JPS6086462A - Ultrasonic flaw detecting system - Google Patents

Ultrasonic flaw detecting system

Info

Publication number
JPS6086462A
JPS6086462A JP58194126A JP19412683A JPS6086462A JP S6086462 A JPS6086462 A JP S6086462A JP 58194126 A JP58194126 A JP 58194126A JP 19412683 A JP19412683 A JP 19412683A JP S6086462 A JPS6086462 A JP S6086462A
Authority
JP
Japan
Prior art keywords
flaw detection
shape
probe
tested
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58194126A
Other languages
Japanese (ja)
Inventor
Sumio Kogure
木暮 澄夫
Haruyuki Hanawa
晴行 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP58194126A priority Critical patent/JPS6086462A/en
Publication of JPS6086462A publication Critical patent/JPS6086462A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To record appreciation having a correct indication by measuring the plate thickness of a body to be tested during flaw detection scanning and analyzing flaw detection data by using the shape of the body to be tested based upon the plate thickness data. CONSTITUTION:An ultrasonic analyzing diagram 10 outputted on the basis of flaw detection shows an indication detecting position 11 and a reflection source position 12 together with a sectional shape at the position 11. At the input of the shape of the body to be tested, an arm 3 can be vertically moved around an arm supporting point 13, a distance S up to a probe 2, a deviation phi (angle) from the center position of the arm 3 and the vertical moving distance l of the probe in a probe holder 14 are inputted as the data of an external shape 15 to find out external coordinates ZS=2Ssinphi/2+l. As to an inner shape 16, a bottom echo 17 is gated 18 by using the vertical method for ultrasonic flaw detection, plate thickness width is found out from the reciprocated time of the signal and the shape of the body to be tested is plotted by using the inner coordinates ZB=ZS+T and TS. Thus, the appreciation having a correct indication is recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、探傷データ?出力させる超音波探傷システム
に係り、特に垂直探傷と斜角探傷全組合せた自動超音波
探傷システムに好適なシステムに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is applicable to flaw detection data? The present invention relates to an ultrasonic flaw detection system that outputs output, and particularly relates to a system suitable for an automatic ultrasonic flaw detection system that combines vertical flaw detection and oblique flaw detection.

〔発明の背景〕[Background of the invention]

従来の超音波探傷システムは、検出したインデイケーシ
ョンとその位置のデータ金出力するとともに、それに付
随した平面図、断面図、波高展開図等を出力するように
なっていたが、インデイケーション検出位置と反射源と
全同時に認知でき得る超音波解析図は出力不可となって
いたので、本部分だけ人間が定規を用いて作成するよう
な欠点があった。また、被検査体の内面形状が把握でき
ず、もっばら図面寸法のみを正しいものとしており、減
肉等の形状変化を考慮できない超音波解析を行なうとい
う欠点があった。
Conventional ultrasonic flaw detection systems output data on detected indications and their positions, as well as accompanying plan views, cross-sectional views, wave height development diagrams, etc. Since it was not possible to output an ultrasonic analysis diagram that could be recognized at the same time as the reflection source, there was a drawback that only this part had to be created by humans using a ruler. In addition, the internal shape of the object to be inspected cannot be grasped, only the drawing dimensions are considered correct, and ultrasonic analysis is performed in which changes in shape such as thinning cannot be taken into consideration.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、被検査体の内面形状を実測によりめ、
この形状全基本として超音波探傷データの解析を実施す
ることにより、正しいインデイケーションの計測記録ケ
することにある。
The purpose of the present invention is to measure the inner surface shape of an object to be inspected,
By analyzing the ultrasonic flaw detection data based on this shape, it is possible to measure and record correct indications.

〔発明の概要〕[Summary of the invention]

現状の超音波探傷試験におけるインデイケーションの解
析、評価は人間が実施している。この場合、被検査体の
内面形状把握は手動測定によるか図面による他はない。
Indications in current ultrasonic flaw detection tests are analyzed and evaluated by humans. In this case, the inner surface shape of the object to be inspected can only be grasped by manual measurement or by drawing.

拳法は、これケ垂直探傷法における底面波を利用して自
動作図全行なわせ、加えてインデイケーションの検出位
置と反射源とを同一用紙に出力させるようにしたもので
ある。
Kenpo uses the bottom waves of the vertical flaw detection method to perform all automatic drawings, and also outputs the detection position of the indication and the reflection source on the same sheet of paper.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。被検
査体1の外面全走査する探触子2と、位置を検出するた
めのガイドアーム3、軌道4及び位置検出装置5とから
成る走査部からの信号が、各々超音波探傷袋(Mt6、
信号処理装置7に伝送され、コンピュータ8により処理
されたデータが出力装置9から出力されるシステムとな
る。超音波探傷データには、内面形状測定のための垂直
探傷法による底面波のデータを含むものとする。上記探
傷により出力される超音波解析図1Oには、インディケ
ーション検出位置11と反射源位置12とが、インデイ
ケーション検出位置における断面形状とともに明記され
ることになる。
An embodiment of the present invention will be described below with reference to FIG. Signals from a scanning section consisting of a probe 2 that scans the entire outer surface of the object 1 to be inspected, a guide arm 3 for detecting the position, a track 4, and a position detection device 5 are transmitted to the ultrasonic flaw detection bag (Mt6,
The system is such that data transmitted to the signal processing device 7 and processed by the computer 8 is output from the output device 9. The ultrasonic flaw detection data shall include bottom wave data obtained by the vertical flaw detection method for measuring the inner surface shape. The indication detection position 11 and the reflection source position 12 are specified in the ultrasonic analysis diagram 1O outputted by the above-mentioned flaw detection together with the cross-sectional shape at the indication detection position.

第2図に、被検査体外状金取込むための機構を示す。ア
ーム3は、アーム支点13’lr中心に上下に動作可能
で必り、外面形状15のデータとして、探触子2才での
距離S1 アーム中心位置からの偏差量ψ(角度)、探
触子ホルダー14内の探触子の上下方向の移動量tft
取込み、外面位置座標Zsを(1)式でめる。
FIG. 2 shows a mechanism for taking in gold outside the body to be inspected. The arm 3 must be able to move up and down around the arm fulcrum 13'lr, and the data on the outer surface shape 15 include the distance S1 when the probe is 2 years old, the amount of deviation ψ (angle) from the arm center position, and the probe Vertical movement amount tft of the probe in the holder 14
The external surface position coordinate Zs is determined using the formula (1).

内面形状16については、超音波探傷の垂直法ヶ用い底
面エコー17にグー)IEIかけ、その信号の往復伝播
時間t’l求め、板厚T(r(2)式で決める。
The inner surface shape 16 is determined by applying IEI to the bottom echo 17 using the vertical method of ultrasonic flaw detection, determining the round trip propagation time t'l of the signal, and determining the plate thickness T(r) using the equation (2).

T= Ct /2 ・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・(2)ここでCは被検査
体中の音速。すると、内面の座標ZBは(3)式で示さ
れる。
T= Ct/2 ・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・(2) Here, C is the speed of sound in the object to be inspected. Then, the inner surface coordinate ZB is expressed by equation (3).

Z a = Z a +T ・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・−(3)これで得
られるZs及びZak用いて被検有体形状ケプロットす
る。
Z a = Z a + T ・・・・・・・・・・・・
(3) Using the Zs and Zak obtained in this way, the shape of the object to be tested is plotted.

また、第3図に溶接構造物の超音波探傷試験における探
触子屈折角θと被検査体外面形状の関係金示す。溶接部
は通常熱収縮によって外表面が凹となっているため、溶
接部近傍において探触子2は、溶接部から離れた平行部
19の位置に対して傾いており、探触子の屈折角θは、
平行部に対して見かけ上θ′となっている。θ′は、探
触子駆動用ガイドアーム3の平行部に平行な軸20に対
する角度ψにより、(4)式で示される。
Further, FIG. 3 shows the relationship between the probe refraction angle θ and the outer surface shape of the object to be inspected in an ultrasonic flaw detection test of a welded structure. Since the outer surface of the weld is usually concave due to thermal contraction, the probe 2 near the weld is tilted with respect to the parallel part 19 located away from the weld, and the refraction angle of the probe is θ is
The angle is apparently θ' with respect to the parallel part. θ' is expressed by equation (4) as an angle ψ with respect to the axis 20 parallel to the parallel portion of the probe driving guide arm 3.

θ′=θ−ψ ・・・・・・・・・・・・・・・・・・
・・・・・・・・・(4)このψ金ガイドアーム支点1
3に配置したロータリーエンコーダ21で検出し、各探
触子位置におけるθ′を用いて超音波ビームの解析を行
なうことにより、従来性なわれている第3図のごとき実
m會第4図に示すごとく溶接部金倉めて全範囲平行であ
るという前提での超音波ビームの解析に対して、より正
しい超音波の反射源位置の推定が可能である。
θ′=θ−ψ ・・・・・・・・・・・・・・・・・・
・・・・・・・・・(4) This ψ gold guide arm fulcrum 1
By detecting the ultrasonic beam with the rotary encoder 21 placed at 3 and analyzing the ultrasonic beam using θ' at each probe position, the conventional method as shown in FIG. As shown, it is possible to estimate the position of the ultrasonic reflection source more accurately than the analysis of the ultrasonic beam on the assumption that the entire range of the weld is parallel.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、被検査体外面及び内面形状を実測でき
るので、検出したインデイケーションの総合評価を自動
的に正し〈実施できる効果がある。
According to the present invention, since the external and internal shapes of the object to be inspected can be actually measured, the comprehensive evaluation of the detected indications can be automatically corrected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のシステムの全体構成図及び
データ出力様式の説明図、第2図は被検査体形状を取込
むための機構図、第3図は溶接部における外面形状1、
と探触子の概念図、第4図は溶接部外表面形状が母材部
と平行であると仮定した場合の表面形状と探触子の概念
図である。 l・・・被検査体、2・・・探触子、3・・・ガイドア
ーム、4・・・軌道、5・・・位置検出装置、6・・・
超音波探傷装置、7・・・信号処理装置、8・・・コン
ピュータ、9・・・$ l 図 (碇) 第 2 固 (cL) 、3
Fig. 1 is an overall configuration diagram of a system according to an embodiment of the present invention and an explanatory diagram of a data output format, Fig. 2 is a mechanism diagram for capturing the shape of an object to be inspected, and Fig. 3 is an external shape 1 of a welded part. ,
FIG. 4 is a conceptual diagram of the surface shape and probe assuming that the outer surface shape of the welded part is parallel to the base metal. l...Object to be inspected, 2...Probe, 3...Guide arm, 4...Trajectory, 5...Position detection device, 6...
Ultrasonic flaw detection device, 7...Signal processing device, 8...Computer, 9...$l Diagram (anchor) 2nd solid (cL), 3

Claims (1)

【特許請求の範囲】[Claims] 1、超音波探傷装置と位置検出装置とから成る超音波探
傷システムにおいて、特に探傷走査中に被検査体の板厚
を測定し、その値を記憶しておくことにより、この板厚
データを基本とする被検有体形状ケ用いて超音波探傷試
験データ解析図全出力させること全特徴とする超音波探
傷システム。
1. In an ultrasonic flaw detection system consisting of an ultrasonic flaw detection device and a position detection device, the thickness of the inspected object is measured during the flaw detection scan, and the value is memorized so that this thickness data can be used as a basic method. This ultrasonic flaw detection system is characterized by the ability to output all analysis diagrams of ultrasonic flaw detection test data using the tangible shape of the object being tested.
JP58194126A 1983-10-19 1983-10-19 Ultrasonic flaw detecting system Pending JPS6086462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58194126A JPS6086462A (en) 1983-10-19 1983-10-19 Ultrasonic flaw detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58194126A JPS6086462A (en) 1983-10-19 1983-10-19 Ultrasonic flaw detecting system

Publications (1)

Publication Number Publication Date
JPS6086462A true JPS6086462A (en) 1985-05-16

Family

ID=16319338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58194126A Pending JPS6086462A (en) 1983-10-19 1983-10-19 Ultrasonic flaw detecting system

Country Status (1)

Country Link
JP (1) JPS6086462A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119678A (en) * 1989-12-26 1992-06-09 General Electric Company Pulse echo and through transmission ultra-sound
JP2007187593A (en) * 2006-01-16 2007-07-26 Hitachi Ltd Inspection device for piping and inspection method for piping
US7891248B2 (en) 2005-09-07 2011-02-22 Rolls-Royce Plc Apparatus for measuring wall thicknesses of objects
RU2570097C1 (en) * 2014-09-16 2015-12-10 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Method of ultrasonic echo-pulse thickness gauging
RU2648292C1 (en) * 2016-12-01 2018-03-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Resonance method of ultrasonic thickness measurement
RU2664785C1 (en) * 2017-11-28 2018-08-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Resonance method of ultrasonic thickness measurement
RU2779755C1 (en) * 2021-12-29 2022-09-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Resonance method for ultrasonic thickness measurement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119678A (en) * 1989-12-26 1992-06-09 General Electric Company Pulse echo and through transmission ultra-sound
US7891248B2 (en) 2005-09-07 2011-02-22 Rolls-Royce Plc Apparatus for measuring wall thicknesses of objects
JP2007187593A (en) * 2006-01-16 2007-07-26 Hitachi Ltd Inspection device for piping and inspection method for piping
RU2570097C1 (en) * 2014-09-16 2015-12-10 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Method of ultrasonic echo-pulse thickness gauging
RU2648292C1 (en) * 2016-12-01 2018-03-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Resonance method of ultrasonic thickness measurement
RU2664785C1 (en) * 2017-11-28 2018-08-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Resonance method of ultrasonic thickness measurement
RU2779755C1 (en) * 2021-12-29 2022-09-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Resonance method for ultrasonic thickness measurement

Similar Documents

Publication Publication Date Title
US6382028B1 (en) Ultrasonic defect detection system
WO2016155403A1 (en) Ultrasonic detection and locating method and device based on tofd and phased array
CN105424818B (en) The system and method for dynamic gating in non-destructive weld examination
CN105021142B (en) The measuring method and equipment therefor of a kind of laser lap weld width
CN110208384A (en) A kind of workpiece surface is open the measurement method at oblique flaw height and inclination angle
JP3723555B2 (en) Ultrasonic inspection method for welds
CN115930851A (en) T-shaped electron beam weld bead weld width detection method and device
US20120216618A1 (en) Methods and systems for imaging internal rail flaws
JP3535417B2 (en) Ultrasonic defect height measuring device and defect height measuring method
JPS6086462A (en) Ultrasonic flaw detecting system
RU2651431C1 (en) Method of industrial ultrasound diagnostics of vertically oriented defects of prismatic metal products and device for its implementation
KR20100124238A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
JP2002243703A (en) Ultrasonic flaw detector
JP3497984B2 (en) Ultrasonic flaw detector
JP6089805B2 (en) Measuring device, measuring method, program, and storage medium
JP3442899B2 (en) Reference defect inspection jig and ultrasonic inspection method using reference defect inspection jig
JPH0412456Y2 (en)
JPH0419558A (en) Image processing method for ultrasonic flaw detection test
JP3745628B2 (en) Welded part inspection method and ultrasonic flaw detector
JP4327938B2 (en) Measuring method for unwelded length of corner joint
JPS5826550B2 (en) Ultrasonic flaw detection method and device using two probes
JPH08261992A (en) Ultrasonic flaw detector
JP3782410B2 (en) Ultrasonic flaw detection method and apparatus using Rayleigh wave
JPH07325070A (en) Ultrasonic method for measuring depth of defect
KR20080057937A (en) A ultrasonics wave beam indicator for ultrasonic flaw detector and method of test condition setting using the indicator