JPH0357958A - Ultrasonic flaw detection apparatus - Google Patents

Ultrasonic flaw detection apparatus

Info

Publication number
JPH0357958A
JPH0357958A JP1192629A JP19262989A JPH0357958A JP H0357958 A JPH0357958 A JP H0357958A JP 1192629 A JP1192629 A JP 1192629A JP 19262989 A JP19262989 A JP 19262989A JP H0357958 A JPH0357958 A JP H0357958A
Authority
JP
Japan
Prior art keywords
probe
axis
distance
axis direction
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1192629A
Other languages
Japanese (ja)
Inventor
Takashi Shirai
隆 白井
Tadashi Muraoka
村岡 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP1192629A priority Critical patent/JPH0357958A/en
Publication of JPH0357958A publication Critical patent/JPH0357958A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To automatically set the distance between the position of a probe to the center of rotation of an object to be inspected and the upper surface of said object to be inspected by providing a Z-axis distance setting means, an operation means and a reference value setting means. CONSTITUTION:A probe 5 is moved to the center part of the upper surface 4' of a master work by X- and Y-axis scanning means 7, 8. Subsequently, a Z-axis distance setting means 10 controls a Z-axis scanning means 9 so that the distance between the probe 5 and the upper surface 4' becomes the focal distance of the probe to automatically set the distance in a Z-axis direction. When the probe 5 is allowed to scan in the X- and Y-axis directions at the arbitrary position of the upper surface 4a' through the means 7, 8, and operation means 11 calculates the middle point between two points where an echo peak is dropped by 6dB in the respective directions and calculates the intersecting point of the straight line in an X-axis direction crossing said point at a right angle and the straight line in a Y-axis direction as the center XO, YO of the circle of the upper surface 4a'. A reference value setting means 12 sets the distance between the set probe 5 and the upper surface 4a' and the center XO, YO calculated by the means 11 as reference values. By this method, the position of the probe 5 can be set instantaneously and accurately.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被検体の溶接部等の探傷を、水浸探傷で自動
検査する超音波探傷装置に係わり、特に、水槽内の回転
テーブル上に載置された円柱または円筒形状の被検体を
、該被検体の円形面側から探傷する場合に,被検体の回
転中心に対するプローブの位置および被検体の上面とプ
ローブとの距離とを自動的にセットするのに好適な装置
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an ultrasonic flaw detection device that automatically inspects flaws such as welded parts of a test object by water immersion flaw detection, and particularly relates to an ultrasonic flaw detection device that automatically inspects flaws such as welded parts of a test object by water immersion flaw detection. When testing a cylindrical or cylindrical object placed on a cylinder from the circular surface side of the object, the position of the probe relative to the center of rotation of the object and the distance between the top surface of the object and the probe can be automatically determined. The present invention relates to a device suitable for setting.

[従来の技術] 超音波探傷に際して、被検体に対するプローブの位置や
、ゲイン,ゲート等の探傷条件は、同一寸法,同一形状
の複数の被検体を探傷する場合にはそれらの探傷結果を
比較する上で条件設定を同一にすることが望ましく、特
に同種形状の多数の被検体を連続して検査するような場
合は探傷条件を一定に保つことが不可欠のものとなる。
[Prior art] When performing ultrasonic flaw detection, flaw detection conditions such as the position of the probe with respect to the object, gain, gate, etc. are determined by comparing the flaw detection results when testing multiple objects with the same size and shape. It is desirable to set the same conditions, and it is essential to keep the flaw detection conditions constant, especially when a large number of objects of the same shape are to be inspected in succession.

同種形状の多数の被検体としては、断面が円または円筒
形の回転体が挙げられるが,従来、このような被検体を
該被検体の円形面(被検体の回転軸と直角な面)側から
探傷する場合におけるプローブ位置の設定は、まず、Z
軸走査手段を操作してプローブと被検体上面との間のZ
軸方向の距離を一定の距離,例えばプローブの焦点距離
と一致するように設定し、つぎにX軸およびY軸の各走
査手段を操作してプローブを被検体上面の任意位置のX
軸およびY軸方向に走査させ、各軸方向においてエコー
高さが6dBドロップする2点を求め、該2点間の中点
と直交するX軸方向およびY軸方向の直線の交点を求め
る。求めた交点は被検体上面の円の中心すなわちプロー
ブ走査時の基準位置となり、いわゆる原点となる.つづ
いて被検体の探傷すべき位置の原点からの距離および被
検体上面からの深さ寸法が走査手段に入力され、その入
力値に基づく走査信号によりプローブが走査されて被検
査部位に対するプローブの位置設定がなされていた。
A rotating body with a circular or cylindrical cross section is an example of a large number of objects to be examined with the same shape. Conventionally, such objects are placed on the circular surface of the object (a surface perpendicular to the axis of rotation of the object). To set the probe position when performing flaw detection from
Operate the axis scanning means to measure the Z distance between the probe and the top surface of the subject.
Set the axial distance to a certain distance, for example, to match the focal length of the probe, and then operate the X-axis and Y-axis scanning means to move the probe to an arbitrary position on the top surface of the subject.
Scan in the axial and Y-axis directions, find two points where the echo height drops by 6 dB in each axial direction, and find the intersection of straight lines in the X-axis direction and the Y-axis direction that are orthogonal to the midpoint between the two points. The obtained intersection becomes the center of the circle on the upper surface of the subject, that is, the reference position during probe scanning, and becomes the so-called origin. Next, the distance from the origin of the position to be inspected on the object and the depth dimension from the top surface of the object are input to the scanning means, and the probe is scanned by a scanning signal based on the input values to position the probe relative to the area to be inspected. The settings had been made.

なお、上記プローブの位置設定は,被検体の載置される
回転テーブルが通常円形であり、その回転中心と被検体
の回転中心とが正確に一致してセットされることから、
回転テーブルに対して行う場合もある. [発明が解決しようとする課題] 前記被検体に対するプローブ位置の設定は、超音波探傷
装置のオシロスコープ上のAスコープを見ながらすべて
検査者の手動操作で行われているが、その際検査者は、
超音波探傷装置におけるゲインやゲート等の調整をしな
から各軸の走査手段を操作しなければならないため、あ
る程度の熟練者であることが要求されるほか、各軸の走
査手段と水槽との取付け部や、水槽と被検体を回転させ
る回転装置との取付け部などの製作精度との関係から、
プローブの移動精度を望ましい位置精度である1/10
〜1/100m以内に入れるのは時間のかかる面倒な作
業となっており,常に正確な位置に位置決めすることが
困難な問題点を有していた.本発明は、上記従来技術の
問題点に鑑み,水槽内の回転テーブル上に載置された円
柱または円筒形状の被検体を,該被検体の円形面側から
探傷する場合に、被検体の回転中心に対するプローブの
位置と、被検体の上面とプローブとの距離とを自動的に
セットすることができる超音波探傷装置を提供すること
を目的とする。
The position of the probe is set so that the rotary table on which the subject is placed is usually circular, and the center of rotation of the table and the center of rotation of the subject are precisely aligned.
Sometimes it is performed on a rotating table. [Problems to be Solved by the Invention] Setting of the probe position with respect to the object is performed manually by the inspector while looking at the A scope on the oscilloscope of the ultrasonic flaw detection device. ,
Since it is necessary to operate the scanning means of each axis while adjusting the gain and gate of the ultrasonic flaw detection device, a certain level of skill is required. Due to the manufacturing accuracy of the mounting part and the mounting part of the rotating device that rotates the water tank and the subject,
The movement accuracy of the probe is 1/10, which is the desired position accuracy.
It is a time-consuming and troublesome task to get within ~1/100m, and there is a problem in that it is difficult to always position accurately. In view of the above-mentioned problems of the prior art, the present invention provides a method for rotating a cylindrical or cylindrical test object placed on a rotary table in a water tank when detecting flaws from the circular surface side of the test object. It is an object of the present invention to provide an ultrasonic flaw detection device that can automatically set the position of a probe with respect to the center and the distance between the probe and the upper surface of a subject.

[課題を解決するための手段] 上記目的を達或するため、本発明は、水槽内の回転テー
ブル上に載置された円柱または円筒形状の被検体を、該
被検体の円形面側に相対させて配置したプローブをx,
y,zの各軸方向に移動させる走査手段を介して自動探
傷する超音波探傷装置において、前記プローブと前記回
転テーブル上に載置した探傷条件初期設定用の円形状の
マスターワーク上面との間の距離をプローブの焦点距離
に一致させて自動設定可能な2軸距離設定手段と、前記
X軸およびY軸の各走査手段を介して前記プローブをマ
スターワーク上面の任意の位置のX軸およびY軸方向に
走査させたとき各軸方向においてエコー高さが6dBド
ロップする2点間の中点を求め、該中点と直交するX軸
方向の直線とY軸方向の直線との交点をマスターワーク
上面の円の中心(xo,y−)として算出する演算手段
と、前記Z軸距離設定手段により設定されたプローブと
マスターワーク上面間の距離および前記演算手段により
算出されたマスターワーク上面の中心(Xo,Yo)と
を基準値として設定する基準値設定手段と、を備える構
或にしたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention is directed to a columnar or cylindrical test object placed on a rotary table in a water tank, relative to a circular surface side of the test object. The probe placed with x,
In an ultrasonic flaw detection device that automatically detects flaws through scanning means that moves in the directions of the y and z axes, between the probe and the top surface of a circular master work for initial setting of flaw detection conditions placed on the rotary table. A two-axis distance setting means that can automatically set the distance of When scanning in the axial direction, find the midpoint between two points where the echo height drops by 6 dB in each axis direction, and use the master work to find the intersection of the straight line in the X-axis direction and the straight line in the Y-axis direction that are perpendicular to the midpoint. calculation means for calculating the center of the circle on the top surface (xo, y-); the distance between the probe and the top surface of the master workpiece set by the Z-axis distance setting means; and the center of the top surface of the master workpiece calculated by the calculation means ( The apparatus further includes a reference value setting means for setting the values (Xo, Yo) as reference values.

[作用] 上記のように構或したことにより、プローブとマスター
ワーク上面との距離は、Z軸距離設定手段によりプロー
ブの焦点距離に自動設定され、マスターワーク上面の円
の中心(xo t’/n )、つまり原点は演算手段に
より自動的に算出されて,いずれも基準値として基準値
設定手段に設定されるがら、検査者は原点から被検体の
探傷すべき位置までの距離、および被検体上面から探傷
すべき位置までの深さ寸法を入力するだけで,該入力値
に対する操作信号により各軸の走査手段を開動させ、プ
ローブを所定の探傷位置に設定することができる。
[Operation] With the above structure, the distance between the probe and the top surface of the masterwork is automatically set to the focal length of the probe by the Z-axis distance setting means, and the distance between the probe and the top surface of the masterwork is automatically set to the focal length of the probe, and the distance between the probe and the top surface of the masterwork is automatically set to the focal length of the probe, n), that is, the origin is automatically calculated by the calculation means and both are set as reference values in the reference value setting means, but the inspector must calculate the distance from the origin to the position on the object to be inspected, and the distance from the object to be inspected. By simply inputting the depth dimension from the top surface to the position to be inspected, the scanning means of each axis can be opened in response to an operation signal corresponding to the input value, and the probe can be set at a predetermined inspection position.

[実施例コ 以下本発明の工実施例について第l図および第2図を参
照して説明する。図において、1は水浸探傷用の水槽、
2は水槽1内に配置された回転テーブル、3は回転テー
ブル2を回動させる回転装置で、回転装置3は水槽1に
取り付けられている。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In the figure, 1 is a water tank for water immersion testing;
Reference numeral 2 denotes a rotary table placed in the water tank 1; 3 a rotating device for rotating the rotary table 2; the rotating device 3 is attached to the water tank 1;

4′は回転テーブル2上に載置されている探傷条件初期
設定用の円筒形のマスターワークで,マスターワーク4
′の上面4’aは円形に形成されている。4はマスター
ワーク4′と寸法,形状が同一の被検体で,4aは被検
体4の上面である.5はマスターワーク4′の上面4’
aに相対させて水槽1内に水浸状態に配置されているプ
ローブで、超音波探傷器6に接続されている.7はプロ
ーブ5をX軸方向にスキャンさせるX軸走査手段、8,
9は同じくプローブ5をY,Z軸方向にそれぞれスキャ
ンさせるY軸,2軸各走査手段で,各走査手段は岨動装
置および関動信号発生器を備えている。10はプローブ
5のZ軸方向の距離を自動設定可能な2軸距離設定手段
で,Z軸距離メモリー比較器,Z軸距離設定器等からな
りZ軸走査手段9に接続されている。11はマスターワ
ーク上面4’aの円の中心(xo= yo)を算出する
演算手段で,エコーレベルメモリー,比較器,演算機等
からなり、X軸走査手段7によりプローブ5をマスター
ワーク上面4’aの任意のX軸方向に走査させてエコー
高さが6dBドロップする2点(プローブ5の走査線と
マスターワーク4’aの円周との交点)間の中点と、Y
軸走査手段8によりプローブ5をマスターワーク上面4
’aの任意のY軸方向に走査させてエコー高さが6dB
ドロップする2点間の中点とをそれぞれ求め、求めた各
中点と直交するX軸方向の直線とY軸方向の直線との交
点を円の中心(x0,y.)として算出する。■2は2
軸距離設定手段10で設定されたプローブ5とマスター
ワーク上面4’a間の一定の距離(この場合はプローブ
5の焦点距離に一致させる)と、演算手段11により算
出されたマスターワーク上面4’aの円の中心(x0=
 yo)とを基準値として設定する基準値設定手段であ
る. プローブ5の位置設定はマスターワーク上面の4’aに
対して行われるが、その手順を第2図のフローチャート
を参照して説明する。まずプローブ5をX軸およびY軸
の走査手段7,8によりマスターワーク上面4’aの中
心部上に移動させる.ついでZ軸距離設定手段10にお
けるビーム路程カウントによりビーム路程が比較され、
該比較信号によりプローブ5とマスターワーク上面4’
aとの距離を算出し該距離がプローブ5の焦点距離にな
るように2軸走査手段9が制御されてZ軸方向の距離が
自動設定される。つぎにX軸およびY軸の走査手段7,
8を操作してプローブ5をX軸方向およびY軸方向にそ
れぞれ移動させ,エコー高さがX軸方向において6dB
ドロツプする2点間の中点と、Y軸方向において6dB
ドロツプする2点間の中点とを求め、前記X軸方向の中
点と直交するY軸方向の直線とY軸方向の中点と直交す
るX軸方向の直線との交点を,演算手段11によ?マス
ターワーク上面4’aの円の中心(x0,y,)すなわ
ち原点として算出する。算出された原点は前記設定,さ
れたZ軸方向の距離とともに基準値設定手段12に基準
値として設定される。
4' is a cylindrical master work for initial setting of flaw detection conditions placed on the rotary table 2.
The upper surface 4'a of ' is formed into a circular shape. Reference numeral 4 indicates an object to be inspected that has the same dimensions and shape as the master work 4', and 4a is the upper surface of the object to be inspected. 5 is the top surface 4' of the master work 4'
The probe is placed immersed in water in the water tank 1 facing the probe a, and is connected to the ultrasonic flaw detector 6. 7 is an X-axis scanning means for scanning the probe 5 in the X-axis direction; 8;
Reference numeral 9 denotes Y-axis and two-axis scanning means for respectively scanning the probe 5 in the Y- and Z-axis directions, and each scanning means is equipped with a driving device and a related signal generator. Reference numeral 10 denotes a two-axis distance setting means capable of automatically setting the distance of the probe 5 in the Z-axis direction, which is connected to the Z-axis scanning means 9 and includes a Z-axis distance memory comparator, a Z-axis distance setting device, and the like. Reference numeral 11 denotes a calculation means for calculating the center of the circle (xo=yo) on the top surface 4'a of the master workpiece, which includes an echo level memory, a comparator, a calculation machine, etc. The midpoint between two points (the intersection of the scanning line of the probe 5 and the circumference of the master work 4'a) where the echo height drops by 6 dB when scanning in the arbitrary X-axis direction of 'a', and the Y
The axis scanning means 8 moves the probe 5 to the top surface 4 of the master workpiece.
The echo height is 6 dB by scanning in the arbitrary Y-axis direction of 'a.
The midpoints between the two points to be dropped are determined, and the intersection between the straight line in the X-axis direction and the straight line in the Y-axis direction perpendicular to each of the midpoints is calculated as the center (x0, y.) of the circle. ■2 is 2
The fixed distance between the probe 5 and the master work top surface 4'a set by the axial distance setting means 10 (in this case, matched to the focal length of the probe 5) and the master work top surface 4' calculated by the calculation means 11. The center of the circle of a (x0=
yo) as a reference value. The positioning of the probe 5 is performed with respect to 4'a on the top surface of the master work, and the procedure will be explained with reference to the flowchart in FIG. 2. First, the probe 5 is moved onto the center of the upper surface 4'a of the master work by the X-axis and Y-axis scanning means 7, 8. Next, the beam path lengths are compared by the beam path count in the Z-axis distance setting means 10,
The comparison signal causes the probe 5 and the master work upper surface 4' to
a, and the two-axis scanning means 9 is controlled so that the distance becomes the focal length of the probe 5, and the distance in the Z-axis direction is automatically set. Next, the X-axis and Y-axis scanning means 7,
8 to move the probe 5 in the X-axis direction and the Y-axis direction, and the echo height is 6 dB in the X-axis direction.
6dB in the Y-axis direction and the midpoint between the two drop points
A calculation means 11 calculates the midpoint between the two dropping points, and calculates the intersection of the straight line in the Y-axis direction perpendicular to the midpoint in the X-axis direction and the straight line in the X-axis direction perpendicular to the midpoint in the Y-axis direction. Yo? It is calculated as the center (x0, y,) of the circle on the top surface 4'a of the master work, that is, the origin. The calculated origin is set as a reference value in the reference value setting means 12 together with the set distance in the Z-axis direction.

マスターワーク4′に対するZ軸方向の距離と原点とが
設定されると、回転テーブル2にマスターワーク4′に
変えて被検体4を載置し、検査者により被検体4の探傷
すべき位置の原点からの距離(探傷位置の直径または半
径)および被検体4の上面4aから探傷すべき位置まで
の深さ寸法が入力される.この入力により被検体4の探
傷位置(X■,Yエ,Zエ)に対するプロープ5の位置
が自動的に算出され、X軸,Y軸,Z軸の各走査手段7
,8,,9により探傷位置(x1,y■,Z8)にプロ
ーブ5が移動させられる。この移動したプローブ5の位
置は,探傷位置(Xエ,Yよ,2■)が同一であれば前
記超音波探傷装置における製作精度に関係なく常に一定
となるため、多数の被検体を順次探傷するような場合で
あってもプローブ5の位置設定を即座に正確に行うこと
ができる。
Once the distance in the Z-axis direction and the origin with respect to the master work 4' are set, the object 4 to be inspected is placed on the rotary table 2 instead of the master work 4', and the inspector determines the position of the object 4 to be inspected. The distance from the origin (diameter or radius of the flaw detection position) and the depth dimension from the upper surface 4a of the object 4 to the position to be flaw detected are input. With this input, the position of the probe 5 with respect to the flaw detection position (X, Y, Z) of the object 4 is automatically calculated, and each scanning means 7 of the X, Y, and Z axes is
, 8, , 9, the probe 5 is moved to the flaw detection position (x1, y, Z8). The position of the moved probe 5 will always be constant regardless of the manufacturing accuracy of the ultrasonic flaw detection device if the flaw detection positions (XE, Y, 2) are the same, so a large number of objects will be sequentially detected. Even in such a case, the position of the probe 5 can be immediately and accurately set.

[発明の効果コ 本発明は、以上説明したように構成されているので、水
槽内の回転テーブル上に載置された円柱または円筒形状
の被検体を,該被検体の円形面側から探傷する場合に、
被検体の回転中心に対するプローブの位置および被検体
の上面とプローブとの距離を自動的にセットすることが
できる効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, a cylindrical or cylindrical specimen placed on a rotary table in a water tank is inspected for flaws from the circular surface side of the specimen. In case,
It is possible to automatically set the position of the probe relative to the center of rotation of the subject and the distance between the top surface of the subject and the probe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す全体構戊説明図,第2
図は第1図の装置によるプローブ位置設定の手順説明用
のフローチャートである。 1・・・水槽,2・・・回転テーブル,4・・・被検体
、4′・・・マスターワーク、4’a・・・マスターワ
ーク上面、5・・・プローブ、7・・・X軸走査手段、
8・・・Y軸走査手段、9・・・2軸走査手段、10・
・・2軸距離設定手段、11・・・演算手段、12・・
・基準値設定手段。
Figure 1 is an explanatory diagram of the overall structure showing one embodiment of the present invention, Figure 2
This figure is a flowchart for explaining the procedure for setting the probe position using the apparatus shown in FIG. 1... Water tank, 2... Rotating table, 4... Subject, 4'... Master work, 4'a... Top surface of master work, 5... Probe, 7... X axis scanning means,
8... Y-axis scanning means, 9... 2-axis scanning means, 10.
...Two-axis distance setting means, 11...Calculating means, 12...
・Reference value setting means.

Claims (1)

【特許請求の範囲】[Claims] 1、水槽内の回転テーブル上に載置された円柱または円
筒形状の被検体を、該被検体の円形面側に相対させて配
置したプローブをX、Y、Zの各軸方向に移動させる走
査手段を介して自動探傷する超音波探傷装置において、
前記プローブと前記回転テーブル上に載置した探傷条件
初期設定用の円形状のマスターワーク上面との間の距離
をプローブの焦点距離に一致させて自動設定可能なZ軸
距離設定手段と、前記X軸およびY軸の各走査手段を介
して前記プローブをマスターワーク上面の任意の位置の
X軸およびY軸方向に走査させたとき各軸方向において
エコー高さが6dBドロップする2点間の中点を求め、
該中点と直交するX軸方向の直線とY軸方向の直線との
交点をマスターワーク上面の円の中心(X_o、Y_o
)として算出する演算手段と、前記Z軸距離設定手段に
より設定されたプローブとマスターワーク上面間の距離
と前記演算手段により算出されたマスターワーク上面の
中心(X_o、Y_o)とを基準値として設定する基準
値設定手段と、を備えたことを特徴とする超音波探傷装
置。
1. Scanning in which a cylindrical or cylindrical test object placed on a rotary table in a water tank is moved in the X, Y, and Z axis directions with a probe placed facing the circular surface of the test object. In ultrasonic flaw detection equipment that automatically detects flaws through means,
Z-axis distance setting means capable of automatically setting a distance between the probe and the top surface of a circular master work for initial setting of flaw detection conditions placed on the rotary table to match the focal length of the probe; The midpoint between two points where the echo height drops by 6 dB in each axis direction when the probe is scanned in the X-axis and Y-axis directions at an arbitrary position on the upper surface of the master work via the axis and Y-axis scanning means. seek,
The intersection of the straight line in the X-axis direction and the straight line in the Y-axis direction perpendicular to the midpoint is the center of the circle on the top surface of the master work (X_o, Y_o
), the distance between the probe and the top surface of the master workpiece set by the Z-axis distance setting means, and the center (X_o, Y_o) of the top surface of the master workpiece calculated by the calculation means are set as reference values. An ultrasonic flaw detection device comprising: a reference value setting means for setting a reference value.
JP1192629A 1989-07-27 1989-07-27 Ultrasonic flaw detection apparatus Pending JPH0357958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1192629A JPH0357958A (en) 1989-07-27 1989-07-27 Ultrasonic flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192629A JPH0357958A (en) 1989-07-27 1989-07-27 Ultrasonic flaw detection apparatus

Publications (1)

Publication Number Publication Date
JPH0357958A true JPH0357958A (en) 1991-03-13

Family

ID=16294429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192629A Pending JPH0357958A (en) 1989-07-27 1989-07-27 Ultrasonic flaw detection apparatus

Country Status (1)

Country Link
JP (1) JPH0357958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079730A1 (en) * 2009-01-08 2010-07-15 Ueno Jun Ultrasonic flaw detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079730A1 (en) * 2009-01-08 2010-07-15 Ueno Jun Ultrasonic flaw detector

Similar Documents

Publication Publication Date Title
KR100865056B1 (en) Measurement device
CA1270940A (en) Method for classification of point and elongated single defects in workpieces by means of ultrasonics
US10539515B2 (en) Computed tomographic system calibration
US5036707A (en) Ultrasonic testing apparatus and method for rapidly inspecting a large number of gas cylinders of similar design for internal neck-shoulder defects
US11733211B2 (en) Method and device for testing a component non-destructively
CA1089081A (en) Initialization and preparation of on-production-line ultrasonic test equipment
JPH0357958A (en) Ultrasonic flaw detection apparatus
JPH09325136A (en) Automatic defect evaluating method for centrifugal type impeller
JP2964137B2 (en) X-ray fluorescence analyzer that can detect the center of a sample
JP2023077632A (en) Inspection device and inspection method
JP2505272Y2 (en) Ultrasonic inspection equipment
JPH03181848A (en) Apparatus for evaluating semiconductor material
JPH01237443A (en) Lattice plate checking apparatus
JP2966028B2 (en) Manual ultrasonic flaw detector
DE4134689C1 (en) Optically measuring contour of toroidal opaque object - registering shadows cast by light source using line or matrix camera taking into account distance from object and imaging scale
JPH01132963A (en) Sensitivity calibrating device of ultrasonic wave flaw detector
JPH0480604A (en) Scanning tunneling microscope and through-hole plating inspection device including same
JPS62284248A (en) Surface flaw inspecting device
JP3029572B2 (en) Method for measuring cross-sectional contour shape of object to be measured and method for measuring three-dimensional shape
JPH1183819A (en) Automatic ultrasonic flaw detecting apparatus
CN107843645A (en) Eddy current testing device for automobile body welding
Gundtoft et al. DIFFERENT APPROACHES TO AUTOMATIC ULTRASONIC NON DESTRUCTIVE TESTING INCLUDING ROBOT TECHNIQUE.
Falter et al. Ripple and Uniformity Measurement of a Phased-Array Testing-Machine for round-Bar Testing
JPH01187449A (en) Sensitivity calibrating method for ultrasonic flaw detection
CN105987959A (en) Wedge block and detection method of weld joint of reactor heat exchanging pipe cap