JPS61133856A - Method and apparatus for diagnosing underground pipeline - Google Patents

Method and apparatus for diagnosing underground pipeline

Info

Publication number
JPS61133856A
JPS61133856A JP59255906A JP25590684A JPS61133856A JP S61133856 A JPS61133856 A JP S61133856A JP 59255906 A JP59255906 A JP 59255906A JP 25590684 A JP25590684 A JP 25590684A JP S61133856 A JPS61133856 A JP S61133856A
Authority
JP
Japan
Prior art keywords
sensor
ultrasonic
eddy current
measurement
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59255906A
Other languages
Japanese (ja)
Inventor
Katsuhiko Honjo
克彦 本庄
Keiichi Sudo
佳一 須藤
Junichi Masuda
順一 増田
Fujio Hirabayashi
平林 富士夫
Kishio Arita
紀史雄 有田
Yoshitaka Koide
小出 美孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59255906A priority Critical patent/JPS61133856A/en
Publication of JPS61133856A publication Critical patent/JPS61133856A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To improve the pipeline diagnosing speed and accuracy, by combining the detection of corrosion and deficiency on the outer wall of a pipeline by the ultrasonic thickness measurement and the detection of deficiency and corrosion on the inner wall thereof by the eddy current measurement. CONSTITUTION:A rotary unit 15 and a driver 16 are self-driven by the driver 6 and moves through a pipeline 3 to be set at a measuring point. An ultrasonic sensor 22 and an eddy current sensor 23 are driven with an ultrasonic wave transmitter/receiver 17 and an eddy current transmitter/receiver 18 and resulting ultrasonic thickness signal and eddy current signal are fed to the respective transmitter/receivers 17 and 18. The ultrasonic thickness signal is fed to an ultrasonic signal processing section to determine thickness and the minimum thickness is memorized. The eddy current signal is fed to an ultrasonic signal processing section to determine corrosion and deficiency at the measuring point. This unit moves from measuring point to point to repeat the measurement. The results obtained are processed with an arithmetic section and plotted two- dimensionally to determine the area and position of corrosion and the degree and position of cracking, which are displayed in two dimensions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波厚さ測定と渦電流測定とを併用するこ
とによって、地下埋設管路の劣化(腐食や欠陥・vlれ
等)を診断する地下管路診断方法及びその装置に関する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention uses ultrasonic thickness measurement and eddy current measurement in combination to detect deterioration (corrosion, defects, cracks, etc.) of underground pipelines. The present invention relates to a method for diagnosing underground pipes and an apparatus therefor.

〔従来の技術〕[Conventional technology]

地下管路の劣化(腐食や欠陥・割れ等)を診断する従来
の方法あるいは装置は、超音波厚さ測定を利用して管路
の腐食肉厚を検知するが、あるいは、主に管路の内壁の
欠陥・割れを渦電流測定によって検知するかのどちらか
一方の機能を有するものであった。
Conventional methods and devices for diagnosing deterioration (corrosion, defects, cracks, etc.) of underground pipelines use ultrasonic thickness measurement to detect the corroded wall thickness of the pipeline; It had one of two functions: detecting defects and cracks in the inner wall by measuring eddy currents.

第11図および第12図は、超音波厚さ測定を利用して
管路の腐食肉厚を検知する従来方法を説明するための図
である。これらの図において、1は超音波センサ、2は
駆動装置、3は管路であり、7は超音波のエコー表示装
置である。超音波センサ1より発信された超音波送信パ
ルス8は腐食のない底面では底面エコー9となって反射
する一方、腐食部6からのパルスは欠陥エコー10とな
って反射し、これらのパルス8と10の時間間隔Δ【と
超音波の音速Vとから腐食部6の肉厚TdがTd−1/
2・y・Δ[・・・(1) なる式によって計算できる。同様に、腐食のない部分の
肉厚Tdoをパルス9と10とから求め、肉厚の減肉も
計算できる。なお、第11.12図中1aはカップリン
グ剤である。
FIGS. 11 and 12 are diagrams for explaining a conventional method of detecting corroded wall thickness of a pipe using ultrasonic thickness measurement. In these figures, 1 is an ultrasonic sensor, 2 is a driving device, 3 is a conduit, and 7 is an ultrasonic echo display device. The ultrasonic transmission pulses 8 emitted from the ultrasonic sensor 1 are reflected as bottom echoes 9 on the bottom surface without corrosion, while the pulses from the corroded parts 6 are reflected as defective echoes 10, and these pulses 8 and 10 time interval Δ
2・y・Δ[...(1) It can be calculated using the following formula. Similarly, the wall thickness Tdo of a portion without corrosion can be determined from pulses 9 and 10, and the reduction in wall thickness can also be calculated. In addition, 1a in FIG. 11.12 is a coupling agent.

次に、第13図および第14図は、渦電流測定を説明す
るための図である。これらの図において、4は渦電流セ
ンナ、11は渦電流リサージュ表示装置、12は正常時
の渦電流(腐食や欠陥・割れのやない、帰合)、12a
はそれに対応するりサージュ形、13は腐食や欠陥・割
れ等のある場合の渦N流、13aはそれに対応する変化
リサージュである。この変化リサージュ13aは、管路
内壁の腐食や欠陥・割れ等の大きざ、タイプに関係して
リサージュ変化(位相φ方向、渦電流強さ7e方向に各
々Δφ、△leの値)するため、その変化値Δφ、ΔI
eを定量化することによって管路内壁の腐食や欠陥・割
れ等を定量化することができる。
Next, FIGS. 13 and 14 are diagrams for explaining eddy current measurement. In these figures, 4 is an eddy current sensor, 11 is an eddy current Lissajous display device, 12 is an eddy current under normal conditions (no corrosion, defects, cracks, etc.), and 12a
is the corresponding Lissajous shape, 13 is the vortex N flow when there is corrosion, defects, cracks, etc., and 13a is the corresponding modified Lissajous. This Lissajous change 13a changes (values of Δφ and Δle in the phase φ direction and eddy current strength 7e direction, respectively) depending on the size and type of corrosion, defects, cracks, etc. on the inner wall of the pipe. The change values Δφ, ΔI
By quantifying e, corrosion, defects, cracks, etc. on the inner wall of the pipe can be quantified.

〔発明が解決しようとする問題点) ところで第11図に示す超音波厚さ測定法は、管路外壁
からの腐食肉厚の検知には有効なものの、内壁のラフネ
ス、腐食、欠陥・割れの検知には精度が悪い。これに対
して、第13図に示す渦電流測定法は、内壁の欠陥・割
れや腐食による減肉の検知には有効なものの、外壁の腐
食肉厚、欠陥の検知には精度が悪い。従って、従来の測
定方法および装置は、管路の内・外壁全面に渡る腐食や
欠陥・割れ等を検知するには精度が悪いという欠点があ
った。
[Problems to be solved by the invention] Although the ultrasonic thickness measurement method shown in FIG. Detection accuracy is poor. On the other hand, the eddy current measurement method shown in FIG. 13 is effective in detecting defects/cracks in the inner wall and thinning due to corrosion, but has poor accuracy in detecting corrosion thickness and defects in the outer wall. Therefore, conventional measuring methods and devices have the disadvantage of poor accuracy in detecting corrosion, defects, cracks, etc. throughout the inner and outer walls of the pipe.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、従来の相反−する欠点を克服するため、超音
波厚さ測定による管路外壁の腐食肉厚および欠陥の検知
と、渦電流測定による管路内壁の欠陥・割れおよび腐食
肉厚の検知とを組み合わせ、管内から同時に管路を診断
するようにしたことを特徴とし、これによって管路診断
速度の向上と精度の向上とを実現させたものである。
In order to overcome the contradictory drawbacks of the conventional methods, the present invention detects corroded wall thickness and defects on the outer pipe wall by ultrasonic thickness measurement, and detects defects, cracks, and corroded wall thickness on the inner pipe wall by eddy current measurement. The system is characterized in that it is combined with detection and simultaneously diagnoses the pipe line from within the pipe, thereby realizing an improvement in the pipe line diagnosis speed and accuracy.

〔作用〕[Effect]

上記手段によれば、超音波厚さ測定によって管路外壁の
腐食肉厚および欠陥が検知され、渦電流測定によって管
路内型の欠陥・割れおよび腐食肉厚が検知される。従っ
て、管内から管路内外壁を同時に診断することができ、
内外の位置ずれなどがなく精度の高い診断を迅速に行う
ことができる。
According to the above means, the corroded wall thickness and defects on the outer wall of the conduit are detected by ultrasonic thickness measurement, and the defects, cracks, and corroded wall thickness of the inner mold of the conduit are detected by eddy current measurement. Therefore, the inner and outer walls of the pipe can be diagnosed simultaneously from inside the pipe.
There is no internal or external positional deviation, and highly accurate diagnosis can be performed quickly.

〔実施例〕〔Example〕

以下、図面を参照して本発明の一実施例を説明する。第
1図は、本発明の一実施例の構成を示すブロック図であ
る。この図において、管路3内には測定センサ14と、
この測定センサ14を回転駆動する回転装置15と、こ
れらの構成要素14゜15を管路3の長手方向に一体に
駆動する駆動装[16とが挿入されている。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. In this figure, there is a measurement sensor 14 in the pipe line 3,
A rotating device 15 for rotationally driving this measurement sensor 14 and a driving device [16 for driving these components 14 and 15 together in the longitudinal direction of the pipe 3 are inserted.

前記駆v′J装置16は、第2図に示すように、モータ
25によって回転駆動されるタイヤ26と、回転装置1
5および測定センサ14を支持する支持バネ27とを有
し、モータ25の回転が減速されてタイヤ26に伝達さ
れることによって、管路3の長手方向に移動するように
なっている。また、タイヤ26は滑らないゴム等よりな
るもので、管路3の内壁面に沿って複数個配置され(第
2図)、測定センサ14と内壁面との間隔が常に一定と
なるように制御される。
As shown in FIG.
5 and a support spring 27 that supports the measurement sensor 14, and the rotation of the motor 25 is decelerated and transmitted to the tires 26, thereby moving in the longitudinal direction of the conduit 3. Furthermore, the tires 26 are made of non-slip rubber, etc., and are arranged in plural numbers along the inner wall surface of the conduit 3 (Fig. 2), and are controlled so that the distance between the measurement sensor 14 and the inner wall surface is always constant. be done.

また、回転装置15は、第3図に示すように、回転用モ
ータ28と、測定センサ14を回転駆動する回転軸2つ
と、測定センサ14を管路3の内壁に当接させる送り出
し部30とを具備してなり、測定センサ14を管路3の
円周方向に回転させるものである。なお、電磁超音波セ
ンサによって超音波厚さ測定を行うときは、上記送り出
し部30は不要となる。
Further, as shown in FIG. 3, the rotation device 15 includes a rotation motor 28, two rotation shafts that rotationally drive the measurement sensor 14, and a delivery section 30 that brings the measurement sensor 14 into contact with the inner wall of the conduit 3. The measurement sensor 14 is rotated in the circumferential direction of the conduit 3. Note that when performing ultrasonic thickness measurement using an electromagnetic ultrasonic sensor, the sending unit 30 is not required.

次に、第4図は測定センサ14の構成を示すものである
。この測定センサ14は、超音波センサ22とAfJ流
センサ23とからなり、iIu流センサ23はさらに励
磁コイル23aと検知コイル24とからなっている。上
記超音波センサ22は、超音波送受信装置17から供給
された電気信号を、圧電素子等によって一定周波数(1
MH2〜20MH2)の超音波送信パルス8に変換し、
管路3に向けて発射する一方、底面エコー〇、欠陥エコ
ー10を受信して電気信号に戻し、この信号(超音波肉
厚信号)を超音波送受信装置17へ供給する。
Next, FIG. 4 shows the configuration of the measurement sensor 14. The measurement sensor 14 includes an ultrasonic sensor 22 and an AfJ flow sensor 23, and the iIu flow sensor 23 further includes an excitation coil 23a and a detection coil 24. The ultrasonic sensor 22 receives an electric signal supplied from the ultrasonic transmitting/receiving device 17 at a constant frequency (1
MH2 to 20MH2) into ultrasonic transmission pulses 8,
While emitting toward the conduit 3, it receives the bottom echo 〇 and the defective echo 10, converts it back into an electrical signal, and supplies this signal (ultrasonic wall thickness signal) to the ultrasonic transmitting/receiving device 17.

一方、a電流センサ23は、渦電流送受信装置18から
供給された電気信号を励磁コイル23aによって磁界に
変換し、この磁界によって管路3に渦電流12.13を
発生させる。ここで、渦電流12は正常時の渦電流、渦
電流13は欠陥等による変化渦電流である。これらの渦
電流12.13は誘導磁界を発生するが、これが検知コ
イル24によって検知され、検知出力く渦電流信号)が
渦電流送受信装置18に供給される。
On the other hand, the a current sensor 23 converts the electric signal supplied from the eddy current transmitting/receiving device 18 into a magnetic field using the exciting coil 23a, and generates eddy currents 12, 13 in the conduit 3 by this magnetic field. Here, the eddy current 12 is an eddy current under normal conditions, and the eddy current 13 is a changed eddy current due to a defect or the like. These eddy currents 12 , 13 generate an induced magnetic field, which is detected by the sensing coil 24 and a sensing output (eddy current signal) is supplied to the eddy current transmitter/receiver 18 .

こうして得られた各信号に基づき、上記超音波送受信8
M17は、第5図(a )に示す超音波送信パルス8.
底面エコー9および欠陥エコー10の各受信間隔を演算
装置1つへ供給し、渦電流送受信装置18は、第5図(
b )に示す渦電流強さleと、その位相φとを上記演
算装置19へ供給する。なお、上記超音波センサ22と
しては、励磁コイルと検知コイルとからなる[6超音波
センサを利用することも可能であり、この場合は、検知
コイルの交番磁界と同じ周波数の超音波を送受信するこ
とができる。
Based on each signal obtained in this way, the ultrasonic transmitter/receiver 8
M17 is the ultrasonic transmission pulse 8. shown in FIG. 5(a).
The receiving intervals of the bottom echo 9 and the defective echo 10 are supplied to one arithmetic unit, and the eddy current transmitter/receiver 18 is configured as shown in FIG.
The eddy current intensity le shown in b) and its phase φ are supplied to the arithmetic unit 19. Note that as the ultrasonic sensor 22, it is also possible to use an ultrasonic sensor [6] consisting of an excitation coil and a detection coil, and in this case, it transmits and receives ultrasonic waves of the same frequency as the alternating magnetic field of the detection coil. be able to.

さて、上記演算装置19は、第6図に示すように、測定
位置のセット等を行う信号コントロール部31と、前記
測定位置での肉厚Tdを計算する超音波信号処理部32
と、渦電流リサージュによる腐食・欠陥計算を行う渦電
流信号処理部33と、上記肉厚Tdの2次元プロットや
腐食と割れのプロット等を行う演算部34とからなり、
演算部34で得られたデータが第7図に示す表示装置3
5と記録計36とに供給されて表示、記録される。
Now, as shown in FIG. 6, the arithmetic unit 19 includes a signal control section 31 that sets the measurement position, etc., and an ultrasonic signal processing section 32 that calculates the wall thickness Td at the measurement position.
, an eddy current signal processing section 33 that performs corrosion/defect calculations using eddy current Lissajous, and a calculation section 34 that performs two-dimensional plotting of the wall thickness Td, plotting corrosion and cracking, etc.
The data obtained by the calculation unit 34 is displayed on the display device 3 shown in FIG.
5 and a recorder 36 for display and recording.

ここで、第7図(a )は管路3の長手方向に走査した
ときの表示であり、管路3の縦断面を二次元表示する。
Here, FIG. 7(a) is a display when the conduit 3 is scanned in the longitudinal direction, and a longitudinal section of the conduit 3 is displayed two-dimensionally.

また、第7図(b)は管路3の円周方向に走査したとき
の表示であり、管路3の横断面を二次元的に表示するよ
うになっている。なお、上記構成要素35.36が表示
・記録装置20を構成している。
Moreover, FIG. 7(b) is a display when the conduit 3 is scanned in the circumferential direction, and the cross section of the conduit 3 is displayed two-dimensionally. Note that the above components 35 and 36 constitute the display/recording device 20.

次に、第8図〜第10図を参照して本実施例の動作を説
明する。
Next, the operation of this embodiment will be explained with reference to FIGS. 8 to 10.

第8図は長手方向の走査例を示すものであり、回転装置
15および駆!lJ装置16は、駆動装置16によって
自走するか、巻取り器37に巻回されたローフ38によ
ってけん引されて他走し、管路3の長手方向に測定間隔
Δjで移動し、測定点n(n = 1 、2−)にセッ
トされる(第10図(I))。なお、上記駆動装置16
は信号コントロール部31(第6図)の制御の下に自走
する。
FIG. 8 shows an example of scanning in the longitudinal direction, in which the rotating device 15 and the drive! The lJ device 16 is self-propelled by the drive device 16 or is towed by a loaf 38 wound around a winder 37 and runs separately, moves in the longitudinal direction of the pipe 3 at a measurement interval Δj, and moves to the measurement point n. (n = 1, 2-) (FIG. 10(I)). Note that the drive device 16
is self-propelled under the control of the signal control section 31 (FIG. 6).

こうして、測定点nが定まると、超音波センサ22と渦
電流センサ23とが超音波送受信装置17と渦電流送受
信装置18とによって各々駆動され、この結果得られた
検出信号、すなわち超音波肉厚信号と渦電流信号とが各
送受信装置17,18に供給される。上記超音波肉厚信
号は、第6図の信号コントロール部31を介して超音波
信号処理部32へ送られ、第10図(II)に示す手順
によって測定点nにおける肉厚Tdnが求められ、最小
肉厚Tdが記憶される。一方、上記渦電流信号は、第6
図の信号コントロール部31を介して渦電流信号処理部
33へ送られ、第10図(III)に示す手順によって
測定点nにおける腐食および欠陥が求められる。すなわ
ち、上記渦電流の強さIeと位相φから、正常時の渦電
流の値を減じてリサージュ変化△■e、Δφを求め、腐
食2割れを定量化し、最大のΔle、Δφより最大欠陥
等を記憶する。
In this way, when the measurement point n is determined, the ultrasonic sensor 22 and the eddy current sensor 23 are driven by the ultrasonic transmitter/receiver 17 and the eddy current transmitter/receiver 18, respectively, and the detection signal obtained as a result, that is, the ultrasonic wall thickness A signal and an eddy current signal are supplied to each transceiver device 17,18. The ultrasonic wall thickness signal is sent to the ultrasonic signal processing section 32 via the signal control section 31 in FIG. 6, and the wall thickness Tdn at the measurement point n is determined by the procedure shown in FIG. 10 (II). The minimum wall thickness Td is stored. On the other hand, the eddy current signal is
The signal is sent to the eddy current signal processing section 33 via the signal control section 31 shown in the figure, and corrosion and defects at the measurement point n are determined by the procedure shown in FIG. 10 (III). That is, from the above-mentioned eddy current strength Ie and phase φ, the value of the eddy current during normal operation is subtracted to obtain the Lissajous change △■e, Δφ, the corrosion 2-cracking is quantified, and the maximum defect etc. is determined from the maximum Δle and Δφ. Remember.

以後同様に、測定点nを1つずつ移動して上記測定を繰
り返し、得られた結果を演算部34で処理して2次元的
にプロットしく第10図IV)、腐食面積と腐食位置1
割れ位置とその程度を求めて第7図(a )に示すよう
に2次元表示する。
Thereafter, in the same manner, the measurement points n are moved one by one and the above measurements are repeated, and the obtained results are processed by the calculation unit 34 and plotted two-dimensionally.
The location and extent of the crack are determined and displayed in two dimensions as shown in FIG. 7(a).

次に、第9図は円周方向の走査例を示すものである。こ
の場合、各測定点nは、管周を数十等分して形成し、各
測定点nt、:おける超音波厚さ測定に先立って測定セ
ンサ14を管壁に当接させ一1測定が終了したときに管
壁から一定間隔離して次の測定点n+1へ移動させる。
Next, FIG. 9 shows an example of scanning in the circumferential direction. In this case, each measurement point n is formed by dividing the tube circumference into several tens of equal parts, and the measurement sensor 14 is brought into contact with the tube wall prior to the ultrasonic thickness measurement at each measurement point nt, and 11 measurements are carried out. When finished, it is separated from the tube wall for a certain period of time and moved to the next measurement point n+1.

こうして得た超音波肉厚信号と渦電流信号とを上と同様
のアルゴリズムによって処理しく第10図)、その結果
を第7図(I))に示すように2次元表示する。
The ultrasonic wall thickness signal and eddy current signal thus obtained are processed by the same algorithm as above (FIG. 10), and the results are displayed two-dimensionally as shown in FIG. 7(I)).

こうして、管路3の肉厚、腐食、欠陥を全滅に渡って自
動的に診断し、その結果を2次元的に表示することがで
きる。
In this way, the wall thickness, corrosion, and defects of the pipe line 3 can be automatically diagnosed and the results can be displayed two-dimensionally.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、超音波センサと渦電流
センサとを具備する測定センサを管路の内側で自動的に
走査させ、地下埋設管路の外壁腐食による肉厚測定を超
音波によって行うとともに、前記管路の内壁に生じる欠
陥や割れあるいは腐食などの測定を渦電流によって同時
に、管路の全滅に渡って行うようにしたから、管路、配
管等、既設の鉄鋼、金属構造物の割れ、欠陥、腐食を精
度よくかつ迅速に診断できる利点が得られる。
As explained above, the present invention automatically scans the inside of a pipeline with a measurement sensor including an ultrasonic sensor and an eddy current sensor, and measures wall thickness due to outer wall corrosion of an underground pipeline using ultrasonic waves. At the same time, since the measurement of defects, cracks, corrosion, etc. that occur on the inner wall of the pipeline is carried out at the same time using eddy current, and the pipeline is completely destroyed, it is possible to measure the defects, cracks, corrosion, etc. that occur on the inner wall of the pipeline. The advantage is that cracks, defects, and corrosion can be diagnosed accurately and quickly.

このため、金属材料、構造物の割れ、欠陥および腐食の
検査にとどまらず、形状測定、さらに、プリント、製品
の品質検査、メッキ・塗膜の測定などにも応用できる利
点がある。さらに、内・外壁面の同時非破壊検査技術と
して、薄板の製造。
Therefore, it has the advantage that it can be applied not only to inspection of cracks, defects, and corrosion of metal materials and structures, but also to shape measurement, quality inspection of prints and products, and measurement of plating and coating films. Furthermore, we manufacture thin plates as a simultaneous non-destructive inspection technology for interior and exterior walls.

保守、検査技術への適用も考えられる。Applications to maintenance and inspection technology are also conceivable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による診断装置の構成を示す
ブロック図、第2図は駆動装置の構成を示す概略図で同
図<a >は側面図、(b)は横断面図、第3図は回転
装置の構成を示す概略図、第4図は測定センサの構成を
示す概略図、第5図は上記実施例の信号処理図、第6図
は送受信装置および演算装置の構成を示すブロック図、
第7図は表示・記録装置20の概略図、第8図、第9図
は診断走査を説明するための断面図、第10図は本発明
の測定ブロック図、第11図および第12図は従来の超
音波厚さ測定を説明するための図、第13図および第1
4図は従来の渦電流測定を説明するための図である。 3・・・・・・管路、5・・・・・・欠陥・割れ、6・
・・・・・腐食、14・・・・・・測定センサ(センサ
)、15・・・・・・回転装置、16・・・駆動装置、
17・・・・・・超音波送受信装置、18・・・・・・
渦電流送受信装置(以上、17.18は送受信部)、2
0・・・・・・表示・記録装置(表示手段)、22・・
・・・・超音波センサ、23・・・・・・渦電流センサ
、31・・・・・・信号コントロール部(制御部)、3
2・・・・・・超音波信号処理部、33・・・・・・渦
If!信号処理部、34・・・・・・′atli部(以
上32〜34は演算手段)。 第2図 第5図 第6図 5b
FIG. 1 is a block diagram showing the configuration of a diagnostic device according to an embodiment of the present invention, and FIG. 2 is a schematic diagram showing the configuration of a drive device. Fig. 3 is a schematic diagram showing the configuration of the rotating device, Fig. 4 is a schematic diagram showing the configuration of the measurement sensor, Fig. 5 is a signal processing diagram of the above embodiment, and Fig. 6 is the configuration of the transmitting/receiving device and the calculation device. Block diagram shown,
FIG. 7 is a schematic diagram of the display/recording device 20, FIGS. 8 and 9 are sectional views for explaining diagnostic scanning, FIG. 10 is a measurement block diagram of the present invention, and FIGS. 11 and 12 are Figures 13 and 1 for explaining conventional ultrasonic thickness measurement
FIG. 4 is a diagram for explaining conventional eddy current measurement. 3...Pipeline, 5...Defect/Crack, 6.
... Corrosion, 14 ... Measurement sensor (sensor), 15 ... Rotating device, 16 ... Drive device,
17... Ultrasonic transmitting/receiving device, 18...
Eddy current transmitting/receiving device (in the above, 17.18 is the transmitting/receiving section), 2
0...display/recording device (display means), 22...
... Ultrasonic sensor, 23 ... Eddy current sensor, 31 ... Signal control section (control section), 3
2... Ultrasonic signal processing unit, 33... Vortex If! signal processing unit, 34...'atli unit (32 to 34 are calculation means); Figure 2 Figure 5 Figure 6 Figure 5b

Claims (2)

【特許請求の範囲】[Claims] (1)超音波センサと渦電流センサを併用したセンサに
よつて地下埋設管路の内壁面を走査し、前記管路肉厚と
管内壁欠陥・割れとを同時に測定し、前記管路の各位置
に対して前記肉厚および欠陥・割れを集計・演算し、こ
の集計・演算結果を前記管路の各位置に対して2次元的
に表示・記録することを特徴とする地下管路診断方法。
(1) Scan the inner wall surface of the underground pipeline using a sensor that combines an ultrasonic sensor and an eddy current sensor, simultaneously measure the pipe wall thickness and pipe inner wall defects/cracks, A method for diagnosing underground pipes, characterized in that the wall thickness and defects/cracks are aggregated and calculated for each position, and the results of the aggregation and calculations are two-dimensionally displayed and recorded for each position of the pipe. .
(2)地下埋設管路の肉厚および欠陥・割れを測定する
センサと、このセンサを前記管路の内壁面長手方向に移
動する駆動装置と、前記センサを前記管路の円周方向に
回転させる回転装置と、前記駆動装置および回転装置を
駆動させかつ前記センサの入出力信号をコントロールす
る制御部と、前記センサを作動させる送受信部と、この
送受信部で得た測定信号を処理し前記管路の肉厚および
欠陥・割れを定量化する演算手段と、前記演算結果を2
次元あるいは3次元表示する表示手段とからなることを
特徴とする地下管路診断装置。
(2) A sensor that measures the wall thickness and defects/cracks of an underground pipeline, a drive device that moves the sensor in the longitudinal direction of the inner wall surface of the pipeline, and a drive device that rotates the sensor in the circumferential direction of the pipeline. a control unit that drives the drive unit and the rotation unit and controls input/output signals of the sensor; a transmitting/receiving unit that operates the sensor; and a transmitting/receiving unit that processes measurement signals obtained by the transmitting/receiving unit and a calculation means for quantifying road wall thickness and defects/cracks;
An underground pipe diagnosis device characterized by comprising a display means for dimensional or three-dimensional display.
JP59255906A 1984-12-04 1984-12-04 Method and apparatus for diagnosing underground pipeline Pending JPS61133856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59255906A JPS61133856A (en) 1984-12-04 1984-12-04 Method and apparatus for diagnosing underground pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59255906A JPS61133856A (en) 1984-12-04 1984-12-04 Method and apparatus for diagnosing underground pipeline

Publications (1)

Publication Number Publication Date
JPS61133856A true JPS61133856A (en) 1986-06-21

Family

ID=17285210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59255906A Pending JPS61133856A (en) 1984-12-04 1984-12-04 Method and apparatus for diagnosing underground pipeline

Country Status (1)

Country Link
JP (1) JPS61133856A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333458U (en) * 1986-08-22 1988-03-03
JPS63193808A (en) * 1987-02-08 1988-08-11 Yamato:Kk Cooling device for mold in packing device of mat for automobile
JPS63135162U (en) * 1987-02-25 1988-09-05
JPH01500460A (en) * 1986-08-12 1989-02-16 グラマン エアロスペース コーポレーション Improved probe for hybrid analytical test equipment
JPH01185408A (en) * 1988-01-20 1989-07-25 Kansai Electric Power Co Inc:The Robot for pipe interior inspection work
JPH02236157A (en) * 1989-03-09 1990-09-19 Chugoku X-Ray Kk Eddy current flaw detection system of heat transfer pipe
JPH0436409U (en) * 1990-07-24 1992-03-26
JPH0436408U (en) * 1990-07-24 1992-03-26
WO1999013326A1 (en) * 1997-09-06 1999-03-18 Bg Plc Eddy current pipeline inspection device and method
JP2003021621A (en) * 2001-07-09 2003-01-24 Nkk Corp Corrosion diagnosing system
JP2007187593A (en) * 2006-01-16 2007-07-26 Hitachi Ltd Inspection device for piping and inspection method for piping
JP2011149858A (en) * 2010-01-22 2011-08-04 Toyo Asano Foundation Co Ltd Non-destructive measurement fixture, device for measuring concrete covering thickness using the same, and method for measuring concrete covering thickness in sc pile
JP2016153753A (en) * 2015-02-20 2016-08-25 三菱日立パワーシステムズ株式会社 Pipe flaw detector and pipe flaw detection method
JP2017003545A (en) * 2015-06-16 2017-01-05 東亜非破壊検査株式会社 Outer surface thinning measuring device of buried pipes
CN110186412A (en) * 2019-07-12 2019-08-30 浙江盘毂动力科技有限公司 A kind of measurer for thickness
CN110389172A (en) * 2019-07-26 2019-10-29 湖南工程学院 Oil pipeline tube inner corrosion detection device
JP2020051917A (en) * 2018-09-27 2020-04-02 アイシン精機株式会社 Inspection apparatus and inspection method for cylindrical superconductor
RU2735349C1 (en) * 2020-05-18 2020-10-30 Общество с ограниченной ответственностью "Научно-производственное предприятие "Техносфера-МЛ" Diagnostic method of technical parameters of underground pipeline
CN113776419A (en) * 2021-08-07 2021-12-10 爱德森(厦门)电子有限公司 Method and device for measuring thickness of eddy current coating by using bicrystal ultrasonic sensor for auxiliary triggering

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500460A (en) * 1986-08-12 1989-02-16 グラマン エアロスペース コーポレーション Improved probe for hybrid analytical test equipment
JPS6333458U (en) * 1986-08-22 1988-03-03
JPS63193808A (en) * 1987-02-08 1988-08-11 Yamato:Kk Cooling device for mold in packing device of mat for automobile
JPS63135162U (en) * 1987-02-25 1988-09-05
JPH01185408A (en) * 1988-01-20 1989-07-25 Kansai Electric Power Co Inc:The Robot for pipe interior inspection work
JPH02236157A (en) * 1989-03-09 1990-09-19 Chugoku X-Ray Kk Eddy current flaw detection system of heat transfer pipe
JPH0436409U (en) * 1990-07-24 1992-03-26
JPH0436408U (en) * 1990-07-24 1992-03-26
WO1999013326A1 (en) * 1997-09-06 1999-03-18 Bg Plc Eddy current pipeline inspection device and method
JP2003021621A (en) * 2001-07-09 2003-01-24 Nkk Corp Corrosion diagnosing system
JP2007187593A (en) * 2006-01-16 2007-07-26 Hitachi Ltd Inspection device for piping and inspection method for piping
JP2011149858A (en) * 2010-01-22 2011-08-04 Toyo Asano Foundation Co Ltd Non-destructive measurement fixture, device for measuring concrete covering thickness using the same, and method for measuring concrete covering thickness in sc pile
JP2016153753A (en) * 2015-02-20 2016-08-25 三菱日立パワーシステムズ株式会社 Pipe flaw detector and pipe flaw detection method
JP2017003545A (en) * 2015-06-16 2017-01-05 東亜非破壊検査株式会社 Outer surface thinning measuring device of buried pipes
JP2020051917A (en) * 2018-09-27 2020-04-02 アイシン精機株式会社 Inspection apparatus and inspection method for cylindrical superconductor
CN110186412A (en) * 2019-07-12 2019-08-30 浙江盘毂动力科技有限公司 A kind of measurer for thickness
CN110389172A (en) * 2019-07-26 2019-10-29 湖南工程学院 Oil pipeline tube inner corrosion detection device
RU2735349C1 (en) * 2020-05-18 2020-10-30 Общество с ограниченной ответственностью "Научно-производственное предприятие "Техносфера-МЛ" Diagnostic method of technical parameters of underground pipeline
CN113776419A (en) * 2021-08-07 2021-12-10 爱德森(厦门)电子有限公司 Method and device for measuring thickness of eddy current coating by using bicrystal ultrasonic sensor for auxiliary triggering

Similar Documents

Publication Publication Date Title
JPS61133856A (en) Method and apparatus for diagnosing underground pipeline
US3944963A (en) Method and apparatus for ultrasonically measuring deviation from straightness, or wall curvature or axial curvature, of an elongated member
US4523468A (en) Phased array inspection of cylindrical objects
US4567747A (en) Self-calibration system for ultrasonic inspection apparatus
US7900517B2 (en) System and method for inspecting a pipeline with ultrasound
US9810666B2 (en) Device and method for nondestructive inspection of tubular products, especially on site
CA2962411A1 (en) Nondestructive, absolute determination of thickness of or depth in dielectric materials
JPWO2004051187A1 (en) Thickness measuring device for container steel plate
JPH02269961A (en) Flaw detector
CN115684348A (en) Electromagnetic ultrasonic Lamb wave welding seam detection method, device and platform
KR100975330B1 (en) Multi Channel Ultrasonic Welding Inspection System and Control Method
JPH06109862A (en) Method for detecting object part in underground pipe
JPS61133857A (en) Method and apparatus for diagnosing corrosion of underground pipeline
JP2002214205A (en) Ultrasonic flaw detector
JPS61172055A (en) Apparatus for inspecting interior of piping
JP4632474B2 (en) Ultrasonic flaw detection image display method and ultrasonic flaw detection image display device
JPS6131962A (en) Inspecting instrument of piping
JPH0584464B2 (en)
JP4004537B2 (en) Sheet thickness measurement method
JP2007147645A (en) Device for measuring thickness of vessel steel plate
JP2888367B2 (en) Measuring method of thickness of deposits in pipe
JP2642459B2 (en) Ultrasonic inspection image processing equipment
JPS6258103A (en) Method for ultrasonic flaw detection
JPH11183235A (en) Method and device for detecting gas layer in pipe using ultrasonic wave
JPH09281089A (en) Inspection of pipe and apparatus for inspecting interior of pipe