JP2007187593A - Inspection device for piping and inspection method for piping - Google Patents

Inspection device for piping and inspection method for piping Download PDF

Info

Publication number
JP2007187593A
JP2007187593A JP2006006882A JP2006006882A JP2007187593A JP 2007187593 A JP2007187593 A JP 2007187593A JP 2006006882 A JP2006006882 A JP 2006006882A JP 2006006882 A JP2006006882 A JP 2006006882A JP 2007187593 A JP2007187593 A JP 2007187593A
Authority
JP
Japan
Prior art keywords
pipe
ultrasonic probe
displacement
piping
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006006882A
Other languages
Japanese (ja)
Inventor
Satoshi Shinohara
悟史 篠原
Hidetaka Komuro
秀孝 小室
Yoshiaki Nagashima
良昭 永島
Tetsuya Matsui
哲也 松井
Naoyuki Kono
尚幸 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006006882A priority Critical patent/JP2007187593A/en
Publication of JP2007187593A publication Critical patent/JP2007187593A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To rapidly acquire measuring data necessary for calculating the cross section of piping. <P>SOLUTION: An annular track 1 is installed on the piping 3, joined at a welded part 2 and a circumferential movement device 6, is installed on the track 1 so as to be freely moved around the piping 3. A measuring instrument moving part 19 is moved in a piping axis direction along a shaft 14 from the circumferential movement device 6, and on the way of this movement, the displacement 23 and mounted on the measuring instrument moving part 19 and the vertical ultrasonic probe mounted on the measuring instrument moving part 19 as an ultrasonic probe 22 are used to measure of the outer surface of the piping 3 and the wall thickness (plate thickness) of the piping 3. The cross-sectional shape of the piping 3 is displayed by using the respective measuring results, and the vertical ultrasonic probe is subsequently replaced with an oblique angle ultrasonic probe to perform an ultrasonic flaw detection test within the previous measuring range. The test result is displayed so as to be superimposed on the display of the cross-sectional shape of the piping 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、配管の断面形状の測定が可能な配管検査装置及び配管検査方法に関する。   The present invention relates to a pipe inspection apparatus and a pipe inspection method capable of measuring a cross-sectional shape of a pipe.

各種プラントの配管検査において、検査時間の短縮や高精度な検査のために自動検査装置を用いる場合が多い。   In piping inspections of various plants, automatic inspection devices are often used for shortening inspection time and highly accurate inspection.

一般に自動式の配管検査装置は、測定器を装着した本体と、その本体を配管外周方向に沿って走行する走行装置と、本体を配管軸方向に沿って移動して配管に対して位置合わせを行う軸方向移動装置等を備えている。   In general, an automatic pipe inspection device includes a main body equipped with a measuring instrument, a traveling device that travels the main body along the pipe outer peripheral direction, and moves the main body along the pipe axial direction to align with the pipe. It includes an axial movement device for performing the operation.

配管の溶接部等の検査では測定器に超音波探触子を用いて自動探傷試験が行われるが、この際、手動探傷,自動探傷を問わず超音波探傷試験に加え溶接部の断面形状を測定する。これは、配管断面形状に超音波探傷試験によって検出された信号の反射源位置を記入し、検出した超音波信号が欠陥か否かを検査員が判断するためである。   In the inspection of welded parts, etc. of pipes, an automatic flaw detection test is performed using an ultrasonic probe as a measuring instrument. taking measurement. This is because the inspector determines whether or not the detected ultrasonic signal is defective by entering the reflection source position of the signal detected by the ultrasonic flaw detection test in the pipe cross-sectional shape.

また、欠陥であった場合には詳細な欠陥高さ寸法の把握に溶接部の断面形状が必要になる。従来、配管断面形状の測定は、型取りゲージによる配管表面形状のトレースと超音波探触子による配管肉厚測定を検査員の手作業によって行い、後に配管表面形状と配管肉厚から配管断面形状を算出するという手順で行われていた。   Moreover, when it is a defect, the cross-sectional shape of a welding part is needed for grasping | ascertaining a detailed defect height dimension. Conventionally, pipe cross-sectional shape is measured by pipe surface shape tracing using a mold gauge and pipe wall thickness measurement using an ultrasonic probe. It was performed by the procedure of calculating.

そして、得られた配管断面形状に超音波探傷の結果を記入するという手順で、配管断面形状を考慮して欠陥有無の判断がされる。   Then, the presence or absence of a defect is determined in consideration of the pipe cross-sectional shape by a procedure of entering the result of ultrasonic flaw detection in the obtained pipe cross-sectional shape.

自動式の検査装置の配管長手方向移動装置に、距離検出器を装備することによって配管表面変位を測定する装置が提案されている(例えば、特許文献1参照)。   An apparatus for measuring a pipe surface displacement by providing a distance detector in a pipe longitudinal direction moving device of an automatic inspection apparatus has been proposed (see, for example, Patent Document 1).

特開平10−339617号公報Japanese Patent Laid-Open No. 10-339617

配管断面形状に超音波探傷の結果を記入する手順の従来方法であると、手作業による測定に基づいた配管断面形状のための測定誤差や欠陥有無の判断に多くの時間がかかるという問題があった。   With the conventional method of entering the results of ultrasonic flaw detection on the pipe cross-sectional shape, there is a problem that it takes a lot of time to determine the measurement error and the presence or absence of defects due to the pipe cross-sectional shape based on manual measurement. It was.

また、特許文献1のものでは、自動化されるのは配管表面形状測定のみであり、配管表面形状測定と配管肉厚測定とを個々に行うという手順をふまなければ成らず、配管断面形状算出には多くの時間がかかる。   Moreover, in the thing of patent document 1, it is only a pipe surface shape measurement that is automated, and the procedure of performing pipe surface shape measurement and pipe wall thickness measurement individually must be taken into account, and pipe cross-sectional shape calculation is performed. Takes a lot of time.

本発明の目的は、配管の断面形状を迅速に知り得るようにすることである。   An object of the present invention is to make it possible to quickly know the cross-sectional shape of a pipe.

本発明の目的を達成するための第1の手段は、超音波探触子を前記配管の周方向と軸方向とに移動する移動手段と、前記配管の外面の形状に沿って前記超音波探触子の位置を変動させるように前記移動手段に装備されたサスペンションと、前記超音波探触子の移動位置を計測するように前記移動手段に装備された位置計測手段と、前記超音波探触子の移動と連動するように前記移動手段に装備され、前記配管の外面の形状変化を変位として計測する変位計測手段とを有する配管検査装置である。   A first means for achieving the object of the present invention includes a moving means for moving an ultrasonic probe in a circumferential direction and an axial direction of the pipe, and the ultrasonic probe along a shape of an outer surface of the pipe. A suspension equipped in the moving means so as to change the position of the probe; a position measuring means equipped in the moving means so as to measure a moving position of the ultrasonic probe; and the ultrasonic probe. The pipe inspection apparatus includes a displacement measuring unit that is mounted on the moving unit so as to be interlocked with the movement of the child and measures a change in shape of the outer surface of the pipe as a displacement.

同じく第2手段は、配管の外周囲に装備される環状の軌道と、前記軌道に沿って移動する周方向移動装置と、前記周方向移動装置に装備されて前記配管の軸方向に長いシャフトと、前記シャフトに案内されるように前記シャフトへ移動自在に装備された測定器移動部と、前記周方向移動装置に装備され、前記測定器移動部をねじ送りするボールねじと、前記測定器移動部に前記配管の外面の形状の変化に追従して変位するように装備した探触子取付部と、前記探触子取付部に装備された超音波探触子と、前記超音波探触子を前記配管側に押し付けるように前記探触子取付部と前記測定器移動部との間に装備されたバネと、前記測定器移動部に装備されて、前記配管の外面の形状の変化を変位として計測する変位計とを備えた配管検査装置である。   Similarly, the second means includes an annular track provided on the outer periphery of the pipe, a circumferential movement device that moves along the track, and a shaft that is provided on the circumferential movement device and is long in the axial direction of the pipe. A measuring instrument moving part that is movably mounted on the shaft so as to be guided by the shaft, a ball screw that is provided in the circumferential direction moving device and that feeds the measuring instrument moving part, and the measuring instrument movement A probe mounting portion provided to be displaced so as to follow a change in the shape of the outer surface of the pipe, an ultrasonic probe provided in the probe mounting portion, and the ultrasonic probe And a spring mounted between the probe mounting part and the measuring instrument moving part so as to press against the pipe side, and the measuring instrument moving part is equipped to displace a change in shape of the outer surface of the piping. A pipe inspection device equipped with a displacement meter .

同じく第3手段は、配管の外表面の変位を測定するステップと、前記配管の肉厚を測定するステップと、前記測定した変位と前記測定した肉厚とから前記配管の断面形状を算出するステップと、前記配管の超音波探傷試験を実施するステップと、前記算出した配管断面形状に、前記超音波探傷試験結果を表示するステップとを有する配管検査方法である。   Similarly, the third means includes a step of measuring the displacement of the outer surface of the pipe, a step of measuring the wall thickness of the pipe, and a step of calculating a cross-sectional shape of the pipe from the measured displacement and the measured wall thickness. And a pipe inspection method comprising: performing an ultrasonic flaw detection test on the pipe; and displaying the ultrasonic flaw detection test result on the calculated pipe cross-sectional shape.

本発明によれば、配管の断面形状を作成するのに必要な、配管外面の形状の計測結果と、配管の肉厚の計測結果とを同時に取得できるので、配管の断面形状の作成を迅速に達成するのに有効である。   According to the present invention, the measurement result of the shape of the outer surface of the pipe and the measurement result of the wall thickness of the pipe, which are necessary for creating the cross-sectional shape of the pipe, can be simultaneously obtained, so that the cross-sectional shape of the pipe can be quickly created. It is effective to achieve.

発明を実施するための最良の形態は、超音波を用いた配管検査装置において、配管3の外表面に装着した着脱可能な軌道1と、前記軌道1に沿って移動し、かつ配管長手方向に伸びたシャフト14を有する周方向移動装置6と、前記シャフト14に沿って移動する測定器移動部19と、前記探測定器移動部19に弾性体(例えば、バネ21)を介して設けられた探触子取付部20と、前記探触子取付部20に設けられた超音波探触子22と、前記測定器移動部19に保持された変位計23と、前記超音波探触子22を用いた配管3の肉厚計測結果と前記変位計23を用いた配管3の外表面変位の計測結果から溶接部2と直交する配管3の軸方向断面形状を算出する手段を有する配管検査装置である。   The best mode for carrying out the invention is a pipe inspection apparatus using ultrasonic waves, a detachable track 1 mounted on the outer surface of the pipe 3, a movement along the track 1, and in the longitudinal direction of the pipe A circumferential movement device 6 having an extended shaft 14, a measuring instrument moving section 19 that moves along the shaft 14, and a probe measuring instrument moving section 19 are provided via an elastic body (for example, a spring 21). A probe mounting portion 20, an ultrasonic probe 22 provided in the probe mounting portion 20, a displacement meter 23 held by the measuring instrument moving portion 19, and the ultrasonic probe 22 A pipe inspection apparatus having means for calculating the axial cross-sectional shape of the pipe 3 orthogonal to the weld 2 from the wall thickness measurement result of the pipe 3 used and the measurement result of the outer surface displacement of the pipe 3 using the displacement meter 23 is there.

この配管検査装置は、前記変位計23の代わりに前記超音波探触子22の上下方向、即ち配管3の半径方向、の振幅を測定する測定装置であっても良い。   This pipe inspection apparatus may be a measuring apparatus that measures the amplitude in the vertical direction of the ultrasonic probe 22, that is, the radial direction of the pipe 3, instead of the displacement meter 23.

また、この配管検査装置は、好適には前記シャフト14の先端にシャフト14の傾斜を測定するための傾斜計56或いは、前記シャフト14の先端にシャフト14のたわみを測定するための変位計を有する。   The pipe inspection apparatus preferably has an inclinometer 56 for measuring the inclination of the shaft 14 at the tip of the shaft 14 or a displacement meter for measuring the deflection of the shaft 14 at the tip of the shaft 14. .

本発明の実施における検査方法は、配管表面変位を測定するステップと、配管肉厚を測定するステップと、前記配管表面変位と前記配管肉厚とから配管断面形状を算出するステップと、配管の超音波探傷試験を実施するステップと、前記配管断面形状の表示に、前記超音波探傷試験結果を表示するステップからなる。   An inspection method according to the present invention includes a step of measuring a pipe surface displacement, a step of measuring a pipe wall thickness, a step of calculating a pipe cross-sectional shape from the pipe surface displacement and the pipe wall thickness, A step of performing an ultrasonic flaw detection test, and a step of displaying the ultrasonic flaw detection test result on the display of the pipe cross-sectional shape.

この実施例の検査対象は、二本の配管3が端部で相互に溶接によって接合されているその接合後の部分である。その溶接による接合跡の部分が溶接部2である。その溶接部2の近傍においては、溶接熱影響等により、接合後の配管3の断面は、例えば図8のように、接合前は平坦であった配管3の内外面が変化をきたして縮径する方向へ変位(図8では表面変位と表示してある。)する。また、溶接接合によって配管3の断面形状は、図8のように、縮径する方向へ変形し、配管3の肉厚も一様ではなくなる。   The inspection object of this embodiment is a portion after the joining where the two pipes 3 are joined to each other by welding at the ends. The portion of the joint mark resulting from the welding is the welded portion 2. In the vicinity of the weld 2, due to the influence of welding heat, the cross-section of the pipe 3 after joining is reduced in diameter because the inner and outer surfaces of the pipe 3 that were flat before joining are changed as shown in FIG. 8, for example. In this direction, it is displaced (shown as surface displacement in FIG. 8). Moreover, the cross-sectional shape of the pipe 3 is deformed in the direction of reducing the diameter as shown in FIG. 8 by welding and the thickness of the pipe 3 is not uniform.

また、溶接部2やその近傍の配管3部分には、溶接しない部分に比較して溶接の影響で欠陥が発生しやすい。そのため、その欠陥の有無を非破壊検査によって検査しなければならない。非破壊検査の一例として、超音波探傷装置を用いて検査することが知られている。その検査結果で欠陥が発見された場合、その欠陥が配管3のどの位置に存在するかを把握することは、溶接による変形後の配管断面を把握しなければ、困難である。   In addition, defects are more likely to occur in the welded portion 2 and the pipe 3 in the vicinity thereof due to welding as compared with a portion that is not welded. Therefore, the presence or absence of the defect must be inspected by nondestructive inspection. As an example of nondestructive inspection, it is known to perform inspection using an ultrasonic flaw detector. When a defect is found in the inspection result, it is difficult to grasp where the defect exists in the pipe 3 unless the pipe cross section after deformation by welding is grasped.

したがって、溶接部2近傍を検査対象とした場合には、溶接接合等により変形した溶接部2を含む配管3の断面の形状を把握することが重要な課題として浮上する。   Therefore, when the vicinity of the welded portion 2 is an inspection target, it is important to grasp the shape of the cross section of the pipe 3 including the welded portion 2 deformed by welding joint or the like.

本発明に係る配管検査装置は、その配管3の接合後の断面を把握するためのデータを迅速に取得できる。その本発明に係る配管検査装置の第1実施例を以下に説明する。即ち、溶接によって大きく変形した個所を避けるようにして、円形の配管の外周面に配管3と同心円状に環状の軌道1を設置する。軌道1は半割り二分割になっていて、その半割りの各分割端を機械的に結合することで配管3の外周囲に環状に軌道1が組み立てられている。   The pipe inspection apparatus according to the present invention can quickly acquire data for grasping the cross section of the pipe 3 after joining. A first embodiment of the pipe inspection apparatus according to the present invention will be described below. That is, the ring-shaped track 1 is installed concentrically with the pipe 3 on the outer peripheral surface of the circular pipe so as to avoid a portion greatly deformed by welding. The track 1 is divided into two halves, and the track 1 is assembled in an annular shape around the outer periphery of the pipe 3 by mechanically connecting the respective divided ends.

軌道1には外周囲にラック13が環状に設けられていて、そのラック13は後述の周方向移動装置駆動用ピニオン8と噛み合っている。軌道1には、ラック13を避けるようにラック13の両脇にねじ穴4が、図2のように、周囲三箇所に等角度分布の配置で形成されている。各ねじ穴4には、ねじ5が螺合していて、そのねじ5を軌道1の内側に突き出るように回転させ、その突き出し量を加減することで配管3と同心状に軌道1を配管3へねじ5を介して装着できる。軌道1の両側面には、溝10が形成され、後述のボールプランジャ11,12のボール部分が溝10に接して軌道1から次に述べる周方向移動装置が脱落しないように構成されている。   A rack 13 is annularly provided on the outer periphery of the track 1, and the rack 13 meshes with a circumferential movement device driving pinion 8 described later. In the track 1, screw holes 4 are formed on both sides of the rack 13 so as to avoid the rack 13, and are arranged in equiangular distribution at three positions around the periphery as shown in FIG. 2. A screw 5 is screwed into each screw hole 4, the screw 5 is rotated so as to protrude inside the track 1, and the protruding amount is adjusted to adjust the track 1 concentrically with the pipe 3. It can be mounted via a female screw 5. Grooves 10 are formed on both side surfaces of the track 1 so that ball portions of later-described ball plungers 11 and 12 are in contact with the groove 10 so that the circumferential movement device described below does not drop from the track 1.

その軌道1には、軌道1に沿って配管3の外周囲を移動する周方向移動装置が、後述する超音波探触子22を配管3の周方向へ移動させる移動手段として設置されている。周方向移動装置は、以下の構成を有する。即ち、図1,図2,図3のように、周方向移動装置の外殻を構成するフレームには、周方向移動装置駆動用モータ7が設置され、その周方向移動装置駆動用モータ7の回転出力軸にはラック13と噛みあう周方向移動装置駆動用ピニオン8が固定され、その周方向移動装置駆動用モータ7で周方向移動装置駆動用ピニオン8が回転駆動自在とされる。   On the track 1, a circumferential movement device that moves around the outer periphery of the pipe 3 along the track 1 is installed as a moving means for moving an ultrasonic probe 22 described later in the circumferential direction of the pipe 3. The circumferential movement device has the following configuration. That is, as shown in FIGS. 1, 2, and 3, the frame constituting the outer shell of the circumferential movement device is provided with a circumferential movement device driving motor 7, and the circumferential movement device driving motor 7 A circumferential movement device driving pinion 8 that meshes with the rack 13 is fixed to the rotation output shaft, and the circumferential movement device driving pinion 8 is rotatably driven by the circumferential movement device driving motor 7.

周方向移動装置のフレームには、ボールプランジャ11,12が軌道1を挟むように設置され、各ボールプランジャ11,12の回転自在なボール部分が軌道1の溝10に接して溝10から脱落しないようにされている。周方向移動装置駆動用モータ7には、そのモータ回転量を計測する周方向移動装置位置検出用エンコーダ9が、周方向移動装置6や後述する超音波探触子22の周方向の移動位置を計測する位置計測手段として装備されている。   Ball plungers 11, 12 are installed on the frame of the circumferential movement device so as to sandwich the track 1, and the rotatable ball portions of the ball plungers 11, 12 are in contact with the groove 10 of the track 1 and do not fall out of the groove 10. Has been. The circumferential movement device drive motor 7 has a circumferential movement device position detection encoder 9 that measures the amount of rotation of the motor. The circumferential movement position of the circumferential movement device 6 and an ultrasonic probe 22 to be described later is determined. It is equipped as a position measurement means to measure.

このような周方向移動装置6は、周方向移動装置駆動用モータ7により周方向移動装置駆動用ピニオン8を回転駆動すると、周方向移動装置駆動用ピニオンがラック13に噛みあっているので、軌道1に沿って配管3の外周囲を配管3や軌道1と同心円状に移動できる。その移動量でスタートした位置からみた移動位置が判明するので、周方向移動装置駆動用モータ7のモータ回転量を周方向移動装置位置検出用エンコーダ9で計測して、計測した結果を位置情報を表す出力信号として出力している。   In such a circumferential movement device 6, when the circumferential movement device driving pinion 8 is rotationally driven by the circumferential movement device driving motor 7, the circumferential movement device driving pinion is engaged with the rack 13. 1, the outer periphery of the pipe 3 can be moved concentrically with the pipe 3 and the track 1. Since the movement position seen from the position where the movement started is determined, the motor rotation amount of the circumferential direction movement device driving motor 7 is measured by the circumferential direction movement device position detection encoder 9 and the position information is obtained as a result of the measurement. Output as an output signal.

周方向移動装置6には、超音波探触子22を配管3の軸方向に移動させる移動手段が装備されている。その軸方向への移動手段は、本実施例では以下のように構成されている。即ち、図1,図3のように、配管3の軸心と平行で、且つ互いにおいても平行な二本のシャフト14の一端部が周方向移動装置6のフレームに設置され、二本のシャフト14の各他端部は相互に連結固定されて平行間隔が維持されている。   The circumferential direction moving device 6 is equipped with moving means for moving the ultrasonic probe 22 in the axial direction of the pipe 3. The moving means in the axial direction is configured as follows in this embodiment. That is, as shown in FIGS. 1 and 3, one end of two shafts 14 that are parallel to the axis of the pipe 3 and parallel to each other are installed on the frame of the circumferential movement device 6. The other end portions of 14 are connected and fixed to each other to maintain a parallel interval.

各シャフト14には、測定器移動部19がシャフト14の長さ方向、即ち配管3の軸方向(配管の長さ方向)に滑走して移動自在に組みあわされている。このように、測定器移動部19そのものは、シャフト14沿いに滑走移動するフレームである。その測定器移動部19には、各シャフト14と平行なボールねじ15が螺合していて、ボールねじ15の回転によって測定器移動部19がシャフト14に沿ってねじ送りできる。そのボールねじ15には、図1,図3のように、ボールねじ駆動用モータ16の回転出力軸が各歯車17,18を介して接続され、ボールねじ駆動用モータ16でボールねじ15を回転駆動できるようにされている。   A measuring instrument moving unit 19 is slidably assembled to each shaft 14 so as to slide in the length direction of the shaft 14, that is, in the axial direction of the pipe 3 (pipe length direction). As described above, the measuring instrument moving unit 19 itself is a frame that slides along the shaft 14. A ball screw 15 parallel to each shaft 14 is screwed to the measuring device moving portion 19, and the measuring device moving portion 19 can be screwed along the shaft 14 by the rotation of the ball screw 15. As shown in FIGS. 1 and 3, the rotation output shaft of a ball screw driving motor 16 is connected to the ball screw 15 through gears 17 and 18, and the ball screw 15 is rotated by the ball screw driving motor 16. It can be driven.

そのボールねじ駆動用モータ16は周方向移動装置6のフレームに設置されている。そのボールねじ駆動用モータ16には、そのモータ回転量を計測する測定器移動部位置検出用エンコーダ24が、後述する超音波探触子22の配管3軸方向(配管の長手方向)の移動位置を計測する位置計測手段として装備されている。   The ball screw driving motor 16 is installed on the frame of the circumferential movement device 6. In the ball screw driving motor 16, a measuring instrument moving part position detecting encoder 24 for measuring the amount of motor rotation is moved in the three-axis direction of the pipe (longitudinal direction of the pipe) of the ultrasonic probe 22 described later. It is equipped as a position measurement means to measure.

このような軸方向への移動手段は、ボールねじ駆動用モータ16でボールねじ15を回転駆動させ、その回転の方向に応じて測定器移動部19が配管3の軸方向(配管の長さ方向)へ移動し、超音波探触子22の配管3軸方向の移動位置を変えることが出来る。その移動位置はボールねじ駆動用モータ16のモータ回転量に応じて変化するので、そのボールねじ駆動用モータ16のモータ回転量を測定器移動部位置検出用エンコーダ24で計測して、計測結果をスタートした位置から見た位置情報を表す信号として出力している。   In such an axial movement means, the ball screw 15 is rotationally driven by the ball screw driving motor 16, and the measuring instrument moving unit 19 moves in the axial direction of the pipe 3 (the length direction of the pipe) according to the direction of the rotation. ) And the moving position of the ultrasonic probe 22 in the three-axis direction of the pipe can be changed. Since the moving position changes according to the motor rotation amount of the ball screw driving motor 16, the motor rotation amount of the ball screw driving motor 16 is measured by the measuring device moving unit position detecting encoder 24, and the measurement result is obtained. It is output as a signal representing position information viewed from the starting position.

このような軸方向の移動手段が超音波探触子22と変位計23とを同時に同方向へ移動させることが出来るように、超音波探触子22と変位計23とが共通の測定器移動部19に装着されている。配管3の外面の形状変化を変位として計測する変位計測手段として採用した変位計23は、非接触式のレーザー変位計,接触式のポテンショメータのいずれであっても構わない。   The ultrasonic probe 22 and the displacement meter 23 share a common instrument movement so that the moving means in the axial direction can simultaneously move the ultrasonic probe 22 and the displacement meter 23 in the same direction. It is attached to the part 19. The displacement meter 23 employed as a displacement measuring means for measuring the change in shape of the outer surface of the pipe 3 as a displacement may be either a non-contact type laser displacement meter or a contact type potentiometer.

測定器移動部19には探触子取付部20が配管3の半径方向へ自在に移動するようにガイド構造を介して装着されている。その探触子取付部20には、探触子取付部20と測定器移動部19との間に装備したバネ21によって配管3の外表面方向へ常時押し出す力が付勢されている。その探触子取付部20の配管3寄りの部位には、超音波探触子22が着脱自在に装着されている。このような構成では、バネ21は、超音波探触子22が配管3の外表面の形状の変化に追従して配管3の半径方向へ移動することを許容するので、超音波探触子22のバネサスペンションの機能を果す。   A probe mounting portion 20 is attached to the measuring instrument moving portion 19 via a guide structure so as to freely move in the radial direction of the pipe 3. The probe mounting portion 20 is biased with a force that is constantly pushed toward the outer surface of the pipe 3 by a spring 21 provided between the probe mounting portion 20 and the measuring instrument moving portion 19. An ultrasonic probe 22 is detachably attached to a portion of the probe mounting portion 20 near the pipe 3. In such a configuration, the spring 21 allows the ultrasonic probe 22 to move in the radial direction of the pipe 3 following the change in the shape of the outer surface of the pipe 3. Acts as a spring suspension.

測定器移動部19には、変位計測位置が配管3の外表面になるように姿勢を調整した変位計23が装着されている。この実施例では、図1のように、接触式の変位計を採用しているので、配管3の外表面に変位計23の計測端部が接していて、その端部が配管3の外表面の形状の変化に応じて配管3の半径方向へ変位して、その変位に対応した出力を計測結果を表す信号として出力している。   A displacement meter 23 whose posture is adjusted so that the displacement measurement position is on the outer surface of the pipe 3 is attached to the measuring instrument moving unit 19. In this embodiment, as shown in FIG. 1, since a contact-type displacement meter is adopted, the measurement end portion of the displacement meter 23 is in contact with the outer surface of the pipe 3, and the end portion is the outer surface of the pipe 3. The pipe 3 is displaced in the radial direction in accordance with the change in the shape, and an output corresponding to the displacement is output as a signal representing the measurement result.

図4に本発明の配管検査装置のシステムのブロック図を示す。本検査装置のシステムは、周方向移動装置位置検出用エンコーダ9および測定器移動部位置検出用エンコーダ24からの出力信号に基づいて得られる配管3の位置座標における配管断面形状を、超音波探触子22による配管の肉厚計測結果、変位計23による配管表面変位から算出,記録するための、演算部54,記録部53,検査結果を表示するための表示部51,検査範囲など入力するための入力部52を有している。また本検査装置のシステムは、超音波探触子
22に超音波を発進させたり、超音波を受信したりさせるパルサレシーバ,カウンタボード,A/Dボードなどを有している。演算部54はコンピュータであって、周方向移動装置駆動用モータ7やボールねじ駆動用モータ16を制御している。周方向移動装置位置検出用エンコーダ9や測定器移動部位置検出用エンコーダ24の出力信号はカウンタボードを介して演算部54に入力されている。変位計23の出力信号もA/Dボードを介して演算部54に入力されている。超音波探触子から超音波を配管に対して送受信して得られた受信情報はパルサレシーバやA/Dボードを介して演算部54に入力されている。
FIG. 4 shows a block diagram of the system of the pipe inspection apparatus of the present invention. The system of this inspection apparatus uses an ultrasonic probe to detect the cross-sectional shape of the pipe at the position coordinates of the pipe 3 obtained based on the output signals from the encoder 9 for detecting the position of the circumferential movement device and the encoder 24 for detecting the position of the measuring instrument moving unit. In order to input the calculation part 54, the recording part 53, the display part 51 for displaying the inspection result, the inspection range, etc. for calculating and recording the pipe wall thickness measurement result by the child 22 and the pipe surface displacement by the displacement gauge 23 The input unit 52 is provided. Further, the system of this inspection apparatus includes a pulser receiver, a counter board, an A / D board, and the like that cause the ultrasonic probe 22 to start ultrasonic waves and receive ultrasonic waves. The calculation unit 54 is a computer and controls the circumferential direction moving device driving motor 7 and the ball screw driving motor 16. Output signals of the circumferential direction moving device position detecting encoder 9 and the measuring instrument moving unit position detecting encoder 24 are input to the calculating unit 54 via the counter board. The output signal of the displacement meter 23 is also input to the calculation unit 54 via the A / D board. Received information obtained by transmitting and receiving ultrasonic waves from the ultrasonic probe to the pipe is input to the calculation unit 54 via a pulser receiver or an A / D board.

このような各種信号入力を受けて、演算部54では、次のような処理を実行する。その実行内容を本配管検査装置を配管断面形状算出と記録の後に超音波探傷試験を実施し、超音波探傷試験結果を算出した配管断面形状上に重ねて表示する配管検査方法をまじえて以下に解説する。   In response to such various signal inputs, the calculation unit 54 executes the following processing. The execution contents of this pipe inspection device are as follows, including the pipe inspection method in which the ultrasonic flaw detection test is performed after the pipe cross-section shape calculation and recording, and the ultrasonic flaw detection test results are displayed on the calculated pipe cross-section shape. Explain.

図5に配管断面形状作成,記録の流れ図を示す。まず、超音波探触子22を配管の半径方向へ超音波の送受信方向を定めた垂直超音波探触子に付け替えておく。次に、周方向検査範囲X1≦X≦X2と周方向検査範囲Y1≦Y≦Y2との配管検査範囲及び現在の周方向位置Xと軸方向位置Yを入力部52から演算部54へ入力する(ステップS101)。そして、周方向検査範囲X1≦X≦X2内の、現在の周方向位置Xにおいて、測定器移動部19を移動させては、その移動に伴う配管軸方向位置Yを測定器移動部位置検出用エンコーダの出力信号に基づいて読み込む(ステップS102)。   FIG. 5 shows a flow chart for creating and recording a pipe cross-sectional shape. First, the ultrasonic probe 22 is replaced with a vertical ultrasonic probe in which the ultrasonic wave transmission / reception direction is determined in the radial direction of the pipe. Next, the pipe inspection range of the circumferential inspection range X1 ≦ X ≦ X2 and the circumferential inspection range Y1 ≦ Y ≦ Y2, and the current circumferential position X and axial position Y are input from the input unit 52 to the calculation unit 54. (Step S101). Then, when the measuring instrument moving unit 19 is moved at the current circumferential position X within the circumferential inspection range X1 ≦ X ≦ X2, the pipe axis direction position Y accompanying the movement is used for detecting the measuring instrument moving unit position. Reading is performed based on the output signal of the encoder (step S102).

そして、その移動毎に変位計23からの出力信号に基づく配管3の外表面変位の読み込みと、垂直超音波探触子から配管3の肉厚方向(配管半径方向)に超音波を入射し、配管底面(配管3の内周面)で反射し再び超音波探触子で受信させて、超音波の入射から戻ってくるまでの往復の伝播時間に、配管3の材料中の超音波の音速を乗じた往復の伝播経路の半分として算出されるビーム路程から、配管肉厚方向変位及び配管3の肉厚を読み込む(ステップS103)、ステップS101からステップS103をY=Y2となるまで繰り返す(ステップS104のY1≦Y≦Y2)、Y=Y2となった場合(ステップS104のY=Y2)に周方向位置Xでの各軸方向位置での配管3の外表面の変位位置から配管半径方向の配管3の肉厚を持って配管3の内周面と定義して配管断面形状を得る(図8参照)。この結果を記録部53へ保存させる(ステップS105)。   And every time of the movement, the reading of the outer surface displacement of the pipe 3 based on the output signal from the displacement meter 23, and the ultrasonic wave is incident in the thickness direction (pipe radial direction) of the pipe 3 from the vertical ultrasonic probe, The sound velocity of the ultrasonic wave in the material of the pipe 3 is reflected at the bottom of the pipe (the inner peripheral surface of the pipe 3), is received by the ultrasonic probe again, and travels back and forth from the incidence of the ultrasonic wave. The displacement in the pipe thickness direction and the thickness of the pipe 3 are read from the beam path calculated as a half of the round-trip propagation path multiplied by (Step S103), and Steps S101 to S103 are repeated until Y = Y2 (Step S103). (Y1 ≦ Y ≦ Y2 in S104), and when Y = Y2 (Y = Y2 in Step S104), from the displacement position of the outer surface of the pipe 3 at each axial position at the circumferential position X, the pipe radial direction With the thickness of pipe 3 Obtaining a pipe cross-sectional shape defined between the inner peripheral surface of the tube 3 (see FIG. 8). The result is stored in the recording unit 53 (step S105).

続いて、現在の周方向位置Xの判定(ステップS106)を行い、周方向位置XがX1≦X≦X2内である場合(ステップS106のX1≦X≦X2内)は、周方向移動装置駆動用モータ7に周方向移動装置6を予め定めたΔXだけ周方向に移動させ(ステップ
S107)、ステップS102からステップS105までを繰り返す。X=X2となった場合(ステップS106のX=X2)は、超音波探傷試験(ステップS108)に移る。
Subsequently, the current circumferential position X is determined (step S106). When the circumferential position X is within X1 ≦ X ≦ X2 (within X1 ≦ X ≦ X2 in step S106), the circumferential movement device is driven. The circumferential movement device 6 is moved in the circumferential direction by a predetermined ΔX to the motor 7 (Step S107), and Steps S102 to S105 are repeated. If X = X2 (X = X2 in step S106), the process proceeds to the ultrasonic flaw detection test (step S108).

ステップS108での処理が終了した後に、演算部54での処理は一時停止する。超音波探傷試験に移る前に超音波探触子22を垂直超音波探触子から探傷用の斜角超音波探触子に、探触子取付部20へ付け替える。斜角超音波探触子は、超音波を斜めに配管3の肉厚中に送受信する構造の探触子であり、配管の半径方向へ進展した亀裂などの開口欠陥に対して検出感度が高いという特性がある。垂直超音波探触子でも欠陥を検出することが出来るが、好ましくは、超音波探傷試験時には、上述のように超音波探触子22を検出したい欠陥の性状に合わせて付け替えることが好ましい。   After the process in step S108 is completed, the process in the calculation unit 54 is temporarily stopped. Before moving to the ultrasonic flaw detection test, the ultrasonic probe 22 is changed from the vertical ultrasonic probe to the oblique ultrasonic probe for flaw detection to the probe mounting portion 20. The oblique angle ultrasonic probe is a probe having a structure for transmitting and receiving ultrasonic waves obliquely in the thickness of the pipe 3, and has high detection sensitivity for opening defects such as cracks extending in the radial direction of the pipe. There is a characteristic. Although a defect can be detected with a vertical ultrasonic probe, it is preferable to replace the ultrasonic probe 22 in accordance with the property of the defect to be detected as described above in the ultrasonic flaw detection test.

このように、配管の超音波探傷試験を実施する際、図1に示した超音波探触子22を配管肉厚測定用の垂直超音波探触子から、配管探傷用の斜角超音波探触子に代え、その後に演算部54を働かした上、超音波探傷試験を実施する。図6に超音波探傷試験の流れ図を示す。まず、演算部54に探傷範囲として入力部52から周方向位置Xと周方向検査範囲X1≦X≦X2、及び軸方向位置Yと軸方向検査範囲Y1≦Y≦Y2、並びに超音波探触子22から配管3に対して送受信する超音波屈折角αを入力する(ステップS201)。ここでの検査範囲は、図5中のステップS101で指定した検査範囲内であればどの範囲でも構わない。   As described above, when performing the ultrasonic inspection of the pipe, the ultrasonic probe 22 shown in FIG. 1 is changed from the vertical ultrasonic probe for pipe thickness measurement to the oblique ultrasonic inspection for pipe inspection. In place of the toucher, the calculation unit 54 is operated thereafter, and an ultrasonic flaw detection test is performed. FIG. 6 shows a flowchart of the ultrasonic flaw detection test. First, as the flaw detection range from the input unit 52 to the calculation unit 54, the circumferential position X and the circumferential inspection range X1 ≦ X ≦ X2, the axial direction Y and the axial inspection range Y1 ≦ Y ≦ Y2, and the ultrasonic probe. The ultrasonic refraction angle α transmitted and received from the pipe 22 to the pipe 3 is input (step S201). The inspection range here may be any range as long as it is within the inspection range designated in step S101 in FIG.

続いて、図5の流れで作成した周方向検査範囲X1≦X≦X2内の、現在の周方向位置Xにおける配管断面形状を記録部より呼び出し、表示部に表示する(ステップS202)。そして、その表示されている配管断面形状に超音波探触子からの反射源位置を重ねて表示する(ステップS203)。反射源の表示方法については、後に後述する。   Subsequently, the pipe cross-sectional shape at the current circumferential position X within the circumferential inspection range X1 ≦ X ≦ X2 created in the flow of FIG. 5 is called from the recording unit and displayed on the display unit (step S202). Then, the position of the reflection source from the ultrasonic probe is superimposed on the displayed pipe cross-sectional shape (step S203). A method for displaying the reflection source will be described later.

続いて、ステップS202からステップS203をY=Y2となるまで繰り返す(ステップS204のY1≦Y≦Y2)、Y=Y2となった場合(ステップS204のY=Y2)は、この結果を記録部53に保存させる(ステップS205)。続いて、現在の周方向位置Xの判定(ステップS206)を行い、周方向位置XがX1≦X≦X2内である場合
(ステップS206のX1≦X≦X2内)は、周方向移動装置駆動用モータ7によりΔXだけ周方向に移動させ(ステップS207)、ステップS202からステップS205までのステップを繰り返す。X=X2となった場合(ステップS106のX=X2)は、終了となる。
Subsequently, steps S202 to S203 are repeated until Y = Y2 (Y1 ≦ Y ≦ Y2 in step S204). If Y = Y2 (Y = Y2 in step S204), the result is recorded in the recording unit 53. (Step S205). Subsequently, the current circumferential position X is determined (step S206). If the circumferential position X is within X1 ≦ X ≦ X2 (within X1 ≦ X ≦ X2 in step S206), the circumferential movement device is driven. The motor 7 is moved in the circumferential direction by ΔX (step S207), and the steps from step S202 to step S205 are repeated. If X = X2 (X = X2 in step S106), the process ends.

図7に配管3の肉厚中の欠陥から超音波が反射して超音波探触子に受信した、その反射源位置の表示の流れ図を示す。まず、現在の軸方向位置Yを読み込む(ステップS301)。続いて軸方向位置Y、屈折角αおよびビーム路程Wから、YR=Y+WSINα,ZR=WCOSαにより反射源位置Rを算出する(ステップS302)。そして、表示部51に反射源位置[R(YR,ZR)]を先に計測済みの配管の断面形状と重ねて表示する。(ステップS303)。図10は、図5,図6,図7の流れによって得られた配管断面形状への超音波反射源の表示の例で、×印が反射源を表し斜めの線が超音波の伝播経路を表す。検査員は図10のような表示部での表示画像から裏面(配管3の内周面)の形状による反射源であるのか、欠陥と思われる疑わしい反射源であるかを判断する。 FIG. 7 shows a flow chart of display of the reflection source position received by the ultrasonic probe after reflection of the ultrasonic wave from a defect in the thickness of the pipe 3. First, the current axial position Y is read (step S301). Subsequently, the reflection source position R is calculated from the axial position Y, the refraction angle α, and the beam path length W by Y R = Y + WSINα, Z R = WCOSα (step S302). Then, the reflection source position [R (Y R , Z R )] is displayed on the display unit 51 so as to overlap with the previously measured cross-sectional shape of the pipe. (Step S303). FIG. 10 is an example of the display of the ultrasonic reflection source on the pipe cross-sectional shape obtained by the flow of FIGS. 5, 6, and 7. The X mark represents the reflection source, and the diagonal line represents the ultrasonic propagation path. To express. The inspector determines from the display image on the display unit as shown in FIG. 10 whether the reflection source is based on the shape of the back surface (inner peripheral surface of the pipe 3) or a suspicious reflection source that seems to be a defect.

尚、ビーム路程Wとは、入射した超音波がきずなどの反射源で反射し、超音波探触子に戻って来るまでの時間に配管の材料中の超音波の音速を乗じて、超音波の入射から受信までの往復の伝播経路の半分として算出される。   The beam path length W is calculated by multiplying the ultrasonic velocity in the pipe material by the time it takes for the incident ultrasonic wave to be reflected by a reflection source such as a scratch and return to the ultrasonic probe. It is calculated as half of the round-trip propagation path from the incident to reception.

図11は本発明の第2の実施例を示すもので、各シャフト14には、第1の実施例と同様に、シャフトの長さ方向へ移動自在に装着した測定器移動部19が取付けられる。その測定器移動部19には、探触子取付部20がガイド構造を介して配管3の半径方向へ移動自在に装着される。その探触子取付部20は、探触子取付部20と測定器移動部19との間に装着したバネ21によって、常に配管3の方向へ押し出される勢力が付与されている。   FIG. 11 shows a second embodiment of the present invention. As in the first embodiment, a measuring instrument moving section 19 that is movably mounted in the length direction of the shaft is attached to each shaft 14. . A probe mounting portion 20 is attached to the measuring instrument moving portion 19 so as to be movable in the radial direction of the pipe 3 through a guide structure. The probe mounting portion 20 is given a force that is always pushed out toward the pipe 3 by a spring 21 mounted between the probe mounting portion 20 and the measuring instrument moving portion 19.

その探触子取付部20と測定器移動部19との間には、探触子取付部20の配管3の半径方向への動きに基づく変位を計測するエンコーダ55が設けられる。このエンコーダ
55は、測定器移動部19に対して探触子取付部20が配管3の半径方向へ変位するその変位を計測する変位計として採用されている。その変位は、配管3の半径方向へ直線的に変位するので、変位計の一例としてリニアエンコーダが採用できる。
Between the probe mounting part 20 and the measuring instrument moving part 19, an encoder 55 for measuring a displacement based on the radial movement of the pipe 3 of the probe mounting part 20 is provided. The encoder 55 is employed as a displacement meter that measures the displacement of the probe mounting portion 20 in the radial direction of the pipe 3 with respect to the measuring instrument moving portion 19. Since the displacement is linearly displaced in the radial direction of the pipe 3, a linear encoder can be employed as an example of a displacement meter.

その他の構成などの技術的事項は、第1の実施例と同様である。このような第2実施例によれば、配管の軸方向(配管の長さ方向)へ測定器移動部19が移動することに伴って、配管3の外表面を配管軸方向へ滑走する超音波探触子22が配管3の外表面の形状の変化、例えば凸凹など、に応じて配管3の半径方向へ往復移動する。そのため、超音波探触子22が取付けられている探触子取付部20も配管3の半径方向へ往復移動する。このように探触子取付部20も配管3の半径方向へ往復移動すると、エンコーダ55は、配管3の外表面形状に沿って超音波探触子22が移動するのに伴って探触子取付部20の配管3の半径方向への往復変位量を配管3の半径方向への振幅量として測定する。すなわち、エンコーダ55は配管3の外表面形状の変位を測定する変位計として機能するわけである。   Other technical matters such as the configuration are the same as those of the first embodiment. According to the second embodiment, ultrasonic waves that slide on the outer surface of the pipe 3 in the pipe axial direction as the measuring instrument moving unit 19 moves in the pipe axial direction (pipe length direction). The probe 22 reciprocates in the radial direction of the pipe 3 in response to a change in the shape of the outer surface of the pipe 3, such as unevenness. Therefore, the probe attachment portion 20 to which the ultrasonic probe 22 is attached also reciprocates in the radial direction of the pipe 3. When the probe mounting portion 20 is also reciprocated in the radial direction of the pipe 3 in this manner, the encoder 55 is attached to the probe as the ultrasonic probe 22 moves along the outer surface shape of the pipe 3. The amount of reciprocal displacement of the pipe 20 in the radial direction of the pipe 20 is measured as the amplitude of the pipe 3 in the radial direction. That is, the encoder 55 functions as a displacement meter that measures the displacement of the outer surface shape of the pipe 3.

このような第2の実施例の構成であると、第1の実施例における変位計23の配管3に接する可動部分が探触子取付部20と兼用できて簡単な構成になる。この構成であると、エンコーダ55を用いることで配管の外表面形状の大きな変化に対応可能である。本実施例での配管検査装置を用いた配管検査方法は第1の実施例と同様である。   With such a configuration of the second embodiment, the movable portion in contact with the pipe 3 of the displacement meter 23 in the first embodiment can also be used as the probe mounting portion 20 and the configuration is simple. With this configuration, the encoder 55 can be used to cope with a large change in the outer surface shape of the pipe. The pipe inspection method using the pipe inspection apparatus in this embodiment is the same as that in the first embodiment.

図12は本発明の第3の実施例を示すもので、第1の実施例における各シャフト14の先端にシャフト14の傾斜を測定する傾斜計56を設置してある。その他の構成は第1の実施例と同じである。   FIG. 12 shows a third embodiment of the present invention, and an inclinometer 56 for measuring the inclination of the shaft 14 is installed at the tip of each shaft 14 in the first embodiment. Other configurations are the same as those of the first embodiment.

図13のように、周方向移動装置6が(1)の状態では、シャフト14が水平(配管3の軸方向に平行)を保ちながら、Y1 の位置からY2 の位置まで配管軸方向に超音波探触子22や変位計23が移動する。この場合の変位計23による配管3の外表面変位の計測結果と、測定器移動部位置検出用エンコーダ24で計測した変位計23の配管軸方向の移動位置計測結果との関係は、各計測結果を参照して表示すると、図14のようになる。 As shown in FIG. 13, when the circumferential movement device 6 is in the state (1), the shaft 14 is maintained in the horizontal direction (parallel to the axial direction of the pipe 3), and from the Y 1 position to the Y 2 position in the pipe axial direction. The ultrasonic probe 22 and the displacement meter 23 move. In this case, the relationship between the measurement result of the outer surface displacement of the pipe 3 by the displacement meter 23 and the movement position measurement result in the pipe axis direction of the displacement gauge 23 measured by the encoder 24 for detecting the moving position of the measuring instrument is as follows. Is displayed as shown in FIG.

一方、図13で周方向移動装置6が(2)の状態では、シャフト14には測定器移動部19や探触子取付部20や変位計23や超音波探触子22等の自重の影響によって配管3の軸心に対して傾斜が生じる。この場合の変位計23による配管3の外表面の変位計測結果と測定器移動部位置検出用エンコーダ24で計測した変位計23の配管軸方向の移動位置計測結果との関係は、各計測結果を参照して表示すると、図16のようになり、測定器移動部19等がY1 の位置からY2 の位置まで移動するにしたがって、シャフト14の傾斜の影響を受け配管表面変位は増加していく。 On the other hand, when the circumferential movement device 6 is in the state (2) in FIG. 13, the shaft 14 is affected by the weight of the measuring device moving unit 19, the probe mounting unit 20, the displacement meter 23, the ultrasonic probe 22, and the like. As a result, an inclination occurs with respect to the axis of the pipe 3. In this case, the relationship between the displacement measurement result of the outer surface of the pipe 3 by the displacement meter 23 and the movement position measurement result in the pipe axis direction of the displacement gauge 23 measured by the encoder 24 for detecting the moving position of the measuring instrument is as follows. When displayed with reference, as shown in FIG. 16, as the measuring instrument moving unit 19 and the like move from the Y 1 position to the Y 2 position, the displacement of the pipe surface increases due to the influence of the inclination of the shaft 14. Go.

このような状態で、超音波探触子22からの配管3の肉厚によって配管断面形状を算出すると、実際とは異なる形状となってしまう。そこで次のような補正処理を演算部で施してから表示部に配管断面形状を表示する。   If the pipe cross-sectional shape is calculated based on the thickness of the pipe 3 from the ultrasonic probe 22 in such a state, it becomes a shape different from the actual one. Therefore, after performing the following correction processing in the calculation unit, the pipe cross-sectional shape is displayed on the display unit.

即ち、シャフト14は剛体棒であるため、Y1 の位置からY2 の位置まで移動した場合に、傾斜する角度θは一定で、その角度θは傾斜計56によって計測され、その計測結果の情報は演算部に入力されて後述の補正処理の処理過程で用いられる。 That is, since the shaft 14 is a rigid rod, when the shaft 14 is moved from the Y 1 position to the Y 2 position, the tilt angle θ is constant, and the angle θ is measured by the inclinometer 56, and information on the measurement result is obtained. Is input to the calculation unit and used in the correction process described later.

ここで、任意の配管軸方向位置Yでの傾斜による配管表面変位の増加δは、δ=Ytanθで与えられる。その補正処理過程では、補正前では図15のように表される配管外表面変位の計測結果のデータからδを引くことよって傾斜した場合の配管表面変位が図14のようにシャフト14がYの値のグラフ基軸と一致するように補正し、補正後のデータで配管の外表面の変位とYの値との関係を表示部に、図14のように表示できる。その他の作用は、第1実施例と同じである。   Here, an increase δ of the pipe surface displacement due to the inclination at an arbitrary position Y in the pipe axial direction is given by δ = Ytanθ. In the correction process, before correction, the pipe surface displacement when tilted by subtracting δ from the data of the measurement result of the pipe outer surface displacement shown in FIG. 15 is Y when the shaft 14 is Y as shown in FIG. FIG. 14 can display the relationship between the displacement of the outer surface of the pipe and the Y value on the display unit with the corrected data so as to match the graph base axis. Other operations are the same as those of the first embodiment.

以上に説明した如く、本発明の各実施例による配管検査装置によれば、配管表面形状測定と配管表面形状からの配管の肉厚(板厚ともいう)測定とを同時に行うことが出来、迅速に配管断面形状の算出に必要なデータを取得でき、配管断面を決定することが迅速に達成できる。   As described above, according to the pipe inspection apparatus according to each embodiment of the present invention, pipe surface shape measurement and pipe wall thickness (also referred to as plate thickness) measurement from the pipe surface shape can be performed simultaneously, and promptly. In addition, data necessary for calculating the pipe cross-sectional shape can be acquired, and the pipe cross-section can be determined quickly.

そのため、超音波探傷試験結果を迅速に配管断面形状に反映して表示でき、検査員の検査業務を正確且つ迅速に支援できる。このように、各実施例によれば、配管断面形状算出の精度向上と欠陥有無の判断の迅速化を図ることができる。   Therefore, the ultrasonic flaw detection test result can be quickly reflected in the pipe cross-sectional shape and displayed, and the inspection work of the inspector can be supported accurately and quickly. Thus, according to each embodiment, it is possible to improve the accuracy of calculating the pipe cross-sectional shape and speed up the determination of the presence or absence of defects.

本発明は、配管の断面の形状を計測する配管検査装置に利用可能性がある。   The present invention may be used in a pipe inspection apparatus that measures the shape of a cross section of a pipe.

本発明の第1の実施例による配管検査装置の解説図にして、(a)図は配管に装着した状態の一部断面表示による全体図、(b)図は(a)図の要部拡大断面図である。It is explanatory drawing of the piping test | inspection apparatus by 1st Example of this invention, (a) A figure is the whole figure by the partial cross section display of the state with which it attached to piping, (b) A figure is the principal part expansion of (a) figure It is sectional drawing. 本発明の第1の実施例による配管検査装置の一部断面表示による正面図である。It is a front view by the partial cross section display of the piping inspection apparatus by 1st Example of this invention. 本発明の第1の実施例による配管検査装置の上平面図である。1 is a top plan view of a pipe inspection device according to a first embodiment of the present invention. 本発明の第1の実施例による配管検査装置のシステムのブロック線図である。It is a block diagram of the system of the piping inspection apparatus by the 1st example of the present invention. 本発明の第1の実施例による配管検査装置による配管の断面形状の計算に必要なデータ収集過程を示すフローチャート図である。It is a flowchart figure which shows the data collection process required for calculation of the cross-sectional shape of piping by the piping inspection apparatus by 1st Example of this invention. 本発明の第1の実施例による超音波探傷試験のフローチャート図である。It is a flowchart figure of the ultrasonic flaw test by 1st Example of this invention. 本発明の第1の実施例による超音波探傷試験の反射源位置表示のフローチャート図である。It is a flowchart figure of the reflection source position display of the ultrasonic flaw detection test by 1st Example of this invention. 本発明の第1の実施例で表示される配管断面形状の例示図である。It is an illustration figure of the pipe section shape displayed in the 1st example of the present invention. 本発明の第1の実施例で表示される配管断面形状とビーム路程とビーム屈折角と反射源位置との関係を表した図である。It is a figure showing the relationship between the pipe cross-sectional shape displayed in the 1st Example of this invention, a beam path length, a beam refraction angle, and a reflection source position. 本発明の第1の実施例で表示される配管断面形状に、超音波探傷結果の反射源位置を表示した表示例である。It is the example of a display which displayed the reflection source position of the ultrasonic flaw detection result on the piping cross-sectional shape displayed in the 1st Example of this invention. 本発明の第2の実施例による配管検査装置の配管に装着した状態の部分図である。It is a fragmentary figure of the state with which the piping of the piping inspection apparatus by the 2nd Example of this invention was mounted | worn. 本発明の第3の実施例による配管検査装置の配管に装着した状態の部分である。It is a part of the state with which the piping of the piping inspection apparatus by 3rd Example of this invention was mounted | worn. 本発明の第3の実施例による配管検査装置での正面図(a)およびシャフトが水平状態の状態図(b)、シャフトが傾斜した状態の状態図(c)である。It is the front view (a) in the piping test | inspection apparatus by 3rd Example of this invention, the state figure (b) of a shaft in a horizontal state, and the state figure (c) in the state where the shaft inclined. 本発明の第3の実施例による配管検査装置でのシャフトが水平の場合の配管軸方向位置と配管外表面変位との関係を表すグラフである。It is a graph showing the relationship between a pipe axial direction position in case the shaft in the piping test | inspection apparatus by the 3rd Example of this invention is horizontal, and piping outer surface displacement. 本発明の第3の実施例による配管検査装置でのシャフトが傾斜した場合の配管軸方向位置と配管外表面変位との関係を表すグラフである。It is a graph showing the relationship between a pipe axial direction position and piping outer surface displacement when the shaft in the piping test | inspection apparatus by the 3rd Example of this invention inclines.

符号の説明Explanation of symbols

1…軌道、2…溶接部、3…配管、4…ねじ穴、5…ねじ、6…周方向移動装置、7…周方向移動装置駆動用モータ、8…周方向移動装置駆動用ピニオン、9…周方向移動装置位置検出用エンコーダ、10…溝、11,12…ボールプランジャ、13…ラック、14…シャフト、15…ボールねじ、16…ボールねじ駆動用モータ、17,18…歯車、
19…測定器移動部、20…探触子取付部、21…バネ、22…超音波探触子、23…変位計、24…測定器移動部位置検出用エンコーダ、51…表示部、52…入力部、53…記録部、54…演算部、55…エンコーダ、56…傾斜計。
DESCRIPTION OF SYMBOLS 1 ... Track | orbit, 2 ... Welded part, 3 ... Piping, 4 ... Screw hole, 5 ... Screw, 6 ... Circumferential movement apparatus, 7 ... Circumferential movement apparatus drive motor, 8 ... Circumferential movement apparatus drive pinion, 9 ... Circumferential movement device position detection encoder, 10... Groove, 11, 12... Ball plunger, 13. Rack, 14. Shaft, 15.
DESCRIPTION OF SYMBOLS 19 ... Measuring device moving part, 20 ... Probe attachment part, 21 ... Spring, 22 ... Ultrasonic probe, 23 ... Displacement meter, 24 ... Measuring device moving part Position detection encoder, 51 ... Display part, 52 ... Input unit, 53 ... recording unit, 54 ... calculation unit, 55 ... encoder, 56 ... inclinometer.

Claims (9)

超音波探触子を前記配管の周方向と軸方向とに移動する移動手段と、
前記配管の外面の形状に沿って前記超音波探触子の位置を変動させるように前記移動手段に装備されたサスペンションと、
前記超音波探触子の移動位置を計測するように前記移動手段に装備された位置計測手段と、
前記超音波探触子の移動と連動するように前記移動手段に装備され、前記配管の外面の形状変化を変位として計測する変位計測手段と、
を有する配管検査装置。
Moving means for moving the ultrasonic probe in the circumferential direction and the axial direction of the pipe;
A suspension equipped in the moving means to vary the position of the ultrasonic probe along the shape of the outer surface of the pipe;
Position measuring means equipped in the moving means so as to measure the moving position of the ultrasonic probe;
Displacement measuring means equipped with the moving means so as to be interlocked with the movement of the ultrasonic probe, and measuring a change in shape of the outer surface of the pipe as a displacement;
Piping inspection device having
請求項1において、前記超音波探触子を用いて計測した前記配管の肉厚と、前記変位計測手段を用いて計測した前記変位とに基づいて前記配管の断面形状を作成し、表示する手段を有する配管検査装置。   The means for creating and displaying the cross-sectional shape of the pipe according to claim 1, based on the thickness of the pipe measured using the ultrasonic probe and the displacement measured using the displacement measuring means. Piping inspection device having 請求項1又は請求項2において、前記変位計測手段として、前記超音波探触子の位置の変動を計測する手段を備えている配管検査装置。   The pipe inspection apparatus according to claim 1 or 2, wherein the displacement measuring means includes means for measuring a change in the position of the ultrasonic probe. 請求項1又は請求項2又は請求項3において、前記移動手段は、前記配管の軸方向に長いシャフトを前記超音波探触子の移動のガイドとして備え、前記シャフトに前記シャフトの傾斜を測定する傾斜計を設けてある配管検査装置。   4. The moving means according to claim 1, wherein the moving means includes a shaft that is long in the axial direction of the pipe as a guide for moving the ultrasonic probe, and measures the inclination of the shaft on the shaft. A pipe inspection device with an inclinometer. 配管の外周囲に装備される環状の軌道と、
前記軌道に沿って移動する周方向移動装置と、
前記周方向移動装置に装備されて前記配管の軸方向に長いシャフトと、
前記シャフトに案内されるように前記シャフトへ移動自在に装備された測定器移動部と、
前記周方向移動装置に装備され、前記測定器移動部をねじ送りするボールねじと、
前記測定器移動部に前記配管の外面の形状の変化に追従して変位するように装備した探触子取付部と、
前記探触子取付部に装備された超音波探触子と、
前記超音波探触子を前記配管側に押し付けるように前記探触子取付部と前記測定器移動部との間に装備されたバネと、
前記測定器移動部に装備されて、前記配管の外面の形状の変化を変位として計測する変位計とを備えた配管検査装置。
An annular track mounted around the outside of the pipe,
A circumferentially moving device that moves along the trajectory;
A shaft that is mounted on the circumferential movement device and is long in the axial direction of the pipe;
A measuring instrument moving part movably mounted on the shaft so as to be guided by the shaft;
A ball screw mounted on the circumferential movement device and screw-feeding the measuring instrument moving unit;
A probe mounting portion equipped to displace the measuring device moving portion following the change in the shape of the outer surface of the pipe; and
An ultrasonic probe equipped in the probe mounting portion;
A spring provided between the probe mounting part and the measuring instrument moving part so as to press the ultrasonic probe against the pipe side;
A pipe inspection apparatus provided with a displacement meter that is provided in the measuring instrument moving unit and measures a change in the shape of the outer surface of the pipe as a displacement.
請求項5において、前記超音波探触子を用いて計測した前記配管の肉厚と、前記変位計を用いて計測した前記変位とに基づいて前記配管の断面形状を作成し、表示する手段とを有する配管検査装置。   The means for creating and displaying the cross-sectional shape of the pipe according to claim 5 based on the thickness of the pipe measured using the ultrasonic probe and the displacement measured using the displacement meter; Piping inspection device having 請求項6において、前記超音波探触子として、肉厚測定用の垂直超音波探触子と探傷用の超音波探触子とを前記探触子取付部に対して取替え装着自在に有する配管検査装置。   7. The piping according to claim 6, wherein the ultrasonic probe has a vertical ultrasonic probe for wall thickness measurement and an ultrasonic probe for flaw detection, which can be freely attached to the probe mounting portion. Inspection device. 請求項7において、前記配管の断面形状に、前記探傷用の超音波探触子を用いた前記配管の探傷試験結果による反射源位置を表示する手段を備えている配管検査装置。   8. The pipe inspection apparatus according to claim 7, further comprising means for displaying a reflection source position based on a flaw detection test result of the pipe using the ultrasonic probe for flaw detection in a cross-sectional shape of the pipe. 配管の外表面の変位を測定するステップと、
前記配管の肉厚を測定するステップと、
前記測定した変位と前記測定した肉厚とから前記配管の断面形状を算出するステップと、
前記配管の超音波探傷試験を実施するステップと、
前記算出した配管断面形状に、前記超音波探傷試験結果を表示するステップと、
を有する配管検査方法。
Measuring the displacement of the outer surface of the pipe;
Measuring the wall thickness of the pipe;
Calculating a cross-sectional shape of the pipe from the measured displacement and the measured thickness;
Performing an ultrasonic inspection test of the pipe;
Displaying the ultrasonic flaw detection test results on the calculated pipe cross-sectional shape;
A pipe inspection method.
JP2006006882A 2006-01-16 2006-01-16 Inspection device for piping and inspection method for piping Pending JP2007187593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006006882A JP2007187593A (en) 2006-01-16 2006-01-16 Inspection device for piping and inspection method for piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006006882A JP2007187593A (en) 2006-01-16 2006-01-16 Inspection device for piping and inspection method for piping

Publications (1)

Publication Number Publication Date
JP2007187593A true JP2007187593A (en) 2007-07-26

Family

ID=38342853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006006882A Pending JP2007187593A (en) 2006-01-16 2006-01-16 Inspection device for piping and inspection method for piping

Country Status (1)

Country Link
JP (1) JP2007187593A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236613A (en) * 2008-03-26 2009-10-15 Asahi Kasei Chemicals Corp Inspection apparatus of piping and inspection method of the same
JP2010014582A (en) * 2008-07-04 2010-01-21 Hitachi-Ge Nuclear Energy Ltd Ultrasonic flaw detecting method and ultrasonic flaw detector
CN102809603A (en) * 2012-07-30 2012-12-05 燕山大学 Lower horizontal type ultrasonic automatic defectoscope for large-sized rolling shell ring piece
JP2013124891A (en) * 2011-12-14 2013-06-24 Mitsubishi Heavy Ind Ltd Ultrasonic flaw inspection device
CN104297341A (en) * 2014-10-15 2015-01-21 天津大学 Scanning device applied to ultrasonic detection of pipeline-flange angle welding seams
CN105548355A (en) * 2015-12-07 2016-05-04 中国商用飞机有限责任公司 Ultrasonic detection device
CN105954303A (en) * 2016-06-09 2016-09-21 石家庄兴化检测有限公司 X-ray detection apparatus walking device with extensible positioning roller
JP2017026401A (en) * 2015-07-21 2017-02-02 新日鐵住金株式会社 Method for inspecting inner surface of tubular body
WO2018048040A1 (en) * 2016-09-07 2018-03-15 앤스코 주식회사 Nondestructive test encoder jig
EP3196493A4 (en) * 2014-08-12 2018-04-18 NTN Corporation Device for inspecting junction-type outer joint member of constant velocity universal joint
CN108195938A (en) * 2017-12-30 2018-06-22 浙江省送变电工程有限公司 A kind of pipeline weld joint automatized detection device and its method of work
CN109856246A (en) * 2019-01-28 2019-06-07 国电锅炉压力容器检验有限公司 A kind of ultrasonic phase array pipe detection system and its mobile limiting device of popping one's head in
JP2019144036A (en) * 2018-02-19 2019-08-29 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection device
KR20190002950U (en) * 2018-05-23 2019-12-03 두산중공업 주식회사 Apparatus for ultrasonic test
CN110672723A (en) * 2019-11-12 2020-01-10 山东丰汇工程检测有限公司 Ultrasonic defect detection measuring ruler
CN111610196A (en) * 2019-02-22 2020-09-01 汉阳Eng株式会社 Weld bead inspection device for welded pipe
WO2020247342A1 (en) * 2019-06-03 2020-12-10 Schlumberger Technology Corporation Methods and systems for determining integrity and operational boundaries of subterranean wells
KR20220076897A (en) * 2020-12-01 2022-06-08 한국남동발전 주식회사 Portable ultrasonic hardness measurement apparatus and degree of degradation measurement system and method having the same
CN118090902A (en) * 2024-04-22 2024-05-28 浙江瑞兴阀门有限公司 Ultrasonic flaw detection equipment for inner wall of valve
CN118275542A (en) * 2024-05-30 2024-07-02 杭州弘安检测科技有限公司 Diffraction time difference ultrasonic scanning method and scanning frame for large-thickness butt weld

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608873A (en) * 1983-06-29 1985-01-17 Fuji Xerox Co Ltd Cleaning device of heat fixation device of electronic copying machine
JPS6086462A (en) * 1983-10-19 1985-05-16 Hitachi Ltd Ultrasonic flaw detecting system
JPS61133856A (en) * 1984-12-04 1986-06-21 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for diagnosing underground pipeline
JPS6256856A (en) * 1985-09-06 1987-03-12 Hitachi Ltd Ultrasonic test equipment
JPH01292248A (en) * 1988-05-19 1989-11-24 Tokyo Keiki Co Ltd Automatic ultrasonic flaw detector
JPH02101211A (en) * 1988-10-05 1990-04-13 Sumikura Ind Co Ltd Surface chipping device by high pressure water for footbridge staircase
JPH0376109A (en) * 1989-08-17 1991-04-02 Sony Corp Resist coating process
JPH06102258A (en) * 1991-04-19 1994-04-15 Kawasaki Heavy Ind Ltd Method and equipment for ultrasonic flaw detection
JPH0755455A (en) * 1993-08-16 1995-03-03 Mitsubishi Heavy Ind Ltd Outer diameter and thickness measuring apparatus for pipe
JPH0763740A (en) * 1993-08-25 1995-03-10 Ishikawajima Harima Heavy Ind Co Ltd Ultrasonic flaw detecting device for piping
JPH10339617A (en) * 1997-06-06 1998-12-22 Ishikawajima Harima Heavy Ind Co Ltd Surface shape measuring device
JP2001074711A (en) * 1999-08-31 2001-03-23 Japan Energy Corp Apparatus and method for inspecting cylindrical body
JP2001133236A (en) * 1999-11-08 2001-05-18 Mitsubishi Heavy Ind Ltd Method and apparatus for shape inspection of thin wall cylindrical tube
JP2004028899A (en) * 2002-06-27 2004-01-29 Toshiba Plant Kensetsu Co Ltd Method and device for measuring penetration height in butt weld zone
JP2005315843A (en) * 2004-03-31 2005-11-10 Tokyo Electric Power Co Inc:The Ultrasonic inspection method and device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608873A (en) * 1983-06-29 1985-01-17 Fuji Xerox Co Ltd Cleaning device of heat fixation device of electronic copying machine
JPS6086462A (en) * 1983-10-19 1985-05-16 Hitachi Ltd Ultrasonic flaw detecting system
JPS61133856A (en) * 1984-12-04 1986-06-21 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for diagnosing underground pipeline
JPS6256856A (en) * 1985-09-06 1987-03-12 Hitachi Ltd Ultrasonic test equipment
JPH01292248A (en) * 1988-05-19 1989-11-24 Tokyo Keiki Co Ltd Automatic ultrasonic flaw detector
JPH02101211A (en) * 1988-10-05 1990-04-13 Sumikura Ind Co Ltd Surface chipping device by high pressure water for footbridge staircase
JPH0376109A (en) * 1989-08-17 1991-04-02 Sony Corp Resist coating process
JPH06102258A (en) * 1991-04-19 1994-04-15 Kawasaki Heavy Ind Ltd Method and equipment for ultrasonic flaw detection
JPH0755455A (en) * 1993-08-16 1995-03-03 Mitsubishi Heavy Ind Ltd Outer diameter and thickness measuring apparatus for pipe
JPH0763740A (en) * 1993-08-25 1995-03-10 Ishikawajima Harima Heavy Ind Co Ltd Ultrasonic flaw detecting device for piping
JPH10339617A (en) * 1997-06-06 1998-12-22 Ishikawajima Harima Heavy Ind Co Ltd Surface shape measuring device
JP2001074711A (en) * 1999-08-31 2001-03-23 Japan Energy Corp Apparatus and method for inspecting cylindrical body
JP2001133236A (en) * 1999-11-08 2001-05-18 Mitsubishi Heavy Ind Ltd Method and apparatus for shape inspection of thin wall cylindrical tube
JP2004028899A (en) * 2002-06-27 2004-01-29 Toshiba Plant Kensetsu Co Ltd Method and device for measuring penetration height in butt weld zone
JP2005315843A (en) * 2004-03-31 2005-11-10 Tokyo Electric Power Co Inc:The Ultrasonic inspection method and device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236613A (en) * 2008-03-26 2009-10-15 Asahi Kasei Chemicals Corp Inspection apparatus of piping and inspection method of the same
JP2010014582A (en) * 2008-07-04 2010-01-21 Hitachi-Ge Nuclear Energy Ltd Ultrasonic flaw detecting method and ultrasonic flaw detector
JP2013124891A (en) * 2011-12-14 2013-06-24 Mitsubishi Heavy Ind Ltd Ultrasonic flaw inspection device
CN102809603A (en) * 2012-07-30 2012-12-05 燕山大学 Lower horizontal type ultrasonic automatic defectoscope for large-sized rolling shell ring piece
EP3196493A4 (en) * 2014-08-12 2018-04-18 NTN Corporation Device for inspecting junction-type outer joint member of constant velocity universal joint
US10761065B2 (en) 2014-08-12 2020-09-01 Ntn Corporation Device for inspecting junction-type outer joint member of constant velocity universal joint
CN104297341A (en) * 2014-10-15 2015-01-21 天津大学 Scanning device applied to ultrasonic detection of pipeline-flange angle welding seams
JP2017026401A (en) * 2015-07-21 2017-02-02 新日鐵住金株式会社 Method for inspecting inner surface of tubular body
CN105548355A (en) * 2015-12-07 2016-05-04 中国商用飞机有限责任公司 Ultrasonic detection device
CN105954303A (en) * 2016-06-09 2016-09-21 石家庄兴化检测有限公司 X-ray detection apparatus walking device with extensible positioning roller
WO2018048040A1 (en) * 2016-09-07 2018-03-15 앤스코 주식회사 Nondestructive test encoder jig
CN108195938A (en) * 2017-12-30 2018-06-22 浙江省送变电工程有限公司 A kind of pipeline weld joint automatized detection device and its method of work
JP2019144036A (en) * 2018-02-19 2019-08-29 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection device
KR20190002950U (en) * 2018-05-23 2019-12-03 두산중공업 주식회사 Apparatus for ultrasonic test
KR200490799Y1 (en) * 2018-05-23 2020-01-06 두산중공업 주식회사 Apparatus for ultrasonic test
CN109856246A (en) * 2019-01-28 2019-06-07 国电锅炉压力容器检验有限公司 A kind of ultrasonic phase array pipe detection system and its mobile limiting device of popping one's head in
CN111610196B (en) * 2019-02-22 2023-10-27 汉阳Eng株式会社 Weld bead inspection device for welded pipe
CN111610196A (en) * 2019-02-22 2020-09-01 汉阳Eng株式会社 Weld bead inspection device for welded pipe
US11261729B2 (en) 2019-06-03 2022-03-01 Schlumberger Technology Corporation Methods and systems for determining integrity and operational boundaries of subterranean wells
WO2020247342A1 (en) * 2019-06-03 2020-12-10 Schlumberger Technology Corporation Methods and systems for determining integrity and operational boundaries of subterranean wells
CN110672723B (en) * 2019-11-12 2023-09-12 山东丰汇工程检测有限公司 Ultrasonic detection defect measuring ruler
CN110672723A (en) * 2019-11-12 2020-01-10 山东丰汇工程检测有限公司 Ultrasonic defect detection measuring ruler
KR20220076897A (en) * 2020-12-01 2022-06-08 한국남동발전 주식회사 Portable ultrasonic hardness measurement apparatus and degree of degradation measurement system and method having the same
KR102488522B1 (en) * 2020-12-01 2023-01-13 한국남동발전 주식회사 Portable ultrasonic hardness measurement apparatus and degree of degradation measurement system and method having the same
CN118090902A (en) * 2024-04-22 2024-05-28 浙江瑞兴阀门有限公司 Ultrasonic flaw detection equipment for inner wall of valve
CN118275542A (en) * 2024-05-30 2024-07-02 杭州弘安检测科技有限公司 Diffraction time difference ultrasonic scanning method and scanning frame for large-thickness butt weld

Similar Documents

Publication Publication Date Title
JP2007187593A (en) Inspection device for piping and inspection method for piping
KR101804484B1 (en) Sensor device and residual stress detection system employing same
EP2846158B1 (en) A system and method of non-destructive inspection with a visual scanning guide
US5161413A (en) Apparatus and method for guided inspection of an object
KR102251819B1 (en) Device and method for non-destructive control of tubular products using electroacoustic phased networks, in particular on site
CN101672829B (en) Method for measuring parameter of omega welding seam defect
KR101478465B1 (en) Mechanized Ultrasonic Testing Method for Curved Pipe Welding Zone
WO2008061365A1 (en) System and method for inspecting the interior surface of a pipeline
US20130160551A1 (en) Ultrasonic flaw detection device and ultrasonic flaw detection method
CN101796373A (en) Method for the complete detection of the geometry of test objects by means of ultrasound
JP2015230227A (en) Ultrasonic inspection device and ultrasonic inspection method
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
JP2019219405A (en) Method and system for determination of geometric features in objects
JP6512157B2 (en) Thickness measurement apparatus, thickness evaluation apparatus, thickness measurement method and thickness evaluation method
US11573209B2 (en) Methods and systems for adaptive accuracy control of ultrasonic non-destructive testing devices
JP2011027571A (en) Piping thickness reduction inspection apparatus and piping thickness reduction inspection method
JP4897420B2 (en) Ultrasonic flaw detector
CN116858933A (en) Method for ultrasonically detecting weld quality of stainless steel thin-wall small-diameter pipe by phased array
KR20100124238A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
JP2007322350A (en) Ultrasonic flaw detector and method
KR101199717B1 (en) The Phased Array Ultrasonic Testing Calibration Block for the Circumferential Scan Located at Tapered Weld and System for Measuring the Position of refracting angle and twisting angle using thereof
US7929656B2 (en) Apparatus for ultrasonic inspection of reactor pressure vessel
CN110988132A (en) Welding seam single-side TOFD detection method
JP2006138672A (en) Method of and device for ultrasonic inspection
JP2018205091A (en) Ultrasonic flaw detection device and inspection method using ultrasonic wave

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20071122

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Effective date: 20080204

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A977 Report on retrieval

Effective date: 20101001

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308