JPH046462A - Ultrasonic-wave flaw detecting method - Google Patents

Ultrasonic-wave flaw detecting method

Info

Publication number
JPH046462A
JPH046462A JP2106546A JP10654690A JPH046462A JP H046462 A JPH046462 A JP H046462A JP 2106546 A JP2106546 A JP 2106546A JP 10654690 A JP10654690 A JP 10654690A JP H046462 A JPH046462 A JP H046462A
Authority
JP
Japan
Prior art keywords
furnace
ultrasonic wave
inspected
ultrasonic
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2106546A
Other languages
Japanese (ja)
Inventor
Keiichi Iwamoto
啓一 岩本
Masaaki Torii
正明 取違
Yasunori Tabata
田端 安範
Hiroto Miura
三浦 弘人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2106546A priority Critical patent/JPH046462A/en
Publication of JPH046462A publication Critical patent/JPH046462A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make it possible to detect a crack which is formed on the inner surface of a furnace wall pipe at the outside of a furnace from the inner side of the furnace by vertically sending an ultrasonic wave from the outer surface of the pipe at the opposite side of a part to be inspected from an ultrasonic wave probe, and detecting the flaw of the crack based on the attenuating amount of the ultrasonic wave. CONSTITUTION:A furnace wall pipe 2 is filled with, e.g. water 5, as a medium for transmitting an ultrasonic wave. A crack which is formed on the inner wall surface of the pipe at the outside of a furnace is detected. For this purpose, a vertical ultrasonic-wave probe 6 is brought into contact with the opposite side of a part to be inspected, i.e. the outer surface of the pipe on the inner side of the furnace. When the ultrasonic wave is inputted from the probe 6, the ultrasonic wave is propagated from the inner side of the furnace wall pipe 2 with respect to the furnace to the pipe wall on the outside of the furnace through the water 5 filled in the furnace wall pipe 2. Thus the ultrasonic wave reaches the part to be inspected. Then the ultrasonic wave which has reached the part to be inspected is reflected from the part to be inspected, propagated through the part in the reverse direction and returned to the probe 6. The crack is detected based on the attenuated amount of the returned ultrasonic wave.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、火力ボイラの炉壁管の炉内側管内面に発生す
る腐食疲労き裂を炉内側より探傷する超音波探傷方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic flaw detection method for detecting corrosion fatigue cracks occurring on the inner surface of a furnace wall tube of a thermal power boiler from inside the furnace.

[従来の技術] 火力ボイラの炉壁管は一般に第5図に示すような構造と
なっている。同図で1は炉壁の補強板、2はこの補強板
1を溶接した炉壁管、3は全体を包含する保温材、4は
補強板1を炉壁管2に溶接した溶接点である。
[Prior Art] The furnace wall tube of a thermal power boiler generally has a structure as shown in FIG. In the figure, 1 is a reinforcement plate for the furnace wall, 2 is a furnace wall tube to which this reinforcement plate 1 is welded, 3 is a heat insulating material that covers the whole, and 4 is a welding point where the reinforcement plate 1 is welded to the furnace wall tube 2. .

ボイラを長期間使用すると、溶接点4近傍の管内面にき
裂等を発生することかあるため、定期的に放射線検査も
しくは抜管調査か実施されていた。
When a boiler is used for a long period of time, cracks may develop on the inner surface of the tube near the welding point 4, so radiological inspections or tube removal surveys are carried out periodically.

[発明が解決しようとする課題] 炉壁管2の炉外側の管の内面に発生するき裂の定期的な
検査は、一般的に保温材3を取外した上で被検査部にX
線フィルムを当接し、炉内側より放射線源を照射するこ
とにより探傷していた。
[Problems to be Solved by the Invention] Periodic inspections for cracks that occur on the inner surface of the furnace wall tube 2 on the outside of the furnace are generally carried out by removing the heat insulating material 3 and placing an X on the part to be inspected.
Flaws were detected by touching a wire film and irradiating a radiation source from inside the furnace.

しかして、この保温材3の取外し、そして探傷後の復旧
は、探傷範囲か広大なために多大の工数を必要としてい
る。
However, removing the heat insulating material 3 and restoring it after the flaw detection requires a large amount of man-hours because the flaw detection range is vast.

また、上記抜管調査はすべての炉壁管に対して実施する
ことは不可能であり、得られる結果は統計的なものであ
って個々の炉壁管のき裂を探傷することはできない。
Furthermore, it is impossible to carry out the above-mentioned pipe removal investigation on all the furnace wall tubes, and the obtained results are statistical, and it is not possible to detect cracks in individual furnace wall tubes.

本発明は上記のような実情に鑑ろてなされたもので、そ
の目的とするところは、必要な工数を低減することか可
能な超音波探傷方法を提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide an ultrasonic flaw detection method that can reduce the number of required man-hours.

[課題を解決するための手段及び作用コすなわち本発明
は、検査を行なう管の内部に超音波を伝達する媒体、例
えば水を充填した上で、被検査部の反対側の管外表面よ
り超音波探触子により超音波を垂直に入射してその減衰
量からき裂を探傷するようにしたもので、炉壁管の炉外
側の管内面に発生したき裂を炉内側がら探傷する二とが
可能となるため、保温材の取外し及び復旧が不要となり
、定期検査での工数を大幅に低減できる。
[Means and effects for solving the problem, that is, the present invention is to fill the inside of the tube to be inspected with a medium for transmitting ultrasonic waves, such as water, and then transmit ultrasonic waves from the outer surface of the tube on the opposite side of the part to be inspected. This device uses a sonic probe to vertically inject ultrasonic waves and detect cracks based on the amount of attenuation.This method detects cracks that occur on the inner surface of the furnace wall tube outside the furnace from inside the furnace. This eliminates the need to remove and restore the heat insulating material, significantly reducing the number of man-hours required for periodic inspections.

[実施例〕 以下図面を参照して本発明の一実施例を説明する。[Example〕 An embodiment of the present invention will be described below with reference to the drawings.

第1図はその探傷方法を示すもので、被検査部周辺の構
造は第1図のものと同様であるので、同一部分には同一
符号を付してその説明は省略する。
FIG. 1 shows the flaw detection method. Since the structure around the part to be inspected is the same as that in FIG. 1, the same parts are given the same reference numerals and the explanation thereof will be omitted.

しかして、ボイラが停缶している状態で炉壁管2に超音
波を伝達する媒体として例えば水5を充填し、炉外側の
管内壁の管内面に発生したき裂を探傷するために、第6
図に示すように垂直超音波探触子6を被検査部の反対側
、すなわち炉内側のの管外表面に当接する。
Therefore, when the boiler is stopped, the furnace wall tube 2 is filled with water 5 as a medium for transmitting ultrasonic waves, and in order to detect cracks that have occurred on the inner surface of the tube outside the furnace, 6th
As shown in the figure, the vertical ultrasonic probe 6 is brought into contact with the outside surface of the pipe on the opposite side of the part to be inspected, that is, inside the furnace.

このような状態で垂直超音波探触子6により超音波を入
射すると、超音波は炉壁管2の炉内側がら炉壁管2内に
充填された水5の中を介して炉外側の管壁を伝搬し、被
検査部に到達する。被検査部に到達した超音波はその被
検査部で反射され、上記の部位を逆に伝搬して垂直超音
波探触子6に帰ってくるもので、この帰ってきた超音波
の減衰量によってき裂を探傷するものである。
When ultrasonic waves are applied by the vertical ultrasonic probe 6 in this state, the ultrasonic waves travel from the inside of the furnace wall tube 2 through the water 5 filled in the furnace wall tube 2 to the tube outside the furnace. It propagates through the wall and reaches the part to be inspected. The ultrasonic waves that reach the inspected area are reflected by the inspected area, propagate in the opposite direction through the above-mentioned area, and return to the vertical ultrasonic probe 6. Depending on the amount of attenuation of the returned ultrasonic waves, This is used to detect cracks.

第2図は炉壁管2を垂直超音波探触子6で探傷する場合
の探傷状況を示したものであり、ここでは被検査部にき
裂7か発生しており、垂直超音波探触子6から垂直に入
射された超音波が被検査部にあるこのき裂7によって散
乱している状態を示す。被検査部にき裂7がない場合は
この超音波の散乱という現象は発生しない。
Figure 2 shows the flaw detection situation when the furnace wall tube 2 is tested with a vertical ultrasonic probe 6. Here, a crack 7 has occurred in the inspected area, and the vertical ultrasonic probe The figure shows a state in which ultrasonic waves vertically incident from the probe 6 are scattered by this crack 7 in the inspected part. If there is no crack 7 in the part to be inspected, this phenomenon of scattering of ultrasonic waves will not occur.

第3図(a)はき裂がない場合の管内面エコー(Sエコ
ー)の波形を示すものである。上記した如く散乱かない
ために波高値の高い管内面エコーが得られるようになる
FIG. 3(a) shows the waveform of the tube inner surface echo (S echo) when there is no crack. As described above, since there is no scattering, a tube inner surface echo with a high peak value can be obtained.

これに比して上記第2図で示したように被検査部にき裂
7か発生している場合には、き裂7にょって散乱が生じ
るため、第3図(b)に示すように管内面エコーの波高
値が低いものとなってしまつ〇 したかって、この管内面エコーの波高値を検査すること
によりき裂7の位置を探傷することができるものである
In contrast, if a crack 7 has occurred in the part to be inspected as shown in Fig. 2 above, scattering occurs due to the crack 7, so as shown in Fig. 3 (b). Therefore, the position of the crack 7 can be detected by inspecting the wave height value of the tube inner surface echo.

第4図は上記のような探傷方法により実際に5つの発電
所て炉壁管を調査し、超音波のエコー高さ[%]とき裂
の深さ[mm]をグラフ化したものである。同図に示す
如く超音波のエコー高さとき裂の深さとは相関している
ことか明らかとなり、本探傷方法が実用上も有効である
ことを確認した。
FIG. 4 is a graph of ultrasonic echo height [%] and crack depth [mm] obtained by actually investigating furnace wall tubes at five power plants using the flaw detection method described above. As shown in the figure, it has become clear that there is a correlation between the ultrasonic echo height and the crack depth, confirming that this flaw detection method is practically effective.

[発明の効果コ 以上に述べた如く本発明によれば、検査を行なう管の内
部に超音波を伝達する媒体、例えば水を充填した上で、
被検査部の反対側の管外表面より超音波探触子により超
音波を垂直に入射してその減衰量からき裂を探傷するよ
うにしたので、炉壁管の炉外側の管内面に発生したき裂
を炉内側から探傷することか可能となるため、保温材の
取外し及び復旧が不要となり、定期検査での工数を大幅
に低減することか可能な超音波探傷方法を提供すること
ができる。
[Effects of the Invention] As described above, according to the present invention, after filling the inside of the tube to be inspected with a medium for transmitting ultrasonic waves, such as water,
By using an ultrasonic probe to vertically inject ultrasonic waves from the outer surface of the tube on the opposite side of the part to be inspected and detecting cracks based on the amount of attenuation, it was possible to detect cracks that occurred on the inner surface of the tube on the outside of the furnace wall tube. Since it is possible to detect cracks from inside the furnace, there is no need to remove and restore the heat insulating material, and it is possible to provide an ultrasonic flaw detection method that can significantly reduce the number of man-hours required for periodic inspections.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による探傷方法を示す図、第
2図は垂直超音波探傷を模式的に示す断面図、第3図は
き裂の有無による超音波探傷波形を示す図、第4図は超
音波の減衰量とき裂深さとの相関を示す図、第5図は超
音波探傷を行なう炉壁管周辺の概略構成を示す図である
。 1・・・補強板、2・・炉壁管、3・・・保温材、4・
・・溶接点、5・・垂直超音波探触子、7・・・き裂。 出願人代理人 弁理士 鈴江武彦 き裂深さ(mm)
FIG. 1 is a diagram showing a flaw detection method according to an embodiment of the present invention, FIG. 2 is a cross-sectional view schematically showing vertical ultrasonic flaw detection, and FIG. 3 is a diagram showing ultrasonic flaw detection waveforms depending on the presence or absence of cracks. FIG. 4 is a diagram showing the correlation between the amount of attenuation of ultrasonic waves and the crack depth, and FIG. 5 is a diagram showing a schematic configuration around the furnace wall tube where ultrasonic flaw detection is performed. 1... Reinforcement plate, 2... Furnace wall tube, 3... Heat insulating material, 4...
... Welding point, 5... Vertical ultrasonic probe, 7... Crack. Applicant's representative Patent attorney Takehiko Suzue Crack depth (mm)

Claims (1)

【特許請求の範囲】[Claims] 管体の内部に超音波伝達媒体を充填し、被検査部に対向
して該管体の反対側の管外表面より超音波探触子により
超音波を垂直に入射することを特徴とする超音波探傷方
法。
An ultrasonic device characterized in that the inside of a tube is filled with an ultrasonic transmission medium, and ultrasonic waves are vertically incident with an ultrasonic probe from the outer surface of the tube on the opposite side of the tube, facing the part to be inspected. Sonic flaw detection method.
JP2106546A 1990-04-24 1990-04-24 Ultrasonic-wave flaw detecting method Pending JPH046462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2106546A JPH046462A (en) 1990-04-24 1990-04-24 Ultrasonic-wave flaw detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2106546A JPH046462A (en) 1990-04-24 1990-04-24 Ultrasonic-wave flaw detecting method

Publications (1)

Publication Number Publication Date
JPH046462A true JPH046462A (en) 1992-01-10

Family

ID=14436360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2106546A Pending JPH046462A (en) 1990-04-24 1990-04-24 Ultrasonic-wave flaw detecting method

Country Status (1)

Country Link
JP (1) JPH046462A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768925A (en) * 1994-09-29 1998-06-23 Alpha Corporation Electronic-component-integrated key
US5822192A (en) * 1995-06-20 1998-10-13 Alps Electric Co. Ltd. Case sealing structure and assembling method therefor
US6164101A (en) * 1994-05-20 2000-12-26 Kabushiki Kaisha Tokairika Denki Seisakusho Key with built-in transmitting element
US7380428B2 (en) * 2005-12-12 2008-06-03 Kaba Ilco Corp. Separable transponder key assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258103A (en) * 1985-09-09 1987-03-13 Nippon Kokan Kk <Nkk> Method for ultrasonic flaw detection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258103A (en) * 1985-09-09 1987-03-13 Nippon Kokan Kk <Nkk> Method for ultrasonic flaw detection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164101A (en) * 1994-05-20 2000-12-26 Kabushiki Kaisha Tokairika Denki Seisakusho Key with built-in transmitting element
US5768925A (en) * 1994-09-29 1998-06-23 Alpha Corporation Electronic-component-integrated key
US5822192A (en) * 1995-06-20 1998-10-13 Alps Electric Co. Ltd. Case sealing structure and assembling method therefor
US7380428B2 (en) * 2005-12-12 2008-06-03 Kaba Ilco Corp. Separable transponder key assembly

Similar Documents

Publication Publication Date Title
Cawley et al. Guided waves for NDT and permanently-installed monitoring
US6105431A (en) Ultrasonic inspection
Alleyne et al. The long range detection of corrosion in pipes using Lamb waves
US4619143A (en) Apparatus and method for the non-destructive inspection of solid bodies
JP4116483B2 (en) Tubular ultrasonic inspection method and apparatus
KR20010015043A (en) Method for the inspection of steam generator tubing utilizing nonaxisymetric guided waves
JPS59214793A (en) Method and device for detecting failure of fuel element
JPH046462A (en) Ultrasonic-wave flaw detecting method
JP4257076B2 (en) Measuring method of pipe inner surface deposit
Galvagni et al. Guided wave permanently installed pipeline monitoring system
Edalati et al. Defect detection in thin plates by ultrasonic lamb wave techniques
KR100966543B1 (en) Ultrasonic evaluation system for internal deposit layer in a pipe
KR101083108B1 (en) The inspection apparatus for nuclear fuel rod assembly
JPH03154861A (en) Method and device for ultrasonic flaw detection
JP2006023215A (en) Ultrasonic inspection method, ultrasonic inspection device and guide wave transducer for the ultrasonic inspection device
JP2000321041A (en) Method for detecting carburizing layer and method for its thickness
JP2881658B2 (en) Ultrasonic testing equipment for pipe structures
Ravenscroft et al. CHIME: a new ultrasonic method for rapid screening of pipe plate and inaccessible geometries
KR19990072516A (en) Method and apparatus for ultrasonic inspection of a nuclear fuel rod failure
KR19990072474A (en) Method and apparatus for ultrasonic inspection of nuclear fuel rod for fretting and wear within a nuclear fuel assembly
Ma et al. Ultrasonic Nondestructive Evaluation of Stress Corrosion Crack in Welded Steel Plate
Mu et al. Long-range pipe imaging with a guided wave focal scan
Puchot et al. Inspection technique for above ground storage tank floors using MsS technology
JP2001074702A (en) Method for inspecting tank
Spanner Preliminary development of inservice inspection methods for LMFBR's