspection

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143293A (en) * 1977-05-18 1978-12-13 Kobe Steel Ltd Supersonic crack detecting apparatus for casting with multifarious curved surfaces
JPS59148864A (en) * 1983-02-14 1984-08-25 Kobe Steel Ltd Ultrasonic flaw detecting method of square billet
JPH06102258A (en) * 1991-04-19 1994-04-15 Kawasaki Heavy Ind Ltd Method and equipment for ultrasonic flaw detection
JPH11326580A (en) * 1998-05-15 1999-11-26 Toshiba Corp Automatic shroud inspection device
JP2000230926A (en) * 1999-02-10 2000-08-22 Kawasaki Steel Corp Method and apparatus for inspecting defect
JP2001194351A (en) * 2000-01-07 2001-07-19 Nissan Motor Co Ltd Defective condition display device, and its method
JP2002214204A (en) * 2001-01-19 2002-07-31 Toshiba Corp Ultrasonic flaw detector and method using the same
JP2005077389A (en) * 2003-09-04 2005-03-24 Nippon Kogyo Kensa Kk Shape echo discrimination method using optical measuring device in ultrasonic inspection, and shape echo discrimination device characterized by device
JP2007309690A (en) * 2006-05-16 2007-11-29 Daido Steel Co Ltd Flaw detection method and flaw detector
JP2009058238A (en) * 2007-08-30 2009-03-19 Jfe Steel Kk Method and device for defect inspection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
形状計測センサ 型Z500, JPN6021027643, April 2003 (2003-04-01), ISSN: 0004552669 *

Also Published As

Publication number Publication date
JP7091646B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
RU2521720C1 (en) Method and device for welding zone imaging
JP4491800B2 (en) Ultrasonic flaw detection method and apparatus
US8290720B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JP4634336B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2005156305A (en) Evaluation method of internal defect
JP2005274557A (en) Ultrasonic flaw detecting method and device
JP2010276465A (en) Ultrasonic flaw detector and method therefor
JP5567471B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
US20130081468A1 (en) Method and apparatus for ultrasonic testing
JP7078128B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detector, steel material manufacturing equipment, steel material manufacturing method, and steel material quality control method
RU2651431C1 (en) Method of industrial ultrasound diagnostics of vertically oriented defects of prismatic metal products and device for its implementation
JP5567472B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
JP2009058238A (en) Method and device for defect inspection
JP6733650B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method
US10921293B2 (en) Method and device for detecting and characterizing a reflecting element in an object
JP7091646B2 (en) Surface scratch depth determination device
JP5235028B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
US11054398B2 (en) Ultrasonic inspection method, ultrasonic inspection device, and computer-readable storage medium
JP2002243703A (en) Ultrasonic flaw detector
JP7091676B2 (en) Ultrasonic flaw detection method
US20160299226A1 (en) Method for reconstructing a surface of a piece
JP4112526B2 (en) Ultrasonic flaw detection method and apparatus
Kwan et al. TFM Acoustic Influence Map
Selim et al. Fully Non-Contact Hybrid NDT Inspection for 3D Defect Reconstruction Using an Improved SAFT Algorithm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220530

R151 Written notification of patent or utility model registration

Ref document number: 7091646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151