JPS6258103A - Method for ultrasonic flaw detection - Google Patents

Method for ultrasonic flaw detection

Info

Publication number
JPS6258103A
JPS6258103A JP60198955A JP19895585A JPS6258103A JP S6258103 A JPS6258103 A JP S6258103A JP 60198955 A JP60198955 A JP 60198955A JP 19895585 A JP19895585 A JP 19895585A JP S6258103 A JPS6258103 A JP S6258103A
Authority
JP
Japan
Prior art keywords
probe
ultrasonic
flaw detection
inspected
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60198955A
Other languages
Japanese (ja)
Inventor
Hideki Teraoka
寺岡 英喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP60198955A priority Critical patent/JPS6258103A/en
Publication of JPS6258103A publication Critical patent/JPS6258103A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0645Display representation or displayed parameters, e.g. A-, B- or C-Scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make it possible to simply inspect the inner surface of a cylindrical object to be inspected within a short time, by filling the cylindrical object to be inspected with a medium pervious to an ultrasonic wave. CONSTITUTION:A cylindrical object 11 to be inspected is filled with a medium 12 pervious to an ultrasonic wave such as oil or water and one vertical ultrasonic probe 13 is provided to the outside of said object 11. When a driving pulse signal is applied to the probe 13 from a transmitter 14, a pulse S is transmitted to the direction shown by an arrow 17 and impinges against the inner surface 11A and inner surface 11B opposed thereto of the object 10 to be reflected while reflected waves SA, SB, SC are received by a receiving part 15. The reflected wave SC is one from the surface 11C. Next, the probe 13 is continuously or intermittently moved over the half periphery of the object 11 to be inspected as shown by an arrow 18 and, every when the probe 13 moves over a predetermined distance, an ultrasonic wave is transmitted from the probe 13. The reflected waves SA, SB at that time are received by the receiving part 15 and imagewise displayed by an image display means 16 based on a C-scope method and the corrosion state over the inner peripheral surface of the object 11 to be inspected can be easily grasped within a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波を用いて例えばパイプラインや土中埋
設管(箱形のものも含む)の内面状態を検査する超音波
探傷法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an ultrasonic flaw detection method that uses ultrasonic waves to inspect the inner surface condition of, for example, pipelines and underground pipes (including box-shaped pipes). .

〔従来の技術〕[Conventional technology]

超音波探傷法は、管の内面腐蝕状態を把握する手段とし
て非常に簡便で実用的なものであり、このため広く採用
されている。第4図は従来のかかる超音波探傷法を説明
する図であって、被検体である管1の外側に垂直探触子
2を設置するとともに、この垂直探触子2に発信器(図
示せず)より発信パルスを与えて該垂直探触子2から超
音波を送波し、その垂直探触子2の直近の管内面3から
反射する反射波を受波することにより管1の厚みを測定
し、これを図示矢印4方向へ全周にわたってスキャンす
ることにより、管内面全周の腐蝕状態を検査している。
Ultrasonic flaw detection is a very simple and practical means of determining the state of corrosion on the inner surface of a pipe, and is therefore widely used. FIG. 4 is a diagram illustrating the conventional ultrasonic flaw detection method, in which a vertical probe 2 is installed outside the tube 1 that is the object to be inspected, and a transmitter (not shown) is attached to the vertical probe 2. Step 1) The thickness of the tube 1 can be measured by sending an ultrasonic wave from the vertical probe 2 by applying a pulse from the vertical probe 2, and by receiving the reflected wave reflected from the inner surface 3 of the tube in the vicinity of the vertical probe 2. The corrosion state of the entire circumference of the inner surface of the tube is inspected by measuring and scanning the entire circumference in the four directions of arrows shown in the figure.

そして、以上のような手段により、垂直探触子2を全周
にわたってスキャンして得られた受波信号を受信部(図
示せず)で受信した後、記録紙に記録表示しまたは画像
処理した後に表示部に表示している。
Then, by the means described above, the received signal obtained by scanning the vertical probe 2 over the entire circumference is received by a receiving section (not shown), and then recorded and displayed on recording paper or processed as an image. It is later displayed on the display.

また、従来のもう1つの超音波探傷法は、管1の外周に
2次元アレイ超音波探触子を設置するとともに、この2
次元アレイ超音波探触子の各探触索子を電子回路により
高速スキャンしその反射波を受信部で受信し表示部に表
示するものである。
Another conventional ultrasonic flaw detection method is to install a two-dimensional array ultrasonic probe on the outer periphery of the tube 1, and
Each probe of the dimensional array ultrasonic probe is scanned at high speed by an electronic circuit, and the reflected waves are received by the receiver and displayed on the display.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

しかし、これらの超音波探傷法は、管内面の全周を検査
する場合には何れも超音波探触子を管外面の全周にわた
ってスキャンする必要があるために探触子の設置作業が
繁雑であり、また土中に埋設されあるいは構造物として
既に出来上っている管を検査する場合等にはその堀り起
こし作業等が非常に厄介であり、検査作業に長時間を要
する問題があった。
However, with these ultrasonic flaw detection methods, when inspecting the entire circumference of the inner surface of a tube, the ultrasonic probe must scan the entire circumference of the outer surface of the tube, making the installation work of the probe complicated. Furthermore, when inspecting a pipe that is buried in the ground or has already been constructed as a structure, digging up the pipe is extremely troublesome, and there is a problem in that the inspection work takes a long time. Ta.

本発明は以上のような問題点を解決するためになされた
もので、超音波探傷の利点を生かして簡便かつ検査時間
の短縮化を図って被検体の内面を検査し得る超音波探傷
法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and provides an ultrasonic flaw detection method that utilizes the advantages of ultrasonic flaw detection to inspect the inner surface of an object in a simple and shortened inspection time. The purpose is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するために、筒状被検体の内部
に超音波透過用媒体を充填するとともに、前記被検体の
外側に超音波探触子を設置し、この超音波探触子から超
音波を゛送波し、前記超音波J3適用媒体内を伝播させ
て被検体内面で反射波を得ることにより、前記被検体の
正対する内面の状態を検査するものである。
In order to achieve the above object, the present invention fills the inside of a cylindrical object with an ultrasound transmission medium, installs an ultrasound probe on the outside of the object, and connects the ultrasonic probe to the outside of the object. The condition of the inner surface directly facing the object is inspected by transmitting ultrasonic waves and propagating them in the ultrasonic wave J3 application medium to obtain reflected waves on the inner surface of the object.

〔作用〕[Effect]

従って、本発明は以上のような手段としたことにより、
超音波探触子より送波された超音波はその直近の被検体
内面だけでなく、超音波透過用媒体を介して対面する内
面にも送波され、正対する管内面から反射波を得ること
ができる。この結果、被検体の半周をスキャンするだけ
で被検体内面の全周を検査することができ、従来の超音
波探傷に比べて約半分のスキャン範囲でよいので簡便に
探傷でき、かつ作業時間を大幅に短縮することができる
Therefore, the present invention has the above-mentioned means.
Ultrasonic waves transmitted by an ultrasound probe are transmitted not only to the inner surface of the object immediately adjacent to it, but also to the inner surface facing the object through the ultrasound transmission medium, and reflected waves are obtained from the inner surface of the tube directly facing the object. I can do it. As a result, the entire circumference of the inner surface of the object can be inspected by scanning only half the circumference of the object, and the scanning range is about half that of conventional ultrasonic flaw detection, making flaw detection easy and reducing the work time. It can be significantly shortened.

〔実施例〕〔Example〕

以下、本発明の一実施例について第1図および第2図を
参照して説明する。第1図は本発明方法を適用してなる
超音波探傷装置の模式的な(1■成図、第2図は第1図
の動作説明図である。本発明装置にあっては、先ず、円
形、角形等の断面形状ををする筒状被検体11の内部に
超音波透過用媒体12を充填する。この超音波透過用媒
体12としては例えば油、水等が使用される。このよう
にして被検体内部に超音波透過用媒体12を充填した後
、被検体11の外側に例えば1個の垂直型超音波探触子
13が設置される。14は発信パルスを与えて超音波探
触子13を駆動する発信器、15は発信器15からタイ
ミング信号を受けた後、前記被検体11内面から反射さ
れてくる反射波を受信する受信部、16は受信部15か
ら出力された受信信号を画像処理して表示する画像表示
手段である。この画像表示手段17としては従来より周
知の例えばCスコープ法(平面図形法)等が採用される
。このCスコープ法とは1つの探傷点のエコーの有無を
ブラウン管上の1点の輝度として示し、探触子をスキャ
ンする位置に対応させてブラウン管上の点の位置を移動
させながら図形表示する方法である。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. Fig. 1 is a schematic diagram of an ultrasonic flaw detection apparatus to which the method of the present invention is applied, and Fig. 2 is an explanatory diagram of the operation of Fig. 1. A cylindrical specimen 11 having a circular or square cross-sectional shape is filled with an ultrasound transmission medium 12. For example, oil, water, etc. are used as the ultrasound transmission medium 12. After filling the inside of the object with the ultrasonic transmission medium 12, for example, one vertical ultrasonic probe 13 is installed outside the object 11. 14 transmits a transmission pulse to transmit the ultrasonic probe. 15 is a receiving section that receives a timing signal from the transmitter 15 and then receives a reflected wave reflected from the inner surface of the subject 11; 16 is a receiving signal output from the receiving section 15; This is an image display means that processes and displays the image.As this image display means 17, a conventionally well-known method such as the C scope method (planar figure method) is adopted. This method shows the presence or absence of an echo as the brightness of a single point on the cathode ray tube, and graphically displays the position of the point on the cathode ray tube by moving it in correspondence with the scanning position of the probe.

しかして、以上のような装置によれば、発信器14から
超音波探触子13に駆動用パルス信号を与えると、この
超音波探触子13から図示矢印17方向に第2図に示す
タイミングで送信パルスSが送波され、この送信パルス
Sは探触子直近の内面11Aおよび該内面11Aと向い
合う反対側内面11B(これらの面11A、11Bを正
対する内面と指称する)等に当たって反射され、第2図
に示すタイミングをもって受信部15で反射波SA、S
B、SCを受信する。SCは第1図に示す而11Cから
反射された反射波□である。GA。
According to the above-described apparatus, when a driving pulse signal is applied from the transmitter 14 to the ultrasonic probe 13, the ultrasonic probe 13 moves in the direction of the arrow 17 at the timing shown in FIG. A transmission pulse S is transmitted, and this transmission pulse S is reflected by hitting the inner surface 11A closest to the probe, the inner surface 11B on the opposite side facing the inner surface 11A (these surfaces 11A and 11B are referred to as the inner surface facing directly), etc. reflected waves SA, S at the receiver 15 at the timing shown in FIG.
B, receives SC. SC is a reflected wave □ reflected from 11C shown in FIG. G.A.

GBはゲートを示す。そして、本方法にあっては超音波
探触子13について図示矢印18に示すように被検体1
1の半周にわ、たって連続的または間欠的に移動させな
がら所定距離移動するごとに超音波探傷法13から超音
波を送波し、そのときの反射波SA、SBを受信部16
で受信し、画像表示手段16によりCスコープ法により
画像表示すれば、被検体内面の全周の腐蝕状態を容易に
把握することができる。
GB indicates a gate. In this method, the ultrasonic probe 13 is connected to the subject 1 as shown by the arrow 18 in the figure.
The ultrasonic flaw detection method 13 transmits ultrasonic waves every time the ultrasonic flaw detection method 13 moves a predetermined distance while moving continuously or intermittently for half a circumference of 1, and the reflected waves SA and SB at that time are sent to the receiver 16.
By receiving the information and displaying it as an image using the C-scope method using the image display means 16, it is possible to easily grasp the corrosion state of the entire circumference of the inner surface of the subject.

従って、以上のような実施例の方法によれば、1個の超
音波探触子13を被検体11の半周にわたって移動させ
て超音波の反射波を受信すれば、被検体内面の全周の状
態を把握でき、探触子13の移動範囲が従来に比べてほ
ぼ半分ですみ、例えばバイブラインや土中埋設管等の検
査が非常に簡便になり、作業時間が大幅に短縮できる。
Therefore, according to the method of the embodiment described above, if one ultrasonic probe 13 is moved over half the circumference of the object 11 and the reflected ultrasonic waves are received, the entire circumference of the inner surface of the object is detected. The condition can be grasped, the movement range of the probe 13 is reduced to about half compared to the conventional one, and inspections of, for example, vibrating lines and underground pipes are made very simple, and the working time can be significantly shortened.

また、通常、外側の腐蝕を抑える観点から被検体11の
表面に塗装を施しており、超音波探傷の時にはその塗装
膜を除去する必要があるが、その塗装膜除去作業が半分
ですみ、この点でも検査作業の能率化に大きく貢献する
。また、土中埋設管の場合には土を掘り起こす必要があ
るが、この探傷法ては被検体11の半分だけ土を掘り出
せばよいので、スムーズに検査作業を行い得かっそれに
基づいて速やかに必要な処置を講じることができる。
In addition, normally, the surface of the object 11 to be inspected is painted in order to suppress corrosion on the outside, and it is necessary to remove the paint film during ultrasonic flaw detection, but the work to remove the paint film is halved. This also greatly contributes to streamlining inspection work. In addition, in the case of underground pipes, it is necessary to dig up the soil, but with this flaw detection method, only half of the soil needs to be dug out of the test object 11, so inspection work can be carried out smoothly. Necessary measures can be taken.

なお、上記実施例では1個゛の垂直型超音波探触子を用
いたが、例えば第3図に示すように複数の探触索子13
a・・・を2次元的に配列した2次元アレイ超音波探触
子13Aを用いてもよい。この探触子13Aの形状は予
め被検体11の形状に合うように形成したもの、おるい
は平面状でかつ柔軟性のあるものが用いられ、またスキ
ャン手段としては、スキャンコントローラおよびマルチ
プレクサ等を用い、発信器14からの駆動タイミング信
号またはその分周信号を受けてスキャンコントローラが
マルチプレクサを切替え制御し、各探触素子13a・・
・を順次選択して反射波を受信するようにすればよく、
これらの技術は公知の手段を使用するものである。
Although one vertical ultrasonic probe was used in the above embodiment, for example, as shown in FIG. 3, a plurality of probes 13
A two-dimensional array ultrasonic probe 13A in which a... are arranged two-dimensionally may be used. The shape of this probe 13A is one formed in advance to match the shape of the subject 11, or one that is planar and flexible, and as a scanning means, a scan controller, a multiplexer, etc. are used. In response to the drive timing signal from the transmitter 14 or its frequency divided signal, the scan controller switches and controls the multiplexer, and each probe element 13a...
All you have to do is select ・ in order to receive the reflected waves.
These techniques use known means.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明方法によれ番よ、被検体の検
査作業が比較的簡単に行い得、作業時間を大幅に短縮で
きる超音波探傷法を提供できる。
As described above in detail, the method of the present invention makes it possible to provide an ultrasonic flaw detection method that allows the inspection work of a specimen to be performed relatively easily and allows the work time to be significantly shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第喜図は本発明に係わる超音波−−傷法の
一実施例を説明するためのもので、第1 m’二。 は超音波探傷法を適用した装置の模式的構成図、第2図
は超音波の送受信状態を示す説明図、第3図は超音波探
触子の他の例を示す図、第4図は従来の超音波探傷法の
説明図である。 11・・・被検体、12・・・超音波透過用媒体、13
・・・超音波探触子、14・・・発信器、15・・・受
信部、16・・・画像表示手段。 出願人代理人 弁理士 鈴江武彦 第1図 第2図
Figures 1 and 2 are for explaining an embodiment of the ultrasonic scarring method according to the present invention. 2 is an explanatory diagram showing the ultrasonic transmission/reception state, FIG. 3 is a diagram showing another example of an ultrasonic probe, and FIG. FIG. 2 is an explanatory diagram of a conventional ultrasonic flaw detection method. 11... Subject, 12... Ultrasonic transmission medium, 13
...Ultrasonic probe, 14... Transmitter, 15... Receiving section, 16... Image display means. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 (1)筒状被検体の内部に超音波透過用媒体を充填する
とともに、前記被検体の外側に超音波探触子を設置し、
この超音波探触子より超音波を送波しその反射波を受信
して前記被検体の正対する内面の状態を検査することを
特徴とする超音波探傷法。 (2)超音波探触子は、1個の垂直波探触子を用いて行
うものである特許請求の範囲第1項記載の超音波探傷法
。 (2)超音波探触装置は、2次元アレイ超音波探触子を
用いて行うものである特許請求の範囲第1項記載の超音
波探傷法。 (4)超音波探触装置が1個の垂直探触子を用いた場合
、この垂直探触子を前記被検体の半周にわたって移動さ
せながら超音波を送波し、被検体の内面全周の状態を検
査するものである特許請求の範囲第1項または第2項記
載の超音波探傷法。 (5)超音波探触子が2次元アレイ超音波探触子を用い
た場合、スキャンコントロールにより高速スキャンし、
各超音波探触素子を順次選択して反射波を受信するもの
である特許請求の範囲第1項または第3項記載の超音波
探傷法。
[Claims] (1) Filling the inside of a cylindrical object with an ultrasound transmission medium, and installing an ultrasound probe outside the object;
An ultrasonic flaw detection method characterized by transmitting ultrasonic waves from this ultrasonic probe and receiving the reflected waves to inspect the condition of the directly facing inner surface of the object. (2) The ultrasonic flaw detection method according to claim 1, wherein the ultrasonic probe is one that uses one vertical wave probe. (2) The ultrasonic flaw detection method according to claim 1, wherein the ultrasonic probe device uses a two-dimensional array ultrasonic probe. (4) When the ultrasonic probe device uses one vertical probe, the vertical probe is moved half way around the subject while transmitting ultrasonic waves, covering the entire inner circumference of the subject. The ultrasonic flaw detection method according to claim 1 or 2, which is for inspecting a condition. (5) When the ultrasound probe is a two-dimensional array ultrasound probe, high-speed scanning is performed using scan control,
The ultrasonic flaw detection method according to claim 1 or 3, wherein each ultrasonic probe element is sequentially selected to receive reflected waves.
JP60198955A 1985-09-09 1985-09-09 Method for ultrasonic flaw detection Pending JPS6258103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60198955A JPS6258103A (en) 1985-09-09 1985-09-09 Method for ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60198955A JPS6258103A (en) 1985-09-09 1985-09-09 Method for ultrasonic flaw detection

Publications (1)

Publication Number Publication Date
JPS6258103A true JPS6258103A (en) 1987-03-13

Family

ID=16399716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60198955A Pending JPS6258103A (en) 1985-09-09 1985-09-09 Method for ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPS6258103A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046462A (en) * 1990-04-24 1992-01-10 Mitsubishi Heavy Ind Ltd Ultrasonic-wave flaw detecting method
JPH11326293A (en) * 1998-04-24 1999-11-26 Smiths Ind Plc Monitoring system
JP2006220569A (en) * 2005-02-10 2006-08-24 Tokimec Inc Corrosion detector of bottom part of rail, and method for detecting corrosion of the bottom part of rail
JP2013509573A (en) * 2009-10-28 2013-03-14 ジーイー センシング アンド インスペクション テクノロジーズ ゲ−エムベーハー Improved contact medium feeder for ultrasonic inspection equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046462A (en) * 1990-04-24 1992-01-10 Mitsubishi Heavy Ind Ltd Ultrasonic-wave flaw detecting method
JPH11326293A (en) * 1998-04-24 1999-11-26 Smiths Ind Plc Monitoring system
JP2006220569A (en) * 2005-02-10 2006-08-24 Tokimec Inc Corrosion detector of bottom part of rail, and method for detecting corrosion of the bottom part of rail
JP4718857B2 (en) * 2005-02-10 2011-07-06 東京計器株式会社 Rail bottom corrosion detection device and rail bottom corrosion detection method
JP2013509573A (en) * 2009-10-28 2013-03-14 ジーイー センシング アンド インスペクション テクノロジーズ ゲ−エムベーハー Improved contact medium feeder for ultrasonic inspection equipment

Similar Documents

Publication Publication Date Title
US7650789B2 (en) Method and apparatus for examining the interior material of an object, such as a pipeline or a human body from a surface of the object using ultrasound
JP4094464B2 (en) Nondestructive inspection method and nondestructive inspection device
CN107870202A (en) A kind of detection method of cable connector internal flaw
GB1102940A (en) Ultrasonic flaw detecting method and apparatus
Bishko et al. Ultrasonic echo-pulse tomography of concrete using shear waves low-frequency phased antenna arrays
KR20180095049A (en) Apparatus for controlling and measuring welding defects on a cylindrical wall and a method for implementing the same
Cawley Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects
JP5840910B2 (en) Ultrasonic flaw detection method
JPS61133856A (en) Method and apparatus for diagnosing underground pipeline
US4131026A (en) Ultrasonic testing of seams
Wickramanayake et al. Ultrasonic thickness measuring in-pipe robot for real-time non-destructive evaluation of polymeric spray linings in drinking water pipe infrastructure
JPS6258103A (en) Method for ultrasonic flaw detection
KR100542651B1 (en) Nondestructive Acoustic Evaluation Device and Method by using Nonlinear Acoustic Responses
JPS61133857A (en) Method and apparatus for diagnosing corrosion of underground pipeline
JPS6131962A (en) Inspecting instrument of piping
JPS61172055A (en) Apparatus for inspecting interior of piping
JPS6411143B2 (en)
JP2931453B2 (en) Ultrasonic flaw detector for civil engineering and building structures
RU2149393C1 (en) Process of ultrasonic test of cylindrical articles
JPH1114611A (en) Electronic scanning system ultrasonic inspection equipment
JP2002071650A (en) Method of ultrasonic flaw detection for hollow concrete column
JPS62153746A (en) Method for imaging object by ultrasonic wave or electromagnetic wave
JPS61266907A (en) Detector for surface condition
JPH04350554A (en) Ultrasonic inspection
JPH0584462B2 (en)