WO2010074069A1 - 加算回路およびそれを用いた電力増幅回路ならびにそれを用いた送信装置および通信装置 - Google Patents

加算回路およびそれを用いた電力増幅回路ならびにそれを用いた送信装置および通信装置 Download PDF

Info

Publication number
WO2010074069A1
WO2010074069A1 PCT/JP2009/071304 JP2009071304W WO2010074069A1 WO 2010074069 A1 WO2010074069 A1 WO 2010074069A1 JP 2009071304 W JP2009071304 W JP 2009071304W WO 2010074069 A1 WO2010074069 A1 WO 2010074069A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
output signal
frequency
input
circuit
Prior art date
Application number
PCT/JP2009/071304
Other languages
English (en)
French (fr)
Inventor
泰彦 福岡
昭 長山
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US13/141,956 priority Critical patent/US8351881B2/en
Publication of WO2010074069A1 publication Critical patent/WO2010074069A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0294Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals

Definitions

  • the present invention relates to an adder circuit, a power amplifier using the adder, and a transmission device and a communication device using the adder, and in particular, an adder circuit capable of adding two high-frequency signals and a power amplifier using the adder circuit
  • the present invention relates to a circuit and a transmission device and a communication device using the circuit.
  • An addition circuit using an operational amplifier is widely used as an addition circuit for obtaining an addition signal of a plurality of signals (see, for example, Patent Document 1).
  • the adder circuit using the operational amplifier has a problem that it cannot be used in the high frequency region because it can only be used up to the maximum operating frequency determined by the product of the parasitic capacitance of the transistor in the operational amplifier and the feedback resistance.
  • the present invention has been devised in view of such problems, and an object of the present invention is to provide an adder circuit capable of adding two vector signals in a high-frequency region, a power amplifier circuit using the same, and a power amplifier circuit using the adder circuit. Another object is to provide a transmission device and a communication device using the above.
  • An adder circuit of the present invention is provided with a first multiplier that multiplies an input first high-frequency input signal and a first reference signal having the same frequency by the first high-frequency input signal and outputs a first DC output signal.
  • a second multiplier that multiplies the first high-frequency input signal by a second reference signal that is advanced in phase by 90 ° with respect to the first reference signal, and outputs a second DC output signal;
  • a third multiplier that multiplies the first high-frequency input signal by a second high-frequency input signal having the same frequency and the first reference signal and outputs a third DC output signal; and the input second high-frequency input signal and the first
  • a fourth multiplier that multiplies the two reference signals and outputs a fourth DC output signal; and adds a first DC output signal and the third DC output signal that are input to output a fifth DC output signal.
  • a second adder for adding a force signal and the fourth DC output signal to output a sixth DC output signal, and a first high-frequency output by multiplying the input fifth DC output signal and the first reference signal.
  • a fifth multiplier for outputting a signal, a sixth multiplier for multiplying the inputted sixth DC output signal and the second reference signal and outputting a second high-frequency output signal, the fifth multiplier, and the And an output terminal connected to a sixth multiplier for outputting a third high-frequency output signal obtained by adding the first high-frequency output signal and the second high-frequency output signal.
  • each of the input first high-frequency input signal and second high-frequency input signal is converted into two DC signals that are DC components of signals orthogonal to each other, and then in phase with each other.
  • the DC signals that are the DC components of the signals are added together by the first adder and the second adder to obtain two DC signals, and the two DC signals are converted into two high-frequency signals that are orthogonal to each other.
  • a third high frequency output signal which is a signal obtained by adding the first high frequency input signal and the second high frequency input signal. Therefore, since it is a DC signal that is added by the first adder and the second adder, an adder circuit that can be used satisfactorily even in a high-frequency region can be obtained.
  • the first adder adds the input first DC auxiliary signal together with the first DC output signal and the third DC output signal to the fifth adder.
  • a DC output signal is output
  • the second adder adds the input second DC auxiliary signal together with the second DC output signal and the fourth DC output signal and outputs the sixth DC output signal. You may do it.
  • the amplitude and phase of the third high-frequency output signal can be changed by changing the voltages of the first DC auxiliary signal and the second DC auxiliary signal.
  • An adder circuit capable of controlling the amplitude and phase of the high-frequency output signal can be obtained.
  • the power amplifier circuit includes a constant envelope signal generation circuit that converts an input signal having an envelope variation into two constant envelope signals and outputs the signals, and amplifies the two constant envelope signals that are input. And the two constant envelope signals after amplification are input as the first high-frequency input signal and the second high-frequency input signal, respectively. It is characterized by comprising. According to the power amplifier circuit having such a configuration, a nonlinear amplifier with high power added efficiency can be used as an amplifier. Therefore, an input signal having an envelope variation can be amplified with high power added efficiency, and a high frequency A power amplifier circuit that can be used even in the region can be obtained.
  • the transmission device of the present invention is characterized in that the transmission circuit is connected to the antenna via the power amplification circuit of the present invention having the above-described configuration. According to the transmission apparatus having such a configuration, it is possible to amplify a transmission signal having an envelope variation from the transmission circuit using the power amplifier circuit of the present invention that can be used in a high frequency region and has high power added efficiency. Thus, it is possible to obtain a transmission device that can be used in a high-frequency region and has low power consumption.
  • the communication device of the present invention is characterized in that a transmission circuit and a reception circuit are connected to an antenna, and the power amplification circuit of the present invention having the above-described configuration is inserted between the transmission circuit and the antenna. It is. According to the communication apparatus having such a configuration, it is possible to amplify a transmission signal having an envelope variation from the transmission circuit using the power amplification circuit of the present invention that can be used in a high frequency region and has high power added efficiency. Thus, it is possible to obtain a transmission device that can be used in a high-frequency region and has low power consumption.
  • an adder circuit that can be used satisfactorily even in a high frequency region can be obtained.
  • an input signal having an envelope variation can be amplified with high power added efficiency, and a power amplifier circuit that can be used in a high frequency region can be obtained.
  • the transmission device and the communication device of the present invention it is possible to obtain a transmission device and a communication device that can be used even in a high frequency region and consumes little power.
  • FIG. 1 is a block diagram schematically showing an example of an embodiment of an adder circuit of the present invention.
  • the adder circuit of the present example includes a first input terminal 41, a second input terminal 42, a third input terminal 43, an output terminal 44, a first control terminal 45, a second control terminal 46, a first input terminal.
  • the first input terminal 41 is connected to the first multiplier 11 and the second multiplier 12, the second input terminal 42 is connected to the third multiplier 13 and the fourth multiplier 14, and the third The input terminal 43 is connected to the first multiplier 11, the third multiplier 13, the fifth multiplier 15, and the phase shifters 31 and 32.
  • the phase shifter 31 is connected to the second multiplier 12 and the sixth multiplier 16, and the phase shifter 32 is connected to the fourth multiplier 14.
  • the first multiplier 11, the third multiplier 13 and the first control terminal 45 are connected to the first adder 21, and the first adder 21 is connected to the fifth multiplier 15.
  • the second multiplier 12, the fourth multiplier 14, and the second control terminal 46 are connected to the second adder 22, and the second adder 22 is connected to the sixth multiplier 16.
  • the fifth multiplier 15 and the sixth multiplier are connected to the output terminal 44.
  • the first high frequency input signal Si1 to be added is input to the first input terminal 41
  • the second high frequency input signal Si2 is input to the second input terminal 42
  • the first reference signal Ref1 is the first. 3 is input to the input terminal 43.
  • the first high-frequency input signal Si1 is input to the first multiplier 11 and the second multiplier 12 via the first input terminal 41.
  • the second high-frequency input signal Si2 is input to the third multiplier 13 and the fourth multiplier 14 through the second input terminal 42.
  • the first reference signal Ref 1 is input to the first multiplier 11 and the third multiplier 13 through the third input terminal 43.
  • the first reference signal Ref1 is input to the phase shifters 31 and 32, and is phase-shifted by the phase shifters 31 and 32, respectively, and the second reference signal whose phase shift is advanced by 90 ° with respect to the first reference signal Ref1. It is output as Ref2.
  • the second reference signal Ref 2 is input to the second multiplier 12 and the fourth multiplier 14.
  • a (t) is the time function of the amplitude of the first high frequency input signal Si1
  • ⁇ A (t) is the time function of the phase of the input first high frequency input signal Si1
  • B (t) is the second high frequency input signal Si2.
  • a time function of amplitude, ⁇ B (t) is a time function of the phase of the second high-frequency input signal Si2.
  • the first high-frequency input signal Si1 is decomposed into two DC signals based on the first reference signal Ref1.
  • the second high-frequency input signal Si2 is decomposed into two DC signals based on the first reference signal Ref1.
  • the first DC output signal Sd1 and the third DC output signal Sd3 are input to the first adder 21, and the second DC output signal Sd2 and the fourth DC output signal Sd4 are input to the second adder 22.
  • the first adder 21 adds the input first DC output signal Sd1 and the third DC output signal Sd3 to output a fifth DC output signal Sd5, and the second adder 22 receives the input second DC output signal.
  • Sd2 and the fourth DC output signal Sd4 are added to output a sixth DC output signal Sd6.
  • an adder with a constant gain using a normal operational amplifier can be used, for example.
  • the fifth DC output signal Sd5 is input to the fifth multiplier 15 together with the first reference signal Ref1
  • the sixth DC output signal Sd6 is input to the sixth multiplier 16 together with the second reference signal Ref2.
  • the fifth multiplier 15 multiplies the input fifth DC output signal Sd5 and the first reference signal Ref1, and outputs the first high-frequency output signal So1, and the sixth multiplier 16 receives the input sixth DC output.
  • the signal Sd6 and the second reference signal Ref2 are multiplied to output a second high frequency output signal So2.
  • the first high-frequency output signal So1 is a signal in phase with the first reference signal Ref1 in the signal obtained by vector addition of the first high-frequency input signal Si1 and the second high-frequency input signal Si2
  • the second high-frequency output signal So2 is a signal orthogonal to the first reference signal Ref1 in the signal obtained by vector addition of the first high-frequency input signal Si1 and the second high-frequency input signal Si2. That is, the first high-frequency output signal So1 and the second high-frequency output signal So2 are signals that are orthogonal to each other.
  • the first high-frequency output signal So1 and the second high-frequency output signal So2 are combined and output from the output terminal 44 as the third high-frequency output signal So3.
  • the third high-frequency output signal So3 which is a signal obtained by vector addition of the first high-frequency input signal Si1 and the second high-frequency input signal Si2, can be obtained.
  • a mixer such as a Gilbert cell mixer can be used as the first to sixth multipliers 11 to 16 as the first to sixth multipliers 11 to 16 for example.
  • each of the input first high frequency input signal Si1 and second high frequency input signal Si2 is converted into two DC signals which are DC components of signals orthogonal to each other.
  • the DC signals that are the DC components of the in-phase signals are added together by the first adder 21 and the second adder 22 to obtain two DC signals.
  • a third high-frequency output which is a signal obtained by vector addition of the first high-frequency input signal Si1 and the second high-frequency input signal Si2 A signal So3 can be obtained.
  • the first adder 21 and the second adder 22 add a DC signal, it is possible to obtain an adder circuit that can be used satisfactorily even in a high frequency region. Since two multipliers are arranged between the output terminal 44 and the first input terminal 41 and the second input terminal 42, the first input terminal 41 and the second input terminal 42 are connected from the output terminal 44. The observed impedance is sufficiently high. Thereby, the first high frequency input signal Si1 and the second high frequency input signal Si2 can be well vector-added without being influenced by the impedance of the external circuit connected to the first input terminal 41 and the second input terminal 42. it can.
  • the first control terminal 45 is connected to the first adder 21, and the first DC auxiliary signal Sa 1 is input to the first adder 21 via the first control terminal 45.
  • the second control terminal 46 is connected to the second adder 22, and the second DC auxiliary signal Sa ⁇ b> 2 is input to the second adder 22 through the second control terminal 46.
  • the first adder 21 adds the first DC output signal Sd1, the third DC output signal Sd3, and the first DC auxiliary signal Sa1, and outputs a fifth DC output signal Sd5.
  • the second adder 22 adds the second DC output signal Sd2, the fourth DC output signal Sd4, and the second DC auxiliary signal Sa2, and outputs a sixth DC output signal Sd6.
  • the first DC output signal Sd1 and the second DC output signal Sd2 are changed by changing the voltages of the first DC auxiliary signal Sa1 and the second DC auxiliary signal Sa2.
  • the voltage can be changed.
  • the amplitudes of the first high-frequency output signal So1 and the second high-frequency output signal So2 can be changed. That is, the amplitudes of the first high-frequency output signal So1 and the second high-frequency output signal So2, which are two orthogonal components constituting the third high-frequency output signal So3, are individually determined by the first DC auxiliary signal Sa1 and the second DC auxiliary signal Sa2. Can be controlled.
  • the amplitude and phase of the third high-frequency output signal So3 can be arbitrarily controlled. For this reason, for example, the error correction of the third high-frequency output signal So3 can be easily performed.
  • FIG. 2 is a block diagram schematically showing an example of an embodiment of the power amplifier circuit of the present invention.
  • the power amplifier circuit of this example generates a constant envelope signal that converts an input signal Si having an envelope variation into a first constant envelope signal Sc1 and a second constant envelope signal Sc2, and outputs the converted signal.
  • the circuit 71, two amplifiers 72 and 73 for amplifying and outputting two input constant envelope signals, respectively, and the two constant envelope signals after amplification are a first high frequency input signal Si1 and a second high frequency input signal
  • an adder circuit 74 of the present invention that outputs the third high-frequency output signal So3 as an output signal.
  • the power amplifier circuit of this example is a LINC (LinearLineAmplification with Nonlinear Component) system power amplifier circuit.
  • the constant envelope signal generation circuit 71 two input signals having envelope fluctuations in the LINC system power amplifier circuit are used.
  • Various constant envelope signal generation circuits used to convert to a constant envelope signal can be used.
  • the amplifiers 72 and 73 a general nonlinear amplifier can be used.
  • the non-linear amplifier with high power addition efficiency can be used as the amplifiers 72 and 73, the input signal having the envelope fluctuation can be amplified with high power addition efficiency.
  • the addition circuit 74 of the present invention that can be used well in the high frequency region and easily corrects the error of the output signal is used, it can be used well in the high frequency region and can correct the error of the output signal. An easy power amplifier circuit can be obtained.
  • FIG. 3 is a block diagram showing a configuration example of a transmission apparatus using the addition circuit of the present invention.
  • a transmission circuit 81 is connected to an antenna 82 via a power amplification circuit 70 of the present invention.
  • the power amplification circuit of the present invention that can efficiently use the transmission signal having the envelope fluctuation output from the transmission circuit 81 in a high frequency region and has high power addition efficiency. Therefore, it is possible to obtain a transmission device that can be used favorably in the high frequency region and that consumes less power.
  • FIG. 4 is a block diagram showing a configuration example of a communication apparatus using the adder circuit of the present invention.
  • a transmission circuit 81 and a reception circuit 83 are connected to an antenna 82, and the power amplification circuit 70 of the present invention is inserted between the transmission circuit 81 and the antenna 82. ing.
  • An antenna sharing circuit 84 is inserted between the antenna 82 and the power amplifier circuit 70 and the receiving circuit 83.
  • the power amplification circuit of the present invention that can use the transmission signal having the envelope fluctuation output from the transmission circuit 81 in a high frequency region and has high power added efficiency. Since it can be amplified using 70, it is possible to obtain a communication device that can be used favorably in a high frequency region and has low power consumption.
  • the adder circuit of the first example of the above-described embodiment an example in which the first reference signal Ref1 is converted into the second reference signal Ref2 using the first phase shifter 31 and the second phase shifter 32.
  • the first reference signal Ref1 and the second reference signal Ref2 may be input separately.
  • the first phase shifter 31 and the second phase shifter 32 are not necessary.
  • the first control terminal 45 and the second control terminal 46 are unnecessary.
  • a harmonic suppression circuit configured by a capacitor is provided in the first to sixth multipliers 11 to 16 is shown.
  • a harmonic suppression circuit may be provided in another place in the adder circuit such as between the first to sixth multipliers 11 to 16 and the first and second adders 21 and 22.
  • the harmonic suppression circuit may be provided in an external circuit, or may not be provided if harmonics do not matter.
  • the first control terminal 45, the second control terminal 46, and the wiring connecting them to the first adder 21 and the second adder 22 are removed from the adder circuit of the first example of the embodiment shown in FIG.
  • the operation of the circuit was confirmed by simulation.
  • the frequency of the first high-frequency input signal Si1, the second high-frequency input signal Si2, and the first reference signal Ref1 was 1 GHz.
  • FIG. 5 is a diagram showing the simulation results, in which m1 represents the first high-frequency input signal Si1, m3 represents the second high-frequency input signal Si2, m2 represents the third high-frequency output signal So3, and the amplitude and phase are respectively displayed as vectors. is doing.
  • the first high-frequency input signal Si1 has an amplitude of 210.8 mV and a phase of 120 °
  • the second high-frequency input signal Si2 has an amplitude of 210.8 mV and a phase of 0 °
  • the third high-frequency output signal So3 has an amplitude.
  • phase is 60 ° at 199.5 mV, and the first high-frequency input signal Si1 and the second high-frequency input signal Si2 are accurately vector-added to obtain the third high-frequency output signal So3. This confirmed the effectiveness of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

 【課題】 高周波領域において、2つのベクトル信号を加算することが可能な加算回路およびそれを用いた電力増幅回路ならびにそれを用いた送信装置および通信装置を提供する。 【解決手段】 第1,第2高周波入力信号Si1,Si2と第1,第2基準信号Ref1,Ref2とを第1~第4乗算器11~14が乗算して第1~第4直流出力信号Sd1~Sd4を出力し、そのうち同相の信号同士を第1,第2加算器21,22が加算して第5,第6直流出力信号Sd5,Sd6を出力し、それらと第1,第2基準信号Ref1,Ref2とを第5,第6乗算器15,16が乗算して第1,第2高周波出力信号So1,So2を出力し、それらが合成されて第1,第2高周波入力信号Si1,Si2がベクトル加算された信号である第3高周波出力信号So3が出力端子44から出力される加算回路である。高周波領域でも使用可能な加算回路である。

Description

加算回路およびそれを用いた電力増幅回路ならびにそれを用いた送信装置および通信装置
 本発明は、加算回路およびそれを用いた電力増幅器ならびにそれを用いた送信装置および通信装置に関するものであり、特に、2つの高周波信号を加算することが可能な加算回路およびそれを用いた電力増幅回路ならびにそれを用いた送信装置および通信装置に関するものである。
 複数の信号の加算信号を得るための加算回路として、オペアンプを用いた加算回路が広く用いられている(例えば、特許文献1を参照。)。
特開平6-51002号公報
 しかしながら、オペアンプを用いた加算回路は、オペアンプ内にあるトランジスタの持つ寄生容量と帰還抵抗の積によって決まる最大動作周波数までしか使用できないため、高周波領域では使用することができないという問題があった。
 本発明はこのような問題点に鑑みて案出されたものであり、その目的は、高周波領域において、2つのベクトル信号を加算することが可能な加算回路およびそれを用いた電力増幅回路ならびにそれを用いた送信装置および通信装置を提供することにある。
 本発明の加算回路は、入力された第1高周波入力信号および該第1高周波入力信号に周波数が等しい第1基準信号を乗算して第1直流出力信号を出力する第1乗算器と、入力された前記第1高周波入力信号と前記第1基準信号に対して位相が90°だけ進んだ第2基準信号とを乗算して第2直流出力信号を出力する第2乗算器と、入力された前記第1高周波入力信号に周波数が等しい第2高周波入力信号および前記第1基準信号を乗算して第3直流出力信号を出力する第3乗算器と、入力された前記第2高周波入力信号および前記第2基準信号を乗算して第4直流出力信号を出力する第4乗算器と、入力された前記第1直流出力信号および前記第3直流出力信号を加算して第5直流出力信号を出力する第1加算器と、入力された前記第2直流出力信号および前記第4直流出力信号を加算して第6直流出力信号を出力する第2加算器と、入力された前記第5直流出力信号および前記第1基準信号を乗算して第1高周波出力信号を出力する第5乗算器と、入力された前記第6直流出力信号および前記第2基準信号を乗算して第2高周波出力信号を出力する第6乗算器と、前記第5乗算器および前記第6乗算器に接続されて前記第1高周波出力信号および前記第2高周波出力信号が加算された第3高周波出力信号を出力する出力端子とを備えることを特徴とするものである。このような構成を備える加算回路によれば、入力された第1高周波入力信号および第2高周波入力信号のそれぞれを互いに直交する信号の直流成分である2つの直流信号に変換した後に、互いに同相の信号の直流成分である直流信号同士を第1加算器および第2加算器で加算して2つの直流信号を得るとともに、その2つの直流信号を互いに直交する2つの高周波信号に変換した後で合成することにより、第1高周波入力信号および第2高周波入力信号が加算された信号である第3高周波出力信号を得ることができる。よって、第1加算器および第2加算器で加算するのは直流信号であるため、高周波領域でも良好に使用可能な加算回路を得ることができる。
 また、本発明の加算回路は、上記構成において、前記第1加算器は、前記第1直流出力信号および前記第3直流出力信号とともに、入力された第1直流補助信号を加算して前記第5直流出力信号を出力し、前記第2加算器は、前記第2直流出力信号および前記第4直流出力信号とともに、入力された第2直流補助信号を加算して前記第6直流出力信号を出力するようにしてもよい。このような構成を備える加算回路によれば、第1直流補助信号および第2直流補助信号の電圧を変化させることにより、第3高周波出力信号の振幅および位相を変化させることができるので、第3高周波出力信号の振幅および位相を制御可能な加算回路を得ることができる。
 本発明の電力増幅回路は、包絡線変動を有する入力信号を2つの定包絡線信号に変換して出力する定包絡線信号生成回路と、入力された前記2つの定包絡線信号をそれぞれ増幅して出力する2つの増幅器と、増幅後の前記2つの定包絡線信号が前記第1高周波入力信号および前記第2高周波入力信号として入力される上記各構成のいずれかの本発明の加算回路とを備えることを特徴とするものである。このような構成を備える電力増幅回路によれば、増幅器として電力付加効率の高い非線形増幅器を用いることができるので、包絡線変動を有する入力信号を高い電力付加効率で増幅することができるとともに、高周波領域でも使用可能な電力増幅回路を得ることができる。
 本発明の送信装置は、送信回路が上記構成の本発明の電力増幅回路を介してアンテナに接続されていることを特徴とするものである。このような構成を備える送信装置によれば、高周波領域でも使用可能で電力付加効率が高い本発明の電力増幅回路を用いて送信回路からの包絡線変動を有する送信信号を増幅することができるので、高周波領域でも使用可能で消費電力が小さい送信装置を得ることができる。
 本発明の通信装置は、送信回路および受信回路がアンテナに接続されており、前記送信回路と前記アンテナとの間に上記構成の本発明の電力増幅回路が挿入されていることを特徴とするものである。このような構成を備える通信装置によれば、高周波領域でも使用可能で電力付加効率が高い本発明の電力増幅回路を用いて送信回路からの包絡線変動を有する送信信号を増幅することができるので、高周波領域でも使用可能で消費電力が小さい送信装置を得ることができる。
 本発明の加算回路によれば、高周波領域でも良好に使用可能な加算回路を得ることができる。
 本発明の電力増幅回路によれば、包絡線変動を有する入力信号を高い電力付加効率で増幅することができるとともに、高周波領域でも使用可能な電力増幅回路を得ることができる。
 本発明の送信装置および通信装置によれば、高周波領域でも使用可能で消費電力が小さい送信装置および通信装置を得ることができる。
本発明の加算回路の実施の形態の一例を模式的に示すブロック図である。 本発明の加算回路を用いた電力増幅回路の実施の形態の一例を模式的に示すブロック図である。 本発明の電力増幅回路を用いた送信装置の実施の形態の一例を模式的に示すブロック図である。 本発明の電力増幅回路を用いた通信装置の実施の形態の一例を模式的に示すブロック図である。 本発明の加算回路のシミュレーション結果を示す図である。
 以下、本発明の加算回路ならびにそれを用いた送信装置および通信装置を添付の図面を参照しつつ詳細に説明する。
 (実施の形態の第1の例)
 図1は本発明の加算回路の実施の形態の一例を模式的に示すブロック図である。
 本例の加算回路は、図1に示すように、第1入力端子41,第2入力端子42,第3入力端子43,出力端子44,第1制御端子45,第2制御端子46,第1乗算器11,第2乗算器12,第3乗算器13,第4乗算器14,第5乗算器15,第6乗算器16,第1加算器21,第2加算器22,移相器31および移相器32を備えている。
 また、第1入力端子41は第1乗算器11および第2乗算器12に接続されており、第2入力端子42は第3乗算器13および第4乗算器14に接続されており、第3入力端子43は第1乗算器11,第3乗算器13,第5乗算器15および移相器31,32に接続されている。移相器31は第2乗算器12および第6乗算器16に接続されており、移相器32は第4乗算器14に接続されている。第1乗算器11,第3乗算器13および第1制御端子45は第1加算器21に接続されており、第1加算器21は第5乗算器15に接続されている。また、第2乗算器12,第4乗算器14および第2制御端子46は第2加算器22に接続されており、第2加算器22は第6乗算器16に接続されている。そして、第5乗算器15および第6乗算器は出力端子44に接続されている。
 次に、本例の加算回路の動作について説明する。本例の加算回路においては、加算すべき第1高周波入力信号Si1が第1入力端子41に入力され、第2高周波入力信号Si2が第2入力端子42に入力され、第1基準信号Ref1が第3入力端子43に入力される。第1高周波入力信号Si1は、第1入力端子41を介して第1乗算器11および第2乗算器12に入力される。第2高周波入力信号Si2は、第2入力端子42を介して第3乗算器13および第4乗算器14に入力される。第1基準信号Ref1は、第3入力端子43を介して第1乗算器11および第3乗算器13に入力される。また、第1基準信号Ref1は、移相器31,32に入力され、移相器31,32でそれぞれ移相されて、第1基準信号Ref1よりも移相が90°進んだ第2基準信号Ref2として出力される。第2基準信号Ref2は第2乗算器12および第4乗算器14に入力される。
 ここで、第1高周波入力信号Si1,第2高周波入力信号Si2,第1基準信号Ref1および第2基準信号Ref2は互いに周波数が等しい信号であり、例えば、第1高周波入力信号Si1=A(t)cos(ωt+θ(t)),第2高周波入力信号Si2=B(t)cos(ωt+θ(t)),第1基準信号Ref1=cosωt,第2基準信号Ref2=sinωtと記述することができる。なお、A(t)は第1高周波入力信号Si1の振幅の時間関数,θ(t)は入第1高周波入力信号Si1の位相の時間関数,B(t)は第2高周波入力信号Si2の振幅の時間関数,θ(t)は第2高周波入力信号Si2の位相の時間関数である。
 第1乗算器11は、入力された第1高周波入力信号Si1および第1基準信号Ref1を乗算して、(1/2)A(t)(cos(2ωt+θ(t))+cos(θ(t)))を得るが、第1乗算器11内のキャパシタを用いた高調波抑圧回路によって高調波成分が除去されて、第1乗算器11から第1直流出力信号Sd1=(1/2)A(t)cos(θ(t))が出力される。また、第2乗算器12は、入力された第1高周波入力信号Si1および第2基準信号Ref2を乗算して、(1/2)A(t)(sin(2ωt+θ(t))-sin(θ(t)))を得るが、第2乗算器12内のキャパシタを用いた高調波抑圧回路によって高調波成分が除去されて、第2乗算器12から第2直流出力信号Sd2=(-1/2)A(t)sin(θ(t))が出力される。このようにして、第1高周波入力信号Si1は第1基準信号Ref1を基準として2つの直流信号に分解される。
 同様に、第3乗算器13は、入力された第2高周波入力信号Si2および第1基準信号Ref1を乗算して、(1/2)B(t)(cos(2ωt+θ(t))+cos(θ(t)))を得るが、第3乗算器13内のキャパシタを用いた高調波抑圧回路によって高調波成分が除去されて、第3乗算器13から第3直流出力信号Sd3=(1/2)B(t)cos(θ(t))が出力される。また、第4乗算器14器は、入力された第2高周波入力信号Si2および第2基準信号Ref2を乗算して、(1/2)B(t)(sin(2ωt+θ(t))-sin(θ(t)))を得るが、第4乗算器14内のキャパシタを用いた高調波抑圧回路によって高調波成分が除去されて、第4乗算器14から第4直流出力信号Sd4=(-1/2)B(t)sin(θ(t))が出力される。このようにして、第2高周波入力信号Si2は第1基準信号Ref1を基準として2つの直流信号に分解される。
 そして、第1直流出力信号Sd1および第3直流出力信号Sd3は第1加算器21に入力され、第2直流出力信号Sd2および第4直流出力信号Sd4は第2加算器22に入力される。第1加算器21は入力された第1直流出力信号Sd1および第3直流出力信号Sd3を加算して第5直流出力信号Sd5を出力し、第2加算器22は入力された第2直流出力信号Sd2および第4直流出力信号Sd4を加算して第6直流出力信号Sd6を出力する。ここで、第1加算器21および第2加算器22は、それぞれ直流電圧を加算するだけなので、例えば、通常のオペアンプを用いた利得一定の加算器を用いることができる。
 次に、第5直流出力信号Sd5は第1基準信号Ref1とともに第5乗算器15に入力され、第6直流出力信号Sd6は第2基準信号Ref2とともに第6乗算器16に入力される。第5乗算器15は、入力された第5直流出力信号Sd5および第1基準信号Ref1を乗算して第1高周波出力信号So1を出力し、第6乗算器16は、入力された第6直流出力信号Sd6および第2基準信号Ref2を乗算して第2高周波出力信号So2を出力する。ここで、第1高周波出力信号So1は、第1高周波入力信号Si1および第2高周波入力信号Si2がベクトル加算された信号における第1基準信号Ref1と同相の信号になっており、第2高周波出力信号So2は、第1高周波入力信号Si1および第2高周波入力信号Si2がベクトル加算された信号における第1基準信号Ref1に直交する信号になっている。すなわち、第1高周波出力信号So1および第2高周波出力信号So2は互いに直交する信号になっている。
 そして、第1高周波出力信号So1および第2高周波出力信号So2は合成されて出力端子44から第3高周波出力信号So3として出力される。このようにして、第1高周波入力信号Si1および第2高周波入力信号Si2がベクトル加算された信号である第3高周波出力信号So3を得ることができる。なお、本例の加算回路において、第1~第6乗算器11~16としては、例えばギルバートセル型ミキサ等のミキサ用いることができる。
 このような構成を備える本発明の加算回路によれば、入力された第1高周波入力信号Si1および第2高周波入力信号Si2のそれぞれを、互いに直交する信号の直流成分である2つの直流信号に変換した後に、互いに同相の信号の直流成分である直流信号同士を第1加算器21および第2加算器22で加算して2つの直流信号を得る。そして、その2つの直流信号を互いに直交する2つの高周波信号に変換した後で合成することにより、第1高周波入力信号Si1および第2高周波入力信号Si2がベクトル加算された信号である第3高周波出力信号So3を得ることができる。よって、第1加算器21および第2加算器22で加算するのは直流信号であるため、高周波領域でも良好に使用可能な加算回路を得ることができる。また、出力端子44と第1入力端子41および第2入力端子42との間にそれぞれ2つの乗算器が配置されていることから、出力端子44から第1入力端子41および第2入力端子42をみたインピーダンスが十分に高くなる。これにより、第1入力端子41および第2入力端子42に接続される外部回路のインピーダンスに左右されることなく、良好に第1高周波入力信号Si1および第2高周波入力信号Si2をベクトル加算することができる。
 また、本例の加算回路においては、第1制御端子45が第1加算器21に接続されており、第1制御端子45を介して第1直流補助信号Sa1が第1加算器21に入力される。また、第2制御端子46が第2加算器22に接続されており、第2制御端子46を介して第2直流補助信号Sa2が第2加算器22に入力される。そして、第1加算器21は、第1直流出力信号Sd1,第3直流出力信号Sd3および第1直流補助信号Sa1を加算して第5直流出力信号Sd5を出力する。第2加算器22は、第2直流出力信号Sd2,第4直流出力信号Sd4および第2直流補助信号Sa2を加算して第6直流出力信号Sd6を出力する。
 このような構成を備える本例の加算回路によれば、第1直流補助信号Sa1および第2直流補助信号Sa2の電圧を変化させることにより、第1直流出力信号Sd1および第2直流出力信号Sd2の電圧を変化させることができる。これにより、第1高周波出力信号So1および第2高周波出力信号So2の振幅を変化させることができる。すなわち、第1直流補助信号Sa1および第2直流補助信号Sa2によって、第3高周波出力信号So3を構成する2つの直交成分である第1高周波出力信号So1および第2高周波出力信号So2の振幅を個別に制御することができる。これにより、第3高周波出力信号So3の振幅および位相を任意に制御することが可能になる。このため、例えば第3高周波出力信号So3の誤差補正を容易に行なうことができる。
 (実施の形態の第2の例)
 図2は本発明の電力増幅回路の実施の形態の一例を模式的に示すブロック図である。
 本例の電力増幅回路は、図2に示すように、包絡線変動を有する入力信号Siを第1定包絡線信号Sc1および第2定包絡線信号Sc2に変換して出力する定包絡線信号生成回路71と、入力された2つの定包絡線信号をそれぞれ増幅して出力する2つの増幅器72,73と、増幅後の2つの定包絡線信号が第1高周波入力信号Si1および第2高周波入力信号Si2として入力されて第3高周波出力信号So3を出力信号として出力する本発明の加算回路74とを備えている。
 本例の電力増幅回路はLINC(Linear Amplification with Nonlinear Component)方式の電力増幅回路であり、定包絡線信号生成回路71としては、LINC方式の電力増幅回路において包絡線変動を有する入力信号を2つの定包絡線信号に変換するのに用いられる種々の定包絡線信号生成回路を用いることができる。増幅器72,73としては、一般的な非線形増幅器を用いることができる。
 本例の電力増幅回路によれば、増幅器72,73として電力付加効率の高い非線形増幅器を用いることができるので、包絡線変動を有する入力信号を高い電力付加効率で増幅することができる。また、高周波領域でも良好に使用可能であるとともに出力信号の誤差補正が容易な本発明の加算回路74を用いていることから、高周波領域でも良好に使用可能であるとともに、出力信号の誤差補正が容易な電力増幅回路を得ることができる。
 (実施の形態の第3の例)
 図3は本発明の加算回路を用いた送信装置の構成例を示すブロック図である。
 本例の送信装置は、図3に示すように、送信回路81が本発明の電力増幅回路70を介してアンテナ82に接続されている。このような構成を有する本例の送信装置によれば、送信回路81から出力された包絡線変動を有する送信信号を、高周波領域で良好に使用できるとともに電力付加効率が高い本発明の電力増幅回路70を用いて増幅することができるので、高周波領域で良好に使用できるとともに消費電力が小さい送信装置を得ることができる。
 (実施の形態の第4の例)
 図4は本発明の加算回路を用いた通信装置の構成例を示すブロック図である。
 本例の通信装置は、図4に示すように、送信回路81および受信回路83がアンテナ82に接続されており、送信回路81とアンテナ82との間に本発明の電力増幅回路70が挿入されている。また、アンテナ82と電力増幅回路70および受信回路83との間にはアンテナ共用回路84が挿入されている。このような構成を有する本例の通信装置によれば、送信回路81から出力された包絡線変動を有する送信信号を、高周波領域で良好に使用できるとともに電力付加効率が高い本発明の電力増幅回路70を用いて増幅することができるので、高周波領域で良好に使用できるとともに消費電力が小さい通信装置を得ることができる。
 (変形例)
 本発明は前述した実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更,改良が可能である。
 例えば、前述した実施の形態の第1の例の加算回路においては、第1基準信号Ref1を第1移相器31および第2移相器32を用いて第2基準信号Ref2に変換する例を示したが、第1基準信号Ref1および第2基準信号Ref2が別々に入力されるようにしてもよい。この場合には、第1移相器31および第2移相器32は不要である。また、第3高周波出力信号So3の誤差補正等が不要な場合には、第1制御端子45および第2制御端子46は不要である。
 また、前述した実施の形態の第1の例の加算回路においては、第1~第6乗算器11~16内にキャパシタで構成した図示せぬ高調波抑圧回路を設けた例を示したが、例えば第1~第6乗算器11~16と第1,第2加算器21,22との間等の加算回路内の他の場所に高調波抑圧回路を設けてもよい。また、高調波抑圧回路は、外部回路に設けるようにしてもよく、高調波が問題にならない場合には設けなくても構わない。
 次に、本発明の加算回路の具体例について説明する。
 図1に示した実施の形態の第1の例の加算回路から第1制御端子45,第2制御端子46およびこれらと第1加算器21,第2加算器22とを接続する配線を取り除いた回路の動作をシミュレーションによって確認した。第1高周波入力信号Si1,第2高周波入力信号Si2および第1基準信号Ref1の周波数は1GHzとした。
 図5はそのシミュレーション結果を示す図であり、m1が第1高周波入力信号Si1,m3が第2高周波入力信号Si2,m2が第3高周波出力信号So3を示しており、それぞれ振幅および位相をベクトル表示している。図5に示す図において、第1高周波入力信号Si1は振幅が210.8mVで位相が120°,第2高周波入力信号Si2は振幅が210.8mVで位相が0°,第3高周波出力信号So3は振幅が199.5mVで位相が60°であり、第1高周波入力信号Si1および第2高周波入力信号Si2が精度良くベクトル加算されて第3高周波出力信号So3が得られていることがわかる。これにより本発明の有効性が確認できた。
 11:第1乗算器
 12:第2乗算器
 13:第3乗算器
 14:第4乗算器
 15:第5乗算器
 16:第6乗算器
 21:第1加算器
 22:第2加算器
 44:出力端子

Claims (5)

  1.  入力された第1高周波入力信号および該第1高周波入力信号に周波数が等しい第1基準信号を乗算して第1直流出力信号を出力する第1乗算器と、
    入力された前記第1高周波入力信号と前記第1基準信号に対して位相が90°だけ進んだ第2基準信号とを乗算して第2直流出力信号を出力する第2乗算器と、
    入力された前記第1高周波入力信号に周波数が等しい第2高周波入力信号および前記第1基準信号を乗算して第3直流出力信号を出力する第3乗算器と、
    入力された前記第2高周波入力信号および前記第2基準信号を乗算して第4直流出力信号を出力する第4乗算器と、
    入力された前記第1直流出力信号および前記第3直流出力信号を加算して第5直流出力信号を出力する第1加算器と、
    入力された前記第2直流出力信号および前記第4直流出力信号を加算して第6直流出力信号を出力する第2加算器と、
    入力された前記第5直流出力信号および前記第1基準信号を乗算して第1高周波出力信号を出力する第5乗算器と、
    入力された前記第6直流出力信号および前記第2基準信号を乗算して第2高周波出力信号を出力する第6乗算器と、
    前記第5乗算器および前記第6乗算器に接続されて前記第1高周波出力信号および前記第2高周波出力信号が加算された第3高周波出力信号を出力する出力端子とを備えることを特徴とする加算回路。
  2.  前記第1加算器は、前記第1直流出力信号および前記第3直流出力信号とともに、入力された第1直流補助信号を加算して前記第5直流出力信号を出力し、
    前記第2加算器は、前記第2直流出力信号および前記第4直流出力信号とともに、入力された第2直流補助信号を加算して前記第6直流出力信号を出力することを特徴とする請求項1に記載の加算回路。
  3.  包絡線変動を有する入力信号を2つの定包絡線信号に変換して出力する定包絡線信号生成回路と、入力された前記2つの定包絡線信号をそれぞれ増幅して出力する2つの増幅器と、増幅後の前記2つの定包絡線信号が前記第1高周波入力信号および前記第2高周波入力信号として入力される請求項1または請求項2に記載の加算回路とを備えることを特徴とする電力増幅回路。
  4.  送信回路が請求項3に記載の電力増幅回路を介してアンテナに接続されていることを特徴とする送信装置。
  5.  送信回路および受信回路がアンテナに接続されており、前記送信回路と前記アンテナとの間に請求項3に記載の電力増幅回路が挿入されていることを特徴とする通信装置。
PCT/JP2009/071304 2008-12-24 2009-12-22 加算回路およびそれを用いた電力増幅回路ならびにそれを用いた送信装置および通信装置 WO2010074069A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/141,956 US8351881B2 (en) 2008-12-24 2009-12-22 Addition circuit, power amplifier circuit using same, and transmission device and communication device using the power amplifier circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008326979A JP5258540B2 (ja) 2008-12-24 2008-12-24 加算回路およびそれを用いた電力増幅回路ならびにそれを用いた送信装置および通信装置
JP2008-326979 2008-12-24

Publications (1)

Publication Number Publication Date
WO2010074069A1 true WO2010074069A1 (ja) 2010-07-01

Family

ID=42287678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071304 WO2010074069A1 (ja) 2008-12-24 2009-12-22 加算回路およびそれを用いた電力増幅回路ならびにそれを用いた送信装置および通信装置

Country Status (3)

Country Link
US (1) US8351881B2 (ja)
JP (1) JP5258540B2 (ja)
WO (1) WO2010074069A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9680454B2 (en) * 2014-10-28 2017-06-13 Mediatek Inc. Frequency tripler and local oscillator generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151543A (ja) * 2003-10-20 2005-06-09 Matsushita Electric Ind Co Ltd 増幅回路
JP2007150905A (ja) * 2005-11-29 2007-06-14 Japan Radio Co Ltd Linc増幅器
JP2008518514A (ja) * 2004-10-22 2008-05-29 パーカーヴィジョン インコーポレイテッド ベクトル電力増幅のためのシステムおよび方法
WO2008093404A1 (ja) * 2007-01-30 2008-08-07 Panasonic Corporation 送信回路、無線基地局装置、及び無線端末装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3199284B2 (ja) * 1992-07-29 2001-08-13 日置電機株式会社 電力測定値の加算回路
US5535247A (en) * 1993-09-24 1996-07-09 Motorola, Inc. Frequency modifier for a transmitter
US5574747A (en) * 1995-01-04 1996-11-12 Interdigital Technology Corporation Spread spectrum adaptive power control system and method
DE10012539C2 (de) * 2000-03-15 2003-04-10 Fraunhofer Ges Forschung I/Q-Modulator mit Trägervorverzerrung
AU770602B2 (en) * 2000-10-05 2004-02-26 Samsung Electronics Co., Ltd. TSTD apparatus and method for a TDD CDMA mobile communication system
US7460614B2 (en) * 2003-06-25 2008-12-02 Interdigital Technology Corporation Method and system for adjusting the amplitude and phase characteristics of real and imaginary signal components of complex signals processed by an analog radio transmitter
JP4298468B2 (ja) * 2003-10-31 2009-07-22 シャープ株式会社 周波数変換回路、無線周波受信機、および無線周波トランシーバ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151543A (ja) * 2003-10-20 2005-06-09 Matsushita Electric Ind Co Ltd 増幅回路
JP2008518514A (ja) * 2004-10-22 2008-05-29 パーカーヴィジョン インコーポレイテッド ベクトル電力増幅のためのシステムおよび方法
JP2007150905A (ja) * 2005-11-29 2007-06-14 Japan Radio Co Ltd Linc増幅器
WO2008093404A1 (ja) * 2007-01-30 2008-08-07 Panasonic Corporation 送信回路、無線基地局装置、及び無線端末装置

Also Published As

Publication number Publication date
US8351881B2 (en) 2013-01-08
US20110256839A1 (en) 2011-10-20
JP5258540B2 (ja) 2013-08-07
JP2010153967A (ja) 2010-07-08

Similar Documents

Publication Publication Date Title
JP4646987B2 (ja) 送信回路、及びそれを用いた通信機器
US8180304B2 (en) Efficient power amplifier
JP4802190B2 (ja) ポーラ変調送信回路及び通信機器
JP5086436B2 (ja) 電力増幅装置ならびにそれを用いた送信装置および通信装置
KR20060021290A (ko) 송신기용 전력 제어
JPWO2006095422A1 (ja) 歪補償装置
JP2007300400A (ja) 送信回路、送信方法、及びそれを用いた通信機器
KR101613012B1 (ko) 증폭 장치
WO2010013514A1 (ja) 電力増幅装置ならびにそれを用いた送信装置および通信装置
US8509346B2 (en) Transmitter with reduced power consumption and increased linearity and dynamic range
JP4704936B2 (ja) プリディストータ
WO2010074069A1 (ja) 加算回路およびそれを用いた電力増幅回路ならびにそれを用いた送信装置および通信装置
JP4638268B2 (ja) 歪み補償装置及び無線通信装置
JP2006279130A (ja) 変調増幅回路
JP2006129402A (ja) 増幅回路及び送信機
JPWO2010032283A1 (ja) 高調波注入プッシュプル増幅器
US8432218B1 (en) Harmonic-rejection power amplifier
WO2015001924A1 (ja) 周波数変換器
JP2016076752A (ja) プシュプル電力増幅器
WO2012114867A1 (ja) 定包絡線信号生成回路ならびにそれを用いた増幅回路,送信装置および通信装置
US20110223871A1 (en) Adder, and power combiner, quadrature modulator, quadrature demodulator, power amplifier, transmitter and wireless communicator using same
JP2009182900A (ja) 電力増幅装置及び通信装置
JP2008124910A (ja) 高周波増幅回路
JP2008017219A (ja) 移相器および無線送信装置
JP4786570B2 (ja) 送信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834870

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13141956

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834870

Country of ref document: EP

Kind code of ref document: A1