WO2010075659A1 - 利用聚合酶-内切酶链式反应扩增寡核苷酸和小rna的方法 - Google Patents

利用聚合酶-内切酶链式反应扩增寡核苷酸和小rna的方法 Download PDF

Info

Publication number
WO2010075659A1
WO2010075659A1 PCT/CN2009/000362 CN2009000362W WO2010075659A1 WO 2010075659 A1 WO2010075659 A1 WO 2010075659A1 CN 2009000362 W CN2009000362 W CN 2009000362W WO 2010075659 A1 WO2010075659 A1 WO 2010075659A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerase
oligonucleotide
pecr
target
amplifying
Prior art date
Application number
PCT/CN2009/000362
Other languages
English (en)
French (fr)
Inventor
汪小龙
吕翠仙
苟德民
刘晨光
Original Assignee
Wang Xiaolong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Xiaolong filed Critical Wang Xiaolong
Priority to CN200980128021.9A priority Critical patent/CN102099488B/zh
Priority to US13/133,384 priority patent/US20120028253A1/en
Publication of WO2010075659A1 publication Critical patent/WO2010075659A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification

Definitions

  • the invention belongs to the fields of molecular biology and genetic engineering technology, and particularly relates to an oligonucleotide and small molecule RNA amplification method.
  • Nucleic acid amplification technology is the core technology in the field of contemporary molecular biology and genetic engineering.
  • new nucleic acid amplification models have emerged, and detection and diagnosis methods based on nucleic acid amplification technology have been extensively established and widely used, providing a rapid, sensitive and accurate method for clinical diagnosis.
  • these methods also encounter some problems in clinical practice, such as false positives and false negatives, the detection and diagnosis methods based on nucleic acid amplification technology have special advantages, requiring less sample, fast, sensitive and accurate, and application range. widely. Therefore, many scholars at home and abroad are constantly working to improve existing technologies and explore new nucleic acid amplification technologies.
  • variable temperature amplification mainly includes the classical polymerase chain reaction (PCR) and the ligase chain reaction (LCR), and the constant temperature amplification includes Strand displacement amplification (abbreviation).
  • SDA Strand displacement amplification
  • RCA Rolling Circle Amplification
  • LAMP Loop Mediated Amplification
  • HDA Helicase-Dependent Isothermal DNA Amplification
  • NASBA Dependence Nucleic acid sequence based amplification
  • TAS Transcription-based Amplification System
  • PCR and reverse transcription PCR techniques are simple and effective in amplifying DNA and RNA of sufficient length.
  • small molecule nucleic acids such as oligonucleotides, microRNAs (miRNAs) and small interfering RNAs (siRNAs) cannot be directly amplified by PCR.
  • miRNAs microRNAs
  • siRNAs small interfering RNAs
  • Oligonucleotides are widely used in modern molecular biotechnology. Although synthetic large, pure, single-sequence oligonucleotides can be quantified by spectrophotometry based on OD values, ultra-micro, target-specific target oligos are present in actual biological samples containing a large number of different nucleic acid sequences. Amplification and quantitative analysis of nucleotides is not only a technical problem to be overcome, but also has important application value in science. For example, it can be used for quantitative analysis of small RNAs such as miRNAs and siRNAs.
  • EXPAR Exponential Amplification Reaction
  • miRNAs are a class of endogenous regulatory small RNAs of approximately 20-24 nucleotides in length. Since the discovery of the first miRNA lin-4 in C. elegans in 1999, researchers have discovered many important miRNA-regulated miRNAs in model organisms such as nematodes, fruit flies, mice, and zebrafish.
  • the miRNA recognizes and pairs with its target, the 3'-untranslated region (3'-UTR) of the messenger RNA (mRNA) encoding a specific protein, thereby inhibiting the translational activity of the target mRNA in the cell, ie, post-transcriptional gene silencing ( Post-transcriptional gene silencing (PTGS); or binding to its homologous mRNA, induces degradation of the target mRNA.
  • miRNAs are involved in the regulation of many essential life processes in organisms and play a very important role in life activities. For example, lin-4 is involved in controlling the larval developmental timing of C. elegans, and mir-14 controls Drosophila cell death and fat metabolism.
  • miR-214 determines muscle cell developmental fate, while miR-430 clears maternal mRNA that is no longer needed in embryos.
  • miR-375 is an evolutionarily highly conserved islet cell-specific regulatory molecule. miR-375 determines islet development in zebrafish. Lowering miR-375 levels inhibits islet cell aggregation and regulates insulin secretion in humans. The role of miR-375 in other model organisms and humans is consistent, suggesting that the function of miR-375 is conserved from zebrafish to humans. It is the importance of this function that miRNAs have attracted many researchers to explore the origin, mechanism and function of miRNAs from multiple perspectives and from multiple perspectives.
  • miRNA database miRbase Release 12.0
  • the functional study of miRNAs is to determine the target genes for miRNA regulation, and to quantify miRNAs and to study their own temporal and spatial expression regulation. Because the temporal and tissue specificity of miRNA expression reveals its specific function in tissues and cells. The main reasons leading to slow progress in miRNA function research are because the target of miRNA is difficult to determine; second, because miRNA is too short, amplification and quantitative analysis are far more difficult than long-chain messenger RNA.
  • amplification and quantitative analysis of miRNAs are based on reverse transcription PCR. Because miRNAs do not have poly-A tails, miRNAs The reverse transcription method differs from mRNA in that there are two main strategies: one is to add a Poly-A tail to the 3'-end of the miRNA using polyadenylation kinase, and synthesize it with Oligo-dT and reverse transcriptase. A cDNA complementary to a miRNA. Another method is reverse transcription using specific primers comprising a stretch of sequence complementary to the 3' end of a particular miRNA and a loop structure. Because the miRNA is too short to design a pair of primers.
  • a universal tag must be designed in the reverse transcription primer, and the universal sequence is introduced into the cDNA by reverse transcription. Then, miRNA-specific primers were used as upstream primers, and universal primers were used as downstream primers for PCR amplification.
  • the existing nucleic acid amplification technology such as PCR, has some difficult problems when it is applied to the amplification of oligonucleotides and miRNAs.
  • the present invention proposes a novel nucleic acid amplification method called polymerase-endase chain reaction. (Polymerase-endonuclease Chain Reaction, referred to as PECR), or Polymerase-endonuclease amplification reaction (PEAR).
  • PECR Polymerase-endonuclease Chain Reaction
  • PEAR Polymerase-endonuclease amplification reaction
  • the PECR reaction is carried out under the control of a thermal cycle, and the rate of amplification depends entirely on the initial concentration of the target nucleic acid in the reaction system.
  • This method enables rapid, accurate, and sensitive amplification and quantification of short-chain nucleic acid molecules, including oligonucleotides, short-chain DNA, miRNA, and siRNA, and is widely used in molecular biology research.
  • the present invention is achieved by the following technical scheme: a method for amplifying an oligonucleotide and a small RNA by a polymerase-endase chain reaction, the method comprising:
  • the target nucleic acid is a single-stranded or double-stranded nucleic acid
  • the target sequence X is 8 to 50 bases or base pairs in length
  • the Tm value ranges from 36 to 79 ° C ;
  • probe X ' R ' X ' where X ' is a sequence complementary to the target sequence X, and probe X ' R ' X ' is a single-stranded DNA containing two tandem repeats of ⁇ in both repeats There is a complementary sequence R' of the recognition site of a restriction endonuclease;
  • the temperature is higher than the Tm value of the target nucleic acid molecule at a temperature above 5 ° C, the temperature range is 60 to 99 ° C, and the duration is 1 to 60 seconds;
  • the temperature of the Tm value of the target nucleic acid molecule is within 5 °C, the temperature range is 35 ⁇ 68 °C, and the duration is 1 ⁇ 60 seconds;
  • Elongation is maintained at a temperature higher than the Tm value of the target nucleic acid molecule of 5 ⁇ or more, and is the optimum working temperature of the DNA polymerase, the temperature range is 45 to 89 ° C, duration of 1 to 60 seconds;
  • the temperature is above 5 ° C above the Tm value of the target nucleic acid molecule, and is the optimum working temperature of the restriction enzyme, the temperature range is 45 ⁇ 89 ⁇ , duration 1 ⁇ 300 second;
  • steps 1, 3, and 4 are all significantly higher than the annealing temperature of step 2, at least 10 °C. Denaturation, annealing, extension and cleavage according to 1 to 4, the target molecule is multiplied, and the amplified product is a double-stranded molecule XRX/X' R' X' , a double-stranded target molecule X/X' or a single-stranded target molecule. X.
  • the heat-resistant DNA polymerase has no strand displacement activity, and a heat-starting type DN'A polymerase is preferably used, and the heat-resistant restriction endonuclease is a double-strand endonuclease.
  • the target nucleic acid can be any DNA molecule, including oligonucleotides, genomic DNA, mitochondrial DNA, cDNA reverse transcribed from mRNA, microRNA or siRNA, and any other synthetic or natural DNA molecule.
  • the target nucleic acid can also be an RNA molecule, including mRNA, microRNA, and siRNA, as well as any other RNA molecule, while including a DNA polymerase capable of directly extending the RNA molecule in the reaction mixture. That is, the PECR reaction can also be used to directly amplify RNA, especially small RNA such as miRNA or siRNA.
  • the probe may contain complementary sequences of two or more tandem repeats of the target sequence, such as A', and there is a recognition end of the endonuclease between these repeats, such as R',
  • the general formula can be expressed as A'-(R'A') chorus, where n is a positive integer greater than or equal to 1. Using such a probe containing multiple repeats, the amplification rate per cycle can be made faster.
  • the probe may contain complementary sequences of two or more different target sequences, such as A', B', C', etc., and at least one recognition end of the endonuclease between the sequences,
  • R' its general formula can be expressed as A'- (R'B')neig, B'R'A'- (R'B, or A'R'B'- (R'C') justify, etc. Etc., where n is a positive integer greater than or equal to 1.
  • the probe may contain an isotope-labeled nucleotide at the end or in the middle, and the labeled nucleotide may be introduced at a fixed point.
  • detection is carried out by radioactive detection.
  • One or more fluorescent dyes capable of specifically binding to double-stranded DNA may be added to the reaction mixture, including but not limited to Sybr Green I and Sybr Green II, such that the fluorescence density of the reaction mixture follows the PECR.
  • the reaction is enhanced and the fluorescence signal can be detected by a fluorescence detection instrument or a real-time PCR instrument, and the initial number of molecules of the target oligonucleotide and the amplification product can be quantitatively analyzed.
  • the probe may be linked to one or more chemical groups at the end or in the middle, including but not limited to a fluorescent group, a quenching group, biotin, digoxin, amino acid, amino group, amino C3, amino C6, amino group. C12, amino group C18, thiol group, carboxyl group, sugar ring, peptide chain, peptide nucleic acid, and the like.
  • the probe may have a fluorescent group and a quenching group at the end or in the middle, and the fluorophore and the quenching group are respectively located on both sides of the cleavage site, and the cleavage site in the amplification product is cleaved. Separating the fluorophore from the quenching group increases the fluorescence density of the reaction mixture.
  • the fluorescent signal can be detected by a fluorescence detection instrument or a real-time PCR instrument, and the initial number of molecules and amplification products of the target oligonucleotide can be detected. Perform quantitative analysis.
  • the target oligonucleotide contains a fluorescent group and a quenching group label at the end or in the middle, and the amplification product is cleaved to separate the fluorescent group and the quenching group, thereby increasing the fluorescence density of the reaction mixture, and the fluorescent signal It can be detected by a fluorescence detection instrument or a real-time PCR instrument, and the initial number of molecules of the target oligonucleotide and the amplification product can be quantitatively analyzed.
  • the cleavage site in the probe can be methylated: if methylated, the site cannot be cleaved by the endonuclease, but can be cleaved after being demethylated, or The cleavage site in the amplification product produced by the PECR reaction is not methylated and thus can be cleaved.
  • the probe can be immobilized on the surface or particle surface of a gene chip or other solid material, and the amplification product can be detected by a gene chip detection method, and a high-throughput detection analysis is performed on a large number of different target oligonucleotides.
  • the gene chip carrier material is a silicon-based material such as a silicon/silicon dioxide film, a single crystal silicon substrate, a silicon nanowire, etc., a conductive metal such as gold, platinum, etc., a carbon material such as graphite, carbon nanotubes, etc., and a conductive resin, etc. Wait. Some materials can also be made into granules or magnetic beads, and the probes are attached to the surface to allow the PECR reaction to proceed on the surface of these materials.
  • the probe tip can be attached to the nanomaterial, the nanomaterial property can be used to detect the PECR reaction, or the PECR reaction can be used to control the nanomaterial.
  • the nanomaterial refers to a general term for zero-dimensional, one-dimensional, two-dimensional, three-dimensional materials having small size effects composed of ultrafine particles having a size smaller than 100 nm, that is, 0.1 to 100 nm.
  • the shape of the nano material includes nanowires, nanorods, nanotubes, nanobelts, nanoparticles, nanofilms, nanocrystals, nanocrystals, nanofibers, nanoblocks, etc., such as but not limited to carbon nanotubes, nano fullerenes (such as carbon sixty), nano-ceramics, nano-metal particles, nano-zinc oxide particles, nano-silica, nano-titanium dioxide and nano-ferric oxide.
  • Nanomaterials also include biological nanomaterials, ie, biological macromolecules such as polypeptide chains, polysaccharides, aminopolysaccharides, and nucleic acids.
  • the PECR product can be detected by polyacrylamide gel electrophoresis (PAGE) to prepare a non-denaturing polymer with a concentration of 12% ⁇ 15%.
  • PAGE polyacrylamide gel electrophoresis
  • the acrylamide gel is electrophoresed at a voltage of 250 to 300 V for 20 to 40 minutes, and then the DNA band is visualized by one of the following methods:
  • a radioisotope-labeled single nucleotide is incorporated into the PECR reaction system, and imaged by autoradiography after electrophoresis.
  • the PECR product can also be subjected to real-time fluorescence quantitative detection. Similar to real-time PCR technology, real-time fluorescence quantitative PECR can also be used in two ways:
  • Sybr Green fluorescent dyes such as Sybr Green I or Sybr Green II are added to the PECR reaction system.
  • Sybr Green is a type that specifically binds to the minor groove of double-stranded DNA, has high affinity for double-stranded DNA, and has low binding to single-stranded DNA.
  • the probe is single-stranded, and Sybr Green has a low binding force to the probe, so the fluorescence intensity is weak.
  • the single-stranded probe X' R' X' is continuously converted into the double-stranded product X/X'.
  • the binding force between Sybr Green and the product is high, and the fluorescence intensity is greatly enhanced, so that it can be detected in real time by a fluorescence quantitative PCR machine.
  • Real-time quantitation PECR is performed on an ABI 7500 or other model quantitative PCR machine.
  • the present invention employs a fluorescent group and a quencher to label a PECR probe.
  • the fluorophores used include, but are not limited to, 6-carboxyfluorescein (FAM), Tetrachl orof 1 uoresce in (TET), hexachlorofluorescein (HEX), Texas Red, ⁇ , ⁇ , ⁇ ; ⁇ '-tetramethyl-6 ⁇ -carboxyrhodamine ( Referred to as TAMRA), 6-carboxy-X-rhodamine (R0X), 2' 7'-dimethoxy-4' 5'-dichloro-6-carboxyfluorescein (JOE), indodicarbocyanine 3 (Cy3 for short), indodicarbocyanine5 (f3 ⁇ 4f iCy5) , 3- (-carboxy - pentyl) -3' -ethyl- 5, 5' - dimethyloxacarbocyanine (Near CyA); 6-carboxyrhodamine (referred to as R6G), fluorescein isothiocyan
  • the target nucleic acid for the PECR reaction can be any DNA molecule, including oligonucleotides, genomic DNA, mitochondrial DNA, cDNA reverse transcribed from m RNA, microRNA or siRNA, and any other DNA molecule.
  • the PECR reaction can also be used to directly amplify RNA, particularly small RNAs such as miRNAs or siRNAs.
  • the technical solutions used for different target nucleic acids are as follows: (1) using a technical scheme PECR for amplification of single-stranded or double-stranded oligonucleotides having a length of 8 to 50 base pairs;
  • the present invention can only amplify a specific sequence having a 3'-end length of 8 to 50 base pairs, and cannot amplify its full-length sequence;
  • the present invention firstly proposes a polymerase-endase chain reaction, PECR technology, which is a novel nucleic acid amplification technique.
  • PECR technology a polymerase-endase chain reaction
  • the difference between the present invention and other nucleic acid amplification techniques and the beneficial effects of the present invention are:
  • PECR DNA amplification oligonucleotide
  • PCR technology amplifies linear or circular DNA into linear single-copy DNA fragments by thermal cycling
  • RCA technology amplifies circular DNA into linear multicopy tandem repeat DNA by isothermal reaction
  • LAMP technology amplifies linear DNA into linear multicopy tandem repeat DNA by isothermal reaction
  • EXPAR technology utilizes tandem repeat DNA amplification oligonucleotide by isothermal reaction:
  • the PECR technology proposed by the present invention utilizes thermal cycling reaction Tandem repeat DNA probes amplify small molecule nucleic acids, so PECR technology is an important member of the family of nucleic acid amplification technologies.
  • PECR reaction Comparison of PECR reaction and PCR technology: The principle of PECR reaction is completely different from that of PCR. The main difference between PECR and PCR is: 1 PCR relies only on heat-resistant DNA polymerase, and PECR depends not only on heat-resistant DNA polymerase.
  • thermostable restriction enzyme 2 PCR requires at least one pair of primers, and PECR requires only one probe; 3 PCR extends the primer, and PECR extends the target DNA; 4 PCR cannot directly amplify the length too Short nucleic acids, while PECR is specifically designed to directly amplify short-length nucleic acids, especially oligonucleotides and small RNAs; 5 PCR amplification products are generally longer than primers, and PECR is one of PECR amplification products.
  • the probe is shorter; 6 PCR can only double the amplification product per cycle, and in PECR, using a probe containing multiple tandem repeats, the amplification product per cycle can be more than doubled.
  • thermostable enzyme (PCT/US2000/007133) describes a PCR reaction containing a thermostable enzyme. This method eliminates or significantly reduces the shape of non-specific PCR amplification products.
  • DNA polymerase and heat-resistant restriction endonuclease are also employed in the reaction system, the PECR reaction of the present invention is fundamentally different from the above-described PCR reaction containing a thermostable enzyme: The basic principle of the PCR reaction of Dicer is still the PCR reaction. The role of the thermostable restriction enzyme in the reaction is auxiliary. The purpose is to eliminate or reduce the non-target DNA containing the endonuclease recognition site by restriction enzyme digestion. Amplification; In the PECR reaction, the role of the thermostable restriction enzyme is not to eliminate the amplification of non-target DNA, but to achieve the key enzymes necessary for the amplification of the target DNA index.
  • the PECR and EXPAR reactions of the present invention employ the same probe design strategy, but there is a fundamental difference between PECR and EXPAR: 1 EXPAR Isothermal amplification, the reaction process is uncontrollable, and the PECR reaction process is controlled by thermal cycling; 2 EXPAR must use single-stranded nickase, while PECR uses double-stranded endonuclease: 3 EXPAR cannot use hot-start DNA polymerase, only Manual hot start is performed, and PECR can be automatically initiated by PCR using hot-start DNA polymerase: 4 EXPAR reaction has serious non-specific background amplification and false positive problems, while PECR reaction has no non-specific background amplification, Overcome false positives.
  • Tan et al. reported that non-specific amplification of the EXPAR reaction can be reduced or eliminated by manual hot start of the reaction, it is also pointed out that the reaction cannot be performed by PCR using hot-start DNA polymerase. Tan E, et al, Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities. Biochemistry. 2008, 47(38): 9987-9999). This is because the hot-start polymerase, a reversibly inactivated DNA polymerase constructed by chemical modification or anti-polymerase antibody, cannot be used for EXPAR.
  • PECR uses hot-start DNA polymerase and highly thermotolerant endonuclease, which is automatically activated by the PCR machine, with inherent reliability and convenience.
  • the process of the PECR reaction is controlled by thermal cycling.
  • the various parameters of the reaction cycle including annealing temperature, annealing time and number of cycles, can be flexibly adjusted according to the length, sequence, melting temperature and initial number of molecules of different target oligonucleotides. , to meet the requirements of amplifying different target oligonucleotides.
  • the PECR method is a simple and effective new nucleic acid amplification technology.
  • a small molecule nucleic acid of any known sequence is selectively amplified by a PECR method using a sequence-specific probe.
  • the PECR method is capable of rapidly and accurately amplifying and quantifying short-chain nucleic acids, including oligonucleotides and miRNAs.
  • PECR technology is easy to implement fully automated and real-time quantitative detection, and can be widely used in various fields of molecular biology, for example, for amplifying and quantifying small RNAs such as miRNAs, for gene expression regulation research, for gene chip technology, Large-scale, high-throughput nucleic acid detection, as well as for amplification of oligonucleotides, intelligent nucleic acid detection techniques, and molecular computational studies.
  • FIG. 1 is a schematic diagram showing the principle of polymerase-endonuclease amplification reaction, PECR:
  • Figure 2 is a fluorescent labeling method of a PECR probe
  • Figure 3 is a verification of the reaction principle of Example 1;
  • Example 4 is an electrophoresis result of amplification reaction of target oligonucleotides of different starting concentrations in Example 1;
  • Figure 5 is a schematic diagram showing the principle of reverse transcription of PECRgpRT-PECR to amplify miRNA
  • Figure 6 is a schematic diagram showing the principle of directly amplifying RNASPRD-PECR with PECR;
  • Figure 7 is a real-time fluorescence detection of the PECR product of Example 4.
  • This example is a polymerase-endonuclease amplification reaction, PECR, which uses a thermostable DNA polymerase and a heat-resistant restriction endonuclease capable of cleaving double-stranded DNA to amplify the oligonucleotide.
  • the heat-resistant DNA polymerase and the heat-resistant restriction endonuclease are required to withstand a high temperature of 50 ⁇ or more, and the optimum working temperature is 45 ° C - 89 ° C.
  • Thermostable DNA polymerases include, but are not limited to, Taq DNA polymerase, DyNAzyme I I DNA Polymerase ® , LA Taq DNA Polymerase ® , Pfu DNA Polymerase ® , VentR DNA Polymerase ® , Deep VentR DNA Polymerase ® , and the like. This protocol is better if a hot-start DNA polymerase is used.
  • the hot-start DNA polymerase includes, but is not limited to, hot-start Taq DNA polymerase, DyNAzyme II hot-start DNA polymerase®, KOD Xtreme hot-start DNA polymerase®, Phusion DN'A Polymerase®, PfuUltra Hot Start DNA Polymerase®, Platinum DNA Polymerase ⁇ and Thermo-Start DNA Polymerase®, and more.
  • Heat-resistant restriction enzymes include, but are not limited to, PspGI, ApeKI, BstUI, BstNI, wol, Phol, Tsel, Tsp45I, Tsp509I, TspRI and Tfi, and the like.
  • the method includes:
  • target nucleic acid comprising the target sequence X
  • the target nucleic acid is a single-stranded or double-stranded nucleic acid
  • the target sequence X has a length of 8 to 50 bases or base pairs
  • the Tm value ranges from 36 to 79 V.
  • probe X ' R' X ' where X ' is a sequence complementary to the target sequence X, and probe X ' R ' X ' is a single-stranded DNA containing two tandem repeats of X ' in both repeats There is a complementary sequence R' between the recognition sites of the restriction enzymes:
  • DNA polymerase such as Taq DNA polymerase
  • deoxyribonucleotide triphosphates 5 four deoxyribonucleotide triphosphates: dATP, dGTP, dCTP, dTTP ;
  • Thermal cycle reaction The reaction mixture is pre-denatured at a temperature of 60 to 99 Torr for 0 to 20 minutes, and then subjected to 1 to 100 thermal cycles.
  • the thermal cycle includes the following four steps:
  • cleavage (Cl eav i ng): a temperature within 5 ° C above and below the Tm value of the target nucleic acid molecule, and the optimum operating temperature of the restriction enzyme, in the range of 45 89 ⁇ , duration 1 sec Clock ⁇ 5 minutes.
  • steps 1, 3, and 4 are all significantly higher than the annealing temperature of step 2, at least 10 °C.
  • the target molecules are multiplied by denaturation, annealing, extension and cleavage according to 1 to 4.
  • the amplified product is a double-stranded molecule XRX/X ' R ' X ' , a double-stranded target molecule X/X ' or a single-stranded target molecule X
  • step 4 and step 3 may be combined into one step: step 3 is extended and cut for a duration of 1 second to 5 minutes.
  • the amplification mechanism of the PECR reaction scheme is shown in Figure 1:
  • the target molecule (X) and the probe (X' R' X' ) are indicated by the arrow at the 5' end 3' end.
  • the probe and the target oligonucleotide are denatured and annealed to form X/X' R' X' of the partially double-stranded DNA molecule.
  • the target molecule binds to the 3' end of the probe the target molecule X in the partially double-stranded DNA molecule is extended by the thermostable DNA polymerase in the presence of dNTPs to form a fully double-stranded DNA molecule XRX/X' R' X'.
  • the double-stranded DNA molecule is then cleaved by a thermostable restriction enzyme, and the DNA duplex is cleaved between the two repeats to form two double-stranded target molecules X/X ', thus the target oligonucleotide X in the reaction mixture
  • the number of molecules increases.
  • the reaction enters the second cycle, and a new round of annealing, extension, cleavage and strand displacement reactions is initiated.
  • the number of molecules of the target molecule X in the reaction mixture increases exponentially, and the amplified product is a double-stranded target molecule X/X'.
  • step 2 if a target molecule X binds to the complementary sequence at the 5' end of the probe, as shown in the upper right corner of Figure 1, the target molecule will not be extended because it does not provide a primer/template structure for the DNA polymerase. This has an effect on the reaction kinetics of PECR, but does not cause PECR amplification to fail. Because: (1) usually the target molecule has multiple copies, according to the probability principle, inevitably nearly half of the target molecule binds to the complementary sequence at the 3' end of the probe and initiates the reaction; (2) even if there is only one target molecule in the counter After several cycles of thermal denaturation and annealing, it will eventually bind to the 3' end of the probe and initiate the reaction.
  • the resulting product carries a repeating sequence.
  • the target molecule containing the repeat sequence in the subsequent thermal cycle will be paired with the probe again, and the number of repeats will continue to increase through the sliding mechanism of the target and the repeat sequence contained in the probe.
  • Copy double-stranded repeats. This mode of amplification is linear, affecting the kinetics of the PECR reaction and reducing the rate of amplification. However, under the condition of sufficient endonuclease content, most of the double-stranded repeats will be cleaved, so it will not affect the index characteristics of PECR amplification.
  • the PECR product can be detected by polyacrylamide gel electrophoresis (PAGE), and the non-denaturing polyacrylamide gel with a concentration of 5 ⁇ 15'cm and a concentration of 12% ⁇ 15% is electrophoresed for 20 ⁇ 40 minutes with a voltage of 250 ⁇ 300V. , then use one of the following methods to visualize the DNA band:
  • PAGE polyacrylamide gel electrophoresis
  • DNA is stained with ethidium bromide dye, and then the DNA band is observed and photographed by an ultraviolet gel imaging system;
  • a radioisotope-labeled single nucleotide is incorporated into the PECR reaction system, and imaged by autoradiography after electrophoresis.
  • the PECR product can also be subjected to real-time fluorescence quantitative detection. Similar to real-time PCR, real-time fluorescence quantification
  • PECR can also be used in two ways:
  • Sybr Green fluorescent dye such as Sybr Green I or Sybr Green I I is added to the PECR reaction system.
  • Sybr Green is a type that specifically binds to the minor groove of double-stranded DNA, has high affinity for double-stranded DNA, and has low binding to single-stranded DNA.
  • the probe is single-stranded, and Sybr Green has a low binding force to the probe, so the fluorescence intensity is weak.
  • the single-stranded probe X' R' X' is continuously converted into the double-stranded product X/X'.
  • the binding force between Sybr Green and the product is high, and the fluorescence intensity is greatly enhanced, so that it can be detected in real time by a fluorescence quantitative PCR machine.
  • Real-time quantitation PECR is performed on an ABI 7500 or other model quantitative PCR machine.
  • the present invention employs a fluorescent group and a quencher to label a PECR probe.
  • the fluorophores used include, but are not limited to, 6-carboxyf luorescein (FAM), Tetrachlorof luorescein (TET), hexachlorof luorescein (HEX), N, N, ⁇ ; ⁇ '-tetramethyl-6-carboxyrhodamine (TAMRA) , 6-carboxy-X-rhodami ne (R0X for short), 2' 7' -dimethoxy- 4' 5' -dichloro-6-cai”boxyf luorescein (JOE), indodicarbocyanine 3(f3 ⁇ 43 ⁇ 4Cy3), indodicarbocyanine 5(f3 ⁇ 43 ⁇ 4Cy5) , fluorescein isothiocyanate (abbreviated as FI C), 3_ (- carboxy - pentyl) _3' -ethyl- 5, 5' - dimethyloxacarbocyan
  • the principle of fluorescent labeling is shown in Figure 2.
  • the fluorophore is located at the 5' end of the probe and the quenching group is located in the middle of the probe.
  • the restriction endonuclease cleavage site R' or the single-strand nick cleavage site R is 5 to 10 bases downstream, and the fluorophore is closer to the quencher group.
  • most of the energy absorbed by the fluorophore passes through the fluorescence resonance energy transfer.
  • FRET Fluorescence Resonance Energy Transfer
  • dNTPs dNTPs
  • DyNAzyme I I hot start DNA polymerase heat-resistant restriction endonuclease PspGI and buffers thereof were purchased from New England Biolabs Beijing Branch.
  • Synthetic oligonucleotides and probes were purchased from Invi trogen Shanghai Branch.
  • the target oligonucleotide (X) used is identical to the human mi croRNA hsa-mi R-375 sequence, and its sequence is: 5'-TTTGTTCGTTCGGCTCGCGTGA-3', in order to make the amplification rate faster, the probe we used
  • RT-PECR reverse transcript PECR
  • RT-PECR reverse transcript PECR
  • small RNAs such as mi RNA or si RNA.
  • the reaction principle is shown in Figure 5. The method includes the following steps:
  • the target cDNA complementary to the specific target miRNA sequence is then amplified by PECR, which is the same as in Example 1.
  • RNA-directed PECR RNA-direct PECR, RD-PECR for short
  • the RNA molecule is directly amplified by a PECR probe without reverse transcription.
  • miRNA miRNA as an example, the reaction principle is shown in Figure 6. The method includes the following four steps:
  • the target RNA is directly mixed with the PECR probe, and the target miRNA is combined with the PECR probe to form a miRNA/DNA hybrid double-stranded molecule by denaturation and annealing;
  • RNA polymerase capable of directly extending the RNA molecule such as Escherichia coli DNA polymerase I
  • the temperature of the first thermal cycle is set to 37 ° C, the optimal working temperature of E. coli DNA polymerase I, and the E. coli DNA polymerase I extends the miRNA molecule bound to the 3 ' end of the probe to form a target miRNA sequence.
  • miRNAs were selected as targets, miR-375, miR-430a, miR-206 and miR-124, respectively.
  • the sequence and function of miR-375 and miR_430a are known for technical verification.
  • miR-430 removes maternal mRNA that is no longer needed in zebrafish embryos.
  • miR-375 is required for islet development, and lowering miR-375 levels inhibits islet cell aggregation.
  • miR-430a, miR-206 and miR-124 have been found to peak at 4h, 12h and 24h after zebrafish embryo fertilization, respectively.
  • reverse transcription PCR and reverse transcription PECR were used to compare the expression of miRNAs in zebrafish early embryos.
  • Zebrafish embryo miRNAs were extracted at 1 h, 2 h, 4 h, 12 h, and 24 h after fertilization using Appl ied Biosystems mirVana miRNA Isolation Kit (Cat «AM1560).
  • the miRNA was reverse transcribed into cDNA using Appl ied Biosystems TaqMan miRNA Reverse Transcript ion Ki t (Cat# 4366596) as a template for PCR and PECR reactions.
  • the reverse transcription product cDNA of all miRNA samples was performed using Applied Biosystems TaqMan MicroRNA Assay (Cat# 4383443) and TaqMan Universal PCR Master Mix (Cat# 4364338). Quantitative testing, standardization of samples, and this example as an external control.
  • the reverse transcription product cDNA of all miRNA samples was quantitatively analyzed by real-time quantitative PECR, and the reaction system and thermal cycle parameters were the same as in Example 1.
  • the probe therein is labeled with a fluorophore and a quenching group. All reactions included no template control, Repeat at least three times.
  • the amplification reaction was carried out in an Applied Biosystems Model 7500 real-time quantitative PCR system, and the fluorescence density of the reaction mixture was measured in real time as a function of the PECR cycle.
  • real-time fluorescence detection confirmed that the fluorescence density increased with the number of PECR cycles.
  • the results of real-time quantitative PECR and real-time quantitative PCR were compared and analyzed.
  • the results of real-time quantitative PECR and real-time quantitative PCR were basically the same, indicating that the accuracy of real-time quantitative PECR was very high.
  • RNA amplification and reverse transcription PCR For amplification of mi RNA by reverse transcription PCR, universal primers must be used. This can easily lead to problems such as non-specific amplification, false positives, and false negatives.
  • the amplification of miRNAs by reverse transcription PECR does not require the use of universal primers. A single probe with a repeat sequence is required to amplify and quantify the target cDNA. This means that PECR technology is easy to operate, efficient and stable, and has higher amplification specificity. Therefore, PECR technology has a good application in mi RNA amplification and quantitative analysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

利用聚合酶-内切酶链式反应扩增寡核苷酸和小 RNA的方法 技术领域
本发明属于分子生物学及基因工程技术领域,具体涉及一种寡核苷酸和小分子 RNA扩增方 法。
背景技术
核酸扩增技术是当代分子生物学和基因工程领域的核心技术。 近年来新的核酸扩增模式 不断涌现, 基于核酸扩增技术的检测和诊断方法已大量建立并获得广泛应用, 给临床诊断提 供了快速、 灵敏和准确的方法。 虽然这些方法在临床实践中也遇到一些问题, 如假阳性与假 阴性问题, 但基于核酸扩增技术的检测和诊断方法具有特殊优点, 如需样量少、 快速、 灵敏 和准确、 应用范围广泛。 因此, 国内外众多学者不断致力于改进现有技术和探索新型核酸扩 增技术。
按照扩增过程中温度是否变化来划分,核酸扩增方法可分为变温扩增和恒温扩增两大类。 变温扩增主要包括经典的聚合酶链式反应 (Polymerase Chain Reaction,简称 PCR) 和连接酶 链式反应 (Ligase Chain Reaction,简称 LCR ) , 而恒温扩增包括链置换扩增 (Strand displacement amplification,简称 SDA) 、 滚环扩增 (Rolling Circle amplification,简称 RCA) 、 环介导扩增 (Loop Mediated Amplification,简称 LAMP ) 、 依赖解旋酶恒温扩增 (Helicase- dependent Isothermal DNA Amplification, 简称 HDA)、 依赖核酸序列的扩增 ( Nucleic acid sequence based amplification , 简称 NASBA) 、 转录依赖白勺扩增系统 (Transcription-based Amplification System, 简称 TAS) ,等等。
纵观当今分子生物学及基因工程技术领域,虽然新型核酸扩增方法层出不穷,但 PCROJ. S. Pat. Nos.4, 683, 195和 4, 683, 202)依然是最常用的体外核酸扩增方法。 PCR和逆转录 PCR技术 在扩增有足够长度的 DNA和 RNA时简单而有效。但无法用 PCR技术直接扩增小分子核酸, 如寡核 苷酸、 microRNA (简称 miRNA) 和小干涉 RNA (简称 siRNA) 等。 miRNA经过逆转录之后, 与其 互补的 cDNA其实就是寡核苷酸, 往往只有 18- 25个核苷酸的长度, 无法设计一对特异性引物。
寡核苷酸在现代分子生物技术中应用十分广泛。 虽然合成的大量、 纯净、 单一序列的寡 核苷酸可以通过分光光度法根据 0D值定量, 但在含有大量各种不同核酸序列的实际生物样品 中, 对超微量的、 具有特定序列的目标寡核苷酸进行扩增和定量分析, 不仅在技术上是一个 需要克服的难题, 而且在科学上也有重要的应用价值。例如可用于 miRNA和 siRNA等小 RNA的定 量分析。
但有关寡核苷酸扩增方法的研究报道极少。 专利 "Isothermal reactions for the
1
确 认 本 Amplification of oligonucleotides" (PCT/US04/02718)描述了恒温指数扩增反应 (Exponential Amplification Reaction, 简称 EXPAR) 能够扩增出寡核苷酸。 该方法依赖于 聚合酶、 单链切口酶和链置换作用, 利用带有重复序列的单链 DNA作为模板, 能够在 5分钟内 将目标寡核苷酸扩增 106倍。 该反应在恒温条件下进行, 无需昂贵的 PCR仪, 十分简便和快速。 但令人遗憾的是, Tan等人在最近进行的进一步研究中, 指出该反应存在非常严重的非特异性 背景扩增和假阳性的问题: 即便反应体系中没有任何目标 DNA, 也会出现阳性反应(Tan E, et al, Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities. Biochemistry. 2008, 47 (38): 9987-9999 ) 。 因此, 尽管该方法具有恒温和快速的优势, 但用于寡核苷酸定量分析是非常不可靠的。
有关 miRNA的研究是当今分子生物学研究的热点, 连续多年被 Nature和 Science等世界顶 级杂志评选为十大科技新闻。 miRNA是一类内源的、 长度约为 20- 24个核苷酸的调控小 RNA。 自 1999年在秀丽线虫中发现第一个 miRNA lin- 4以来, 研究人员在线虫、 果蝇、 小鼠、 斑马鱼等 模式生物和人类中发现了许多具有重要基因调控作用的 miRNA。 miRNA识别并与其标目标, 即 编码特定蛋白的信使 RNA (mRNA) 的 3' -非翻译区 (3' -UTR) 部分配对, 从而抑制目标 mRNA 在细胞内的翻译活性, 即转录后基因沉默(post- transcriptional gene silencing, 简称 PTGS); 或与其同源的 mRNA结合, 诱导目标 mRNA降解。 miRNA参与生物体中很多基本生命过程 的调控, 在生命活动中起着非常重要的作用。 例如 lin-4参与控制秀丽线虫的幼虫发育时序, mir-14控制果蝇细胞死亡和脂肪代谢。在斑马鱼中 miR-214决定肌肉细胞发育命运,而 miR-430 对胚胎中不再需要的母源 mRNA进行清除。 miR-375是一个在进化上高度保守的胰岛细胞特异性 调控分子, miR-375在斑马鱼中决定胰岛发育, 降低 miR- 375水平能抑制胰岛细胞的聚集, 在 人类中调整胰岛素分泌。 miR-375在其他模式生物和人类中的作用一致, 提示 miR-375的功能 从斑马鱼到人类是保守的。正是这种功能的重要性, miRNA吸引了很多科研人员通过多种途径、 从多种角度、 利用多种模式生物来探讨 miRNA的起源、 作用机制和功能。
截至 2009年 3月 6日, 由 Sanger研究中心建立的 miRNA数据库 (miRbase Release 12.0) 中 已经收录了 8619条 miRNA序列。然而,与新 miRNA的频频发现相比, miRNA的功能研究相对缓慢, 已知确切功能的 miRNA还是少数。 miRNA的功能研究, 一是要确定 miRNA发挥调控作用的目标基 因, 二是要对 miRNA进行定量分析, 研究其自身的时空表达调控。 因为 miRNA表达的时序性和 组织特异性能够揭示其在组织和细胞中的特异性功能。导致 miRNA功能研究进展缓慢的主要原 因, 一是因为 miRNA的作用目标难以确定; 二是由于 miRNA太短, 其扩增和定量分析远比长链 信使 RNA困难。
目前 miRNA的扩增和定量分析均以逆转录 PCR为基础。 因为 miRNA没有 poly-A尾, miRNA的 逆转录方法与 mRNA有所不同, 主要有两种策略: 一种是用多聚腺苷酸激酶给 miRNA的 3' -末端 加上 Poly- A尾, 用 Ol igo-dT及逆转录酶来合成与 miRNA互补的 cDNA。另一种方法是用特异性引 物进行逆转录, 这种引物包含一段和特定 miRNA的 3'端互补的序列和一个颈环 (Loop ) 结构。 因为 miRNA太短, 无法设计一对引物。 因此无论用哪种方法逆转录, 都必须在逆转录引物中设 计一段通用序列 (universal tag ) , 通过逆转录将通用序列引入 cDNA。 然后用 miRNA特异引 物作为上游引物, 通用引物作为下游引物, 进行 PCR扩增。
由于 miRNA的 Poly-A加尾和逆转录反应的效率都不是百分之百,这些额外的通用序列使逆 转录引物过长, 可能导致逆转录效率进一步下降, 对定量分析结果的准确性产生不利影响。 而且更为严重的是会带来非特异性扩增、 假阳性和假阴性等问题。 因为相同的通用引物序列 难以适应所有的 miRNA序列: 某些 miRNA的特异引物会与通用引物发生错配, 产生引物二聚体, 出现非特异性扩增和假阳性结果。 另外, PCR反应中上下游引物的解链温度 (Melting temperature, 简称 Tm值)相差最好不能超过 2°C, 而使用通用引物扩增, 必然造成某些 miRNA 的特异引物与通用引物的 Τπι值差异过大, 无法扩增而出现假阴性结果。
发明内容
针对 PCR等现有核酸扩增技术在应用于扩增寡核苷酸和 miRNA时均存在一定困难的问题, 本发明提出一种新型核酸扩增方法,称为聚合酶-内切酶链式反应(Polymerase- endonuclease Chain Reaction, 简称 PECR ) , 或者聚合酶-内切酶扩增反应 ( Polymerase-endonuclease ampl ification reaction, 简称 PEAR )。利用耐热 DNA聚合酶和耐热限制性内切酶的协同作用, 仅用一条特异性探针, 就能够实现以指数模式扩增特定的目标寡核苷酸。 PECR反应进稈在热 循环的控制下进行, 扩增速率完全取决于反应体系中目标核酸的初始浓度。 这种方法能够快 速, 准确, 灵敏地扩增和定量短链核酸分子, 包括寡核苷酸、 短链 DNA、 miRNA和 siRNA等, 可 广泛应用于分子生物学研究。
本发明是采用以下的技术方案实现的:一种利用聚合酶-内切酶链式反应扩增寡核苷酸和 小 RNA的方法, 该方法包括:
( 1 ) 反应混合物的构成:
①包含目标序列 X的目标核酸, 目标核酸为单链或双链核酸, 目标序列 X长度为 8〜50碱基 或碱基对, 其 Tm值的范围为 36〜79°C ;
②探针 X ' R ' X ' , 其中 X ' 为与目标序列 X互补的序列, 探针 X ' R ' X ' 是单链 DNA, 含有 两个串联重复的 Γ ,在这两个重复序列之间有一个限制性内切酶的识别位点的互补序列 R ' ;
③耐热 DNA聚合酶;
④耐热限制性内切酶; ⑤四种三磷酸脱氧核糖核苷酸: dATP, dGTP, dCTP和 dTTP;
⑥适当的缓冲液:
(2)热循环反应: 将所述反应混合物在 60Ό至 99°C预变性 0〜600秒后, 再进行 1〜100个热循 环处理, 热循环包括如下四个步骤:
①变性(Denaturing): 保温于高于目标核酸分子的 Tm值 5°C以上的温度, 温度范围为 60〜 99 °C, 持续时间 1〜60秒;
②退火(Annealing): 保温于目标核酸分子的 Tm值上下 5°C以内的温度, 温度范围为 35〜 68 °C, 持续时间 1〜60秒;
③延伸(Elongation): 保温于高于目标核酸分子的 Tm值 5Γ以上的温度, 且为所述 DNA聚 合酶的最适工作温度, 温度范围为 45〜89°C, 持续时间 1〜60秒;
④切割(Cleaving): 保温于高于目标核酸分子的 Tm值 5°C以上的温度, 且为所述限制性内 切酶的最适工作温度, 温度范围为 45〜89Γ, 持续时间 1〜300秒;
所述步骤①、 ③、 ④的温度均显著高于步骤②的退火温度, 至少相差 10°C。 按照①至④进行 变性、 退火、 延伸和切割, 使目标分子成倍扩增, 扩增产物是双链分子 XRX/X' R' X' , 双链 目标分子 X/X' 或单链目标分子 X。
本发明中, 所述的耐热 DNA聚合酶没有链置换活性, 最好采用热启动型 DN'A聚合酶, 所述 的耐热限制性内切酶是双链内切酶。
所述的目标核酸可以为任何 DNA分子, 包括寡核苷酸、 基因组 DNA、 线粒体 DNA、 由 mRNA、 microRNA或 siRNA逆转录而来的 cDNA、 以及其它任何人工合成的或者天然的 DNA分子。
所述目标核酸也可以为 RNA分子, 包括 mRNA、 microRNA和 siRNA, 以及其它任何 RNA分子, 同时在所述反应混合物中包含一种能够直接延伸 RNA分子的 DNA聚合酶。 即 PECR反应也可以用 于直接扩增 RNA, 特别是 miRNA或者 siRNA等小分子 RNA。
所述的探针可以含有两个或两个以上串联重复的目标序列的互补序列, 如 A', 在这些重 复序列之间均有一个耐热内切酶的识别位点, 如 R', 其通式可表示为 A'- (R'A')„, 其中 n为大 于等于 1的正整数。 使用这种含有多个重复序列的探针, 能够使每个循环的扩增速率更快。
所述的探针可以含有两种或两种以上不同的目标序列的互补序列, 例如 A'、 B'、 C'等, 在这些序列之间至少有一个耐热内切酶的识别位点, 如 R', 其通式可表示为 A'- (R'B')„, B'R'A'- (R'B , 或 A'R'B'- (R'C')„, 等等, 其中 n为大于或等于 1的正整数。 使用这种含有多 种目标序列的探针, 能够扩增产生多种目标序列, 并实现输入特定目标序列的寡核苷酸扩增 产生其他目标序列。
所述的探针末端或中间可以含有同位素标记的核苷酸, 则该标记的核苷酸可被定点引入 到扩增产物中, 用放射性检测方法进行检测。
所述的反应混合物中可以加入一种或一种以上能与双链 DNA特异性地结合的荧光染料,包 括但不仅限于 Sybr Green I和 Sybr Green I I, 使反应混合物的荧光密度随着所述 PECR反应的 发生而增强, 荧光信号可被荧光检测仪器或实时荧光定量 PCR仪检测, 并可对目标寡核苷酸的 初始分子数以及扩增产物进行定量分析。
所述的探针末端或中间可以连接一种或多种化学基团, 包括但不限于荧光基团、 淬灭基 团、 生物素、 地高辛、 氨基酸、 氨基、 氨基 C3、 氨基 C6、 氨基 C12、 氨基 C18、 荃基、 羧基、 糖环、 肽链、 肽核酸等。
所述的探针末端或中间可以含有荧光基团和淬灭基团标记, 荧光基团和淬灭基团分别位 于酶切位点的两侧, 则扩增产物中酶切位点被切割而使得荧光基团和淬灭基团分开, 使反应 混合物的荧光密度增强, 荧光信号可被荧光检测仪器或实时荧光定量 PCR仪检测, 并可对目标 寡核苷酸的初始分子数以及扩增产物进行定量分析。
所述的目标寡核苷酸末端或中间含有荧光基团和淬灭基团标记, 则扩增产物被切割而使 得荧光基团和淬灭基团分开, 使反应混合物的荧光密度增强, 荧光信号可被荧光检测仪器或 实时荧光定量 PCR仪检测, 并可对目标寡核苷酸的初始分子数以及扩增产物进行定量分析。
所述的探针中的酶切位点可以被甲基化: 若被甲基化, 则该位点不能被所述内切酶切割, 但在被去甲基化后又能够被切割, 或者通过 PECR反应产生的扩增产物中的酶切位点未被甲基 化, 因此能够被切割。
所述的探针可被固定在基因芯片或其他固体材料的平面或颗粒表面, 扩增产物可用基因 芯片检测方法进行检测, 对大量不同的目标寡核苷酸的进行高通量检测分析。 基因芯片载体 材料有硅系材料如硅 /二氧化硅薄膜、 单晶硅基片、 硅纳米线等, 导电金属如金、 铂等, 碳材 料如石墨、 碳纳米管等, 以及导电树脂, 等等。 有些材料也可被制成颗粒或磁珠, 将探针连 接在其表面, 使 PECR反应能够在这些材料的表面进行。
所述的探针末端可以与纳米材料连接, 用纳米材料特性来检测 PECR反应, 或者用 PECR反 应实现对纳米材料的控制。 纳米材料是指由尺寸小于 lOOnm即 0. 1- lOOnm的超细颗粒构成的具 有小尺寸效应的零维、 一维、 二维、 三维材料的总称。 纳米材料的形状包括纳米线、 纳米棒、 纳米管、 纳米带、 纳米颗粒、 纳米薄膜、 纳米晶体、 纳米非晶体、 纳米纤维、 纳米块体等, 例如但不限于纳米碳管, 纳米富勒烯 (如碳六十) , 纳米陶瓷, 纳米金属颗粒, 纳米氧化锌 颗粒, 纳米二氧化硅, 纳米二氧化钛及纳米四氧化三铁等。 纳米材料还包括生物纳米材料即 生物大分子, 如多肽链、 多糖、 氨基多糖和核酸等。
PECR产物可用聚丙烯酰胺凝胶电泳 (简称 PAGE ) 检测, 配制浓度为 12%〜15%的非变性聚 丙烯酰胺凝胶, 用 250〜300V电压电泳 20〜40分钟, 然后采用以下方法之一使 DNA条带显现:
( 1 ) 用溴化乙锭染料对凝胶进行染色, 然后用紫外凝胶成像系统对 DNA条带进行观察和 拍照;
( 2 ) 用 Sybr Green I或 Sybr Green I I染料对凝胶进行染色, 然后用紫外凝胶成像系统 对 DNA条带进行观察和拍照;
( 3 ) 用银染法对凝胶进行染色使 DNA条带显影;
( 4 )在 PECR反应体系中掺入放射性同位素标记的单核苷酸, 电泳之后用放射自显影技术 成像。
PECR产物也可以进行实时荧光定量检测。 与实时荧光定量 PCR技术类似, 实时荧光定量 PECR也可以采用两种方法:
( 1 ) 在反应混合物中直接加入荧光染料:
在 PECR反应体系中加入 Sybr Green荧光染料,如 Sybr Green I或 Sybr Green II。 Sybr Green 是一种,能与双链 DNA的小沟特异性地结合,与双链 DNA亲和力很高,而与单链 DNA结合力很低。 在 PECR反应开始时探针是单链的, Sybr Green与探针结合力很低, 因此荧光强度较弱。 而随 PECR反应循环不断将单链探针 X' R' X'转换为双链产物 X/X', Sybr Green与产物结合力很高, 荧光强度大大增强, 从而可用荧光定量 PCR仪实时检测。 实时定量 PECR在 ABI 7500型或者其他 型号定量 PCR仪上进行。
( 2 ) 采用荧光基团和淬灭基团标记 PECR探针:
由于 Sybr Green荧光染料具有与任何双链 DNA非特异性结合的特点, 因此上述采用 Sybr Green荧光染料进行核酸定量分析的方法, 如果发生假阳性或非特异性扩增, 则无法与真正的 阳性反应相互区分。 为了更精确地用 PECR技术对寡核苷酸进行定量分析, 本发明采用荧光基 团 (flourophore ) 和淬灭基团 (quencher ) 标记 PECR探针。 所用的荧光基团包括但不限于 6-carboxyfluorescein简称 FAM) , Tetrachl orof 1 uoresce i n (简称 TET) , hexachlorofluorescein (简称 HEX) , TexasRed, Ν, Ν, Ν;Ν' -tetramethyl-6^-carboxyrhodamine(简称 TAMRA), 6-carboxy- X-rhodamine (简称 R0X) , 2' 7' -dimethoxy-4' 5' -dichloro-6-carboxyfluorescein(简称 JOE) , indodicarbocyanine 3( 简称 Cy3), indodicarbocyanine5(f¾f iCy5) , 3- (-carboxy - pentyl) -3' -ethyl- 5, 5' - dimethyloxacarbocyanine (歸尔 CyA) ;6-carboxyrhodamine (简称 R6G) , fluorescein isothiocyanate (简称 FITC) ,等。 所述萍灭 基团包括但不限于 TARMA, Iowa Black (简称 IWB)等。
PECR反应的目标核酸可为任何 DNA分子, 包括寡核苷酸、基因组 DNA, 线粒体 DNA, 由 mRNA、 microRNA或 siRNA逆转录而来的 cDNA、 以及其它任何 DNA分子。 PECR反应也可以用于直接扩增 RNA, 特别是 miRNA或者 siRNA等小分子 RNA。 对于不同的目标核酸所采用的技术方案如下: ( 1 ) 对于长度为 8〜50碱基对的单链或双链寡核苷酸的扩增采用技术方案 PECR;
( 2 ) 对于 mi croRNA或 siRNA , 采用技术方案 RT- PECR, 先将 microRNA或 siRNA逆转录为 cDNA 并进行扩增, 或者采用技术方案 RD-PECR直接扩增目标 RNA;
( 3 ) 对于长度超过 50碱基对的长链核酸, 本发明只能扩增其 3 ' 末端长度为 8〜50碱基对的 特异序列, 而不能扩增其全长序列;
( 4 ) 对于长链目标 DNA或 cDNA中间的一段特异序列,首先用识别位点与目标序列紧密相邻的 限制性内切酶切割目标 DNA或 cDNA , 使目标序列暴露于 3 ' 末端, 然后再用 PECR技术方 案扩增。
本发明首次提出聚合酶-内切酶链式反应即 PECR技术, 是一种新型核酸扩增技术。本发明 与其它核酸扩增技术的区别以及本发明的有益效果是:
( 1 ) PECR与现有的 DNA扩增技术比较: PCR技术通过热循环将线性或环形 DNA扩增为线性 单拷贝 DNA片段; RCA技术通过等温反应将环形 DNA扩增为线性多拷贝串联重复 DNA分子, LAMP 技术通过等温反应将线形 DNA扩增为线性多拷贝串联重复 DNA; EXPAR技术通过等温反应, 利用 串联重复 DNA扩增寡核苷酸: 本发明提出的 PECR技术则通过热循环反应, 利用串联重复 DNA探 针扩增小分子核酸, 因此 PECR技术是核酸扩增技术家族中的重要成员。
( 2 ) PECR反应与 PCR技术的比较: PECR反应原理与 PCR完全不同, PECR与 PCR主要的不同 之处在于: ① PCR仅依赖于耐热 DNA聚合酶, PECR不仅依赖于耐热 DNA聚合酶, 而且依赖于耐 热限制性内切酶; ② PCR至少需要一对引物, 而 PECR只需要一条探针; ③ PCR对引物进行延伸, 而 PECR对目标 DNA进行延伸; ④ PCR无法直接扩增长度太短的核酸, 而 PECR专门用于直接扩增 长度较短的核酸, 特别是寡核苷酸和小 RNA; ⑤ PCR扩增产物一般比引物长, 而 PECR方案之一 即 PECR的扩增产物比探针更短; ⑥ PCR每个循环扩增产物最多只能增加一倍, 而在 PECR中, 利 用含有多个串联重复序列的探针, 可实现每个循环扩增产物增加两倍以上。
( 3 ) PECR反应与含有耐热内切酶的 PCR反应的比较: 在专利 " COUPLED POLYMERASE CHAIN REACTION-RESTRICTION ENDONUCLEASE DIGESTION- LIGASE DETECTION REACTION PROCESS "
( PCT/US2000/007133 ) 中, 描述了含有耐热内切酶的 PCR反应。 该方法可消除或显著降低非 特异性 PCR扩增产物的形 。尽管在反应体系中都同样采用了 DNA聚合酶和耐热限制性内切酶, 但本发明的 PECR反应与上述含有耐热内切酶的 PCR反应在原理上有根本的区别:含有耐热内切 酶的 PCR反应, 其基本原理仍然还是 PCR反应, 耐热限制性内 酶在反应中的作用是辅助性的, 目的是通过酶切消除或降低含有内切酶识别位点的非目标 DNA的扩增; 而在 PECR反应中, 耐热 限制性内切酶的作用不是消除非目标 DNA的扩增,而是实现目标 DNA指数扩增所必须的关键酶。
( 4 ) PECR方法与 EXPAR方法的比较: 在专利 " Isot hermal react ions for the Amplification of oligonucleotides" (PCT/US04/02718) 中描述了一种恒温指数扩增反应 即 EXPAR。 本发明 PECR与 EXPAR反应采用了相同的探针设计策略, 但 PECR与 EXPAR存在根本区 别:① EXPAR进行等温扩增, 反应过程不可控, 而 PECR反应过程依靠热循环精密控制; ② EXPAR 必须用单链切口酶, 而 PECR采用双链内切酶: ③ EXPAR无法使用热启动型 DNA聚合酶, 只能进 行手动热启动, 而 PECR可釆用热启动型 DNA聚合酶由 PCR仪自动热启动: ④ EXPAR反应存在严重 的非特异性背景扩增和假阳性问题, 而 PECR反应没有非特异性背景扩增, 能够克服假阳性。
尽管 Tan等报道了 EXPAR反应的非特异性扩增可以通过对反应进行手动热启动 (Manual Hot Start) 来减少或者消除, 但同时也指出了该反应无法像 PCR那样, 利用热启动 DNA聚合酶 由 PCR仪自动进行 ( Tan E, et al, Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities. Biochemistry. 2008, 47(38): 9987-9999) 。 这是因为热启动聚合酶, 即通过化学修饰或者 抗聚合酶抗体 (antipolymerase) 构建的可逆失活的 DNA聚合酶, 无法用于 EXPAR。 因为这些 热启动聚合酶必须在 9CTC以上保温 10分钟左右激活,而 EXPAR反应所依赖的具有链置换活性的 Bst聚合酶和切口酶 Nb. BstNBI, 都是不能耐受 90°C以上高温的。 目前虽然有能耐受 9CTC以上 高温的链置换 DNA聚合酶 (如 VentRexo- ) , 却没有能耐受 90Ό以上高温的切口酶可用。 因此 该反应的热启动必须采用手动方法进行, 即先将反应混和液加热到预定温度, 然后再加入 DNA 聚合酶和切口酶。 手动热启动不仅操作十分麻烦, 而且无法在实时荧光定量分析中实施, 大 大限制了该方法的推广应用。
与此相反, PECR可采用热启动 DNA聚合酶和高度耐热的内切酶, 由 PCR仪自动进行热启动, 具有内在的可靠性和方便性。 PECR反应的过程通过热循环控制。就像在 PCR技术中所作的那样, 反应循环的各个参数, 包括退火温度, 退火时间和循环数目, 都可以根据不同目标寡核苷酸 的长度、 序列、 解链温度和初始分子数进行灵活调节, 以满足扩增不同目标寡核苷酸的要求。
总之, PECR方法是一项既简单又有效的新型核酸扩增技术。 通过 PECR方法, 用一条序列 特异性探针, 选择性地扩增任何一段己知序列的小分子核酸。 PECR方法能够快速、 准确、 灵 敏地扩增和定量短链核酸, 包括寡核苷酸和 miRNA。 PECR技术很容易实现完全自动化和实时定 量检测, 能广泛应用于分子生物学的各个领域, 例如, 用于扩增和定量 miRNA等小分子 RNA, 进行基因表达调控研究, 用于基因芯片技术, 进行大规模、 高通量的核酸检测, 以及用于扩 增寡核苷酸、 智能化核酸检测技术和分子计算研究等。
附图说明
图 1为聚合酶 -内切酶扩增反应即 PECR的原理示意图:
图 2为 PECR探针的荧光标记方法; 图 3为对实施例 1反应原理的验证;
图 4为实施例 1中不同起始浓度目标寡核苷酸扩增反应电泳结果;
图 5为逆转录 PECRgpRT- PECR扩增 miRNA的原理示意图;
图 6为用 PECR直接扩增 RNASPRD-PECR的原理示意图;
图 7为实施例 4中 PECR产物的实时荧光检测。
具体实施方式
实施例 1
本实施例为聚合酶 -内切酶扩增反应即 PECR,采用耐热 DNA聚合酶和能切割双链 DNA的耐热 限制性内切酶扩增寡核苷酸。本实施例中, 要求耐热 DNA聚合酶和耐热限制性内切酶均能耐受 50Ό以上高温, 最适工作温度为 45°C-89°C。 耐热 DNA聚合酶包括但不限于 Taq DNA聚合酶, DyNAzyme I I DNA聚合酶 ®, LA Taq DNA聚合酶 ®, Pfu DNA聚合酶 ®, VentR DNA聚合酶 ®, Deep VentR DNA聚合酶 ®,等等。 本方案如果采用热启动型 DNA聚合酶则更佳, 热启动型 DNA聚合酶包 括但不限于热启动 Taq DNA聚合酶, DyNAzyme I I热启动 DNA聚合酶 ®, KOD Xtreme热启动 DNA 聚合酶 ®, Phusion DN'A聚合酶 ®, PfuUltra热启动型 DNA聚合酶 ®, Platinum DNA聚合酶 ©和 Thermo- Start DNA聚合酶 ®, 等等。 耐热限制性内切酶包括但不限于 PspGI, ApeKI, BstUI, BstNI, wol, Phol, Tsel, Tsp45I, Tsp509I, TspRI和 Tfi l, 等等。 该方法包括:
( 1 ) 反应体系的构成:
①包含目标序列 X的目标核酸, 目标核酸为单链或双链核酸, 目标序列 X长度为 8〜50碱基 或碱基对, 其 Tm值的范围为 36〜79 V
②探针 X ' R' X ' , 其中 X ' 为与目标序列 X互补的序列, 探针 X ' R ' X ' 是单链 DNA, 含有 两个串联重复的 X ' ,在这两个重复序列之间有一个限制性内切酶的识别位点的互补序列 R ' :
③耐热 DNA聚合酶, 如 Taq DNA polymerase;
④耐热限制性内切酶, 如 PspGI :
⑤四种三磷酸脱氧核糖核苷酸: dATP, dGTP, dCTP, dTTP;
⑥适当的缓冲液;
( 2 )热循环反应:将所述反应混合物在 60〜99Ό的温度下预变性 0秒钟至 20分钟后,再进行 1〜 100个热循环处理, 热循环包括如下四个步骤:
①变性(Denaturing) : 保温于高于目标核酸分子的 Tm值 5°C以上的温度, 温度范围 60〜 99 °C , 持续时间 1秒钟〜 1分钟:
②退火 (Anneal ing) : 保温于目标核酸分子的 Tm值上下 5Γ以内的温度, 温度范围 35〜68 °C, 持续时间 1秒钟〜 1分钟; ③延伸(Elongat i on) : 保温于目标核酸分子的 ½值上下 5 °C以内的温度, 且为所述 DNA聚 合酶的最适工作温度, 范围为 45 89 °C, 持续时间 1秒钟〜 1分钟;
④切割 (Cl eav i ng) : 保温于目标核酸分子的 Tm值上下 5°C以内的温度, 且为所述限制性内 切酶的最适工作温度温度, 范围为 45 89Ό, 持续时间 1秒钟〜 5分钟。
所述步骤①、 ③、 ④的温度均显著高于步骤②的退火温度, 至少相差 10°C。 按照①至④ 进行变性、 退火、 延伸和切割, 使目标分子成倍扩增。 扩增产物是双链分子 XRX/X ' R ' X ' , 双链目标分子 X/X ' 或单链目标分子 X
实际操作中如果步骤④的切割温度与步骤③的延伸温度相同, 则步骤④与步骤③可以合 并为一个步骤: 步骤③延伸和切割, 持续时间为 1秒钟〜 5分钟。
PECR反应技术方案的扩增机理如图 1所示: 目标分子 (X ) 与探针 (X' R' X' ) , 箭头所示 方向为 5'末端 3'末端。 第一个循环中, 探针和目标寡核苷酸通过变性和退火, 形成部分 双链 DNA分子的 X/X' R' X'。 如果目标分子与探针 3'端结合, 在 dNTPs存在的条件下, 此部分双 链 DNA分子中的目标分子 X被耐热 DNA聚合酶延伸, 形成一个完全双链 DNA分子 XRX/X' R' X'。 然 后此双链 DNA分子被耐热限制性内切酶切割, DNA双链在两个重复序列之间断裂, 形成两个双 链目标分子 X/X ' , 因此反应混合物中目标寡核苷酸 X的分子数增加。 于是反应进入第二个循 环, 幵始新一轮的退火, 延伸、 切割和链置换反应, 反应混合物中目标分子 X的分子数呈指数 模式增加, 扩增产物为双链目标分子 X/X'
在步骤②中, 如果一个目标分子 X与探针 5'端的互补序列结合, 如图 1右上角所示, 则目 标分子不会被延伸, 因为它没有为 DNA聚合酶提供引物 /模板结构。 这会对 PECR的反应动力学 产生影响, 但并不会导致 PECR扩增无法进行。 因为: (1 )通常目标分子具有多个拷贝, 根据 概率原理, 必然有近一半的目标分子与探针 3'端的互补序列结合, 并启动反应; (2 ) 即使反 •应中只有一个目标分子, 经过若干个循环的热变性和退火后, 它也终究会与探针 3'端结合, 并启动反应。
另外, 在步骤③和步骤④中, 如果某些目标分子被延伸但没有被切割, 所形成的产物带 有重复序列。如图 1右下角所示,在后续热循环中含有重复序列的目标分子会再次与探针配对, 并可能会通过目标与探针所含重复序列的滑动机制, 使重复数目继续增加, 产生多拷贝双链 重复序列。 这种扩增方式是线性的, 对 PECR反应的动力学会产生影响, 使扩增速度降低。 但 在内切酶含量充分的条件下, 绝大部分双链重复序列都会被切割, 因此不会影响 PECR扩增的 指数特征。 这些多拷贝重复序列在后续循环中再被内切酶切断, 产生多个产物 X/X', 对扩增 速度具有促进作用。 为了便于分析检测, 或者在后续反应中应用, 必要的情况下, 在热循环 结束后可以再进行 10 60分钟的切割反应, 使产生的多拷贝重复序列尽可能都被切割成单拷 贝目标分子 χ/χ'。
PECR产物可用聚丙烯酰胺凝胶电泳(简称 PAGE)检测,配置长度为 5〜15'Cm,浓度为 12%〜 15%的非变性聚丙烯酰胺凝胶, 用 250〜300V电压电泳 20〜40分钟, 然后采用以下方法之一使 DNA条带显现:
( 1 ) 用溴化乙锭染料对 DNA进行染色, 然后用紫外凝胶成像系统对 DNA条带进行观察和拍照;
( 2 ) 用 Sybr Green I或 Sybr Green II染料对 DNA进行染色, 然后用紫外凝胶成像系统对 DNA 条带进行观察和拍照;
( 3 ) 用银染法对 DNA条带显影;
( 4 )在 PECR反应体系中掺入放射性同位素标记的单核苷酸,电泳之后用放射自显影技术成像。
PECR产物也可以进行实时荧光定量检测。 与实时荧光定量 PCR技术类似, 实时荧光定量
PECR也可以采用两种方法:
( 1 ) 在反应混合物中直接加入荧光染料:
在 PECR反应体系中加入 Sybr Green荧光染料,如 Sybr Green I或 Sybr Green I I。 Sybr Green 是一种,能与双链 DNA的小沟特异性地结合,与双链 DNA亲和力很高,而与单链 DNA结合力很低。 在 PECR反应开始时探针是单链的, Sybr Green与探针结合力很低, 因此荧光强度较弱。 而随 PECR反应循环不断将单链探针 X' R' X'转换为双链产物 X/X', Sybr Green与产物结合力很高, 荧光强度大大增强, 从而可用荧光定量 PCR仪实时检测。 实时定量 PECR在 ABI 7500型或者其他 型号定量 PCR仪上进行。
( 2 ) 采用荧光基团和淬灭基团标记 PECR探针:
由于 Sybr Green荧光染料具有与任何双链 DNA非特异性结合的特点, 因此上述采用 Sybr Green荧光染料进行核酸定量分析的方法, 如果发生假阳性或非特异性扩增, 则无法与真正的 阳性反应相互区分。 为了更精确地用 PECR技术对寡核苷酸进行定量分析, 本发明采用荧光基 团 (flourophore ) 和淬灭基团 (quencher ) 标记 PECR探针。 所用的荧光基团包括但不限于 6-carboxyf luorescein ( 简 称 FAM) , Tetrachlorof luorescein ( 简 称 TET), hexachlorof luorescein (简称 HEX) , N, N, Ν ; Ν' -tetramethyl-6-carboxyrhodamine (简称 TAMRA), 6-carboxy-X-rhodami ne (简称 R0X) , 2' 7' -dimethoxy- 4' 5' -dichloro-6-cai"boxyf luorescein (简称 JOE) , indodicarbocyanine 3(f¾¾Cy3), indodicarbocyanine 5(f¾¾Cy5), fluorescein isothiocyanate (简 称 FI C), 3_ (- carboxy - pentyl) _3' -ethyl- 5, 5' - dimethyloxacarbocyanine (简称 CyA); Texas Red, 6-carboxyrhodamine (简称 R6G)等。所述淬灭基团包括但不限于 TARMA, Iowa Black (IWB) 等。
荧光标记技术原理如图 2所示, 荧光基团位于探针的 5'端, 而淬灭基团位于探针中间, 在 限制性内切酶切割位点 R'或单链切口酶切割位点 R下游 5〜10个碱基处, 荧光基团与淬灭基团 距离较近。 在 PECR反应幵始时, 荧光基团所吸收的能量大部分通过荧光共振能量转移
( Fluorescence Resonance Energy Transfer, 简称 FRET ) 原理转移到猝灭基团, 以热量的 形式释放, 荧光发生在一个较低的水平, 如果将淬灭基团放在探针 3'端则距离太远, 淬灭效 果不佳。 随着 PECR反应循环, 单链探针不断被转换为双链, 并被限制性内切酶或单链切口酶 切割, 造成荧光基团和猝灭基团分离, 荧光基团所吸收的能量以荧光的形式释放, 荧光信号 大大增强, 从而可用荧光定量 PCR仪实时检测。
具体地, 本实施例中 dNTPs、 DyNAzyme I I热启动 DNA聚合酶、 耐热限制性内切酶 PspGI及 其缓冲液均购自 New England Biolabs北京分公司。 人工合成的寡核苷酸和探针购自 Invi trogen上海分公司。 所采用的目标寡核苷酸(X)与人类 mi croRNA hsa-mi R-375序列相同, 其序列为: 5' -TTTGTTCGTTCGGCTCGCGTGA-3' , 为了使扩增速率更快, 我们采用的探针
( X' R' X' R' X' ) 含有 3个拷贝的 hsa-miR-375的互补序列, 其序列为:
5' -TCACGCGAGCCGAACGMCAAA-CCAGG-TCACGCGAGCCGAACGAACA -CCAGG-TCACGCGAGCCGAACGAAC AAA- 3'
下划线所示为内切酶 PspGI的识别和切割位点。
在总体积为 20uL的反应混合物中加入 100 nM探针, 10— '至 10— 12 uM的目标寡核苷酸, 0. 05Uni t/uL热启动 Taq DNA聚合酶, 0. lUni t/uL耐热限制性内切酶 PspGI, l x DNA聚合酶的缓 冲液和四种 dNTPs各 50uM。 反应条件为 90°C预变性 10分钟, 并激活 DyNAzyme I I热启动 DNA聚合 酶, 然后进行 20- 40个热循环: 90Γ变性 5秒, 45Ό-65Ό退火 5-30秒, 75°C延伸和切割 5分钟。 循环结束后再切割 30分钟。 PECR反应产物用非变性聚丙烯酰胺凝胶电泳 (PAGE ) 检测。
为了验证 PECR反应机理, 我们用完全的 PECR反应混合物和缺少聚合酶、 PspGI或目标 X 的不完全的 PECR反应混合物进行了扩增, 并采用不同初始浓度的目标寡核苷酸进行 PECR扩增 反应。 如图 3中箭头所示, 电泳检测只在完全 PECR反应中可见一个 22bp的条带, 相应的 PECR 产物为 χ/χ';其上方有一个 44bp条带,是部分酶切产物。而当反应混合物中缺少聚合酶、 PspGI 或目标分子 X时, 没有 PECR产物出现。 表明 PECR扩增依赖于两种酶、 探针和目标核酸的存在。 图 4表明, PECR扩增反应是一个高度灵敏的反应, 可检测 10— '° uM的目标寡核苷酸。
实施例 2
本实施例为逆转录 PECR ( Reverse transcript PECR , 简称 RT- PECR ) , 通过逆转录 PECR 反应扩增 RNA分子, 特别是 mi RNA或者 si RNA等小分子 RNA。 以 miRNA为例, 其反应原理如图 5所 示, 该方法包括以下歩骤:
①先用多聚腺苷酸聚合酶 (poly- A polymerase , 简称 PAP ) 对全部 mi RNA添加 poly- A尾: ②用 01 igo-dT和逆转录酶将全部 miRNA反转录为与之互补的 cDNA;
③用 RNA酶 H处理逆转录产物, 除去 RNA分子, 获得与 miRNA互补的 cDNA;
④然后采用 PECR扩增与特定目标 miRNA序列互补的目标 cDNA, 具体同实施例 1。
实施例 3
本实施例为 RNA指导的 PECR ( RNA- direct PECR, 简称 RD- PECR ) , 不经过逆转录, 直接用 PECR探针扩增 RNA分子。 以 miRNA为例, 其反应原理如图 6所示, 该方法包括如下四个步骤:
①将目标 RNA直接与 PECR探针混合, 通过变性和退火, 目标 miRNA与 PECR探针结合, 形成 miRNA/DNA杂合双链分子;
②在反应体系中加入一种能够直接延伸 RNA分子的 DNA聚合酶, 如大肠杆菌 DNA聚合酶 I。 将第 一个热循环的温度设置为大肠杆菌 DNA聚合酶 I的最适工作温度即 37°C, 大肠杆菌 DNA聚合酶 I 将与探针 3 ' 端结合的 miRNA分子延伸, 形成与目标 miRNA序列相同的目标 DNA分子;
③然后用 RNA酶 H处理延伸产物, 除去 RNA分子, 获得与目标 miRNA序列相同的目标 DNA分子;
④然后采用采用 PECR扩增与特定目标 miRNA序列相同的目标 DNA, 具体同实施例 1。
实施例 4
选取 4个斑马鱼 miRNA作为目标, 分别为 miR- 375, miR- 430a, miR- 206和 miR- 124。 其中 miR- 375和 miR_430a的序列和功能都己知, 以便进行技术验证。 miR- 430对斑马鱼胚胎中不再 需要的母源 mRNA进行清除。 miR-375是胰岛发育所必须的, 降低 miR-375水平能抑制胰岛细胞 的聚集。 另外,已经发现 miR- 430a, miR- 206和 miR- 124分别在斑马鱼胚胎受精后 4h, 12h和 24h 出现表达高峰。 本实例用逆转录 PCR和逆转录 PECR两种技术对斑马鱼早期胚胎 miRNA表达进行 对比分析。
( 1 ) 总 RNA提取和逆转录
采用 Appl ied Biosystems mirVana miRNA Isolation Kit ( Cat«AM1560 ) , 提取受精后. lh、 2h、 4h、 12h、 24h的斑马鱼胚胎 miRNA。 用 Appl ied Biosystems TaqMan miRNA Reverse Transcript ion Ki t (Cat# 4366596 ) 将 miRNA逆转录为 cDNA, 作为 PCR和 PECR反应的模板。
( 2 ) 实时定量 PCR
用甘油三磷酸脱氢酶 (简称 GAPDH ) 基因作为内对照, 对所有的 miRNA样品的逆转录产物 cDNA用 Appl ied Biosystems TaqMan MicroRNA Assay ( Cat# 4383443 ) 和 TaqMan Universal PCR Master Mix (Cat# 4364338 ) 进行定量检测, 对样品进行标准化, 并为本实例作为外对照。
( 3 ) 实时定量 PECR
用实时定量 PECR对所有的 miRNA样品的逆转录产物 cDNA进行定量分析,反应体系和热循环 参数与实施例 1相同。 其中的探针用荧光基团和淬灭基团标记。 所有反应包括无模板对照组, 都至少重复三次。 扩增反应在 Appl ied Biosystems 7500型实时定量 PCR系统中进行, 并实时 检测反应混合物荧光密度随 PECR循环的变化。
( 4 ) 结果与分析
如图 7所示, 实时荧光检测证实荧光密度随着 PECR循环数增强。将实时定量 PECR和实时定 量 PCR的结果进行比较分析, 实时定量 PECR和实时定量 PCR的结果是基本一致, 表明实时定量 PECR的准确性很高。
用逆转录 PCR扩增 mi RNA, 必须使用通用引物。 这很容易带来非特异性扩增、 假阳性和假 阴性等问题。而采用逆转录 PECR扩增 miRNA , 不需使用通用引物, 仅需一条带有重复序列的特 异性探针就可对目标 cDNA进行扩增和定量分析。 这意味着 PECR技术具有操作简便、 高效和稳 定的特点, 并且扩增特异性更高, 因此 PECR技术在 mi RNA扩增和定量分析中具有良好的应用前 學
本说明书以和权利要求中,除文中清楚地说明外,否则单数形式可包括复数形式。 例如, 在反应体系中加入 "耐热内切酶" 时, 包括加入 1种或 1种以上耐热内切酶混合物; 在反应体 系中加入 "耐热 DNA聚合酶" 时, 包括加入 1种或 1种以上耐热 DNA聚合酶混合物; " 1个目标分 子"包括 1种或 1种以上的目标分子; " 1条探针 "包括 1种或 1种以上的探针, 等等。
另外, 本发明并不仅限于这里所陈述的特定的配置, 说明书和权利要求书种所用的名词 术语仅用于阐述特定的具体实施方式, 而不是要使本发明仅限于所用的名词术语所限定的范 围, 因为本发明的范围仅由所附加的权利要求及其他与之相当的条款来限定。

Claims

WO 2010/075659 权. 禾 ij 要 求 书 PCT/CN2009/000362
1、 一种利用聚合酶-内切酶链式反应扩增寡核苷酸和小 RNA的方法, 该方法包括:
(1) 反应混合物的构成:
①包含目标序列 X的目标核酸, 目标核酸为单链或双链核酸, 目标序列 X长度为 8〜50碱基 或碱基对, 其解链温度即 Tm值的范围为 36〜79Ό;
②探针 X' R' X' , 其中 X' 为与目标序列 X互补的序列, 探针 X' R' X' 是单链 DNA, 含有 两个串联重复的 X' ,在这两个重复序列之间有一个限制性内切酶的识别位点的互补序列 R' ;
③耐热 DNA聚合酶;
④耐热限制性内切酶;
⑤四种三磷酸脱氧核糖核苷酸: dATP, dGTP, dCTP和 dTTP;
⑥适当的缓冲液;
(2)热循环反应: 将所述反应混合物在 6CTC至 99°C预变性 0〜600秒后, 再进行 1至 100个热循 环处理, 热循环包括如下 4个步骤:
①变性(Denaturing): 保温于高于目标核酸分子的解链温度即 Tm值 5Ό以上的温度, 温度 范围为 60〜99°C, 持续时间 1〜60秒;
②退火(Annealing): 保温于目标核酸分子的解链温度即 Tm值上下 5°C以内的温度, 温度 范围为 35〜68 °C, 持续时间 1〜60秒;
③延伸(Elongation): 保温于高于目标核酸分子的解链温度即 Tm值 5°C以上的温度, 且为 所述 DNA聚合酶的最适工作温度, 范围为 45〜89°C, 持续时间 1〜60秒:
④切割(Cleaving): 保温于高于目标核酸分子的解链温度即 Tm值 5°C以上的温度, 且为所 述限制性内切酶的最适工作温度, 范围为 45〜89°C, 持续时间 1〜300秒- 所述步骤①、 ③、 ④的温度均高于步骤②的退火温度, 至少相差 10Ό。 按照①至④进行 变性、 退火、 延伸和切割, 使目标分子成倍扩增, 扩增产物是双链分子 XRX/X' R' X' , 双链 目标分子 X/X' 或单链目标分子 X。
2、 根据权利要求 1所述的利用聚合酶-内切酶链式反应扩增寡核苷酸和小 RNA的方法, 其 特征在于: 所述耐热 DNA聚合酶没有链置换活性, 所述耐热限制性内切酶是双链内切酶。
3、 根据权利要求 1所述的利用聚合酶-内切酶链式反应扩增寡核苷酸和小 RNA的方法, 其 特征在于: 所述的目标核酸为 DNA分子, 包括寡核苷酸、 基因组 DNA、 线粒体 DNA、 由 mRNA、 microRNA或 siRNA逆转录而来的 cDNA、 以及其它任何人工合成的或者天然的 DNA分子。
4、 根据权利要求 1所述的利用聚合酶-内切酶链式反应扩增寡核苷酸和小 RNA的方法, 其 特征在于: 所述目标核酸为 RNA分子, 包括 mRNA、 niicroRNA和 siRNA, 以及其它任何 RNA分子, 同时在所述反应混合物中包含一种能够直接延伸 RNA分子的 DNA聚合酶。
5、 根据权利要求 1所述的利用聚合酶-内切酶链式反应扩增寡核苷酸和小 RNA的方法, 其 特征在于: 所述探针含有两个或两个以上串联重复的目标序列的互补序列 , ( Α ' ) , 在这些重 复序列之间均有一个耐热内切酶的识别位点 (R ' ) , 其通式为 A ' - (R ' A ' )„, 其中 η为大于 1的正整数。
6、 根据权利要求 1所述的利用聚合酶-内切酶链式反应扩增寡核苷酸和小 RNA的方法, 其 特征在于: 所述探针含有两种或两种以上不同的目标序列的互补序列 (Α ' , B ' , C ' ) , 在 这些序列之间至少有一个耐热内切酶的识别位点 (R ' ) , 其通式为 A ' - (R ' B ' )„, B ' R ' A ' - (R, Β, )„, 或 A ' R ' B, -(R, C )„, 其中 n为大于或等于 1的正整数。
7、 根据权利要求 1所述的利用聚合酶-内切酶链式反应扩增寡核苷酸和小 RNA的方法, 其 特征在于: 所述探针末端或中间含有同位素标记的核苷酸。
8、 根据权利要求 1所述的利用聚合酶-内切酶链式反应扩增寡核苷酸和小 RNA的方法, 其特征在于: 所述反应混合物中加入一种与双链 DNA特异性结合的荧光染料。
9、 根据权利要求 1所述的利用聚合酶-内切酶链式反应扩增寡核苷酸和小 RNA的方法, 其特征在于: 所述探针末端或中间连接有化学基团。
10、根据权利要求 9所述的利用聚合酶-内切酶链式反应扩增寡核苷酸和小 RNA的方法, 其 特征在于: 所述化学基团之一是荧光基团。
1 1、根据权利要求 1所述的利用聚合酶-内切酶链式反应扩增寡核苷酸和小 RNA的方法, 其 特征在于: 所述目标核酸末端或中间含有荧光基团。
12、根据权利要求 1所述的利用聚合酶-内切酶链式反应扩增寡核苷酸和小 RNA的方法, 其 特征在于: 所述探针中的酶切位点被甲基化。
13、 根据权利要求 1所述的利用聚合酶-内切酶链式反应扩增寡核苷酸和小■的方法, 其特征在于: 所述探针被固定在基因芯片或其他固体材料表面。
14、 根据权利要求 1所述的利用聚合酶-内切酶链式反应扩增寡核苷酸和小 RNA的方法, 其特征在于: 所述探针末端与纳米材料连接。
PCT/CN2009/000362 2009-01-05 2009-04-03 利用聚合酶-内切酶链式反应扩增寡核苷酸和小rna的方法 WO2010075659A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980128021.9A CN102099488B (zh) 2009-01-05 2009-04-03 利用聚合酶-内切酶链式反应扩增寡核苷酸和小rna的方法
US13/133,384 US20120028253A1 (en) 2009-01-05 2009-04-03 Method for amplifying oligonucleotide and small rna by using polymerase-endonuclease chain reaction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910300070.8 2009-01-05
CN200910300070 2009-01-05

Publications (1)

Publication Number Publication Date
WO2010075659A1 true WO2010075659A1 (zh) 2010-07-08

Family

ID=42309765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000362 WO2010075659A1 (zh) 2009-01-05 2009-04-03 利用聚合酶-内切酶链式反应扩增寡核苷酸和小rna的方法

Country Status (3)

Country Link
US (1) US20120028253A1 (zh)
CN (1) CN102099488B (zh)
WO (1) WO2010075659A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604932A (zh) * 2011-11-25 2012-07-25 华中农业大学 一种基因消除pcr的方法
CN104911181A (zh) * 2015-05-25 2015-09-16 浙江大学 一种核酸定位探针及其在核酸剪切中的应用
CN106093415A (zh) * 2016-04-29 2016-11-09 浙江大学 一种蛋白实时定量检测方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10351899B2 (en) * 2013-09-25 2019-07-16 Bio-ID Diagnostics Inc. Methods for detecting nucleic acid fragments
ES2759337T3 (es) * 2014-10-14 2020-05-08 Abbott Lab ADN de conversión de secuencia y ADN amplificador de señal que tiene secuencias espaciadoras de poli-ADN y métodos de detección que los utilizan
CN105004780B (zh) * 2015-07-14 2018-01-05 中国科学院苏州生物医学工程技术研究所 基于恒温反应的针对待测液中microRNA的检测方法
CN109182465B (zh) * 2018-08-03 2021-12-17 中山大学 一种高通量核酸表观遗传修饰定量分析方法
CN109055609B (zh) * 2018-08-08 2021-10-15 临沂大学 基于t4 dna聚合酶的西瓜花叶病毒检测传感器及其组装方法
CN111893214B (zh) * 2020-07-08 2023-03-28 重庆医科大学 双模板多循环g-三联体机器及其在hiv检测中的应用
CN114250276B (zh) * 2021-12-13 2024-04-30 复旦大学 基于指数扩增反应和Argonaute核酸酶的microRNA检测体系及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379899B1 (en) * 2001-03-13 2002-04-30 Discoverx Isothermal exponential RNA amplification in complex mixtures
WO2005059157A2 (en) * 2003-12-11 2005-06-30 The Board Of Trustees Of The Leland Stanford Junior University METHODS AND COMPOSITIONS FOR USE IN PREPARING HAIRPIN RNAs
WO2006135765A1 (en) * 2005-06-09 2006-12-21 Epoch Biosciences, Inc. Improved primer-based amplification methods
WO2007035684A2 (en) * 2005-09-16 2007-03-29 Primera Biosystems, Inc. Method for quantitative detection of short rna molecules

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067726A2 (en) * 2003-01-29 2004-08-12 Keck Graduate Institute Isothermal reactions for the amplification of oligonucleotides
CN100355902C (zh) * 2003-04-11 2007-12-19 徐定邦 一种基因组dna为模板的pcr方法及其反应液
CN1276089C (zh) * 2004-09-17 2006-09-20 包振民 体外扩增环形或串联核酸的方法
CN1858218A (zh) * 2005-04-30 2006-11-08 徐定邦 一种含耐热限制性内切酶的聚合酶链式反应方法和试剂盒

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379899B1 (en) * 2001-03-13 2002-04-30 Discoverx Isothermal exponential RNA amplification in complex mixtures
WO2005059157A2 (en) * 2003-12-11 2005-06-30 The Board Of Trustees Of The Leland Stanford Junior University METHODS AND COMPOSITIONS FOR USE IN PREPARING HAIRPIN RNAs
WO2006135765A1 (en) * 2005-06-09 2006-12-21 Epoch Biosciences, Inc. Improved primer-based amplification methods
WO2007035684A2 (en) * 2005-09-16 2007-03-29 Primera Biosystems, Inc. Method for quantitative detection of short rna molecules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZUFUMI HOSODA ET AL.: "A novel sequence-specific RNA quantification method using nicking endonuclease, dual-labeled fluorescent DNA probe, and conformation-interchangeable oligo-DNA", RNA, vol. 14, no. 3, 2008, pages 584 - 592 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604932A (zh) * 2011-11-25 2012-07-25 华中农业大学 一种基因消除pcr的方法
CN104911181A (zh) * 2015-05-25 2015-09-16 浙江大学 一种核酸定位探针及其在核酸剪切中的应用
CN106093415A (zh) * 2016-04-29 2016-11-09 浙江大学 一种蛋白实时定量检测方法
CN106093415B (zh) * 2016-04-29 2017-12-19 浙江大学 一种蛋白实时定量检测方法

Also Published As

Publication number Publication date
CN102099488A (zh) 2011-06-15
CN102099488B (zh) 2013-04-03
US20120028253A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
WO2010075659A1 (zh) 利用聚合酶-内切酶链式反应扩增寡核苷酸和小rna的方法
Ye et al. Research advances in the detection of miRNA
CN113201583B (zh) 恒温条件下合成核酸的方法及试剂盒和应用
EP2336354A1 (en) A method for the detection of a RNA molecule, a kit and a use related thereof
WO2022007224A1 (zh) 用于荧光定量pcr的方法、组合物、试剂盒及其用途
CN102146432B (zh) 一对部分同序引物减少其二聚体的方法
JP2015037426A (ja) ライゲーションに基づく核酸の正規化した定量化方法
WO2022062120A1 (zh) 多重核酸检测方法、组合及试剂盒
WO2020007042A1 (zh) 乙肝病毒核酸的快速扩增方法
WO2013107344A1 (zh) 一种用于短链rna检测的欧米茄结构寡核苷酸引物及其应用
CN104404142A (zh) 一种用于荧光定量pcr反应的荧光探针
WO2023025259A1 (zh) 检测微小rna的方法和试剂盒
Lan et al. Linear-hairpin variable primer RT-qPCR for MicroRNA
EP2438184B1 (en) A method of nucleic acid amplification
CN113667726A (zh) DNAzyme和三向结介导的等温扩增反应用于位点特异性m6A的检测
WO2011006306A1 (zh) 锁核酸和小沟结合物共修饰的核酸片段
WO2023071788A1 (zh) 一种用于检测核酸的荧光pcr方法
CN114250276B (zh) 基于指数扩增反应和Argonaute核酸酶的microRNA检测体系及方法
CN113999896B (zh) 一种通用发夹引物及在检测microRNA中的应用
CN113462753B (zh) 点击化学介导的单量子点纳米传感器及检测miRNAs的方法与应用
CN115895857A (zh) 检测血液样品中的微小rna的pcr芯片和方法
CN111549104B (zh) 一种非诊断目的的基于长链DNA支架的DNA纳米带的circRNA的检测方法
CN112266950A (zh) 一种探针引物组合及其检测试剂盒
CN110951919B (zh) 一种用于检测的寡核苷酸、试剂盒以及使用其的检测方法
TWI689594B (zh) 一種多工定量微小核醣核酸之方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128021.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13133384

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09835946

Country of ref document: EP

Kind code of ref document: A1