JP2005300363A - Ultrasonic flaw detecting system and ultrasonic flaw detecting test method - Google Patents

Ultrasonic flaw detecting system and ultrasonic flaw detecting test method Download PDF

Info

Publication number
JP2005300363A
JP2005300363A JP2004117252A JP2004117252A JP2005300363A JP 2005300363 A JP2005300363 A JP 2005300363A JP 2004117252 A JP2004117252 A JP 2004117252A JP 2004117252 A JP2004117252 A JP 2004117252A JP 2005300363 A JP2005300363 A JP 2005300363A
Authority
JP
Japan
Prior art keywords
flaw detection
probe
ultrasonic
ultrasonic flaw
scanner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004117252A
Other languages
Japanese (ja)
Inventor
Hiroyuki Adachi
弘幸 安達
Yasuhiro Yuguchi
康弘 湯口
Ikuko Kameyama
育子 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004117252A priority Critical patent/JP2005300363A/en
Publication of JP2005300363A publication Critical patent/JP2005300363A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detecting system capable of freely determining the absolute position of a probe to a flaw detecting surface, especially obtaining a good flaw detection result with respect to the flaw detecting surface having a crack therein in a complicated shape, and an ultrasonic flaw detecting test method using the system. <P>SOLUTION: The ultrasonic flaw detecting system is used at the time of ultrasonic flaw detection and includes a scanner 2 for locating the probe by three-dimensional operation with respect to the flaw detecting surface 1; a distance sensor 4 for measuring the distance between the a probe 3 and the flaw detecting surface; a CAD device 14 for displaying the position of the probe and the incident direction and locus of ultrasonic waves on the basis of the data related to the shape or the like of the flaw detection surface and a flaw detector 6 for outputting a flaw detection result. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば配管等の各種溶接構造物において、欠陥をサイジングするために実施する超音波探傷試験システムおよび超音波探傷方法に関するものである。   The present invention relates to an ultrasonic flaw detection test system and an ultrasonic flaw detection method that are performed for sizing defects in various welded structures such as pipes.

従来、溶接欠陥等の欠陥をサイジングする場合には、検査員による超音波探傷試験結果のみの解析、および評価により実施されている。   Conventionally, when sizing a defect such as a weld defect, it has been carried out by analyzing and evaluating only an ultrasonic flaw detection test result by an inspector.

しかし、溶接構造物における超音波探傷試験では、特に凹凸が大きい等、形状が複雑な探傷表面を有している探傷面に対して超音波探傷試験を実施する場合には、探触子と探傷面とを正対させることが困難であり、また再現性に乏しく、超音波探傷試験の精度に大きい影響を及ぼしている。   However, in the ultrasonic flaw detection test on welded structures, the probe and flaw detection must be performed when performing a flaw detection test on a flaw detection surface having a complicated shape such as a large unevenness. It is difficult to face the surface, and the reproducibility is poor, which greatly affects the accuracy of the ultrasonic flaw detection test.

そこで従来、被検体表面が局面形状の場合、表面における超音波の反射の害を除き、良好な探傷画像が得られるようにするため、X、Y,Z軸スキャナを有する3軸駆動機構を有する超音波探傷装置を提案している(特許文献1参照)。
特開平7−128311号公報
Therefore, conventionally, when the subject surface has a phase shape, a three-axis drive mechanism having an X, Y, and Z axis scanner is provided in order to obtain a good flaw detection image except for the harm of reflection of ultrasonic waves on the surface. An ultrasonic flaw detector has been proposed (see Patent Document 1).
JP-A-7-128311

上述した従来の技術では、溶接構造物における超音波探傷試験について、凹凸が大きいなど形状が複雑な探傷表面に適用することができるが、探傷面に存在するひびが内部で複雑な形状を有している探傷面に対する超音波探傷試験を実施する場合には、探触子と探傷面を正対させることが非常に困難な場合があり、また、再現性に乏しく、超音波探傷試験の精度に大きく影響していた。   In the conventional technology described above, the ultrasonic flaw detection test on a welded structure can be applied to a flaw detection surface that has a complicated shape such as large irregularities, but the crack existing on the flaw detection surface has a complicated shape inside. When performing an ultrasonic flaw detection test on a flaw detection surface, it may be very difficult to align the probe and the flaw detection surface, and the reproducibility is poor. It had a big influence.

本発明は、このような事情に鑑みてなされたものであり、自在に探傷面に対する探触子の絶対位置を決定でき、特に探傷面に存在するひびが内部で複雑な形状を有している探傷面に対して良好な探傷結果を得ることができる超音波探傷システムおよび同システムを用いた超音波探傷試験方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and the absolute position of the probe with respect to the flaw detection surface can be freely determined. In particular, the crack present on the flaw detection surface has a complicated shape inside. An object of the present invention is to provide an ultrasonic flaw detection system capable of obtaining a good flaw detection result on a flaw detection surface and an ultrasonic flaw detection test method using the same.

前記の目的を達成するため、請求項1に係る発明では、超音波探傷を実施する際に用いる超音波探傷システムであって、探傷面に対して三次元動作により探触子を位置決めするスキャナと、前記探触子と前記探傷面との距離を計測する距離センサと、前記探傷面の形状等に関する情報に基づいて、前記探触子の位置、超音波の入射方向および軌跡を表示するキャド装置と、探傷結果を出力する探傷器とを備えたことを特徴とする超音波探傷システムを提供する。   In order to achieve the above object, according to the first aspect of the present invention, there is provided an ultrasonic flaw detection system for use in performing ultrasonic flaw detection, comprising: a scanner for positioning a probe by a three-dimensional operation with respect to a flaw detection surface; , A distance sensor that measures the distance between the probe and the flaw detection surface, and a CAD device that displays the position of the probe, the incident direction and the trajectory of the ultrasonic wave based on information on the shape of the flaw detection surface, etc. And an ultrasonic flaw detection system comprising a flaw detector for outputting flaw detection results.

請求項2に係る発明では、前記スキャナは、前記探触子を直行方向または回転方向に自在に位置決めすることが可能である超音波探傷システムを提供する。   The invention according to claim 2 provides an ultrasonic flaw detection system in which the scanner can freely position the probe in a direct direction or a rotational direction.

請求項3に係る発明では、前記距離センサは、互いに離間する探触子と探傷面との距離計測が可能である超音波探傷システムを提供する。   In the invention according to claim 3, the distance sensor provides an ultrasonic flaw detection system capable of measuring a distance between a probe and a flaw detection surface that are separated from each other.

請求項4に係る発明では、前記キャド装置が、前記探触子により得られた結果に基づく探傷表面形状および超音波の入射方向についての情報と、探傷部の設計寸法情報と、前記探触子の探傷部に対する位置をインプットすることが可能であり、超音波探傷中に前記探傷部のひび形状、深さおよび超音波の軌跡を超音波探傷中にモニタすることが可能である超音波探傷システムを提供する。   According to a fourth aspect of the present invention, the CAD device includes information on a flaw detection surface shape and an incident direction of ultrasonic waves based on a result obtained by the probe, design dimension information of a flaw detection unit, and the probe. It is possible to input the position of the flaw detection part with respect to the flaw detection part, and it is possible to monitor the flaw shape, depth and ultrasonic trajectory of the flaw detection part during the flaw detection. I will provide a.

請求項5に係る発明では、最適探傷条件を見出す手段として、前記探触子を回転軸方向に回転させ、前記ひびの端部から得られるエコーの最大値および前記ひびの最大深さを探索する手段を有する超音波探傷システムを提供する。   In the invention according to claim 5, as means for finding the optimum flaw detection condition, the probe is rotated in the direction of the rotation axis, and the maximum value of the echo obtained from the end of the crack and the maximum depth of the crack are searched. An ultrasonic flaw detection system having means is provided.

請求項6に係る発明では、請求項1ないし請求項5のいずれかに記載の超音波探傷システムを使用して、請求項1ないし請求項5のいずれかに記載の超音波探傷システムを使用して、探傷面に対して探触子を位置決めし、前記探触子と前記探傷面との距離を計測し、前記探傷面の形状等に関する情報、前記探触子の位置、超音波の入射方向および軌跡を表示し、探傷結果を出力することを特徴とする超音波探傷方法を提供する。   In the invention according to claim 6, the ultrasonic flaw detection system according to any one of claims 1 to 5 is used, and the ultrasonic flaw detection system according to any one of claims 1 to 5 is used. Positioning the probe with respect to the flaw detection surface, measuring the distance between the probe and the flaw detection surface, information on the shape of the flaw detection surface, the position of the probe, and the incident direction of the ultrasonic wave And an ultrasonic flaw detection method characterized by displaying a trajectory and outputting a flaw detection result.

本発明によれば、探傷面に対する探触子の向き、角度を調整できるスキャナに探触子を搭載するとともに、探触子と探傷面との距離を計測して、その結果をスキャナの制御にフィードバックすることが可能である。また、超音波探傷試験を実施する上で、探傷面に凹凸、ひび等がある場合でも、スキャナを制御することによって探触子を探傷面に対して探傷上最適な位置に制御することが可能である。そして、これらの情報をキャド装置に取り込み、総合的に分析して、最適な探触子位置を割り出し、スキャナにより探触子を最適な位置に移動させることができる。したがって、溶接構造物における超音波探傷試験において困難であった形状が複雑な探傷表面、または、ひびが内部で複雑な形状を有している探傷面に対しても、良好な超音波探傷試験結果を得ることができる。   According to the present invention, the probe is mounted on a scanner capable of adjusting the orientation and angle of the probe with respect to the flaw detection surface, the distance between the probe and the flaw detection surface is measured, and the result is used for controlling the scanner. It is possible to provide feedback. Also, when performing an ultrasonic flaw detection test, even if the flaw detection surface has irregularities, cracks, etc., it is possible to control the probe to the optimum flaw detection position with respect to the flaw detection surface by controlling the scanner. It is. Then, the information can be taken into the CAD device and comprehensively analyzed to determine the optimum probe position, and the probe can be moved to the optimum position by the scanner. Therefore, good ultrasonic flaw detection test results can be obtained even for flaw detection surfaces with complicated shapes that have been difficult in ultrasonic flaw detection tests on welded structures, or flaw detection surfaces with complicated shapes inside. Can be obtained.

以下、本発明に係る超音波探傷システムおよび超音波探傷試験方法の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of an ultrasonic flaw detection system and an ultrasonic flaw detection test method according to the present invention will be described with reference to the drawings.

図1は、本実施形態による超音波探傷システムの概要を示す構成図である。   FIG. 1 is a configuration diagram showing an outline of the ultrasonic flaw detection system according to the present embodiment.

この超音波探傷システムは、図1に示すように、探傷面1に対応するスキャナ2を備え、このスキャナ2に探触子3および距離センサ4が設けられている。   As shown in FIG. 1, the ultrasonic flaw detection system includes a scanner 2 corresponding to the flaw detection surface 1, and a probe 3 and a distance sensor 4 are provided on the scanner 2.

スキャナ2は、距離センサ2および探触子3を保持することが可能な機構となっている。この距離センサ2により、探傷面1と探触子3との距離を測定し、その結果に基づいて、スキャナ2を動かすことにより、探触子3と探傷面1との位置関係を最適なものとすることが可能である。   The scanner 2 has a mechanism capable of holding the distance sensor 2 and the probe 3. This distance sensor 2 measures the distance between the flaw detection surface 1 and the probe 3, and based on the result, moves the scanner 2 to optimize the positional relationship between the probe 3 and the flaw detection surface 1. Is possible.

また、本実施形態では、スキャナ2を動作制御するためのスキャナ制御盤5、探傷結果を表示する探傷器6、距離センサ2の計測結果を知るための距離センサアンプ7を備えている。   In the present embodiment, a scanner control panel 5 for controlling the operation of the scanner 2, a flaw detector 6 for displaying flaw detection results, and a distance sensor amplifier 7 for knowing the measurement results of the distance sensor 2 are provided.

図2(A),(B)は、前述のスキャナ2における回転軸方向の一例を示している。なお、これらの図は、スキャナ2に取り付けられた探触子3および距離センサ4を、スキャナ2の側面視として示したものである。   2A and 2B show an example of the rotation axis direction in the scanner 2 described above. These drawings show the probe 3 and the distance sensor 4 attached to the scanner 2 as a side view of the scanner 2.

図2(A)に示すように、本実施形態のシステムでは、例えば直行軸3軸8,9,10と、これらの軸8,9,10を中心として回転する3つの回転軸11,12,13の合計6軸をもつ機構としている。   As shown in FIG. 2 (A), in the system of the present embodiment, for example, three orthogonal shafts 8, 9, 10 and three rotating shafts 11, 12, which rotate around these axes 8, 9, 10 are used. The mechanism has a total of 13 six axes.

なお、探傷面1における探傷表面形状、予想されるひびの性状、探傷対象物の材質、接触媒体等の探傷条件によっては、6軸以外の異なる軸数を有するスキャナにより、探傷面1と探触子3との間の距離を超音波探傷試験上、最適な位置関係に修正可能である。   Depending on the flaw detection conditions such as the flaw detection surface shape on the flaw detection surface 1, the properties of the expected crack, the material of the flaw detection object, the contact medium, etc., the flaw detection surface 1 and the probe may be detected by a scanner having a different number of axes other than six. The distance to the child 3 can be corrected to an optimum positional relationship in the ultrasonic flaw detection test.

図3は、上述した距離センサ4の配置例を示している。なお、図3は、図2に示したスキャナ2に取り付けられた距離センサ4を探触子3とともに、探傷面1側(下側)から見た状態を示したものである。   FIG. 3 shows an arrangement example of the distance sensor 4 described above. FIG. 3 shows a state in which the distance sensor 4 attached to the scanner 2 shown in FIG. 2 is viewed from the flaw detection surface 1 side (lower side) together with the probe 3.

この図3に示したように、距離センサ4は3体設けられ、探触子3の両側位置の外面部位に沿って配置されている。すなわち、距離センサ4は探触子3の一側方の外面部位に2体配置され、他側方の外面に1体配置されている。   As shown in FIG. 3, three distance sensors 4 are provided and are arranged along outer surface portions on both sides of the probe 3. That is, two distance sensors 4 are disposed on the outer surface of one side of the probe 3 and one is disposed on the outer surface of the other side.

なお、この距離センサ4の取付け個数については、探傷表面形状、予想されるひびの性状、探傷対象物の材質、および接触媒体等の探傷条件により、適宜異ならせることができる。   The number of the distance sensors 4 to be attached can be appropriately changed depending on the flaw detection surface shape, the expected crack property, the material of the flaw detection object, the flaw detection conditions such as the contact medium, and the like.

また、距離センサ4としては、超音波距離センサ、またはレーザ距離センサを適用することが望ましい。   As the distance sensor 4, it is desirable to apply an ultrasonic distance sensor or a laser distance sensor.

図4は、本実施形態における詳細なシステム構成を示す図である。   FIG. 4 is a diagram showing a detailed system configuration in the present embodiment.

この図4に示すように、本実施形態では、スキャナ制御盤5、探傷器6、距離センサ(アンプ)7とともに、キャド(CAD:Computer Aided Design)装置14が組込まれたシステム構成とされている。   As shown in FIG. 4, in this embodiment, a CAD (Computer Aided Design) device 14 is incorporated together with a scanner control panel 5, a flaw detector 6, and a distance sensor (amplifier) 7. .

すなわち、予め探傷面の設計情報をインプットしてあるキャド装置14に、距離センサ4により計測した探触子と探傷面の距離計測結果、および、探傷器6から探傷結果、すなわちAスコープおよびBスコープから超音波の入射方向、超音波の軌跡および探傷面の表面形状明らかにして、これらの情報をキャド装置14に取り込み、これらの情報を総合的に分析して、最適な探触子位置を割り出し、スキャナ2により探触子を最適な位置に移動させるシステムが構成されている。   That is, the result of distance measurement between the probe and the flaw detection surface measured by the distance sensor 4 and the flaw detection result from the flaw detector 6, that is, the A scope and the B scope are input to the CAD device 14 to which design information of the flaw detection surface has been input in advance. The ultrasonic incident direction, the ultrasonic trajectory, and the surface shape of the flaw detection surface are clarified, and this information is taken into the CAD device 14 and comprehensively analyzed to determine the optimal probe position. A system for moving the probe to an optimum position by the scanner 2 is configured.

なお、探触子3はフェーズドアレイ探触子とすることにより、超音波の入射方向、超音波の軌跡および探傷面の表面形状が一層、理解し易いと考えられる。   Note that it is considered that the probe 3 is a phased array probe, so that it is easier to understand the incident direction of ultrasonic waves, the trajectory of ultrasonic waves, and the surface shape of the flaw detection surface.

探傷面1が滑らかでない場合、または、探傷面に存在するひびが内部で回転している等複雑な形状を有している場合には、スキャナ2が有する回転軸方向に探触子を回転させながら探傷を実施することにより、ひびの端部エコーが最深点から探知できる探触子位置を模索しながら探傷を実施するシステムが有効であると考えられる。なお、このとき、回転させる回転軸数は、探傷表面形状、予想されるひびの性状、探傷対象物の材質、接触媒体等の探傷条件により、種々設定することができる。   If the flaw detection surface 1 is not smooth or has a complicated shape such as a crack present on the flaw detection surface rotating inside, the probe is rotated in the direction of the rotation axis of the scanner 2. However, it is considered that a system that performs flaw detection while searching for a probe position where a crack end echo can be detected from the deepest point is effective by performing flaw detection. At this time, the number of rotation axes to be rotated can be variously set according to the flaw detection conditions such as the shape of the flaw detection surface, the expected crack properties, the material of the flaw detection target, and the contact medium.

以上の実施形態によれば、探傷面1に対する向き、角度を調整できるスキャナ2に探触子3を搭載するとともに、探触子3と探傷面1との距離を計測して、その結果をスキャナ2の制御にフィードバックすることが可能である。また、超音波探傷試験を実施する上で、探傷面に凹凸、ひび等がある場合でも、スキャナ2を制御することによって探触子3を探傷面1に対して探傷上最適な位置に制御することが可能である。   According to the above embodiment, the probe 3 is mounted on the scanner 2 capable of adjusting the direction and angle with respect to the flaw detection surface 1, the distance between the probe 3 and the flaw detection surface 1 is measured, and the result is obtained by the scanner. It is possible to feed back to the second control. Further, when performing an ultrasonic flaw detection test, even when the flaw detection surface has irregularities, cracks, or the like, the probe 3 is controlled to the optimal position for flaw detection with respect to the flaw detection surface 1 by controlling the scanner 2. It is possible.

そして、これらの情報をキャド装置14に取り込み、総合的に分析して、最適な探触子位置を割り出し、スキャナ2により探触子を最適な位置に移動させることができる。したがって、溶接構造物における超音波探傷試験において困難であった形状が複雑な探傷表面、または、ひびが内部で複雑な形状を有している探傷面に対しても、良好な超音波探傷試験結果を得ることができる。   Then, these pieces of information are taken into the CAD device 14 and comprehensively analyzed to determine the optimum probe position, and the probe 2 can be moved to the optimum position by the scanner 2. Therefore, good ultrasonic flaw detection test results can be obtained even for flaw detection surfaces with complicated shapes that have been difficult in ultrasonic flaw detection tests on welded structures, or flaw detection surfaces with complicated shapes inside. Can be obtained.

なお、上述した構成および方法の全て、または一部の超音波探傷システムを用いて超音波探傷試験を実施することにより、特に、複雑な形状を有する探傷面に対する超音波探傷試験を実施することが可能である。この場合には、スキャナ2の直行軸および回転軸数、距離センサの設置個数および設置位置、CADシステムの組み込み有無について、探傷表面形状、予想されるひびの性状、探傷対象物の材質、接触媒体等の探傷条件により、種々設定することができる。   In addition, by carrying out an ultrasonic flaw detection test using all or a part of the flaw detection systems described above, in particular, it is possible to carry out an ultrasonic flaw detection test on a flaw detection surface having a complicated shape. Is possible. In this case, the number of orthogonal axes and rotation axes of the scanner 2, the number and installation positions of the distance sensors, and whether or not the CAD system is incorporated, the shape of the flaw detection surface, the expected crack properties, the material of the flaw detection object, the contact medium Various settings can be made depending on the flaw detection conditions.

本発明の実施形態による超音波探傷システムを示す概略図。1 is a schematic diagram showing an ultrasonic flaw detection system according to an embodiment of the present invention. (A),(B)は、スキャナにおける回転軸方向の一例を示す図。(A), (B) is a figure which shows an example of the rotating shaft direction in a scanner. 本発明の実施形態における距離センサの配置例を示す図。The figure which shows the example of arrangement | positioning of the distance sensor in embodiment of this invention. 本発明の実施形態による超音波探傷システムを示す詳細構成図。1 is a detailed configuration diagram showing an ultrasonic flaw detection system according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 探傷面
2 スキャナ
3 探触子
4 距離センサ
5 スキャナ制御盤
6 探傷器
7 距離センサアンプ
8 スキャナ回転方向
9 スキャナ回転方向
10 スキャナ回転方向
11 スキャナ直動方向
12 スキャナ直動方向
13 スキャナ直動方向
14 キャド装置
DESCRIPTION OF SYMBOLS 1 Flaw detection surface 2 Scanner 3 Probe 4 Distance sensor 5 Scanner control board 6 Flaw detector 7 Distance sensor amplifier 8 Scanner rotation direction 9 Scanner rotation direction 10 Scanner rotation direction 11 Scanner linear motion direction 12 Scanner linear motion direction 13 Scanner linear motion direction 14 CAD equipment

Claims (6)

超音波探傷を実施する際に用いる超音波探傷システムであって、探傷面に対して三次元動作により探触子を位置決めするスキャナと、前記探触子と前記探傷面との距離を計測する距離センサと、前記探傷面の形状等に関する情報に基づいて、前記探触子の位置、超音波の入射方向および軌跡を表示するキャド装置と、探傷結果を出力する探傷器とを備えたことを特徴とする超音波探傷システム。 An ultrasonic flaw detection system used for performing ultrasonic flaw detection, a scanner for positioning a probe by a three-dimensional operation with respect to a flaw detection surface, and a distance for measuring a distance between the probe and the flaw detection surface A sensor, a CAD device that displays the position of the probe, the incident direction of ultrasonic waves, and a locus based on information on the shape of the flaw detection surface, and a flaw detector that outputs flaw detection results. Ultrasonic flaw detection system. 前記スキャナは、前記探触子を直行方向または回転方向に自在に位置決めすることが可能である請求項1記載の超音波探傷システム。 The ultrasonic flaw detection system according to claim 1, wherein the scanner can freely position the probe in a perpendicular direction or a rotational direction. 前記距離センサは、互いに離間する探触子と探傷面との距離計測が可能である請求項1記載の超音波探傷システム。 The ultrasonic flaw detection system according to claim 1, wherein the distance sensor is capable of measuring a distance between a probe and a flaw detection surface that are separated from each other. 前記キャド装置は、前記探触子により得られた結果に基づく探傷表面形状および超音波の入射方向についての情報と、探傷部の設計寸法情報と、前記探触子の探傷部に対する位置をインプットすることが可能であり、超音波探傷中に前記探傷部のひび形状、深さおよび超音波の軌跡を超音波探傷中にモニタすることが可能な請求項1記載の超音波探傷システム。 The CAD device inputs information on the shape of the flaw detection surface and the incident direction of ultrasonic waves based on the result obtained by the probe, design dimension information of the flaw detection portion, and a position of the probe with respect to the flaw detection portion. The ultrasonic flaw detection system according to claim 1, wherein the flaw shape, depth, and ultrasonic trajectory of the flaw detection portion can be monitored during ultrasonic flaw detection during ultrasonic flaw detection. 最適探傷条件を見出す手段として、前記探触子を回転軸方向に回転させ、前記ひびの端部から得られるエコーの最大値および前記ひびの最大深さを探索する手段を有する請求項1記載の超音波探傷システム。 The means for finding an optimum flaw detection condition includes means for searching the maximum value of the echo and the maximum depth of the crack obtained by rotating the probe in the direction of the rotation axis. Ultrasonic flaw detection system. 請求項1ないし請求項5のいずれかに記載の超音波探傷システムを使用して、探傷面に対して探触子を位置決めし、前記探触子と前記探傷面との距離を計測し、前記探傷面の形状等に関する情報、前記探触子の位置、超音波の入射方向および軌跡を表示し、探傷結果を出力することを特徴とする超音波探傷方法。 Using the ultrasonic flaw detection system according to any one of claims 1 to 5, a probe is positioned with respect to a flaw detection surface, a distance between the probe and the flaw detection surface is measured, An ultrasonic flaw detection method characterized by displaying information on the shape of a flaw detection surface, the position of the probe, the incident direction and trajectory of ultrasonic waves, and outputting a flaw detection result.
JP2004117252A 2004-04-12 2004-04-12 Ultrasonic flaw detecting system and ultrasonic flaw detecting test method Pending JP2005300363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004117252A JP2005300363A (en) 2004-04-12 2004-04-12 Ultrasonic flaw detecting system and ultrasonic flaw detecting test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004117252A JP2005300363A (en) 2004-04-12 2004-04-12 Ultrasonic flaw detecting system and ultrasonic flaw detecting test method

Publications (1)

Publication Number Publication Date
JP2005300363A true JP2005300363A (en) 2005-10-27

Family

ID=35332059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004117252A Pending JP2005300363A (en) 2004-04-12 2004-04-12 Ultrasonic flaw detecting system and ultrasonic flaw detecting test method

Country Status (1)

Country Link
JP (1) JP2005300363A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051645A (en) * 2006-08-24 2008-03-06 Toshiba Corp Ultrasonic inspection device
WO2009107746A1 (en) * 2008-02-26 2009-09-03 株式会社東芝 Ultrasonic inspection device
WO2009107745A1 (en) 2008-02-26 2009-09-03 株式会社東芝 Ultrasonic examination device
CN102369433A (en) * 2009-04-02 2012-03-07 株式会社东芝 Ultrasound inspection device and ultrasound inspection method
EP2623952A1 (en) * 2012-02-03 2013-08-07 Hartmut Pabst Method and device for detecting surface cracks
US8616062B2 (en) 2010-02-16 2013-12-31 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic inspection system and ultrasonic inspection method
JP2015145872A (en) * 2006-11-29 2015-08-13 ビーダブリューエクス・テクノロジーズ・インコーポレイテッド Ultrasonic immersion inspection of member having arbitrary surface contour
WO2017163476A1 (en) * 2016-03-23 2017-09-28 日立オートモティブシステムズ株式会社 Inspection device and inspection method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051645A (en) * 2006-08-24 2008-03-06 Toshiba Corp Ultrasonic inspection device
JP2015145872A (en) * 2006-11-29 2015-08-13 ビーダブリューエクス・テクノロジーズ・インコーポレイテッド Ultrasonic immersion inspection of member having arbitrary surface contour
WO2009107746A1 (en) * 2008-02-26 2009-09-03 株式会社東芝 Ultrasonic inspection device
WO2009107745A1 (en) 2008-02-26 2009-09-03 株式会社東芝 Ultrasonic examination device
JP2009204328A (en) * 2008-02-26 2009-09-10 Toshiba Plant Systems & Services Corp Ultrasonic inspection device
JP2009204327A (en) * 2008-02-26 2009-09-10 Toshiba Plant Systems & Services Corp Ultrasonic inspection device
US8371171B2 (en) 2008-02-26 2013-02-12 Kabushiki Kaisha Toshiba Ultrasonic inspection apparatus
US8413515B2 (en) 2008-02-26 2013-04-09 Kabushiki Kaisha Toshiba Ultrasonic inspection apparatus
CN102369433A (en) * 2009-04-02 2012-03-07 株式会社东芝 Ultrasound inspection device and ultrasound inspection method
US8616062B2 (en) 2010-02-16 2013-12-31 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic inspection system and ultrasonic inspection method
EP2623952A1 (en) * 2012-02-03 2013-08-07 Hartmut Pabst Method and device for detecting surface cracks
WO2017163476A1 (en) * 2016-03-23 2017-09-28 日立オートモティブシステムズ株式会社 Inspection device and inspection method

Similar Documents

Publication Publication Date Title
JP5495562B2 (en) Inspection system and associated method
JP5155692B2 (en) Ultrasonic inspection equipment
EP2846158B1 (en) A system and method of non-destructive inspection with a visual scanning guide
JP5412647B2 (en) Nondestructive inspection probe movement detection method, nondestructive inspection method, and probe system
JP4709640B2 (en) Ultrasonic flaw detection method and apparatus
JP2007187593A (en) Inspection device for piping and inspection method for piping
JP5662873B2 (en) Ultrasonic flaw detection method
KR100975330B1 (en) Multi Channel Ultrasonic Welding Inspection System and Control Method
JP2007285813A (en) Ultrasonic flaw inspection device and ultrasonic flaw inspection method
JP5085115B2 (en) 3D inspection system for water turbine structures
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
JP2005106654A (en) Automatic inspection system
JP4592530B2 (en) Ultrasonic flaw detection method and apparatus
JP2005300363A (en) Ultrasonic flaw detecting system and ultrasonic flaw detecting test method
JPH11512822A (en) Ultrasonic inspection method and apparatus for a disk having an unknown contour shrink-fitted on a shaft
JP4897420B2 (en) Ultrasonic flaw detector
JP6596227B2 (en) Inspection apparatus and inspection method
US9625421B2 (en) Manually operated small envelope scanner system
JP2009014513A (en) Ultrasonic flaw detection method
JP6796658B2 (en) Inspection equipment, inspection unit and inspection method
JP5738034B2 (en) Ultrasonic flaw detector
JPH10206397A (en) Ultrasonic flaw detecting device
KR101736613B1 (en) Apparatus and Method for thick steel plate Defect inspection
JP2004191088A (en) Ultrasonic flaw detection method and its device
JP2007121197A (en) Ultrasonic flaw detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061027

A977 Report on retrieval

Effective date: 20090428

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105