WO2010073660A1 - リード、配線部材、パッケージ部品、樹脂付金属部品及び樹脂封止半導体装置、並びにこれらの製造方法 - Google Patents

リード、配線部材、パッケージ部品、樹脂付金属部品及び樹脂封止半導体装置、並びにこれらの製造方法 Download PDF

Info

Publication number
WO2010073660A1
WO2010073660A1 PCT/JP2009/007177 JP2009007177W WO2010073660A1 WO 2010073660 A1 WO2010073660 A1 WO 2010073660A1 JP 2009007177 W JP2009007177 W JP 2009007177W WO 2010073660 A1 WO2010073660 A1 WO 2010073660A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
organic
functional group
main chain
functional
Prior art date
Application number
PCT/JP2009/007177
Other languages
English (en)
French (fr)
Inventor
福永隆博
今西康子
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010543878A priority Critical patent/JPWO2010073660A1/ja
Priority to CN2009801347596A priority patent/CN102143952A/zh
Priority to US13/062,408 priority patent/US8946746B2/en
Publication of WO2010073660A1 publication Critical patent/WO2010073660A1/ja
Priority to US14/576,105 priority patent/US9960325B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/12Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/16Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to only one ring carbon atom
    • C07D251/20Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to only one ring carbon atom with no nitrogen atoms directly attached to a ring carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/38Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3142Sealing arrangements between parts, e.g. adhesion promotors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/16End groups
    • C08G2261/164End groups comprising organic end groups
    • C08G2261/1646End groups comprising organic end groups comprising aromatic or heteroaromatic end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01037Rubidium [Rb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1433Application-specific integrated circuit [ASIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a wiring member, a resin-attached metal part and a resin-encapsulated semiconductor device, and a resin-attached metal part and a method for manufacturing a semiconductor device, and more particularly to a technique for improving the adhesion between a metal material and a resin material.
  • Resin materials are widely used in semiconductor devices and wiring members.
  • a semiconductor device such as an integrated circuit (IC) or a large scale integrated circuit (LSI) has a semiconductor element connected to a wiring lead by wire bonding or the like, and a resin is fixed with a part of the wiring lead exposed to the outside. And packaged by resin sealing.
  • IC integrated circuit
  • LSI large scale integrated circuit
  • FIG. 15 is a schematic cross-sectional view showing a manufacturing process of a resin-sealed QFP (Quad Flat Package) type semiconductor device.
  • QFP Quad Flat Package
  • the semiconductor chip 94 is mounted on the die pad 93b of the wiring lead 93 (die pads 93a, 93b), and the semiconductor chip 94 and the die pads 93a, 93b are connected by the wire 95.
  • thermosetting resin is injection-molded into the cavity 97 through the gate 96 provided in the movable mold 91, and the semiconductor chip 94 and the like are sealed with resin (FIG. 15B).
  • both molds 91 and 92 are opened, and the resin molded product 9z is extruded using an ejector pin (not shown). Thereafter, the outer lead 931a of the resin molded product 9z is bent to obtain a finished product of the semiconductor device 9 (FIG. 15 (d)).
  • the outer leads 931a are joined to the substrate 99 via the solder 90 (FIG. 15D).
  • a manufacturing process of a QFP type semiconductor device there are other types of semiconductor devices, for example, a light emitting diode (LED) device.
  • LED light emitting diode
  • the sealing resin a silicone resin having a higher light transmittance is now widely used in place of the epoxy resin.
  • TAB Tepe Automated Bonding
  • T-BGA Tepe Ball Grid Array
  • ASIC Application Specific Integrated Circuit
  • An insulating film made of Cu, a wiring pattern layer made of Cu, and a solder resist layer are laminated in the same order, and a resin material is used as the insulating film and the solder resist layer.
  • the first problem is that the resin adheres to the region of the wiring lead that is not originally intended for resin molding in addition to the target resin molding during the injection molding of the sealing resin.
  • the resin material is injected with a constant pressure, so that in fact, on the surface of the outer lead 931a of the wiring lead 93, A resin thin film (so-called resin burr) 98a flowing out from the gap 900 can be formed (FIG. 15C).
  • the gap 900 is generated due to an inaccuracy between the molds 91 and 92, and the pressure at the time of injection leaks to the outside from the gap 900, and the resin material flows out along with this, so that a resin burr 98a is generated. If the resin burr 98a is present, problems may occur in the bonding strength and electrical contact between the outer lead 931a and the substrate 99 in the next step. As a countermeasure to prevent this, there is a method of increasing the accuracy between the dies 91 and 92, but it is very expensive for the design of the dies, and as a problem in terms of machine accuracy, a complete gap is generated. It is extremely difficult to prevent.
  • Patent Documents 1 to 3 propose measures for preventing gaps between dies.
  • the techniques disclosed in Patent Documents 1 and 2 are techniques for strengthening the pressing force on the wiring lead of the mold, and there is a risk of applying excessive deformation stress to the wiring lead, which may damage the mold and the wiring lead. There is a risk of inviting.
  • Patent Document 3 is a technique for preliminarily attaching a tape to a gap generating portion between molds to achieve a sealing property.
  • Patent Document 3 is a technique for preliminarily attaching a tape to a gap generating portion between molds to achieve a sealing property.
  • problems such as peeling and damage of the tape may actually occur.
  • the tape is provided, there are still problems in terms of a decrease in manufacturing efficiency and an increase in manufacturing cost.
  • FIG. 16 is a cross-sectional view schematically showing this problem.
  • the sealing resin molded resin 98
  • the sealing resin has a property of receiving moisture intrusion from the surroundings under the influence of environmental humidity.
  • the adhesiveness between the wiring leads 93a and 93b and the sealing resin (molded resin 98) is insufficient, a slight gap is generated at the interface between the two (FIG. 16A).
  • the second problem is a problem when a silicone resin is used as the sealing resin in the LED device in which the LED chip is sealed with the sealing resin.
  • Silicone resin can ensure high transparency, but has a higher coefficient of linear expansion than epoxy resin. For this reason, in the process of injection-molding the silicone resin on the substrate, the silicone resin is thermally contracted due to a thermal change (so-called thermal history) received by the resin material. As a result, peeling occurs between the silicone resin and the wiring lead, which may cause problems such as performance deterioration due to poor contact or insufficient bonding strength.
  • the Ag plating film may be discolored due to a platinum group catalyst necessary for addition polymerization, and the reflectance may be lowered. Furthermore, since the silicone resin has high gas permeability, discoloration may occur when the corrosive gas contacts the permeation / Ag plating film in the silicone resin.
  • the Ag material is known to have a high reflectance for visible light in a long wavelength region, but has a relatively low reflectance for light in a short wavelength region (about 500 nm or less). Therefore, when a diode for blue light emission, purple light emission, ultraviolet light emission or the like is mounted on the LED device, sufficient reflectance may not be obtained.
  • the fourth problem is a problem when Sn plating is applied to the wiring pattern layer in the film carrier tape.
  • the surface of the wiring pattern layer is pre-coated with an Sn plating layer so that it can be connected to the mounting component by soldering.
  • the end of the solder resist layer is turned up by the heating atmosphere, and the solder resist is turned up.
  • a local battery is generated due to a difference in ionization tendency of Sn ions and Cu ions between the layer and the surface of the wiring pattern layer and between the surface regions of the other wiring pattern layers (FIG. 17A )).
  • an erosion region due to Cu ions eluted on the surface of the wiring pattern layer is generated. For this reason, the mechanical strength of the film carrier tape after Sn plating is lowered, and there is a problem that uniform plating cannot be performed.
  • the present invention has been made in view of the above problems, and as a first object, by suppressing generation of resin burrs, separation of wiring leads and resin, cracks of resin, etc., good electrical connectivity and Provided are a semiconductor device having bonding strength and sealing reliability, and a manufacturing method thereof.
  • the second purpose is to improve the adhesiveness between the silicone resin and the wiring leads, while suppressing the occurrence of problems such as deterioration and discoloration of constituent elements, reduction in luminous efficiency, and wire non-adherence.
  • an LED device capable of exhibiting.
  • an LED device capable of exhibiting excellent luminous efficiency by providing sufficient reflectance even when emitting light in a relatively short wavelength region.
  • a film carrier tape is provided.
  • the present invention is to provide the following characteristics in the main chain part in an organic compound in which one end side of the main chain part is oriented on the metal surface to form a self-assembled film.
  • the main chain portion is provided with at least one selected from a methylene chain, a fluoromethylene chain, a siloxane chain, and a glycol chain, and at least one selected from an aromatic imide skeleton and an amide skeleton.
  • a nitrogen-containing heterocycle containing 2 or more nitrogen atoms is provided in the main chain.
  • the nitrogen-containing heterocycle is preferably at least one selected from imidazole, triazole, tetrazole, oxadiazole, thiadiazole, pyrimidine, pyridazine, pyrazine, and triazine.
  • one or more selected from an aryl skeleton, an acene skeleton, a pyrene skeleton, a phenanthrene skeleton, and a fluorene skeleton are provided.
  • the main chain portion is provided with a nitrogen-containing heterocycle and one or more selected from an aryl skeleton, an acene skeleton, a pyrene skeleton, a phenanthrene skeleton, and a fluorene skeleton, on the other end side from the nitrogen-containing heterocycle, It is preferable to provide an aryl skeleton or the like.
  • the organic compound it is preferable to provide a metal-bonding first functional group at one end of the main chain and a second functional group having predetermined characteristics at the other end.
  • the first functional group is preferably composed of a compound, chemical structure or derivative containing one or more of thiol compounds, sulfide compounds and nitrogen-containing heterocyclic compounds.
  • the present invention provides a wiring lead made of a metal material, comprising a functional organic molecule having a metal-bonding first functional group at one end of the main chain portion and a second functional group having a predetermined characteristic at the other end.
  • a wiring lead made of a metal material comprising a functional organic molecule having a metal-bonding first functional group at one end of the main chain portion and a second functional group having a predetermined characteristic at the other end.
  • thermosetting resin can also be used in the resin fixing step.
  • epoxy resin phenol resin, acrylic resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyimide resin, polyamide resin, polyether resin as thermosetting resin, as second functional group , Hydroxyl group, carboxylic acid, acid anhydride, primary amine, secondary amine, tertiary amine, amide, thiol, sulfide, imide, hydrazide, imidazole, diazabi cycloalkene, organic phosphine, boron trifluoride amine complex It is preferable to use a compound, chemical structure or derivative containing at least one of the above.
  • the organic compound film forming step it is also preferable to form the organic compound film on the surface of the wiring lead over an area larger than the predetermined surface region of the wiring lead to which the resin is to be fixed in the resin fixing step.
  • the second functional group includes a vinyl group, an organic hydrogen silane, a hydroxyl group, and an acid anhydride. It is preferable to use a compound, chemical structure or derivative containing at least one of a compound, a primary amine and a secondary amine.
  • thermosetting resin including a silicone resin modified with at least one of an epoxy group and an alkoxysilyl group
  • a metal complex having platinum, palladium, ruthenium, or rhodium as the second functional group is also preferred to use a compound, chemical structure or derivative containing one or more.
  • a dispersion preparation sub-step of preparing the organic molecule dispersion by dispersing the functional organic molecules in a solvent, and a predetermined surface of the wiring lead to which the resin is to be fixed among the wiring lead surface It is also preferable to go through a dipping sub-step of dipping the wiring lead in the organic molecular dispersion over an area wider than the region.
  • the above-described manufacturing method of the metal part with resin is included in the process, and the semiconductor element is electrically connected to the wiring lead between the organic film forming process and the resin fixing process.
  • resin fixing step resin molding is performed so that the semiconductor element is included and a part of the wiring lead is exposed to the outside.
  • the present invention provides a wiring member in which an organic coating by self-organization of an organic compound is deposited on the surface of a wiring lead made of a metal material.
  • a first functional group that exhibits at least one of a metal bond, a hydrogen bond, and a coordination bond by a metal complex at one end of the main chain portion with respect to the wiring lead, and a resin curable or resin at the other end
  • the main chain portion of the organic compound was configured as follows using a chemical structure in which the second functional group exhibiting curing acceleration was respectively arranged.
  • the main chain portion of the organic compound has at least one selected from a methylene chain, a fluoromethylene chain, a siloxane chain, and a glycol chain, and at least one selected from an aromatic imide skeleton and an amide skeleton.
  • the main chain portion of the organic compound has a nitrogen-containing heterocycle containing 2 or more nitrogen atoms.
  • the nitrogen-containing heterocycle is preferably at least one selected from imidazole, triazole, tetrazole, oxadiazole, thiadiazole, pyrimidine, pyridazine, pyrazine, and triazine.
  • the main chain portion of the organic compound has one or more selected from an aryl skeleton, an acene skeleton, a pyrene skeleton, a phenanthrene skeleton, and a fluorene skeleton.
  • the resin-attached metal part according to the present invention is configured such that a resin is fixed to a part of the wiring member and an organic coating is applied over an area larger than the surface area of the wiring member to which the resin is fixed.
  • a reflector having a bowl-shaped surface on which the LED chip is mounted is disposed on the wiring member, a plated coating made of Ag is formed on the reflector surface, and an organic coating is further coated on the surface of the plated coating.
  • the first functional group of the organic compound may be bonded to the plating film.
  • the LED device according to the present invention is configured by disposing an LED chip in the reflector of the resin-coated metal part and filling the reflector surface with a transparent resin.
  • a reflector having a bowl-shaped surface on which the LED chip is mounted may be disposed on the wiring member, and the reflector may be made of a thermoplastic resin.
  • an LED chip can be provided in the reflector of the metal part with resin described above, and the reflector surface can be filled with a transparent resin to obtain an LED device.
  • a hydrophilic additive may be mixed with the transparent resin.
  • the semiconductor element is electrically connected to the wiring member on the wiring lead, the wiring member is partially exposed to the outside, and in the region where the organic coating is formed.
  • the semiconductor element was sealed with resin.
  • an organic coating is formed on the surface of a metal material such as a wiring lead by self-organizing functional organic molecules. Good chemical action can be obtained, and various problems in the prior art can be solved.
  • the functional organic molecule is placed on the wiring lead surface with the second functional group facing the upper surface. Self-organized and an organic coating is formed. Therefore, by adding functions such as resin curability and resin curing acceleration to the second functional group, the bonding force with the resin material fixed on the organic coating is increased, and the resin material is rapidly cured. be able to.
  • the above-described effect can be realized only by using an organic coating, so that it is not necessary to modify an existing injection molding apparatus or add a separate apparatus. Therefore, a semiconductor device having good electrical connectivity can be realized at low cost and excellent manufacturing efficiency.
  • the sealing resin (molding resin) and the wiring lead are in close contact with each other through the organic film, so that a gap is formed at the interface between them. Is prevented as much as possible. Therefore, even if moisture in the ambient atmosphere enters the inside of the semiconductor device through the sealing resin (molding resin), moisture is accumulated between the sealing resin (molding resin) and the wiring lead as in the past. It is possible to avoid problems such as formation of cracks and peeling during reflow of the semiconductor device, and short-circuiting of the semiconductor chip caused by moisture entering from the outside through the crack.
  • the main chain portion of the organic molecule includes one or more of a methylene chain, a fluoromethylene chain, a siloxane chain, and a glycol chain, and a hydroxyl group, a ketone, a thioketone, a primary amine, a secondary amine, and a tertiary amine.
  • one or more polar groups selected from ethers, thioethers, and aromatic compounds, or the main chain portion of the organic molecule is composed of one or more of a methylene chain, a fluoromethylene chain, a siloxane chain, and a glycol chain,
  • a strong mutual bonding action is exerted between adjacent organic molecules, This can strengthen the organic coating itself and improve its heat resistance.
  • the melting point of the organic molecule itself is improved and the stacking effect is excellent, so even when high heat is applied.
  • An anchor effect is exerted on the surface of the wiring lead made of the metal material, the recrystallization of the metal material is prevented, and the organic film is stably present.
  • the coating has a UV-cutting effect, thereby preventing discoloration of the metal surface. Is done. In particular, when the metal surface is Ag-plated, the effect of preventing the blackening is produced.
  • an organic coating composed of such functional organic molecules is formed on the wiring lead of the LED device, peeling or cracking between the silicone resin and the wiring lead, or contact at a high temperature Suppressing the occurrence of performance degradation due to defects, insufficient bonding strength, etc., realizing stable light emission efficiency of the LED device, and the main chain portions of the organic coating are densely arranged, so that the silicone resin Discoloration of Ag due to a platinum group catalyst or corrosive gas necessary for addition polymerization can also be suppressed.
  • the silicone resin may be a silicone resin-containing conductive paste (a die bonding agent such as an Ag paste). By die bonding using the silicone resin-containing conductive paste, it becomes possible to firmly bond a semiconductor chip such as an LED and a die pad, and there is less deterioration compared to a conventional epoxy resin-containing conductive paste. In addition, stabilization of electrical conductivity and thermal conductivity can be realized.
  • an organic coating made of a functional organic molecule including a compound emitting fluorescence or phosphorescence on the second functional group is formed on the wiring lead, an Ag plating coating with low reflection efficiency in the short wavelength region can be obtained. Even if it is applied, it is possible to improve the reflectance with respect to light of a short wavelength in the ultraviolet light or visible light region. Thereby, good luminous efficiency can be expected as the whole apparatus.
  • the organic film of the present invention when the Ag plating film is formed on the reflector disposed so as to surround the LED chip, if the organic film of the present invention is formed on the surface of the Ag plating film, the functionality is densely arranged by self-organization.
  • the organic molecules prevent unnecessary gas generated during the manufacturing process (such as outgas derived from the thermoplastic resin material of the reflector) from directly adhering to the Ag plating film. As a result, it is possible to avoid deterioration of Ag due to unnecessary gas and impairing the reflection characteristics of the plating film, and it is possible to manufacture an LED device having good luminous efficiency.
  • the organic film of the present invention on the wiring lead, it is possible to prevent the outgas derived from the material from directly attaching to the wiring lead when a material such as a thermoplastic resin is used for the reflector. As a result, it is possible to prevent the problem of non-bonding of the wires with respect to the wiring leads due to the outgas, and to perform wire bonding dramatically and reliably.
  • an organic coating is formed with functional organic molecules having a first functional group that exhibits metal binding to the wiring pattern layer and a second functional group that has binding to the solder resist layer. Then, the layer structure of the wiring pattern and the solder resist layer can be stably maintained.
  • the main chain occupying most of the functional organic molecules is hydrophobic hydrocarbon or fluorocarbon, a waterproof effect is exerted on the wiring pattern layer when an organic coating is applied. Can be expected, and the performance as a conductive component can be stably maintained.
  • the organic film composed of the functional organic molecules according to the present invention achieves anticorrosion, rust prevention, and insulation resistance enhancement of the wiring lead region on which the organic film is applied, even though the thickness is a single molecular level. it can. Further, it is not necessary to remove the organic coating after the disposition.
  • Such functionality and configuration are completely different from general surface treatment agents, surfactants, paints and the like.
  • FIG. 1 is a diagram showing a configuration of a semiconductor device according to a first embodiment.
  • 1 is a schematic diagram illustrating a configuration of a functional organic molecule according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a film forming process of an organic film according to the first embodiment. It is a figure which shows the resin adhering process which concerns on Embodiment 1.
  • FIG. It is a figure explaining the effect which suppresses recrystallization of a metal crystal by the film of a functional organic molecule.
  • It is a figure which shows the structure of the LED apparatus which concerns on Embodiment 2.
  • FIG. It is a figure which shows the structure and manufacturing process of the LED apparatus which concern on Embodiment 3.
  • FIG. It is a figure explaining the effect by the functional organic molecule 17.
  • FIG. It is a figure which shows the structure etc. of the LED apparatus which concerns on Embodiment 4.
  • FIG. It is a figure which shows the structure of the LED apparatus which concerns on Embodiment 5.
  • FIG. It is a figure which shows the structure of the LED apparatus which concerns on Embodiment 6.
  • FIG. It is a figure which shows the manufacturing process of the film carrier tape which concerns on Embodiment 7.
  • FIG. It is a figure which shows the manufacturing process of the film carrier tape which concerns on Embodiment 8.
  • FIG. It is a figure which shows the manufacturing process of the film carrier tape which concerns on Embodiment 9.
  • FIG. It is a figure which shows the process at the time of the injection molding of the conventional semiconductor device. It is sectional drawing for demonstrating the problem of the conventional semiconductor device.
  • FIG. 1 It is a figure which shows typically the structure of the film carrier tape of a prior art, and the formation process of a local battery. It is a figure which shows the structure of the film carrier tape which gave the Sn plating layer of the prior art twice. It is a figure which shows an example of the manufacturing method which manufactures the organic molecule. It is a figure which shows an example of the manufacturing method which manufactures the organic molecule. It is a figure which shows the other example of a manufacturing method which manufactures the organic molecule
  • FIG. 1A is an external perspective view showing a configuration of a semiconductor device (QFP; Quad Flat Package 10) which is an application example of the present invention.
  • FIG. 1B is a cross-sectional view of the QFP 10 along the yz plane.
  • FIG.1 (c) is the S1 partial enlarged view in FIG.1 (b).
  • the QFP 10 is a surface mount type semiconductor device used for IC, LSI, and the like, and includes a semiconductor chip 4, wiring leads 3, wires 5, molding resin 21, and the like.
  • the wiring lead 3 is made of a metal material having excellent electrical conductivity (here, a copper alloy as an example), and is made of a combination of die pads 3a and 3b formed by punching a metal plate.
  • the QFP 10 is a surface mount type semiconductor device, and as shown in FIG. 1A, a molding resin 21 formed in a plate shape of a square main surface having a constant thickness and a part of the die pad 3a from the periphery thereof.
  • the outer lead 301a is extended.
  • the semiconductor chip 4 is mounted on the die pad 3a, and the internal structure connected to the die pads 3a and 3b via the electrode pads and wires 5 (not shown) is provided. Have.
  • the die pad 3b and the semiconductor chip 4 are joined with a conductive paste such as a silver paste (not shown).
  • a region sealed in the molding resin 21 is an inner lead 302a, and a region exposed to the outside is an outer lead 301a.
  • the outer lead 301a is bent into an S shape in its cross-sectional structure.
  • an organic coating 110 formed by self-organization of functional organic molecules is formed on the surface in the boundary region (S portion in FIG. 1B) between the inner lead 302a and the outer lead 301a of the die pads 3a and 3b. It is characterized in that it is formed.
  • FIG. 2 is a schematic structural diagram of the functional organic molecule 11.
  • the functional organic molecule 11 shown in the figure is formed by bonding a first functional group A1, a main chain part B1, and a second functional group C1 in the same order.
  • the main chain portion B1 is composed of a glycol chain, a methylene chain, a fluoromethylene chain, a siloxane chain, or the like.
  • 1st functional group A1 is a functional part comprised by the compound, chemical structure, or derivative containing 1 or more types which show the bondability with a metal.
  • the second functional group C1 is a functional part composed of a compound, a chemical structure or a derivative containing one or more types that exhibit a curing action or a curing acceleration action of the thermosetting resin.
  • each of such functional organic molecules 11 has the first functional group A1 oriented and bonded to the surface of the die pad 3a made of a metal material, so that the other end of the main chain portion B1 is attached.
  • the arranged second functional group C1 is oriented toward the outside of the surface.
  • chemical characteristics (mutual affinity) related to molecular orientation are adjusted, and a monomolecular film (organic coating 110) as a so-called self-organized structure is naturally formed.
  • the film thickness of the organic coating 110 depends on the size of the functional organic molecule 11 and is adjusted to several nm order here (FIG. 1C).
  • the organic coating 110 can densely protect the surface of the die pad 3a with a size of a single molecule. As a result, it can prevent corrosion due to adhesion of oxygen gas or moisture, and has a good function to prevent substitution with a noble metal salt. Can demonstrate.
  • the semiconductor element 4 In the QFP 10, it is necessary to electrically connect the semiconductor element 4 to the outer lead 301a by wire bonding, die bonding or the like, and at least a connection area between the die pad and the lead 3 is metal plated to ensure good electrical conductivity. May be formed. In this case, a metal plating step is required. However, if the organic coating 110 is applied to the surface of the die pad 3a that is not subjected to the plating, the metal component of the die pad 3a is prevented from eluting into the plating solution due to an ionization tendency. This is preferable because it is possible.
  • the general formula of the functional organic molecule 11 is represented by A1-B1-C1.
  • the chain carbon number constituting the main chain part B1 is preferably about 4 to 40. If the number of chain carbon atoms is too small, the main chain part B1 is too short, and the hydrophobicity of the main chain part B1 between the functional organic molecules 11 when the first functional group A1 is attached to the lead 3a. As a result, the hydrophobic affinity between the molecules becomes weak, and the outward orientation of the second functional group C1 tends to be lost. On the other hand, if the chain carbon number is too large, the main chain portion B is too long, and the solderability to the lead 3a, the wire bonding property, the die bonding property and the like are liable to be impaired.
  • a side chain may be appropriately bonded to the main chain part B1.
  • the first functional group A1 is required to have affinity for a metal material, metal bondability (including coordination bond), and metal bondability. As long as it has this characteristic, the first functional group A1 may be a compound, chemical structure or derivative containing one or more kinds.
  • a thiol and a thiol compound containing the same a sulfide compound (disulfide compound, etc.), a nitrogen-containing heterocyclic compound (azole compound, azine compound, etc.), or a compound, chemical structure or derivative containing one or more of these compounds
  • a thiol and a thiol compound containing the same a sulfide compound (disulfide compound, etc.), a nitrogen-containing heterocyclic compound (azole compound, azine compound, etc.), or a compound, chemical structure or derivative containing one or more of these compounds
  • the first functional group A1 When the first functional group A1 has a thiol group (R-SH, where R is any functional group such as alkane or alkene), it can be a monovalent or higher cation such as gold (Au) or silver (Ag).
  • the functional organic molecule 11 is attached to the die pad 3a by coordinating to a metal atom and by a covalent bond such as Au—S—R or Ag—S—R.
  • the first functional group A1 is a disulfide group (R1-SSR2), Au (-S-R1) (-S-R2) or Ag (-S-R1) (-S-R2)
  • R1-SSR2 disulfide group
  • the first functional group A1 contains an azole compound or an azine compound
  • the lone pair of nitrogen atoms in the molecule forming the compound can be coordinated to a metal that can be a divalent or higher cation.
  • a metal such as Cu.
  • a covalent bond, a coordinate bond, a hydrogen bond, or the like can be formed at the same time, but by forming such a plurality of types of bonds, a stronger bond structure can be expected.
  • the main chain part B1 is a general methylene-based organic molecule and its type (a compound, chemical structure or derivative containing one or more of a methylene chain, a fluoromethylene chain, a siloxane chain, and a glycol chain). Methylene chains are preferred because they associate with each other between molecules and can form supramolecularly dense carbon chains of hydrocarbon chains. Further, it has been clarified by the inventors that a methylene chain can be used to form an organic coating relatively quickly.
  • a glycol chain When a glycol chain is used for the main chain part B1, it can be easily dissolved in a polar solvent such as water, and thus has an advantage in forming a film.
  • glycol chain for the main chain part B1 or a structure composed of one or more of a methylene chain, a fluoromethylene chain, and a siloxane chain and a glycol chain.
  • the heating condition in wire bonding is set to a relatively high temperature, it is desirable to further improve the heat resistance of the organic coating 110 using the functional organic molecules 11.
  • the main chain part B1 at least one selected from a hydroxyl group, a ketone, a thioketone, a primary amine, a secondary amine, a tertiary amine, an ether, a sulfide, and an aromatic compound. It is desirable to use one containing a polar group.
  • this polar group includes an amide group (composed of a ketone and a secondary amine), an aromatic amide, or an aromatic imide group (composed of a ketone, a tertiary amine, and an aromatic ring), It is preferred to have a combination thereof.
  • the main chain part B1 including such a polar group When the main chain part B1 including such a polar group is used, a strong mutual coupling action (by hydrogen bond or London dispersion force) is formed between the main chain parts B1 of the adjacent functional organic molecules 11 in the organic coating 110. Stacking effect) works, and the organic coating 110 is strengthened by this. That is, since the organic coating 110 is stably maintained even in a high temperature environment, the heat resistance of the organic coating 110 can be improved.
  • the second functional group C1 is required to have resin curability or resin curing acceleration with respect to a thermosetting resin. Any structure of a compound, a chemical structure, or a derivative including one or more may be used as long as it has the performance.
  • a compound having a hydroxyl group, a compound having a carboxylic acid, a compound having an acid anhydride, a compound having a primary amine, a compound having a secondary amine, a compound having a tertiary amine, and a quaternary ammonium salt Compound having amide group, compound having imide group, compound having hydrazide group, compound having imine group, compound having amidine group, compound having imidazole, compound having triazole, compound having tetrazole, thiol group
  • phthalic anhydride in which the second functional group C1 is an acid anhydride, it acts as a curing agent for the epoxy resin and binds to the epoxy group in the epoxy resin by ring-opening polymerization.
  • the functional organic molecule 16 is configured by bonding the first functional group A1, the main chain part B11, the main chain part B12, and the second functional group C1 in the same order.
  • the main chain part B11 contains at least one nitrogen-containing heterocyclic compound containing two or more nitrogen atoms (imidasol, triazole, tetrazole, oxadiazole, thiadiazole, pyrimidine, pyridazine, pyrazine, triazine or derivatives thereof).
  • the main chain B12 includes an aryl skeleton (phenyl, biphenyl, terphenyl, quaterphenyl, kinkiphenyl, sexiphenyl), an acene skeleton (naphthalene, anthracene, naphthacene, pentacene), a pyrene skeleton, a phenanthrene skeleton, and a fluorene skeleton. Or one or more of these derivatives are included.
  • the first functional group A1 and the second functional group C1 are as described above for the functional organic molecule 11.
  • such a functional organic molecule 16 is oriented and bonded to the surface of the die pad 3a made of a metal material, so that the functional organic molecule 16 is arranged at the other end of the main chain portions B11 and B12.
  • the second functional group C1 thus oriented is oriented outward from the surface, and an organic film (monomolecular film) as a self-organized structure is formed, thereby precisely protecting the surface of the die pad 3a.
  • the structure of the functional organic molecule 16 is A1-B11 (nitrogen-containing heterocyclic compound containing two or more nitrogen atoms or derivatives thereof) -B12 (one or more of aryl skeleton, acene skeleton, pyrene skeleton, phenanthrene skeleton, fluorene skeleton) Or a derivative thereof) -C1.
  • the number of aromatic rings contained in the main chain part B12 is preferably 1 to 10, more preferably 2 to 6.
  • the main chain part B2 is too short, and when the first functional group A1 is attached to the lead 3a, between the plurality of functional organic molecules 11, The hydrophobic affinity of the main chain part B2 weakens the hydrophobic affinity between the molecules, and the outward orientation of the second functional group C1 is easily lost.
  • the number of aromatic rings constituting the main chain part B12 is too large, the main chain part B2 is too long, and solderability to the lead 3a, wire bonding properties, etc. are likely to be impaired.
  • the main chain portions B11 and B21 may have a structure in which side chains are appropriately combined.
  • a methylene chain, a fluoromethylene chain, a siloxane chain, or a glycol chain may be introduced between the main chain part B11 and the second functional group B12 and between the main chain part B11 and the second functional group C1. Good. Thereby, the rotation of atoms in the molecule becomes easy and the main chain becomes flexible, so that a dense and strong orientation between the main chains can be obtained.
  • ether, thioether, ketone, thioketone, secondary amine, tertiary amine, amide, A sulfone may be present, and similarly, the rotation of atoms in the molecule can be facilitated, and the orientation and denseness of the main chain portion can be improved by intermolecular interaction such as hydrogen bonding.
  • the main chain part B11 is a nitrogen-containing heterocyclic organic molecule containing 2 or more nitrogen atoms and its type (imidasol, triazole, tetrazole, thiadiazole, pyrimidine, pyridazine, pyrazine, a compound containing one or more triazines, chemical structure Body or derivative).
  • a nitrogen-containing heterocyclic compound containing two or more nitrogen atoms is preferable because the compound itself has high heat resistance and can improve the thermal stability of the bond between the first functional group C1 and the metal.
  • a six-membered ring compound such as pyrimidine, pyridazine, pyrazine, or triazine is used for the main chain B11, it is possible to bond two first functional groups A1 on the chemical structure.
  • the force can be equivalent to twice that of the five-membered ring compound, and the bond stability of the organic coating itself can be further enhanced. As a result, good bonding between the organic film and the wiring lead is maintained, and the organic film is less likely to be peeled off due to thermal history.
  • the main chain part B12 is an aryl skeleton (phenyl, biphenyl, terphenyl, quaterphenyl, quinkiphenyl, sexiphenyl), an acene skeleton (naphthalene, anthracene, naphthacene, pentacene), a pyrene skeleton, a phenanthrene skeleton, a fluorene skeleton, or a derivative thereof.
  • Aromatic compounds such as compounds containing any one or more of them, chemical structures or derivatives) can be used.
  • main chain part B12 is an aryl skeleton
  • the stronger the number of aromatic rings the stronger the interlinking action ( ⁇ - ⁇ stacking effect due to the London dispersion force) is exerted between the main chain parts B2 and the functionality. Since the melting point of the molecule itself is increased, the thermal stability is remarkably improved.
  • the main chain part B12 is an acene skeleton
  • the stronger the number of aromatic rings the stronger the mutual bonding action between the main chain parts B12 than the aryl skeleton.
  • the permeability of corrosive gas and moisture can be greatly reduced.
  • the conjugated system increases as the number of aromatic rings increases, and the absorption spectrum of light shifts to the longer wavelength side.
  • alteration of metals that absorb light in the short wavelength region (ultraviolet region) such as silver (black discoloration due to the formation of silver oxide) can be suppressed by the light absorption effect (ultraviolet cut effect) of the acene skeleton. become. This is remarkably effective in the acene skeleton, but the aryl skeleton has the same effect.
  • a methylene chain is present between the main chain part B11 and the main chain part B12 or between the main chain part B11 and the second functional group C1, they are associated with each other between the molecules, and the hydrocarbon chain is supramolecularly. This is preferable because a dense carbon chain can be formed. Further, it has been clarified by the inventors that a methylene chain can be used to form an organic coating relatively quickly.
  • the hydrophobicity is stronger than the methylene chain.
  • the intrusion of moisture between the wiring lead 3 and the coating is strongly suppressed.
  • good bonding between the organic film and the wiring lead is maintained, and the organic film is less likely to be peeled off due to thermal history.
  • a siloxane chain is present between the main chain part B11 and the main chain part B12, or between the main chain part B11 and the second functional group C1, characteristics excellent in heat resistance and weather resistance are exhibited. For this reason, for example, in the process of mounting a semiconductor element or the like, even when the organic coating is exposed to a relatively high temperature environment, an effect of preventing the alteration and damage of the coating itself is exhibited.
  • main chain part B11 and the main chain part B12 or between the main chain part B11 and the second functional group C1, ether, thioether, ketone, thioketone, secondary amine, tertiary amine, amide, Even if a sulfone is interposed, the rotation of atoms in the molecule can be facilitated, and the orientation and denseness of the main chain can be improved by intermolecular interaction such as hydrogen bonding.
  • main chain part B1 has a glycol chain, an organic film by hydrophilic interaction can be formed, and it can be easily dissolved in a polar solvent such as water. Therefore, it is also preferable to use a main chain portion B1 composed of one or more of a glycol chain, a methylene chain, a fluoromethylene chain, and a siloxane chain and a glycol chain.
  • the main chain part B1 in the functional organic molecule 11 and the main chain parts B11 and B12 in the functional organic molecule 16 described above are not limited to the first embodiment, and other embodiments described below are appropriately described. It can also be applied as the main chain portion of the functional organic molecule used in the above.
  • the QFP 10 is manufactured through an organic film forming process for depositing the organic film 110 on a predetermined surface of the die pad 3a, and a resin fixing process for sealing the die pad 3a and the semiconductor element 4 and the like after the organic film forming process.
  • Organic film forming process In the organic film forming step, a dispersion adjusting sub-step, a film forming sub-step, and a cleaning sub-step are sequentially performed (FIG. 3A).
  • the functional organic molecules 11 are dispersed in a predetermined solvent to prepare a dispersion.
  • a solvent at least one of an organic solvent and water can be used.
  • water it is preferable to add an anionic, cationic or nonionic surfactant as necessary in order to obtain the dispersibility of the functional organic molecules 11.
  • a pH buffer such as borates and phosphates, and an antioxidant may be added.
  • each functional organic molecule 11 is at an energy level having a relatively high Gibbs free energy, and makes a random motion (so-called Brownian motion) by interaction in the repulsive direction for each single molecule. .
  • the microscopically functional organic molecules are metal-bonded to the die pad 3a by the first functional group and try to move to a more stable state.
  • each of the functional organic molecules 11 macroscopically binds the first functional group to the surface of the die pad 3a while aligning the main chain part B1 and the second functional group C1 in the same order. They stabilize each other in a state and form a self-assembled form as a monomolecular film (FIG. 3B).
  • wiring member 10x When a self-assembled film is formed on the basis of the above principle and pulled out from the dispersion, a member (hereinafter referred to as “wiring member 10x”) having the organic coating 110 formed on the lead 3a is obtained.
  • FIG. 3 illustrates the case where the organic coating 110 is formed on the entire surface of the die pad 3a.
  • a pattern mask having openings of a predetermined shape is provided on the surface of the lead 3a in advance.
  • the organic coating 110 may be formed only on the surface of the lead 3a corresponding to the opening.
  • the formation method of the organic film 110 is not limited to this.
  • the same organic film 110 may be formed using other methods such as spraying.
  • the wiring member 10x obtained from the dispersion is subjected to a cleaning process to remove excess functional organic molecules 11 using at least one of an organic solvent or water as a cleaning medium.
  • the functional organic molecule 11 that is not directly metal-bonded to the lead 3a with the first functional group A1 cannot be obtained, and should be removed.
  • the cleaning sub-process By performing the cleaning sub-process, the functional organic molecules 11 that are not metal-bonded to the die pad 3a can be easily removed.
  • the semiconductor chip 4 is mounted on the die pad 3b using the wiring member 10x and the die pad 3b produced through the organic film forming step. Then, the semiconductor chip 4 and the wiring member 10x are connected via the wire lead 5 or the like. The chip-attached wiring member 10y thus obtained is placed on the fixed mold 2 (FIG. 4A).
  • the movable mold 1 is moved in the direction of the arrow, and the molds 1 and 2 are closed.
  • a dense organic film 110 having a monomolecular thickness H1 is formed on the surface of the wiring pattern 3 of the wiring member with chip 10y with the second functional group C1 of the functional organic molecule 11 oriented outward.
  • a film is formed (the S4 partial enlarged view of FIG. 4A).
  • the formation region of the organic film 110 includes a region that does not directly face the cavities 1x and 1y (internal space) secured between the molds 1 and 2. That is, the area of the organic coating 110 is a region wider than a region to be resin-sealed later.
  • thermosetting resin material is injected (injection molding) into the cavities 1x and 1y from the outside through the gate 6 at a constant pressure.
  • the resin material is filled until it becomes dense in the cavities 1x and 1y around the region including the semiconductor chip 4 of the wiring member with chip 10y, and is cured by receiving heat from the molds 1 and 2 (FIG. 4B). )). If the resin material is completely cured after a certain time, the formation of the sealing resin is completed, and QFP 10z is obtained. Thereafter, the QFP 10 is completed by bending the outer lead 301a.
  • the resin material injected into the cavities 1x and 1y is affected by the second functional group C (resin curing action or resin curing acceleration action) at a portion in contact with the organic coating 110, and relatively quickly. It is cured (“inside the molding region” in FIG. 4B). Due to this action, even if an unnecessary gap exists at the joint between the molds 1 and 2, the resin material leaks into the mold gaps around the cavities 1x and 1y ("out of molding area" in FIG. 4B). Before it is cured. Therefore, it is possible to effectively suppress the generation of resin burrs in the gaps between the molds 1 and 2 (S5 partial enlarged view of FIG. 4B).
  • the second functional group C resin curing action or resin curing acceleration action
  • the adhesion between the die pad 3a and the molding resin is firmly ensured by using the organic coating 110 as compared with the conventional case. Therefore, even when the QFP 10 is connected to another substrate, even if it is affected by temperature such as soldering, the resin is not thermally damaged and does not peel off from the wiring lead or breakage such as cracks. Furthermore, since the main chain part of the functional organic molecule exhibits hydrophobicity, unnecessary moisture adsorption to the wiring lead can be suppressed by densely arranging it on the surface of the wiring member. The effect of suppressing metal ionization and suppressing migration can also be expected.
  • the organic coating 110 is a monomolecular film, even if it is provided, the thickness of the semiconductor device hardly increases, and the resin material to be filled in the cavity is substantially insufficient due to the volume of the organic coating. Does not occur. Therefore, a high effect of the invention can be obtained while using the same manufacturing equipment as the conventional one.
  • the QFP 10 avoids problems such as generation of cracks and cracks between the wiring lead and the resin due to moisture intrusion into the sealing resin (molded resin). That is, generally in QFP, as a property of the sealing resin (molded resin), moisture in the environmental atmosphere may enter the resin (FIG. 16A).
  • the resin side is peeled off from the wiring lead side at the gap portion to form a peeled portion, or a crack is generated from the gap to the outer surface of the sealing resin (molded resin) (FIG. 16B).
  • a peeled portion or crack occurs, more impurities such as moisture enter the QFP from the outside, causing a circuit breakage or a short circuit of the sealed semiconductor chip 94.
  • the adhesion with the sealing resin is greatly improved by forming an organic film on the surface of the wiring lead.
  • This adhesion is maintained even after the manufacture of the QFP 10, and the formation of a gap at the interface between the wiring lead and the sealing resin is suppressed as much as possible. Therefore, even if moisture in the ambient atmosphere enters the sealing resin (molded resin) with the progress after the manufacture, there is no gap in which a considerable amount of moisture is accumulated in the resin. Therefore, when the QFP 10 is mounted on the substrate, no peeling portion or cracks are generated, and the QFP 10 can be mounted while maintaining high sealing reliability, and a short circuit due to moisture can be prevented after mounting. .
  • the organic coating 110 is formed of a functional organic molecule having a main chain part B11 (having a nitrogen-containing heterocyclic ring containing two or more nitrogen atoms) like the functional organic molecule 16, the organic coating 110 is further organic. Since the stacking effect acting between the main chain portions B11 is large between the functional organic molecules constituting the film, as described below, the metal crystal on the surface of the wiring lead is regenerated by the anchor effect at the molecular level. Crystallization is also suppressed, and the effect of improving the adhesion between the wiring lead surface and the sealing resin is further improved.
  • FIG. 5 is a diagram for explaining the effect of suppressing recrystallization of metal crystals by the coating of the functional organic molecules 16.
  • FIG. 5A shows a state in which a film made of functional organic molecules is formed on the metal surface.
  • metal surfaces such as wiring leads usually have fine irregularities and internal stress is applied.
  • functional organic molecules are arranged on the metal surface to form a film, the film is also formed along the unevenness of the metal surface.
  • the metal atoms move as indicated by the arrows in the figure, and accompanying this, a force is applied to move the functional organic molecules bonded to the metal atoms, resulting in a defect (gap) in the film. .
  • a defect arises in a film, it will become the cause of the fall of the adhesiveness of resin and a wiring lead, and a metallic luster changing.
  • the organic coating 110 is formed with the functional organic molecule 16 having the main chain part B11 (having a nitrogen-containing heterocyclic ring containing two or more nitrogen atoms), it is formed along the unevenness of the metal surface. Is the same, but since the stacking effect acting between the main chain portions B11 of the adjacent functional organic molecules 16 is large, it is attempted to move the functional organic molecules 16 when heat is applied to the metal of the wiring lead. Even when a force is applied, the functional organic molecule 16 does not move easily.
  • the functional organic molecule 16 since the functional organic molecule 16 exhibits a molecular level anchor effect that suppresses movement of metal atoms, recrystallization of the metal is suppressed.
  • main chain part B11 is couple
  • Such a molecular-level anchor effect by a functional organic molecule is obtained by having a nitrogen-containing heterocycle containing two or more nitrogen atoms in the main chain portion. Even if B12 is not present, the same anchor effect can be obtained.
  • Specific examples of functional organic molecule 11 and functional organic molecule 16 include compounds represented by the following chemical formula 1 (where m and n are natural numbers).
  • the first functional group is a thiol group
  • the second functional group is a hydroxyl group
  • a part of the main chain is an aromatic imide
  • FIG. 19 is a diagram showing an example of a production method for producing the organic molecule 11 represented by the above chemical formula 1.
  • pyromellitic diimide and bromomethylene acetyl sulfide are subjected to a one-equivalent hydrogen bromide elimination reaction in the presence of NaOCH 3. Hydroxybromomethylene is then reacted in the presence of NaOCH3. Thereafter, the target product can be synthesized by substituting the acetyl sulfide moiety with thiol with ethylamine.
  • the first functional group is a thiol group
  • the second functional group is a vinyl group, hydrogen silane, a hydroxyl group or a primary amine
  • the main chain part B11 is triazole
  • the main chain part B12 is An aryl skeleton or an acene skeleton or both.
  • FIG. 20 is a diagram showing an example of a production method for producing the organic molecule 16 represented by the chemical formula 2, wherein the first functional group is a thiol group, the second functional group is a hydroxyl group, the main chain B11 is triazole, and the main chain The case where part B12 synthesizes a functional organic molecule composed of an acene skeleton is shown.
  • a carboxylic acid acene having a hydroxyl group at the terminal is acetylated with acetyl chloride, and then the carboxylic acid is converted into a carboxylic acid chloride with thionyl chloride, and then the carboxylic acid chloride with thiosemicarbazide. Amide bond.
  • the target product can be synthesized by generating a triazole thiol ring with potassium hydroxide and generating a hydroxyl group by deprotecting acetyl.
  • FIG. 21 is a diagram showing another example of a method for producing the organic molecule 16, wherein the first functional group is a thiol group, the second functional group is a hydroxyl group, the main chain part B11 is triazine, and the main chain part B12 is aryl.
  • combined is shown.
  • cyanuric acid chloride was coupled with a brominated arylsilyl ether converted to Grignard reagent in tetrahydrofuran. Thereafter, the target product can be synthesized by deprotecting the tert-butyldimethylsilyl group with tetra-n-butylammonium fluoride to form a hydroxyl group and replacing chlorine with thiol with sodium hydrosulfide.
  • the organic coating 110 made of the functional organic molecules 11 has various effects when applied to a semiconductor device including a semiconductor chip.
  • a light emitting diode element LED provided with LED.
  • FIG. 6 is a schematic cross-sectional view illustrating configurations of the wiring lead portion 30 and the reflector 22 of the LED device unit 31x according to the second embodiment.
  • the device unit 31x has a configuration in which the wiring lead portion 30 is disposed at the bottom of the mortar-shaped reflector 22.
  • the reflector 22 is formed by resin molding using, for example, a thermosetting resin material (such as an epoxy resin or a silicone resin). Alternatively, a ceramic material can be used.
  • the problem of resin burrs may occur as in the first embodiment. That is, the regions 301 and 302 exposed at the bottom of the reflector 22 in the wiring lead portion 30 need to retain conductivity because the LED chip 42 will be mounted later (see FIG. 6B).
  • resin burrs can be generated on the exposed regions 301 and 302 through the gap existing between the skirt of the reflector 22 and the mold by the same principle as in the first embodiment. For this reason, a resin burr removal process is required separately, and the LED chip cannot be mounted with good manufacturing efficiency.
  • the organic coating 110 made of the functional organic molecules 11 or the functional organic molecules 16 is formed in advance on at least the surfaces of the exposed regions 301 and 302 of the wiring lead portion 30, thereby forming the resin molding.
  • thermosetting resin materials can be cured rapidly. Thereby, it is possible to prevent the resin material from leaking out from the skirt of the reflector 22, and to solve the above-mentioned problems associated with the occurrence of resin burrs.
  • the organic coating 110 is provided to exert the curing accelerating action of the thermosetting resin. By using this action, a fine resin pattern can be firmly formed.
  • the organic film of Embodiments 1 and 2 is not necessarily formed directly on the die pad or the wiring lead part.
  • a plating film is formed in advance on the surface of the die pad or the wiring lead part, An organic film may be formed.
  • FIG. 6 is a cross-sectional view illustrating the configuration and manufacturing process of the LED device 31 according to the third embodiment.
  • the LED device 31 basically includes the device unit 31x of the second embodiment, and further, as shown in FIG. 6B, on the wiring lead portion 30 surrounded by the reflector 22 via the paste 42a.
  • the LED chip 42 is joined.
  • the LED chip 42 is connected to the wiring lead part 30 via the wire 52.
  • the reflector surface 201 and the exposed regions 301 and 302 in the reflector 22 are filled with a transparent sealing resin 82 so as to seal the LED chip 42 and the like.
  • the sealing resin 82 uses a silicone resin as an example of a thermosetting resin.
  • the organic coating 120 made of a monomolecular film by self-organization of the functional organic molecules 12 is formed on the surfaces of the exposed regions 301 and 302 of the wiring lead part 30.
  • the functional organic molecule 12 is represented by the general formula of A2-B2-C2, and has a first functional group A2 having metal binding property at one end of the main chain part B2, and a resin bond to the silicone resin at the other end.
  • the main chain part B2 is the same as the main chain part B1 described in the first embodiment
  • the first functional group A2 is the same as the first functional group A1 described in the first embodiment. .
  • a functional group, a compound, or a structure that exhibits curability with respect to a thermosetting resin, particularly a silicone resin is used.
  • a functional group, a compound, or a structure that exhibits curability with respect to a thermosetting resin, particularly a silicone resin is used.
  • any of a compound containing one or more of a vinyl group and an organic hydrogen silane, a chemical structure, or a derivative can be used.
  • a functional group, compound, or structure having a bonding property with the epoxy group or the alkoxysilyl group is used.
  • any one of a compound, a chemical structure, or a derivative containing one or more of a hydroxyl group, an acid anhydride, a primary amine, and a secondary amine can be used. Since these functional groups, compounds, and structures having bonding properties with these epoxy groups or alkoxysilyl groups have hydrophilicity, they are effective in suppressing the adhesion of the hydrophobic outgas component described above.
  • the junction network with sealing resin can also be strengthened by apply
  • the organic coating may be stabilized and have a longer life. It becomes possible.
  • the wiring lead part 30 and the silicone resin are formed by interposing the organic film 120 made of the functional organic molecule 12 having the first functional group A2 and the second functional group C2. Can be prevented from peeling.
  • the silicone resin is superior in fading resistance and transparency as compared with an epoxy resin or the like, but has a high coefficient of thermal expansion, so it is easily deformed at a high temperature, and the silicone resin is peeled off from the wiring lead portion 30 by the deformation. ⁇ There is a risk of detachment.
  • the organic coating 120 is dense and stable to heat.
  • the silicone resin undergoes some thermal deformation or the like, it is possible to prevent the silicone resin from peeling or detaching from the wiring lead portion 30. Therefore, it can be expected that the performance of the LED device 31 is stably exhibited even in an environment where the temperature tends to be high or under a condition of being driven for a long time.
  • the wire 52 for bonding the LED chip 42 and the wiring lead part 30 is prevented from being “wire non-attached”, and the effect of improving the reliability of wire bonding is also achieved.
  • the resin material of the reflector 22 may be a thermoplastic resin material such as PPA (polyphthalamide) or LCP (liquid crystal polymer) in addition to the thermosetting resin described above.
  • the material is mixed with various additives such as a heat stabilizer, a light stabilizer, a filler, a release agent, and a white pigment.
  • the wire tip cannot be bonded well to the wiring lead part side during wire bonding, or even if it can be bonded, the bonding strength will be insufficient, and the wire will come off due to subsequent light vibration. Non-sticking may occur. Note that the presence of the impurity film can be confirmed by SEM or the like.
  • the organic film is formed in advance on the surface region of the wiring lead part 30, it is possible to prevent an impurity film from being formed from outgas in the region.
  • the release gas and the outgas derived from the base resin are hydrophobic (lipophilic)
  • the organic coating 120 is formed using the functional organic molecule 12
  • the second functional group C2 exhibits hydrophilicity. Even when the hydrophobic outgas approaches, it repels the second functional group C2 and is repelled to the outside. For this reason, the formation of the impurity film on the wiring lead portion 30 can be eliminated very efficiently.
  • the wire 52 is bonded to the wiring lead part 30 via the organic coating 120.
  • the thickness of the organic coating 120 is only a single molecule length of the functional organic molecule 12, whereas the diameter of the wire 52 is Is about 20-30 ⁇ m, which is relatively very thick (about 2000 to 3000 times the thickness of the organic coating). Therefore, at the time of bonding, only a few functional organic molecules 12 existing in the bonding region diffuse into the melted wire easily by the bonding load and ultrasonic energy, and only melt into the bonding metal in the wire. Thereby, the wire 52 and the wiring lead part 30 are favorably joined.
  • the organic film may be formed at least on the surface region of the wiring lead portion 30 where wire bonding is performed.
  • it can be formed by performing known masking on the wiring lead portion 30 and immersing it in the dispersion shown in FIG.
  • an organic film can be provided on the plating film.
  • the organic coating protects the Ag plating coating from the reactive gas and catalyst in the outside, so that the good reflection characteristics of the Ag plating coating can be maintained.
  • the main chain part B11 described in the first embodiment (having a nitrogen-containing heterocyclic compound containing two or more nitrogen atoms) is included.
  • the main chain portion B12 described in Embodiment 1 (including one or more of an aryl skeleton, an acene skeleton, a pyrene skeleton, a phenanthrene skeleton, and a fluorene skeleton) may be used.
  • the functional organic molecule 17 shown in FIG. 8 it is possible to use one in which the first functional group A2, the main chain part B11, the main chain part B12, and the second functional group C2 are bonded in the same order.
  • the molecular level anchor effect described in the first embodiment works on the metal plating layer, and the base metal such as Cu is formed on the surface of the metal plating layer such as Ag. It is prevented from spreading.
  • FIG. 8 is a diagram for explaining this function and effect.
  • the lead 30 is configured by forming an Ag plating film on a base layer made of Cu, and the functional organic molecules 17 are formed on the Ag plating film. An organic coating is formed.
  • the crystal grain boundary of the Ag layer opens widely, and as shown by the arrows in FIG. 8, the Cu of the underlayer passes through the crystal grain boundary of the Ag plating layer, and the Ag plating layer Try to diffuse to the surface of the.
  • Cu diffuses on the surface of the Ag layer, CuO is generated on the surface, causing the Ag layer to be discolored and also causing a decrease in wire bonding properties.
  • the thickness of the Ag layer can be set to be large to prevent the diffusion of Cu to the surface of the Ag layer.
  • the amount of Ag used is increased, which is expensive.
  • the movement of the Ag surface crystal changes the glossiness of Ag and adversely affects the optical characteristics of the LED device.
  • the functional organic molecule 17 since the organic film is formed using the functional organic molecule 17 having the main chain part B11, the functional organic molecule 17 exhibits the anchor effect at the molecular level as described in the first embodiment.
  • the Ag crystal grain boundary is prevented from greatly opening. Therefore, even if the thickness of the Ag layer is thin, discoloration of the Ag layer can be prevented and the wire bonding property can be maintained. Further, by suppressing the movement of the surface crystal of the Ag layer, it is possible to eliminate the adverse effect on the optical characteristics of the LED device due to the change in the glossiness of Ag.
  • the main chain portion B11 of the functional organic molecule 17 forms a complex with the diffused Cu. This also contributes to maintaining the wire bonding property. To do.
  • the lead 30 is an Ag-plated product
  • the same effect can be achieved in the case of a noble metal-plated product such as an Au-plated product.
  • the main chain portion 12 includes one or more of an aryl skeleton, an acene skeleton, a pyrene skeleton, a phenanthrene skeleton, and a fluorene skeleton, and these have a property of transmitting visible light but absorbing ultraviolet light.
  • the organic film on the lead 30 can have a function of absorbing the ultraviolet light region and transmitting the visible light region, thereby having a UV cut effect of absorbing the ultraviolet light from the outside by the organic film. At the same time, visible light can be efficiently reflected by the lead 30.
  • the Ag plating film tends to undergo surface alteration (black discoloration due to the formation of silver oxide) due to ultraviolet rays from the outside.
  • the black discoloration of the Ag plating film can be suppressed by the UV cut effect of the organic film. .
  • the LED device can be manufactured by sequentially performing the following steps.
  • the manufacturing method of a well-known LED apparatus is employable except an organic film formation process.
  • Organic film forming process By a method similar to the organic film forming step of the first embodiment, the organic film 120 made of the functional organic molecules 12 is formed on the surface of the wiring lead portion 30 as a self-assembled monomolecular film. Thereby, the wiring lead part 30 in which the organic film was formed is obtained.
  • thermoplastic resin material such as polyphthalamide resin is injection-molded on the wiring lead portion 30 in the same procedure as the injection molding shown in FIG. Thereafter, the resin is cooled in a certain temperature range in order to cure it. Thereby, the reflector 22 is formed and the LED device unit 31x is obtained.
  • the LED chip 42 is mounted on the wiring lead 30 via the paste 42a. Then, the wiring lead part 30 and the LED chip 42 are bonded to each other with a wire 52.
  • the LED device 31 can be obtained by thermosetting.
  • FIG. 7A is a cross-sectional view illustrating a configuration of the LED device 31 according to the fourth embodiment.
  • the LED device 31 of the present embodiment will be described focusing on differences from the third embodiment.
  • a functional group having characteristics specialized for chemical bonding with a silicone resin is selected as the second functional group C2 of the functional organic molecule 12 constituting the organic film 120.
  • No. 4 is characterized in that the functional organic molecules 12a forming the organic coating 120a have an instantaneous curable functional group as the second functional group C2 ′.
  • any of a compound, a chemical structure, or a derivative containing one or more of a platinum complex, a palladium complex, a ruthenium complex, and a rhodium complex can be used.
  • the manufacturing method of the LED device 31 according to the present embodiment is the same as the manufacturing method of the third embodiment.
  • the reflector 22 is manufactured by injection molding a thermoplastic resin such as a polyphthalamide resin. At this time, the resin may shrink in volume when the thermoplastic resin is cooled and cured. Then, a gap 72 may be generated between the wiring lead portion 30 and the reflector (FIG. 7B).
  • a thermoplastic resin such as a polyphthalamide resin.
  • the organic coating 120a is dense and stable against heat.
  • the LED device 31 can be electrically connected by means such as solder connection with high reliability.
  • the silicone resin by preventing the silicone resin from leaking from the gap 72, it is possible to suppress the generation of voids (bubbles) generated by the air in the gap 72 being mixed into the silicone resin.
  • the sealing reliability of the device 31 can also be improved.
  • the region where the organic coating 120a is disposed is up to a region L22 that reaches the gap 72 between the reflector 22a and the wiring lead portion 30, as shown in the S7 partial enlarged view of FIG. And This is preferable because even if the silicone resin 82 flows into the gap 72 to some extent, the resin can be cured before the leakage scale is expanded, and further leakage can be prevented.
  • the functional organic molecule 12a shown in FIG. 7 (b) has a configuration in which the first functional group A2, the main chain part B2, and the second functional group C2 ′ are bonded in order.
  • Those having a functional group C2 ′ bonded thereto may be used.
  • the functional organic molecule has the main chain part B11
  • the anchor effect at the molecular level is obtained as described in the first embodiment
  • the functional organic molecule has the main chain part B12
  • the third embodiment As described above, a UV cut effect can be obtained.
  • FIG. 10 is a cross-sectional view illustrating the configuration of the LED device 31 according to the fifth embodiment.
  • the organic coating 130 is formed using the functional organic molecules 13.
  • the first functional group A3 and the main chain part B3 are the same as the first functional group A1 and the main chain part B1 described in Embodiment 1, respectively, but the second functional group C3 is fluorescent. Another feature is that a phosphorescent functional group is used.
  • the fluorescent or phosphorescent functional group is arranged on the surface of the organic coating 130, the luminous efficiency of the LED device 31 can be improved.
  • the effective reflection wavelength by Ag material is about 500 nm or more, and it is difficult to obtain an effective reflectance with short wavelength light (blue light emission / ultraviolet light emission of about 380 to 500 nm) below this wavelength.
  • the organic coating 130 is formed with the functional organic molecules 13 having the structure (S8 enlarged view 10 (b)), and thereby the efficiency of the visible light reflection by the Ag plating coating 63 can be complemented.
  • long wavelength light (wavelength light of about 500 nm or more) is effectively reflected directly on the front surface of the chip on the surface of the Ag plating film 63.
  • the organic coating 130 is a monomolecular film and has only a molecular level thickness, the progression of the long wavelength light is not hindered, passes through the organic coating 130 and reaches the Ag plating coating 63, and Reflected by the Ag plating film 63.
  • the short wavelength light (wavelength light of about 380 to 500 nm) emitted from the LED chip 42 has a higher energy level than the long wavelength light, so that it does not pass through the organic coating 130 and is close to the outside world.
  • E h ⁇
  • LED chip light emission over both the short wavelength and long wavelength ranges is effectively utilized as the light emission efficiency of the LED device, and the LED device 31 having a light emission efficiency superior to the conventional configuration is realized. Is possible.
  • the fifth embodiment can be applied to a configuration using another plating film instead of the Ag plating film 63.
  • the light emission characteristics of the LED chip 42 can also be adjusted by blending the visible light directly reflected on the plating film and the light emission from the second functional group C3.
  • the effective reflection wavelength is about 600 nm or more. Therefore, if the gold plating film reflects visible light emission with a wavelength of around 600 nm, and the second functional group C3 emits red fluorescence / phosphorescence with a wavelength of about 600 to about 700 nm, it is specialized for improving the luminance of red.
  • the LED device 31 can be realized.
  • the second functional group C3 is required to have fluorescence or phosphorescence based on excitation by short wavelength light.
  • stilbene derivatives such as bisstyryl biphenyl derivatives, azole modified stilbene derivatives such as bis (triazinylamino) stilbene sulfonic acid derivatives, coumarin derivatives, oxazole derivatives, pyralizone derivatives, pyrene derivatives, porphyrin derivatives, etc. Any of the compounds, chemical structures or derivatives containing can be used.
  • the functional organic molecule has the main chain part B11
  • the anchor effect at the molecular level described in the first embodiment can be obtained
  • the functional organic molecule has the main chain part B12 the third embodiment is obtained.
  • the UV cut effect described in (1) can be obtained.
  • FIG. 11A is a cross-sectional view showing the configuration of the LED device according to Embodiment 6.
  • FIG. 11A is a cross-sectional view showing the configuration of the LED device according to Embodiment 6.
  • the LED device according to the sixth embodiment is based on the LED device according to the fourth embodiment.
  • the Ag plating film 201a is disposed on the surface of the reflector 22, and the function described in the fifth embodiment is further provided on the surface.
  • An organic coating 130 formed by arranging the organic molecules 13 is formed.
  • the Ag plating film 201a As described above, by disposing the Ag plating film 201a on the surface of the reflector, the light emitted from the side surface of the LED chip 42 at the time of driving is reflected with high efficiency by the film 201a, and forward of the apparatus (upward on the paper surface). Since it is emitted, excellent luminous efficiency is exhibited.
  • the organic coating 130 is formed on the surface of the Ag plating coating 201a, it is possible to prevent the Ag plating coating 201a from being deteriorated even when it is exposed to unnecessary gas or ultraviolet rays at the time of manufacturing the device. Reflective properties are maintained.
  • the Ag material is generally rich in chemical reactivity, various corrosive gases (for example, various components included in the thermoplastic resin material of the reflector 22) contained in the atmosphere during the manufacturing process, and the sealing resin 82 are used. May react with a catalyst for addition polymerization reaction of a silicone resin (such as a platinum group catalyst).
  • a catalyst for addition polymerization reaction of a silicone resin such as a platinum group catalyst.
  • the silicone sealing resin has a very high gas permeability, the Ag material often reacts with corrosive gas (such as hydrogen sulfide) in the atmosphere.
  • corrosive gas such as hydrogen sulfide
  • the Ag material also undergoes surface alteration (black discoloration due to the formation of silver oxide) when irradiated with ultraviolet light contained in LED light or sunlight, and the reflection characteristics become lower than the design characteristics. For this reason, even if the light emission characteristics of the LED chip 42 are exhibited, the Ag plating film cannot properly reflect the light emitted from the LED chip 42. As a result, the luminance of the entire apparatus is lost and the light emission efficiency is lowered. There is.
  • the problem of a decrease in luminous efficiency due to the reaction between the same plating film and corrosive gas or catalyst can occur even when a material other than Ag is used for the plating film.
  • the organic coating 130 in which the functional organic molecules 13 are densely arranged is applied to the surface of the Ag plating coating 201a.
  • the organic coating 130 serves as a protection means for the Ag plating coating 201a and avoids direct contact between the corrosive gas and the Ag plating coating 201a. . Therefore, Ag does not cause an unnecessary chemical change, so that the Ag plating film 201a can maintain excellent reflection characteristics, and an LED device having good light emission efficiency can be realized.
  • the reflection characteristic of the Ag plating film is good, the utilization efficiency of the light emission output of the LED chip 42 is improved, and the useless output is less likely to be trapped as latent heat around the Ag plating film. Therefore, according to the sixth embodiment, it is possible to exhibit excellent luminous efficiency, to prevent the LED chip 42 from being overheated and to extend its life, and to contribute advantageously to downsizing of the device.
  • the functional organic molecule 13 can utilize fluorescence or phosphorescence emission at the second functional group C3, the light on the short wavelength side with high energy out of the output of the LED chip 42. Can be used effectively for light emission, and excellent luminous efficiency can be expected.
  • the reflector 22 is comprised with a metal material independently of the wiring lead part 30 side, and Ag plating film 201a is formed in a predetermined part by methods, such as an electroplating process. As shown in FIG. 3, this is immersed in a predetermined dispersion to form an organic coating 130 on the entire surface. Thereafter, the reflector 22 can be fixed to the wiring lead portion 30 side via an insulating adhesive resin 220 (resin, ceramic, etc.) so as not to short-circuit the wiring lead portion 30. In this case, the organic coating 130 is formed over a region other than the Ag plating coating 201a, but there is no problem in the LED device.
  • the functional organic molecule has the main chain part B11
  • the anchor effect at the molecular level described in the first embodiment can be obtained
  • the functional organic molecule has the main chain part B12 the third embodiment is obtained.
  • the UV cut effect described in (1) can be obtained. Accordingly, this UV cut can suppress the surface alteration (black discoloration due to the formation of silver oxide) of the Ag plating film from the outside ultraviolet rays, and at the same time, the effect of efficiently reflecting the above visible light.
  • the second functional group has been described in the third embodiment in order to prioritize the improvement of the adhesion with the sealing resin 82 (silicone resin or the like) filled in the reflector 22 instead of the functional organic molecule 13.
  • the functional organic molecule 12 or the functional organic molecule 17 having the second functional group C2 may be used. It is also possible to use a mixture of these functional organic molecules 12 and functional organic molecules 13.
  • the surface of the wiring lead in a semiconductor device such as an IC or LSI is subjected to a rough surface processing to improve the bite of the resin in order to improve the adhesion to the resin (epoxy resin or the like) fixed to the surface. May be.
  • an appearance inspection process is performed as a quality control of the semiconductor device to be manufactured.
  • a laser measurement method using a laser transmitter and a light receiving element is generally used for the inspection.
  • unnecessary irregular reflection occurs, and the precision of measurement may be difficult due to a decrease in reflection efficiency at the light receiving element or unnecessary light reception. This problem becomes prominent when a fine external shape is inspected with a weak laser.
  • the organic coating 110 described in the first to sixth embodiments is applied to the surface of the die pad or the wiring lead portion subjected to the rough surface treatment, the functional organic molecule absorbs the laser beam and the energy is absorbed. By converting into fluorescence or phosphorescence and emitting light, irregular reflection of the laser due to rough surface irregularities can be prevented. Therefore, it is possible to efficiently perform an accurate appearance inspection process and to expect an improvement in manufacturing efficiency of the apparatus.
  • a silicone resin-containing conductive paste (a die bonding agent such as an Ag paste) can be used instead of using 100% silicone resin as the sealing resin. If the LED chip 42 is die-bonded using a silicone resin-containing conductive paste, the LED chip 42 and the wiring lead part 30 can be firmly bonded. In addition, since the silicone resin-containing conductive paste is less deteriorated than the conventional epoxy resin-containing conductive paste, stabilization of conductivity and thermal conductivity can be expected.
  • an organic coating 110 or the like may be applied to the particle surface, whereby a platinum catalyst or the like for addition polymerization of a silicone resin, unnecessary corrosive gas and Ag.
  • the particles are prevented from coming into direct contact and are prevented from being altered and causing discoloration. Therefore, it is possible to maintain the sealing resin 82 with good transparency, and it is possible to drive the LED device satisfactorily while suppressing a decrease in luminance over a long period.
  • Embodiment 7 is a TAB (Tape Automated Bonding) tape, T-BGA (Tape Ball Grid Array) tape, ASIC (Application Specific Integrated Carrier film) tape, etc. used for mounting electronic components such as IC and LSI.
  • the present invention relates to a technique for improving the adhesion of a solder resist layer deposited on the tape.
  • FIG. 12 is a schematic cross-sectional view showing the manufacturing process of the film carrier tape 40 of the seventh embodiment.
  • the film carrier tape 40 is formed by laminating an insulating film 401 made of polyimide or the like, a wiring pattern layer 402 made of Cu, and a solder resist layer 403 in the same order.
  • the insulating film 401 and the solder resist layer 403 are made of an insulating resin material (for example, polyimide-based, epoxy-based, urethane-based resin), and are disposed as insulating means in order to prevent the wiring pattern layer 402 from being short-circuited.
  • an insulating resin material for example, polyimide-based, epoxy-based, urethane-based resin
  • the surface of the wiring pattern layer 402 is preliminarily provided with an Sn plating layer 404 so as to be connected to a mounting component by soldering.
  • the Sn material is suitable because it has properties such as solder wettability, flexibility, and lubricity, and can form a plating layer 404 suitable for application to a film carrier tape.
  • an insulating film 401, a wiring pattern layer 402, and a solder resist layer 403 are laminated in the same order in advance, and this is heated to a constant temperature (for example, BF4 It is immersed in a Sn plating tank filled with a Sn-containing compound dissolved in a solvent, and an Sn plating step is performed by an electrolytic plating method or the like.
  • the Sn plating layer 404 is selectively formed on the wiring pattern layer 402 by utilizing the property that the tin component does not adhere to the insulating material.
  • the seventh embodiment is characterized in that the organic coating 140 is formed on the wiring pattern layer 402 by self-organization of the functional organic molecules 14 prior to the Sn plating step.
  • the functional organic molecule 14 has a structure in which a metal-binding first functional group A4 is arranged at one end of the main chain part B4 and a second functional group C4 is arranged at the other end.
  • the second functional group C4 is a functional group having high adhesion to the solder resist layer 403 (for example, acid anhydrides such as phthalic anhydride and pyromellitic dianhydride, or one of primary amine compounds). Any of the above-mentioned compounds, chemical structures or derivatives).
  • the first functional group A4 is the same as the first functional group A1 described in the first embodiment, and the main chain portion B4 is the same as the main chain portion B1 described in the first embodiment.
  • the wiring pattern layer 402 and the solder resist layer 403 are firmly attached to each other through the organic film 140 in which the functional organic molecules 14 are arranged. Even when immersed in a Sn plating bath heated to a temperature, the end portion of the solder resist layer 403 is not peeled off from the wiring pattern layer 402 during the Sn plating step. As a result, the solder resist layer 403 can be prevented from being peeled off and a good Sn plating layer 404 can be formed.
  • the effect of suppressing the generation of so-called internal batteries on the wiring pattern layer 402 and preventing the surface of the wiring pattern layer 402 from being eroded is also exhibited.
  • the principle will be described with reference to a schematic partial enlarged view 17 (a) in the vicinity of the wiring pattern layer 402 and the solder resist layer 403 during the plating process.
  • solder resist layer 403 and the wiring pattern layer 402 are thermally shrunk when the solder resist is cured due to the inherent linear expansion coefficient depending on the material characteristics, and internal stress is generated.
  • the plating solution in the plating tank is heated to about 60 ° C.
  • the wiring pattern layer 402 in which the solder resist layer 403 is laminated is put into the plating solution, the solder having higher internal stress than the metal.
  • the resist layer 403 expands relatively large.
  • the end portion 403x of the solder resist layer 403 that is most susceptible to the influence of the thermal contraction force is pulled by the influence of the internal stress and is turned up from the surface of the wiring pattern layer 402.
  • the end portion 403 x is further lifted by the internal stress remaining in the solder resist layer 403.
  • a solvent region 500 mainly composed of a plating solution solvent and thin with Sn ions is formed.
  • a so-called local battery shown in FIG. 17A is formed by a series of oxidation-reduction reactions of tin ions and Cu ions (see Japanese Patent No. 3076342 for the formation process of the local battery).
  • the portion where Cu ions are dissolved becomes an erosion region 406.
  • the erosion area 406 remains after being covered with the end portion 403x in appearance (FIG. 17B).
  • the erosion region 406 is not conspicuous in appearance, if a tensile stress or the like is applied during the manufacturing process using the film carrier tape, a problem such as a breakage of the film carrier tape may occur from the erosion region 406 as a base point.
  • the solder resist layer 403 and the wiring pattern layer 402 are firmly attached by the organic coating 140, and the functional organic molecules 14 constituting the organic coating 140 are adjacent to each other. Since the main chain portions B4 are strongly bonded to each other, even if the solder resist layer 403 has some internal stress with respect to the wiring pattern layer 402 during the plating process, the end portion 403x is separated from the wiring pattern layer 402. There is no turning up. Therefore, since the solder resist layer 403 is not always peeled off from the wiring pattern layer 402, the occurrence of the eroded region 406 can be avoided.
  • the thermal expansion of the solder resist layer 403 occurs when the plating tank is charged, the internal stress can be eliminated by performing a post-treatment such as a normal annealing process after the plating process, and the solder resist layer 403 is damaged by the stress.
  • a post-treatment such as a normal annealing process after the plating process
  • the solder resist layer 403 is damaged by the stress.
  • a first Sn plating layer 402x containing a Cu component is applied in advance to the surface of the wiring pattern layer 402 before providing the solder resist layer 403, and then the solder resist layer 403 is provided.
  • the second Sn plating layer 407 to prevent the occurrence of the erosion region 406, but according to the present embodiment, it is not necessary to perform such a plating process twice, In addition to shortening the manufacturing process, there is a dramatic difference in that the amount of plating solution used and the amount of drainage can be reduced, and the effects of reducing manufacturing costs and environmental problems can be expected.
  • a predetermined wiring pattern layer 402 (Cu foil) is formed on the insulating film 401 by using a photoetching method or the like (FIG. 12A).
  • the functional organic molecules 14 are attached on the wiring pattern layer 402, and the organic film 140 made of a monomolecular film is formed by the self-organization phenomenon (FIG. 12B).
  • solder resist material paste is applied onto the organic coating 140 using a printing method or the like to form a solder resist layer 403 (FIG. 12C).
  • the second functional group C4 cures the solder resist material and chemically bonds to each other.
  • the organic coating 140 provided in a region other than the region where the solder resist layer 403 is formed is peeled off.
  • masking may be performed in advance on the area other than the formation area.
  • the film carrier tape 40 is completed.
  • the functional organic molecule 14 shown in FIG. 12 (e) has a configuration in which a first functional group A4, a main chain part B4, and a second functional group C4 are sequentially bonded.
  • A4 main chain part B11, main chain part B12, second functional group C4 having a configuration in which the first functional group A2 and the second functional group are bonded to either main chain part B11 or main chain part B12 A material in which C4 is bonded may be used.
  • the wiring pattern layer 402 and the solder resist layer 403 are second functional groups exhibiting photopolymerization initiating property or photosensitization property. It is bonded via a functional organic molecule 15 comprising C5.
  • the functional organic molecule 15 has a metal-binding first functional group A5 arranged at one end of the main chain B5 and a second functional group C5 arranged at the other end. It is configured.
  • the second functional group C5 include benzophenones, acetophenones, alkylphenones, benzoins, anthraquinones, ketals, thioxanthones, coumarins, halogenated triazines, halogenated oxadiazoles, oxime esters, One or more of acridines, acridones, fluorenones, fluorans, acylphosphine oxides, metallocenes, polynuclear aromatics, xanthenes, cyanines, squaliums, acridones, titanocenes, tetraalkylthiuram sulfides Any of the containing compounds, chemical structures or derivatives can be used. Also,
  • the first functional group A5 is the same as the first functional group A1 described in the first embodiment, and the main chain portion B5 is the same as the main chain portion B1 described in the first embodiment.
  • the adjacent functional organic molecules 15 are strongly bonded to each other in the main chain portions B 4, so that they are the same as in the seventh embodiment.
  • the solder resist layer and the wiring pattern layer 402 have an effect of preventing peeling.
  • the solder resist material when applying the solder resist material, the material is rapidly cured while exciting the photopolymerization initiator, Can be formed quickly. As a result, the occurrence of dripping and loss of shape can be prevented, and the solder resist layer 403 can be formed with an accurate and precise pattern.
  • the paste of the solder resist material at the time of the coating process is adjusted to a predetermined viscosity and applied along a pattern mask arranged in advance on the wiring pattern layer 402.
  • the applied paste may diffuse slightly even after drying. For this reason, it is adjusted so that the paste is applied to an area slightly smaller than the patterning mask in consideration of the diffusion scale in advance, but the edge of the applied paste becomes sharp and easily peeled off during the plating process. .
  • the paste flow is small, there is an advantage that an accurate paste can be applied according to the pattern mask and a solder resist layer having a highly accurate shape can be formed.
  • a predetermined wiring pattern layer 402 (Cu foil) is formed on the insulating film 401 by using a photoetching method or the like (FIG. 13A).
  • the functional organic molecules 15 are adhered on the wiring pattern layer 402, and the organic film 140 made of a monomolecular film is formed by the self-organization phenomenon (FIG. 13B).
  • the second functional group C5 of the functional organic molecule of the organic coating 140 is irradiated with ultraviolet rays having a predetermined wavelength (for example, about 340 nm or more) from the outside.
  • a predetermined wavelength for example, about 340 nm or more
  • the second functional group C5 is shifted from the ground state to the excited state (E0 ⁇ E1).
  • a paste material that is a material of the solder resist layer is applied with a predetermined thickness using the blade BL (FIG. 13C).
  • the second functional group transmits excitation energy as heat energy to the solder resist side, and as a result, the solder resist is thermally cured.
  • the film carrier tape is manufactured (FIG. 13 (d)).
  • the functional organic molecule 15 shown in FIG. 13 (e) has a configuration in which a first functional group A5, a main chain part B5, and a bifunctional group C5 are bonded in this order, but the first functional group A5 is a functional organic molecule.
  • Main chain part B11, main chain part B12, and second functional group C5 are sequentially bonded, or first functional group A5 and second functional group C5 are connected to either main chain part B11 or main chain part B12. May be used in combination.
  • the functional organic molecule 15 described in the eighth embodiment or the functional organic molecule includes the first functional group A5, the main chain portion B11, the main chain portion B12, and the second functional group C5. Are combined in order, or an organic film is formed on the wiring pattern layer 402 using one in which the first functional group A5 and the second functional group C5 are bonded to either the main chain part B11 or the main chain part B12. Although it is formed, it is characterized in that a batch method is used for forming the solder resist layer 403.
  • the bondability between the solder resist layer 403 and the wiring pattern layer 402 can be enhanced as in the eighth embodiment, and the thickness adjustment of the solder resist layer 403 can be performed in a wider range than when a general printing method is employed. It has the advantage that it can be done and the response to the design change is flexible.
  • FIG. 14 is a diagram showing a manufacturing process of the film carrier tape 40.
  • the wiring pattern layer 402 is formed in a predetermined pattern on the insulating film 401 (FIG. 14A).
  • an organic film 150 is formed on the surface of the wiring pattern layer 402 to obtain an intermediate product (FIG. 14B). This film formation can be performed in the same manner as the method described in Embodiment Mode 1.
  • a resin dispersion in which a photopolymerizable compound that becomes a solder resist material is dispersed in a solvent is prepared.
  • a photopolymerizable compound a compound having an acrylate group in the molecule, a compound having a methacrylate group in the molecule, a compound having an acrylamide group in the molecule, a compound having a urethane group in the molecule, a compound having an isocyanate group in the molecule
  • at least one of a monomer or an oligomer such as a compound having a vinyl group in the molecule can be used. Fill the batch with the adjusted resin dispersion.
  • the pattern mask PM according to the region where the solder resist layer 403 is to be formed is applied to the intermediate product.
  • a photoresist layer formed by a known exposure process can be used.
  • the solder resist layer forming step is carried out by immersing this in the resin dispersion of the above batch and irradiating with ultraviolet rays from the outside while maintaining a stable state in the liquid (FIG. 14C).
  • the organic compound 150 was dispersed in the liquid around the second functional group C5 that is a photopolymerization initiator.
  • a polymerization reaction of the photopolymerizable compound occurs. Since the polymerization reaction proceeds from the position in contact with the second functional group C5, the solder resist layer 403 having a monomolecular thickness is formed when the ultraviolet irradiation time is extremely short. On the contrary, if irradiation is performed for a long time, the solder resist layer 403 having a thickness corresponding to the depth of the second functional group C5 in the liquid is theoretically formed. By this method, the thickness of the solder resist layer 403 can be adjusted.
  • the thickness of the solder resist layer 403 can be controlled not only by the ultraviolet irradiation time but also by adjusting the dispersion concentration of the compound in the dispersion.
  • the film carrier tape 40 is manufactured.
  • the solder resist layer 403 formed on the organic coating 150 is rapidly cured and formed without being deformed by gravity due to buoyancy due to the specific gravity difference with the dispersion liquid.
  • a thin film having a pattern shape and thickness or a thick solder resist layer 403 can be freely formed.
  • the specific gravity of the dispersion is preferably adjusted so that the photopolymerizable compound can be dispersed well for a certain period. Furthermore, if the specific gravity relationship is adjusted so that the photopolymerizable compound gradually settles in the dispersion, the local shortage of the photopolymerizable compound can be prevented during the polymerization reaction around the second functional group. be able to.
  • the organic film is described as a monomolecular film made of functional organic molecules. However, it is a film composed of a plurality of layers as long as the adhesive strength to the substrate of the semiconductor device does not deteriorate. It doesn't matter.
  • the bonding between the second functional group and the first functional group of the adjacent molecule is required between the first layer and the second layer made of functional organic molecules. That is, the first functional group needs to have metal bonding properties such as a wiring lead portion and a die pad, and also to exhibit bonding properties with the second functional group.
  • the first functional group, the second functional group, and the main chain portion respectively exemplified in each embodiment can be freely combined as long as their functions do not contradict each other. That is, the structure of the functional organic molecule is not limited to the chemical structure such as the functional group shown in each embodiment, and the chemical structures exemplified in each embodiment can be combined with each other. .
  • the present invention relates to a semiconductor device packaged with a sealing resin such as IC, LSI, VLSI, an LED device mounted with an LED element used for an LED lighting device, and a film carrier tape used for a flexible substrate. It can be used for applications such as

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

 樹脂バリの発生を抑制して良好な電気接続性及び接合強度を有する半導体装置とその製造方法を提供すること、並びに、シリコーン樹脂と配線リードとの密着性を向上させ、発光特性の良好なLED装置を提供することを目的とする。 そのために、QFP10のアウターリード301a境界領域における表面に、機能性有機分子11を自己組織化させることによって有機被膜110を形成する。機能性有機分子11は、金属結合性の第一官能基A1、主鎖部B1、熱硬化性樹脂の硬化作用を呈する第二官能基C1で構成する。主鎖部B1は、グリコール鎖で構成する。あるいは、メチレン鎖、フルオロメチレン鎖、シロキサン鎖の一種以上とグリコール鎖とで構成する。また、主鎖部B1の中に、水酸基、ケトン、チオケトン、第一級アミン、第二級アミン、芳香族化合物から選択される一種以上の極性基を含むことが望ましい。

Description

リード、配線部材、パッケージ部品、樹脂付金属部品及び樹脂封止半導体装置、並びにこれらの製造方法
 本発明は、配線部材、樹脂付金属部品及び樹脂封止半導体装置、並びに樹脂付金属部品及び半導体装置の製造方法に関し、特に金属材料と樹脂材料との密着性の向上技術に関する。
 半導体装置や配線部材においては、広く樹脂材料が用いられている。
 一般に、集積回路(IC)や大規模集積回路(LSI)等の半導体装置は、ワイヤーボンディング等により半導体素子が配線リードに接続され、当該配線リードの一部を外部に露出した状態で樹脂を固着させ、樹脂封止によりパッケージングして製造される。
 図15は、樹脂封止されたQFP(Quad Flat Package)型の半導体装置の製造工程を示す模式的な断面図である。
 先ず、配線リード93(ダイパッド93a、93b)のダイパッド93bに半導体チップ94を搭載し、当該半導体チップ94とダイパッド93a、93bとをワイヤー95により接続する。
 その後、配線リード93を固定金型92に載置する(図15(a))。
 次に可動金型91を固定金型92に対して押圧し、両金型91、92が内部空間(キャビティ97)を形成するように閉じた状態とする。そして可動金型91に設けられたゲート96を介し、キャビティ97内に熱硬化性樹脂を射出成型し、半導体チップ94等を樹脂封止する(図15(b))。
 熱硬化性樹脂を硬化させて成型樹脂98を形成した後は、両金型91、92を開き、エジェクターピン(不図示)を利用して樹脂成型品9zを押し出す。その後は樹脂成型品9zのアウターリード931aを屈曲させることより、半導体装置9の完成品を得る(図15(d))。
 当該半導体装置9の実装時には、ハンダ90を介してアウターリード931aを基板99に接合するようにする(図15(d))。
 以上がQFP型半導体装置の製造工程例であるが、半導体装置としては上記した他にも種類があり、例えば発光ダイオード(LED)装置が存在する。これは例えば、擂鉢状のリフレクターの内部に、配線リードの一部が露出するように形成された基板を用い、前記リフレクター内部の配線リードに発光ダイオード素子を搭載・接続する。その後、当該リフレクターの内部に透明の封止樹脂を充填することで製造される。封止樹脂としては、現在はエポキシ樹脂に代わり、より光透過度の高いシリコーン樹脂が広く普及しつつある。
 さらに、IC、LSI等の電子部品の実装に用いられるTAB(TapeAutomated Bonding)テープ、T-BGA(Tape Ball Grid Array)テープ、ASIC(Application Specific Integrated Circuit)テープ等のフィルムキャリアテープにおいては、ポリイミド等からなる絶縁フィルム、Cuからなる配線パターン層、及びソルダーレジスト層を同順に積層して構成されており、前記絶縁フィルム及びソルダーレジスト層として樹脂材料が用いられる。
特開平07-254622号公報 特開平10-329461号公報 特開2002-33345号公報 特開2001-144145号公報
 しかしながら、樹脂成型品としての半導体装置、LED装置並びにフィルムキャリアテープにおいて、以下の課題がある。
 第1の課題は、封止樹脂の射出成型時において、目的の樹脂成型に加え、本来樹脂成型を予定していない配線リードの領域にまで樹脂が付着する問題である。半導体装置の工程では図15(b)のP部分拡大図に示されるように、一定の圧力により樹脂材料をインジェクションする関係上、実際には配線リード93のアウターリード931aの表面において、金型の間隙900から流出した樹脂薄膜(いわゆる樹脂バリ)98aが形成されうる(図15(c))。当該間隙900は、金型91、92間の精度不良により発生し、インジェクション時の圧力が当該間隙900から外部に漏れ、これに伴い樹脂材料が流出することで樹脂バリ98aが発生する。樹脂バリ98aがあると、次の工程においてアウターリード931aと基板99との接合強度、電気的接触性において問題が生じうる。これを防止する対策として金型91、92間の形状を高精度化する方法もあるが、金型設計のために非常にコスト高になるほか、機械精度上の問題として、完全に間隙の発生を防止することは極めて困難である。従って実際には、樹脂バリの発生は防ぎ得ないものとして、基板への接合工程に先立ち、予め樹脂バリ98aを除去する工程が必要となる。これにより製造効率の低下、製造コストの上昇の問題が生じる。
 ここで特許文献1~3には金型間の間隙を防止する対策が提案されている。しかし特許文献1、2に開示された技術は、金型の配線リードに対するプレス力を強化する技術であり、配線リードに過度の変形応力を加える危険性があり、金型及び配線リードの損傷を招くおそれがある。また、特許文献3は金型間の間隙発生部分に予めテープを貼着して密閉性を図ろうとする技術であるが、比較的高温下で、機械的摩擦力の及ぶ射出成型工程において、このようなテープを利用しても、実際には当該テープの剥離・損傷等の問題が生じうる。さらに、当該テープを設ける分、製造効率の低下及び製造コストの上昇の面で、依然として課題がある。
 又、上記とは別に、配線リードと封止樹脂の密着性不足の問題がある。図16はこの問題を模式的に示す断面図である。一般に封止樹脂(成型樹脂98)は環境湿度の影響を受けて、周囲からの水分浸入を受ける性質がある。ここで、配線リード93a、93bと封止樹脂(成型樹脂98)との密着性が不十分であると、両者の界面にわずかな間隙が生じる(図16(a))。
 この間隙に、外部より浸入した水分が次第に溜まる。この溜まった水分は、当該半導体装置9を基板99に実装する際、ハンダ90のリフロー熱を受けて気化し、上記間隙部分で急速に体積膨張する。その結果、この間隙部分で剥離を生じたり、成型樹脂98にクラックを発生させる原因となる(図16(b))。このような剥離やクラックが生じると、外部より半導体装置9の内部にさらに多くの水分等の不純物の浸入を許し、半導体チップ94の回路破断や短絡等の封止信頼性を損なう原因となる。また、間隙に溜まった水分が次第に半導体チップ94を短絡させ、動作不良の原因ともなり得る。
 第2の課題は、LEDチップを封止樹脂で封止してなるLED装置において、封止樹脂にシリコーン樹脂を用いた場合の問題である。シリコーン樹脂は高い透明性を確保できる反面、エポキシ樹脂等と比べて線膨張率が高い。このため、基板上にシリコーン樹脂を射出成型する工程において、当該樹脂材料が受ける熱変化(いわゆる熱履歴)により、シリコーン樹脂が熱収縮する。これにより、シリコーン樹脂と配線リードとの間で剥離が生じ、接触不良による性能劣化、或いは接合強度不足等の問題を生じることがある。
 また、透明性の高い付加重合型シリコーン樹脂を用いた場合、付加重合する際に必要な白金族触媒により、Agメッキ被膜に変色が生じて反射率が低下し得る。更に、シリコーン樹脂はガス透過性が高い為、腐食性ガスがシリコーン樹脂中に透過・Agメッキ被膜に接触する事によって変色が生じるおそれもある。
 第3の課題として、LED装置における発光効率向上のために配線リードに設けられたAgメッキ被膜に関する課題もある。Ag材料は長波長領域の可視光については反射率を高くできることが知られている反面、短波長領域(約500nm以下)の光に対しては相対的に反射率が低い。従ってLED装置に青色発光・紫色発光、紫外線発光等のダイオードを実装する場合には、十分な反射率が得られないことがある。
 また、LEDチップの周りを取り囲むようにリフレクターを形成したLED装置において、リフレクターにAgメッキ被膜を形成する場合、製造工程で生じた不要ガスがAgメッキ被膜表面に被着し、Agを変質させることがある。これにより、Agメッキ被膜で本来得られるべきはずの反射率が低下してしまい、LED装置の発光効率の低下を招く問題もある。
 また、リフレクターに熱可塑性樹脂等の材料を用いた場合、当該材料由来のアウトガスが配線リードに付着し、ワイヤーボンディング欠陥を招く問題がある。すなわち、アウトガスが介在することで配線リードとワイヤーの本来の接合力が低下し、ボンディングミスやワイヤー外れといった、いわゆる「ワイヤー不着」を招くことがある。
 第4の課題は、フィルムキャリアテープにおいて、配線パターン層にSnメッキを施す場合の問題である。
 配線パターン層の表面には、ハンダにより実装部品と接続するため、予めSnメッキ層が施されるが、このメッキ工程において、加熱雰囲気によりソルダーレジスト層の端部がめくれ上がり、めくれ上がったソルダーレジスト層と配線パターン層表面との間と、これ以外の配線パターン層の表面領域との間で、Snイオン及びCuイオンのイオン化傾向の違いに伴う局所電池が発生する問題がある(図17(a))。局所電池が発生すると、配線パターン層表面に溶出したCuイオンによる浸蝕領域が発生する。このため、Snメッキ後のフィルムキャリアテープの機械的強度が低下するほか、均一なメッキ加工が施せない問題も生じうる。
 以上のように、半導体装置及びフィルムキャリアテープ等の分野において、樹脂材料を用いるに際し、未だ解決すべき余地が残されている。
 本発明は以上の課題に鑑みてなされたものであって、第一の目的として、樹脂バリの発生や配線リードと樹脂の剥離、樹脂のクラック等を抑制することにより、良好な電気接続性及び接合強度、並びに封止信頼性を有する半導体装置とその製造方法を提供する。
 第二の目的として、シリコーン樹脂と配線リードとの密着性を向上させつつ、構成要素の変質や変色、発光効率の低下、並びにワイヤー不着等の問題発生を抑制することで、良好な発光特性を発揮することが可能なLED装置を提供する。
 第三の目的として、比較的短波長領域の発光を行う場合であっても、十分な反射率を備えることで、優れた発光効率を呈することが可能なLED装置を提供する。
 第四の目的として、良好な製造効率を維持しつつ、Snメッキ工程時の配線パターン層の損傷を回避して、優れたSnメッキ層の形成及び機械的強度、接合性を呈することが可能なフィルムキャリアテープを提供する。
 上記課題を解決するために、本発明は、主鎖部の一端側を金属表面に配向して自己組織化膜を形成する有機化合物において、主鎖部に、以下の特徴を設けることとした。
 主鎖部に、メチレン鎖、フルオロメチレン鎖、シロキサン鎖、グリコール鎖から選択される一種以上と、芳香族イミド骨格、アミド骨格から選択される一種以上とを設ける。
 あるいは、主鎖部に、窒素を2原子以上含有する含窒素複素環を設ける。この含窒素複素環は、イミダソール、トリアゾール、テトラゾール、オキサジアゾール、チアジアゾール、ピリミジン、ピリダジン、ピラジン、トリアジンから選択される一種以上であることが好ましい。
 また、主鎖部に、アリール骨格、アセン骨格、ピレン骨格、フェナントレン骨格、フルオレン骨格から選択される一種以上を設ける。
 主鎖部に、含窒素複素環と、アリール骨格、アセン骨格、ピレン骨格、フェナントレン骨格、フルオレン骨格から選択される一種以上とを、合わせて設ける場合は、含窒素複素環より他端側に、アリール骨格などを設けることが好ましい。
 上記有機化合物において、主鎖部の一端に金属結合性の第一官能基、他端に所定の特性を持つ第二官能基をそれぞれ設けることが好ましい。
 また、第一官能基は、チオール化合物、スルフィド化合物、含窒素複素環化合物の内の一種以上を含む化合物、化学構造体若しくは誘導体で構成することが好ましい。
 また本発明は、主鎖部の一端に金属結合性の第一官能基、他端に所定の特性を持つ第二官能基をそれぞれ備える機能性有機分子を含む材料を、金属材料からなる配線リードに被着させ、当該配線リードを構成する金属原子に前記第一官能基を結合させ、各々の機能性有機分子を自己組織化させることにより有機被膜を形成する有機被膜形成工程と、有機被膜形成工程後に、有機被膜を配した配線リードの所定表面領域にわたり樹脂を固着させる樹脂固着工程とを経る樹脂付金属部品の製造方法において、有機被膜形成工程で、上記の有機化合物を、機能性有機分子として用いることとした。
 上記製造方法において、樹脂固着工程で熱硬化性樹脂を用いることもできる。熱硬化性樹脂と して、エポキシ樹脂、フェノール樹脂、アクリル樹脂、メラミン樹脂、尿素樹脂、不飽和ポリ エステル樹脂、アルキド樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリエーテル樹脂を用いる 場合、第二官能基として、水酸基、カルボン酸、酸無水物、第一級アミン、第二級アミン、第 三級アミン、アミド、チオール、スルフィド、イミド、ヒドラジド、イミダゾール、ジアザビ シクロアルケン、有機フォスフィン、三フッ化ホウ素アミン錯体の一種以上を含む化合物、化 学構造体若しくは誘導体を用いることが好ましい。
 上記有機化合物被膜形成工程において、樹脂固着工程において樹脂が固着されるべき配線リードの前記所定表面領域よりも広い面積にわたり、有機化合物被膜を配線リード表面に形成することも好ましい。
 熱硬化性樹脂として、シリコーン樹脂(エポキシ基及びアルコキシシリル基の少なくともいずれかで修飾されたシリコーン樹脂も含む)を用いる場合、第二官能基として、ビニル基、有機ハイドロジェンシラン、水酸基、酸無水物、第一級アミン、第二級アミンの内の一種以上を含む化合物、化学構造体若しくは誘導体を用いることが好ましい。
 熱硬化性樹脂として、シリコーン樹脂(エポキシ基及びアルコキシシリル基の少なくともいずれかで修飾されたシリコーン樹脂も含む)を用いる場合、第二官能基として、白金、パラジウム、ルテニウム、ロジウムを有する金属錯体の一種以上を含む化合物、化学構造体若しくは誘導体を用いることも好ましい。
 また、第二官能基として、蛍光発光性化合物及び発光性化合物の一種以上を含む化合物、化学構造体若しくは誘導体を用いることも好ましい。
 有機被膜形成工程においては、溶媒に前記機能性有機分子を分散させて有機分子分散液を作製する分散液作製サブ工程と、配線リード表面のうち、前記樹脂が固着されるべき配線リードの所定表面領域よりも広い面積にわたり、配線リードを有機分子分散液に浸漬する浸漬サブ工程とを経ることも好ましい。
 本発明にかかる半導体装置の製造方法では、上記した樹脂付金属部品の製造方法を工程に含み、さらに有機被膜形成工程と前記樹脂固着工程との間において、配線リードに半導体素子を電気的に接続する接続工程を設け、樹脂固着工程では、半導体素子を内包し、且つ配線リードの一部が外部に露出するように樹脂成型することとした。
 また本発明は、金属材料からなる配線リードの表面に、有機化合物の自己組織化による有機被膜が被着されてなる配線部材において、
 有機化合物として、主鎖部の一端に配線リードに対して金属結合、水素結合、若しくは金属錯体による配位結合の少なくともいずれかの結合態様を呈する第一官能基、他端に樹脂硬化性若しくは樹脂硬化促進性を呈する第二官能基がそれぞれ配された化学構造を有するものを用い、有機化合物の主鎖部を以下のよう構成した。
 有機化合物の主鎖部に、メチレン鎖、フルオロメチレン鎖、シロキサン鎖、グリコール鎖の一種以上と、水酸基、ケトン、チオケトン、第一級アミン、第二級アミン、エーテル、チオエーテル、芳香族化合物から選択される一種以上の極性基とを含む構成とする。
 有機化合物の主鎖部に、メチレン鎖、フルオロメチレン鎖、シロキサン鎖、グリコール鎖から選択される一種以上と、芳香族イミド骨格、アミド骨格から選択される一種以上とを有する構成とする。
 有機化合物の主鎖部に、窒素を2原子以上含有する含窒素複素環を有する構成とする。ここで、含窒素複素環としては、イミダソール、トリアゾール、テトラゾール、オキサジアゾール、チアジアゾール、ピリミジン、ピリダジン、ピラジン、トリアジンから選択される一種以上であることが好ましい。
 また、有機化合物の主鎖部に、アリール骨格、アセン骨格、ピレン骨格、フェナントレン骨格、フルオレン骨格から選択される一種以上を有することも好ましい。
 また本発明にかかる樹脂付金属部品は、上記の配線部材の一部に樹脂を固着させ、有機被膜を、樹脂固着される配線部材の表面積よりも広い面積にわたり被着されて構成した。
 また、上記配線部材に対し、LEDチップがマウントされる擂り鉢状表面を持つリフレクターを配設し、リフレクター表面にはAgからなるメッキ被膜を形成し、有機被膜を、さらにメッキ被膜の表面に被着し、有機化合物の第一官能基がメッキ被膜と結合させてもよい。
 また本発明にかかるLED装置は、上記樹脂付金属部品のリフレクター内にLEDチップを配設し、リフレクター表面に透明樹脂を充填して構成した。
 ここで、上記配線部材に対し、LEDチップがマウントされる擂り鉢状表面を持つリフレクターを配設し、当該リフレクターを熱可塑性樹脂で構成してもよい。
 また、上記した樹脂付金属部品のリフレクター内にLEDチップを配設して、リフレクター表面に透明樹脂を充填してLED装置とすることもできる。この場合、上記透明樹脂に親水性の添加剤を混合してもよい。
 また本発明にかかる樹脂封止半導体装置は、上記配線部材に対し、配線リード上に半導体素子が電気接続され、配線部材が一部外部に露出され、且つ、有機被膜が形成された領域内において半導体素子が樹脂封止された構成とした。
 以上の構成を有する本発明では、配線リードなどの金属材料表面に、機能性有機分子を自己組織化させることにより有機被膜を形成することによって、これに固着される樹脂材料との間で種々の良好な化学作用を得ることができ、従来技術における諸課題を解決することができる。
 すなわち、機能性有機分子の主鎖部の一末端に、金属結合性を呈する第一官能基を配設することで、配線リード表面には第二官能基を上面に向けて機能性有機分子が自己組織化し、有機被膜が形成される。従って、第二官能基に樹脂硬化性、樹脂硬化促進性等の機能を付与することで、有機被膜上に固着される樹脂材料との結合力を高め、且つ、当該樹脂材料を迅速に硬化させることができる。
 その結果、たとえ射出成型時に金型に隙間が存在したとしても、キャビティ内に充填された樹脂は有機被膜上で迅速に硬化するため、上記隙間から樹脂が漏出するのを抑制できる。従って、樹脂成型後に樹脂バリを除去するといった余分な工程が不要となる。
 また、本発明によれば、有機被膜を用いることのみで上記効果を実現できるので、既存の射出成型装置を改変したり、別途装置を追加しなくてもよい。このため、低コスト且つ優れた製造効率で、良好な電気接続性を持つ半導体装置を実現することができる。
  また、上記機能性有機分子を採用することにより、封止樹脂(成型樹脂)と配線リードとが有機被膜を介して高度に密着された半導体装置を実現できるため、これらの界面に間隙が形成されるのが極力防止される。従って、たとえ周囲雰囲気中の水分が封止樹脂(成型樹脂)を介して半導体装置の内部に浸入したとしても、従来のように封止樹脂(成型樹脂)と配線リードとの間に水分が溜まり、半導体装置のリフロー時にクラックや剥離を形成したり、外部からクラックを通して浸入した水分が半導体チップを短絡させてしまう等の問題を回避することができる。
 さらに本発明では、有機分子の主鎖部を、メチレン鎖、フルオロメチレン鎖、シロキサン鎖、グリコール鎖の一種以上と、水酸基、ケトン、チオケトン、第一級アミン、第二級アミン、第三級アミン、エーテル、チオエーテル、芳香族化合物から選択される一種以上の極性基とを含む構成としたり、有機分子の主鎖部を、メチレン鎖、フルオロメチレン鎖、シロキサン鎖、グリコール鎖の一種以上と、芳香族イミド骨格、アミド骨格から選択される一種以上とを有する構成とすることによって、隣り合う有機分子どうしの間に、強力な相互結合作用(水素結合やロンドン分散力によるスタッキング効果)が発揮され、これによって有機被膜自体を強化し、その耐熱性を向上させることができる。
 特に、有機化合物の主鎖部に、窒素を2原子以上含有する含窒素複素環を有する構成とすれば、有機分子自身の融点が向上すると共にスタッキング効果が優れるので、高熱が加えられた場合でも、金属材料からなる配線リード表面に対してアンカー効果を奏し、金属材料の再結晶化が防止されると共に有機被膜は安定に存在する。
 また、有機化合物の主鎖部に、アリール骨格、アセン骨格、ピレン骨格、フェナントレン骨格、フルオレン骨格から選択される一種以上を有すれば、被膜がUVカット効果を奏するので、金属表面の変色が防止される。特に金属表面にAgメッキ施されている場合にその黒色化を防止する効果を奏する。
 また、第二官能基にビニル基、有機ハイドロジェンシラン、水酸基、酸無水物、第一級アミン、第二級アミン等の化合物を用いることで、当該有機被膜とシリコーン樹脂、またはエポキシ基及びアルコキシシリル基の少なくともいずれかを含有するシリコーン樹脂との強固な化学結合を得ることができる。
 従って、このような機能性有機分子からなる有機被膜を、LED装置の配線リードに成膜しておけば、シリコーン樹脂と配線リードとの間の剥離・クラック等の発生や、高温下での接触不良による性能劣化、接合強度不足等の発生を抑制し、安定したLED装置の発光効率を実現することができ、且つ、当該有機被膜の主鎖部同士が緻密に配列する事により、シリコーン樹脂が付加重合する際に必要な白金族触媒や腐食性ガスによるAgの変色も抑制する事ができる。
 さらにLED装置において、第二官能基に白金錯体を備える機能性有機分子からなる有機被膜を配線リード表面に配設するようにすれば、この上に充填されるシリコーン樹脂が極めて早期に硬化される。従って、リフレクターと配線リードとの境界に不要な間隙が生じても、当該間隙にシリコーン樹脂が流れ込むのを効果的に防止できる。尚、前記シリコーン樹脂は、シリコーン樹脂含有導電性ペースト(Agペースト等のダイボンディング剤)であっても良い。前記シリコーン樹脂含有導電性ペーストを用いて、ダイボンディングすることによりLED等の半導体チップとダイパッドを強固に接合させる事が可能になり、従来のエポキシ樹脂含有導電性ペーストと比較して劣化が少ない為、導電率および熱伝導率の安定化を実現する事ができる。
 またLED装置の構成において、第二官能基に蛍光またはリン光を発する化合物を備える機能性有機分子からなる有機被膜を配線リード上に形成すれば、短波長領域の反射効率の低いAgメッキ被膜が施されている場合であっても、紫外光または可視光領域における短波長の光に対する反射率を向上させることができる。これにより、装置全体としても良好な発光効率を期待できる。
 ここで、LEDチップを取り囲むように配設されたリフレクターにAgメッキ被膜を形成する場合において、当該Agメッキ被膜表面に本発明の有機被膜を形成すれば、自己組織化により密に配列した機能性有機分子によって、製造工程中に発生する不要ガス(リフレクターの熱可塑性樹脂材料由来のアウトガス等)がAgメッキ被膜に直接被着するのが防止される。その結果、Agが不要ガスにより変質し、メッキ被膜の反射特性が損なわれるのが回避でき、良好な発光効率を有するLED装置を製造することができる。
 また、配線リードに本発明の有機被膜を形成することによって、リフレクターに熱可塑性樹脂等の材料を用いた場合の当該材料由来のアウトガスが配線リードに直接付着するのが防止される。その結果、アウトガスの介在により配線リードに対するワイヤー不着の問題が発生するのが防止され、飛躍的に確実にワイヤーボンディングを行うことが可能となる。
 また、フィルムキャリアテープにおいて、その配線パターン層に対して、金属結合性を呈する第一官能基、ソルダーレジスト層に対して結合性を有する第二官能基を有する機能性有機分子で有機被膜を形成すれば、配線パターンとソルダーレジスト層との層構造を安定して保持することができる。
 従って、製造時のSnメッキ工程において、ソルダーレジスト層の端部が配線パターンからめくれ上がるのを防止でき、局部電池の発生を抑制して高い品質のフィルムキャリアテープを製造することができる。
 また、機能性有機分子の大部分の構成を占める主鎖部が、疎水性炭化水素または炭化フッ素であれば、有機被膜が施された場合に配線パターン層に対する防水効果が発揮されるので、マイグレーションの抑制効果が期待でき、導通部品としての性能を安定に維持することができる。
 なお、本発明にかかる機能性有機分子で構成される有機被膜は、単分子レベルの厚みでありながら、有機被膜が施された配線リード領域の防腐、防錆、及び耐絶縁性の強化を達成できる。また、配設後も有機被膜を除去する必要はない。このような機能性・構成等において、一般的な表面処理剤、界面活性剤、塗料等とは全く異なるものである。
実施の形態1に係る半導体装置の構成を示す図である。 実施の形態1に係る機能性有機分子の構成を示す模式図である。 実施の形態1に係る有機被膜の成膜工程を示す図である。 実施の形態1に係る樹脂固着工程を示す図である。 機能性有機分子の被膜によって金属結晶の再結晶化を抑制する効果を説明する図である。 実施の形態2に係るLED装置の構成を示す図である。 実施の形態3に係るLED装置の構成及び製造工程を示す図である。 機能性有機分子17による作用効果を説明する図である。 実施の形態4に係るLED装置の構成等を示す図である。 実施の形態5に係るLED装置の構成を示す図である。 実施の形態6に係るLED装置の構成を示す図である。 実施の形態7に係るフィルムキャリアテープの製造工程を示す図である。 実施の形態8に係るフィルムキャリアテープの製造工程を示す図である。 実施の形態9に係るフィルムキャリアテープの製造工程を示す図である。 従来の半導体装置の射出成型時の工程を示す図である。 従来の半導体装置の問題点を説明するための断面図である。 従来技術のフィルムキャリアテープの構成及び局所電池の形成過程を模式的に示す図である。 従来技術のSnメッキ層を二重に施したフィルムキャリアテープの構成を示す図である。 有機分子11を製造する製法の一例を示す図である。 有機分子16を製造する製法の一例を示す図である。 有機分子16を製造する他の製法例を示す図である。
 以下、本発明の各実施の形態を添付の図面を参照しながら説明する。
 尚、当然ながら本発明はこれらの実施形式に限定されるものではなく、本発明の技術的範囲を逸脱しない範囲で適宜変更して実施することができる。
 <実施の形態1>
 1.半導体装置の構成
 図1(a)は、本発明の一適用例である半導体装置(QFP;Quad Flat Package 10)の構成を示す外観斜視図である。図1(b)はQFP10のyz平面に沿った断面図である。図1(c)は、図1(b)におけるS1部分拡大図である。
 QFP10はIC、LSI等に用いられる表面実装型半導体装置であり、半導体チップ4、配線リード3、ワイヤー5、成型樹脂21等からなる。
 配線リード3は、電気伝導性に優れる金属材料(ここでは一例として銅合金)から構成され、金属板体を打ち抜き加工してなるダイパッド3a、3bの組み合わせで構成される。
 QFP10は表面実装型の半導体装置であり、図1(a)に示すように、一定の厚みを持つ正方形主面の板体状に形成された成型樹脂21と、その周囲からダイパッド3aの一部であるアウターリード301aが延出された構成を持つ。
 成型樹脂21の内部では、図1(b)に示すように、ダイパッド3aに半導体チップ4が搭載され、不図示の電極パッド及びワイヤー5を介して、ダイパッド3a、3bと接続された内部構造を有する。ダイパッド3bと半導体チップ4とは不図示の銀ペースト等の導電性ペーストで接合されている。
 ダイパッド3aのうち、成型樹脂21内に密封される領域がインナーリード302a、外部露出される領域がアウターリード301aとなる。アウターリード301aはその断面構造においてS字状に折り曲げ加工されている。
 ここにおいてQFP10では、ダイパッド3a、3bのインナーリード302a及びアウターリード301aの境界領域(図1(b)のS部)における表面に、機能性有機分子の自己組織化によって形成された有機被膜110が形成されている点に特徴を有する。
 以下、当該有機被膜110について詳細を説明する。
 2.有機被膜110の構成について
 図2は機能性有機分子11の模式的な構造図である。当図に示される機能性有機分子11は、第一官能基A1、主鎖部B1、第二官能基C1が同順に結合されてなる。
 主鎖部B1は、グリコール鎖、メチレン鎖、フルオロメチレン鎖、またはシロキサン鎖等から構成される。
 第一官能基A1は、金属との結合性を呈する一種以上を含む化合物、化学構造体若しくは誘導体で構成された機能部である。
 第二官能基C1は、熱硬化性樹脂の硬化作用又は硬化促進作用を呈する一種以上を含む化合物、化学構造体若しくは誘導体で構成された機能部である。
 このような機能性有機分子11の各々は、図1(c)に示すように、金属材料からなるダイパッド3aの表面に第一官能基A1が配向結合するので、主鎖部B1の他方末端に配された第二官能基C1が前記表面外方へ向けて配向される。これにより、分子配向性に係る化学特性(相互親和性)が整えられ、いわゆる自己組織化構造体としての単分子膜(有機被膜110)が自然に構成されている。当該有機被膜110の膜厚は、前記機能性有機分子11の大きさに依存し、ここでは数nmオーダーに調整される(図1(c))。
 これにより有機被膜110は、ダイパッド3a表面を単分子レベルのサイズで緻密に保護することができるので、結果として酸素ガスや水分付着による腐食の防止、良好な貴な金属塩との置換防止機能を発揮できる。
 なおQFP10では、アウターリード301aに対して半導体素子4をワイヤーボンディング、ダイボンディング等で電気接続する必要があり、良好な電気伝導性を確保すべく、少なくともダイパッドおよびリード3の接続領域に金属メッキ等の被膜を形成する場合がある。この場合、金属メッキ工程が必要となるが、当該メッキを施さないダイパッド3aの表面に有機被膜110が施されていれば、ダイパッド3aの金属成分がイオン化傾向によりメッキ液中に溶出する問題を抑制できるので好適である。
 機能性有機分子11の一般式は、A1-B1-C1で表される。主鎖部B1を構成する鎖状の炭素数は4~40程度が好適である。この鎖状炭素数が小さ過ぎると主鎖部B1が短すぎ、第一官能基A1がリード3aに被着する際に複数の上記機能性有機分子11間において、主鎖部B1の有する疎水性によって当該分子同士の疎水的親和作用が弱くなり、第二官能基C1の外方への配向性が失われ易くなる。また、鎖状炭素数が大き過ぎると主鎖部Bが長すぎ、リード3aへのハンダ付け性、ワイヤーボンディング性、ダイボンディング性等が損なわれ易くなる。
 なお、主鎖部B1には適宜側鎖が結合されていてもよい。
 以下、本実施の形態1の機能性有機分子11として取りうる化学的構造について、詳細を説明する。
 (第一官能基A1について)
 前記の通り第一官能基A1には、金属材料に対する親和性、金属結合性(配位結合を含む)、金属結合性を有することが要求される。この特性を有するものであれば、第一官能基A1は、一種以上を含む化合物、化学構造体若しくは誘導体のいずれであってもよい。
 例えばチオール及びこれを含むチオール化合物、スルフィド化合物(ジスルフィド化合物等)、含窒素複素環化合物(アゾール化合物、アジン化合物等)、またはこれらの一種以上を含む化合物、化学構造体若しくは誘導体のいずれかであれば、金属原子に対して水素結合性又は配位結合性を有するので好適である。
 第一官能基A1がチオール基(R-SH、ただし、Rはアルカンやアルケン等の任意の官能基)を有する場合、金(Au)や銀(Ag)など1価以上の陽イオンになりうる金属原子に配位し、Au-S-R又はAg-S-R等の共有結合により、機能性有機分子11がダイパッド3aに被着される。同様に、第一官能基A1がジスルフィド基(R1-S-S-R2)の場合、Au(-S-R1)(-S-R2)又はAg(-S-R1)(-S-R2)等の共有結合がなされ、強固な結合構造が形成される。
 第一官能基A1が、アゾール化合物、アジン化合物を含む場合は、当該化合物をなす分子中の窒素原子の非共有電子対が2価以上の陽イオンになりうる金属に配位結合できる。例えば、イミダゾール化合物、トリアゾール化合物、トリアジン化合物等は、主にCu等の金属と配位結合を形成しやすいため好適である。
 上記化合物の種類によっては、共有結合や配位結合または水素結合等が同時に形成されうるが、このような複数種類の結合がなされることで、より強固な結合構造を期待できるものである。
 (主鎖部B1について)
 主鎖部B1は、一般的なメチレン系有機分子及びその類型種(メチレン鎖、フルオロメチレン鎖、シロキサン鎖、グリコール鎖のうち一種以上を含む化合物、化学構造体若しくは誘導体)等である。メチレン鎖は、分子間で互いに会合し、超分子的に炭化水素鎖の緻密な炭素鎖を形成できるので好適である。また、メチレン鎖を用いれば、比較的迅速に有機被膜を形成できることが発明者らの検討により明らかにされている。
 主鎖部B1にフルオロメチレン鎖を用いた場合、疎水性がメチレン鎖よりも強いため、有機被膜形成後には配線リード3と当該被膜との間への水分の浸入が強く抑制される。その結果、有機被膜と配線リードとの良好な結合が保たれ、熱履歴によって有機被膜の剥離が生じにくくなるので好適である。
 主鎖部B1にシロキサン鎖を用いた場合、耐熱性および耐候性に優れる有機被膜を形成できる。このため、例えば半導体素子等の実装工程において、有機被膜が比較的高温環境下に曝された場合にも、当該被膜自体の変質・損傷の防止効果が奏される。
 主鎖部B1にグリコール鎖を用いた場合、水等の極性溶媒に簡単に溶解させることができるので、被膜を形成する上で利点を有する。
 従って、主鎖部B1に、グリコール鎖を用いること、あるいは、メチレン鎖、フルオロメチレン鎖、シロキサン鎖の一種以上とグリコール鎖とで構成された構造を用いることも好ましい。
 なお、ワイヤーボンディングの際の加熱条件が比較的高温に設定される場合などには、機能性有機分子11を用いた有機被膜110の耐熱性をさらに向上させることが望ましい。この場合、主鎖部B1の中に、水酸基(ヒドロキシル基)、ケトン、チオケトン、第一級アミン、第二級アミン、第三級アミン、エーテル、スルフィド、芳香族化合物から選択される一種以上の極性基を含むものを用いることが望ましい。
 特に、この極性基として、アミド基(ケトンと第二級アミンで構成される)、芳香族アミド、あるいは芳香族イミド基(ケトンと第三級アミンと芳香族環で構成される)、あるはそれらの組み合わせを有することは好ましい。
 このような極性基を含む主鎖部B1を用いれば、有機被膜110において隣接する機能性有機分子11の主鎖部B1同士の間に、強力な相互結合作用(水素結合、あるいはロンドン分散力によるスタッキング効果)が働き、これによって有機被膜110が強化される。すなわち、高温環境下においても有機被膜110が安定に維持されるので、有機被膜110の耐熱性を向上させることができる。
 (第二官能基C1)について
 第二官能基C1には、熱硬化性樹脂に対する樹脂硬化性又は樹脂硬化促進性が要求される。当該性能を有すれば、一種以上を含む化合物、化学構造体若しくは誘導体のいずれの構成であってもよい。
 例えば、水酸基を有する化合物、カルボン酸を有する化合物、酸無水物を有する化合物、第一級アミンを有する化合物、第二級アミンを有する化合物、第三級アミンを有する化合物、第四級アンモニウム塩を有する化合物、アミド基を有する化合物、イミド基を有する化合物、ヒドラジド基を有する化合物、イミン基を有する化合物、アミジン基を有する化合物、イミダゾールを有する化合物、トリアゾールを有する化合物、テトラゾールを有する化合物、チオール基を有する化合物、スルフィド基を有する化合物、ジスルフィド基を有する化合物、ジアザビシクロアルケンを有する化合物、有機フォスフィン化合物、有機フォスフィン化合物三フッ化ホウ素アミン錯体を有する化合物のうちの一種以上を含む化合物、化学構造体若しくは誘導体のいずれか等が挙げられる。これらの化合物又はその誘導体等を用いれば、熱硬化樹脂と接触した場合に瞬時に硬化反応を生じ、第二官能基C1と当該樹脂とが結合する。
 第二官能基C1が酸無水物である無水フタル酸の場合には、エポキシ樹脂の硬化剤として作用し、エポキシ樹脂中のエポキシ基に対して開環重合により結合する。
 機能性有機分子11以外に、図2(b)に示す機能性有機分子16を用いることもできる。
 当図に示されるように、機能性有機分子16は、第一官能基A1、主鎖部B11、主鎖部B12、第二官能基C1が同順に結合されて構成されている。
 そして、主鎖部B11には、窒素を2原子以上含有する含窒素複素環化合物(イミダソール、トリアゾール、テトラゾール、オキサジアゾール、チアジアゾール、ピリミジン、ピリダジン、ピラジン、トリアジンまたはそれらの誘導体)の一種以上が含まれ、主鎖部B12には、アリール骨格(フェニル、ビフェニル、ターフェニル、クオターフェニル、キンキフェニル、セキシフェニル)、アセン骨格(ナフタレン、アントラセン、ナフタセン、ペンタセン)、ピレン骨格、フェナントレン骨格、フルオレン骨格またはそれらの誘導体の一種以上が含まれている。
 第一官能基A1、第二官能基C1は、上記機能性有機分子11のところで説明したとおりである。
 このような機能性有機分子16も、機能性有機分子11と同様に、金属材料からなるダイパッド3aの表面に第一官能基A1が配向結合するので、主鎖部B11、B12の他方末端に配された第二官能基C1が、前記表面外方へ向けて配向され、自己組織化構造体としての有機被膜(単分子膜)が形成され、ダイパッド3a表面を緻密に保護する。
 機能性有機分子16の構造は、A1-B11(窒素を2原子以上含有する含窒素複素環化合物またはそれらの誘導体)-B12(アリール骨格、アセン骨格、ピレン骨格、フェナントレン骨格、フルオレン骨格の一種以上から構成される化合物またはそれらの誘導体)-C1で表される。
 ここで、主鎖部B12に含まれる芳香環の数は1~10であるのが好ましく、より好ましくは2~6が好適である。主鎖部B12を構成する芳香環の数が少な過ぎると主鎖部B2が短すぎ、第一官能基A1がリード3aに被着する際に複数の上記機能性有機分子11どうしの間において、主鎖部B2の有する疎水性によって当該分子同士の疎水的親和作用が弱くなり、第二官能基C1の外方への配向性が失われ易くなる。一方、主鎖部B12を構成する芳香環の数が多過ぎると主鎖部B2が長すぎ、リード3aへのハンダ付け性、ワイヤーボンディング性等が損なわれ易くなる。
 なお、主鎖部B11、B21は、適宜側鎖が結合された構造であってもよい。
 また、主鎖部B11と第二官能基B12との間、並びに、主鎖部B11と第二官能基C1との間に、メチレン鎖、フルオロメチレン鎖、シロキサン鎖またはグリコール鎖を導入してもよい。それによって、分子内の原子の回転が容易になり、主鎖がフレキシブルになる事により主鎖同士の緻密な強い配向性を得ることもできる。
 また、主鎖部B11と主鎖部B12との間、もしくは主鎖部B11と第二官能基C1の間に、エーテル、チオエーテル、ケトン、チオケトン、第二級アミン、第三級アミン、アミド、スルホンが介在してもよく、同様に分子内の原子の回転を容易する事ができ、さらに水素結合等の分子間相互作用により主鎖部の配向性および緻密性を向上させることもできる。
 以下、機能性有機分子16として取りうる化学的構造についてさらに詳述する。
 (主鎖部B11について)
 主鎖部B11は、窒素を2原子以上含有する含窒素複素環系有機分子及びその類型種(イミダソール、トリアゾール、テトラゾール、チアジアゾール、ピリミジン、ピリダジン、ピラジン、トリアジンのうち一種以上を含む化合物、化学構造体若しくは誘導体のいずれか)等を利用できる。窒素を2原子以上含有する含窒素複素環化合物は、化合物自身の耐熱性が高く、第一官能基C1と金属との結合の熱安定性を向上させる事ができるので好適である。また、イミダゾール、トリアゾール、テトラゾール、チアジアゾール等の五員環化合物を用いれば、有機被膜を形成した後に熱履歴を加えた場合、金属内部から表面拡散しようとする金属と窒素原子中の非共有電子対が表面で錯体を形成する事により拡散金属の最表面への露出をブロックする事が発明者らの検討により明らかにされている。
 主鎖部B11にピリミジン、ピリダジン、ピラジン、トリアジン等の六員環化合物を用いた場合、化学構造上、第一官能基A1を2つ結合させる事が可能である為、第一官能基の結合力を五員環化合物の2倍相当にする事が可能となり、有機被膜自身の結合安定性を更に強くできる。その結果、有機被膜と配線リードとの良好な結合が保たれ、熱履歴によって有機被膜の剥離が生じにくくなるので好適である。
 このような主鎖部B11を用いれば、有機被膜110において隣接する機能性有機分子16の主鎖部B11同士の間に、強力な相互結合作用(水素結合やロンドン分散力によるスタッキング効果)が発揮され、これによって有機被膜11体を強化することが可能となる。すなわち、高温環境下における有機被膜110の飛散が前記相互結合作用により効果的に防止されるので、有機被膜110の耐熱性を飛躍的に向上させることができる。
 (主鎖部B12について)
 主鎖部B12は、アリール骨格(フェニル、ビフェニル、ターフェニル、クオターフェニル、キンキフェニル、セキシフェニル)、アセン骨格(ナフタレン、アントラセン、ナフタセン、ペンタセン)、ピレン骨格、フェナントレン骨格、フルオレン骨格またはそれらの誘導体のうち一種以上を含む化合物、化学構造体若しくは誘導体のいずれか)等の芳香族化合物を利用できる。
 主鎖部B12がアリール骨格の場合、芳香族環の数が増えるほど主鎖部B2同士の間に、強力な相互結合作用(ロンドン分散力によるπ-πスタッキング効果)が発揮され、さらに機能性分子自身の融点が高くなる為に熱安定性が著しく向上する。
 また、主鎖部B12がアセン骨格の場合、芳香環の数が増えるほどアリール骨格より強固な主鎖部B12同士の間の相互結合作用が発揮される。それにより腐食性ガスや水分の透過性を大きく減少させる事ができる。更にアセン骨格は、芳香環の数が増加するにつれて共役系が大きくなり光の吸収スペクトルが長波長側にシフトする。それにより、銀などの短波長領域(紫外領域)に光吸収を持つ金属の変質(酸化銀の生成による黒変色等)をアセン骨格の光の吸収効果(紫外線カット効果)により抑制する事が可能になる。これは、アセン骨格で顕著に効果が表れるがアリール骨格も同様の効果を有する。
 さらに、ピレン骨格、フェナントレン骨格、フルオレン骨格においては芳香族環同士の相互結合作用および紫外線カット効果に加え、その光エネルギーを蛍光または燐光発光に利用する効果が強く発揮される。
 主鎖部B11と主鎖部B12との間、もしくは主鎖部B11と第二官能基C1の間に、メチレン鎖が存在すれば、分子間で互いに会合し、超分子的に炭化水素鎖の緻密な炭素鎖を形成できるので好適である。また、メチレン鎖を用いれば、比較的迅速に有機被膜を形成できることが発明者らの検討により明らかにされている。
 主鎖部B11と主鎖部B12との間、もしくは主鎖部B11と第二官能基C1の間に、フルオロメチレン鎖が存在すれば、疎水性がメチレン鎖よりも強いため、有機被膜形成後には配線リード3と当該被膜との間への水分の浸入が強く抑制される。その結果、有機被膜と配線リードとの良好な結合が保たれ、熱履歴によって有機被膜の剥離が生じにくくなるので好適である。
 主鎖部B11と主鎖部B12との間、もしくは主鎖部B11と第二官能基C1の間に、シロキサン鎖が存在すれば、耐熱性および耐候性に優れる特性が発揮される。このため、例えば半導体素子等の実装工程において、有機被膜が比較的高温環境下に曝された場合にも、当該被膜自体の変質・損傷の防止効果が奏される。
 なお、主鎖部B11と主鎖部B12との間、もしくは主鎖部B11と第二官能基C1の間に、グリコール鎖が存在する場合、水等の極性溶媒に簡単に溶解させることができるという利点、並びに親水性基の相互作用による強固な有機被膜を形成できる利点を有する。
 また、主鎖部B11と主鎖部B12との間、もしくは主鎖部B11と第二官能基C1の間に、エーテル、チオエーテル、ケトン、チオケトン、第二級アミン、第三級アミン、アミド、スルホンが介されていても同様に分子内の原子の回転を容易する事ができ、さらに水素結合等の分子間相互作用により主鎖部の配向性および緻密性を向上させることもできる。
 主鎖部B1にグリコール鎖を有する場合も、親水性の相互作用による有機被膜を形成でき、水等の極性溶媒に簡単に溶解させることができる利点を有する。従って、主鎖部B1に、グリコール鎖、またはメチレン鎖、フルオロメチレン鎖、シロキサン鎖の内の一種以上とグリコール鎖とで構成されたものを用いることも好適である。
 なお、以上説明した機能性有機分子11における主鎖部B1、機能性有機分子16における主鎖部B11、B12については、実施の形態1に限定されず、適宜、以下に述べるその他の実施の形態で用いる機能性有機分子の主鎖部として適用することも可能である。
 3.半導体装置の製造方法
 次に、実施の形態1のQFP10の製造方法について説明する。
 QFP10は、有機被膜110をダイパッド3aの所定表面に被着させる有機被膜形成工程と、当該有機被膜形成工程後に、ダイパッド3aと半導体素子4等を樹脂封止する樹脂固着工程とを順次経て製造される。
 [有機被膜形成工程]
 有機被膜形成工程は、分散液調整サブ工程と、成膜サブ工程と、洗浄サブ工程とを順次経るようになっている(図3(a))。
 (分散液調整サブ工程)
 ここでは、機能性有機分子11を用いて有機被膜110を形成する場合について説明するが、機能性有機分子16を用いる場合も同様に実施できる。
 機能性有機分子11を所定の溶媒に分散させ、分散液を作製する。溶媒は有機溶媒または水の少なくともいずれかが利用できる。水を溶媒に用いる際には、機能性有機分子11の分散性を得るため、必要に応じてアニオン系、カチオン系またはノニオン系の界面活性剤を添加することが好適である。さらに機能性有機分子11を安定化させるため、ホウ系、リン酸系等のpH緩衝剤、酸化防止剤を添加しても良い。
 (成膜サブ工程)
 次に、上記作製した分散液中に、ダイパッド3aの所定表面を浸漬させる。
 分散液中では、各々の機能性有機分子11は比較的高いギブス自由エネルギーを有するエネルギー準位にあり、単分子毎に反発方向への相互作用によりランダムな運動(所謂ブラウン運動)をしている。
 従って、当該分散液中に金属材料からなるダイパッド3aを浸漬すると、ミクロ的に機能性有機分子は第一官能基によりダイパッド3aと金属結合し、より安定な状態に移行しようとする。
 この安定状態への移行は、マクロ的には各機能性有機分子11の各々が第一官能基をダイパッド3a表面に結合させつつ、主鎖部B1及び第二官能基C1を同順に整列させた状態で互いに安定化し、単分子膜としての自己組織化形態をなす(図3(b))。
 以上の原理で自己組織化膜が形成され、分散液から引き上げれば、リード3a上に有機被膜110が形成された部材(以下、「配線部材10x」と称する。)が得られることとなる。
 なお説明上、図3ではダイパッド3aの全表面に有機被膜110を形成する場合を例示しているが、当然ながら所定形状の開口部を持つパターンマスクを予めリード3aの表面に配設しておき、当該開口部に対応するリード3a表面部分のみに有機被膜110を形成するようにしてもよい。
 なお、分散液を利用した浸漬法を例示しているが、有機被膜110の形成方法はこれに限定しない。例えば噴き付け等の他の方法を用い、同様の有機被膜110を形成してもよい。
 (洗浄サブ工程)
 分散液中から得た上記配線部材10xについて、有機溶媒または水の少なくともいずれかを洗浄媒体とし、余分な機能性有機分子11を除去すべく洗浄処理する。リード3aに直接第一官能基A1で金属結合していない機能性有機分子11は、本発明の効果を得ることができないので除去すべきである。当該洗浄サブ工程を行えば、ダイパッド3aと金属結合していない機能性有機分子11は簡単に除去することができる。
 以上で有機被膜形成工程は終了する。
 [樹脂固着工程]
 樹脂固着工程は、配線部材載置サブ工程と、樹脂充填サブ工程とを順次経るようになっている。各サブ工程について、図4の概略模式工程図を用いて説明する。
 (配線部材載置サブ工程)
 まず、上記有機被膜形成工程を経て作製された配線部材10xとダイパッド3bを用い、半導体チップ4をダイパッド3bに搭載する。そして、半導体チップ4と配線部材10xとをワイヤーリード5等を介して接続する。これにより得られたチップ付配線部材10yを、固定金型2に載置する(図4(a))。
 次に、可動金型1を矢印方向に移動させて金型1、2を閉じる。このときチップ付配線部材10yの配線パターン3の表面には、機能性有機分子11の第二官能基C1が外方に配向した状態で、単分子レベルの厚みH1の緻密な有機被膜110が成膜されている(図4(a)のS4部分拡大図)。当該有機被膜110の形成領域は、金型1、2間に確保されるキャビティ1x、1y(内部空間)に直接臨まない領域を含んでいる。すなわち、有機被膜110の面積は、後に樹脂封止されるべき領域よりも広い領域になっている。
 (樹脂充填サブ工程)
 金型1、2が閉じられた状態で、当該金型1、2を所定の加熱状態に調整する。外部よりゲート6を通じ、一定の圧力でキャビティ1x、1y内に流動状態の熱硬化性樹脂材料をインジェクション(射出成型)する。樹脂材料はチップ付配線部材10yの半導体チップ4を含む領域を中心にしてキャビティ1x、1y内に密になるまで充填され、金型1、2から熱を受けて硬化される(図4(b))。一定時間後、樹脂材料が完全に硬化すれば、封止樹脂の形成は完了し、QFP10zを得る。その後はアウターリード301aを折り曲げることでQFP10が完成する。
 この工程において、キャビティ1x、1yに注入された樹脂材料は、有機被膜110と接触する部分においては第二官能基Cによる影響(樹脂硬化作用又は樹脂硬化促進作用)を受けて、比較的迅速に硬化される(図4(b)の「成型領域内」)。この作用より、たとえ金型1、2の合わせ目に不要な間隙が存在したとしても、樹脂材料はキャビティ1x、1y周辺の金型間隙(図4(b)の「成型領域外」)へ漏出する前にほぼ硬化される。よって、金型1、2の間隙で樹脂バリが発生するのを効果的に抑制することができる(図4(b)のS5部分拡大図)。これにより、封止樹脂形成後の半導体装置のアウターリード301aにおいて、樹脂バリの発生を極めて低くすることができる。よって従来のように、別途樹脂バリを除去する後処理工程が不要となり、当該半導体装置を他の基板へ接続する等工程に迅速に移行できるため、優れた製造効率を実現することができる。
 当該工程で得られたQFP10では、有機被膜110の利用により従来に比べてダイパッド3aと成型樹脂間との密着性が強固に確保されている。従ってQFP10を他の基板に接続する際に、ハンダ付け等の温度影響を受けても、樹脂が熱損傷して配線リードと剥離したり、クラック等の破壊に至ることもない。更に、機能性有機分子の主鎖部が疎水性を呈するため、これを緻密に配線部材表面へ配設することによって、配線リードへの不要な水分吸着を抑制する事ができ、電圧印加による表面金属のイオン化を抑制し、マイグレーションを抑制する効果も期待できる。
 また、有機被膜110は単分子膜であるため、これを設けても半導体装置の厚みが増えることはほとんどなく、キャビティ内に充填すべき樹脂材料が有機被膜の体積により実質的に不足するといった問題も生じない。故に、従来と同様の製造設備を用いながら、高い発明の効果を得ることができるものである。
 また、その他の効果として、QFP10は封止樹脂(成型樹脂)への水分浸入に伴う配線リードと樹脂との剥離部発生やクラックといった問題が回避される。すなわち、一般にQFPでは、封止樹脂(成型樹脂)の性質として、環境雰囲気中の水分が樹脂内部に浸入することがある(図16(a))。
 ここで従来のQFPでは、樹脂と配線リードとの密着性が不十分なことや、配線リードの加熱時に表面の金属結晶が再結晶化することに起因して、この両者の界面付近に間隙が存在する場合がある。このように間隙があると、製造後の経過に伴って、樹脂内部に浸入した水が毛細管現象で溜まりやすい。この状態でQFP10を基板に実装する際のリフローによる加熱(約260℃)が加わると、溜まっていた相当量の水分が一気に気化し、急速に体積膨張する。このとき、樹脂の相当量の水分の急激な体積膨張に耐えられなくなる。その結果、前記間隙部分で樹脂側が配線リード側と剥がれて剥離部が形成されたり、間隙から封止樹脂(成型樹脂)の外部表面に至るクラックが発生する(図16(b))。このような剥離部やクラックが発生すると、外界からQFP内部にさらに多くの水分等の不純物の浸入が生じ、封止された半導体チップ94の回路破断や短絡等の原因となる。
 また、たとえリフロー時に上記のような眼に見える破壊が生じなくても、前記間隙に溜まった水分が次第に半導体チップ94を短絡させたり、腐食させたりするため、動作不良を生じさせてしまう。
 これに対し、QFP10では、配線リード表面に有機被膜を形成することで、封止樹脂(成型樹脂)との密着性が非常に向上される。この密着性は、QFP10の製造後も持続され、配線リードと封止樹脂との界面に間隙が形成されるのが極力抑制される。従って、たとえ製造後の経過に伴い、封止樹脂(成型樹脂)中に環境雰囲気の水分が浸入したとしても、樹脂中には相当量の水分が溜まるような間隙がない。よって、QFP10を基板に実装する際に剥離部やクラックが発生することがなく、QFP10の実装を高い封止信頼性を維持したまま行うことができ、実装後も水分に起因する短絡を防止できる。
 (配線リード表面における金属の再結晶化抑制効果)
 特に、機能性有機分子16のように、主鎖部B11(窒素を2原子以上含有する含窒素複素環を有する)を持つ機能性有機分子で有機被膜110を形成した場合には、さらに、有機被膜を構成する機能性有機分子同士の間には、主鎖部B11同士の間に働くスタッキング効果が大きいので、以下に説明するように、分子レベルのアンカー効果によって配線リード表面の金属結晶の再結晶化も抑制され、配線リード表面と封止樹脂との密着性向上効果も、より優れたものとなる。
 図5は、機能性有機分子16の被膜によって金属結晶の再結晶化を抑制する効果を説明する図である。
 図5(a)には、金属表面上に、機能性有機分子からなる被膜が形成されている様子を示す。
 当図に示すように、配線リードなど金属の表面には通常、細かい凹凸が存在し、内部応力が加わっている。機能性有機分子を金属表面上に配列させて被膜を形成すると、被膜も金属表面の凹凸に沿って形成される。
 そして、被膜形成後に、配線リードなどの金属に熱を加えると、金属表面の凹凸は、内部応力が緩和されるように変形して、再結晶化する。特に、銀メッキ層においてはこのような変形が生じやすい。
 このとき、金属原子は図中矢印で示すように移動し、それに伴って、金属原子に結合している機能性有機分子を移動させようとする力がかかるので、被膜に欠陥(間隙)が生じる。そして被膜に欠陥が生じると、樹脂と配線リードとの密着性の低下や金属光沢が変化する原因となる。
 これに対して、主鎖部B11(窒素を2原子以上含有する含窒素複素環を有する)を持つ機能性有機分子16で有機被膜110を形成すると、金属表面の凹凸に沿って形成される点は同様であるが、隣り合う機能性有機分子16の主鎖部B11同士の間に働くスタッキング効果が大きいので、配線リードの金属に熱を加えたときに機能性有機分子16を移動させようとする力が加わっても、機能性有機分子16は容易に移動しない。
 従って、被膜の欠陥(間隙)が生じることなく、また、金属表面において機能性有機分子16に結合している金属原子の移動も抑えられるので、金属表面における凹凸の変形も生じにくい。
 すなわち、機能性有機分子16が、金属原子の移動を抑える分子レベルのアンカー効果を発揮するので、金属の再結晶化が抑えられることになる。
 なお、このような機能性有機分子による分子レベルのアンカー効果は、主鎖部B11が第一官能基A1に近い位置(根本に近い位置)にある方が大きくなるので、機能性有機分子16のように、第一官能基A1の隣に主鎖部B11が結合されていることが好ましい。
 このような機能性有機分子による分子レベルのアンカー効果は、主鎖部に窒素を2原子以上含有する含窒素複素環を有していることによって得られるものなので、機能性有機分子に主鎖部B12は有していなくても同様のアンカー効果が得られる。
 (機能性有機分子11、機能性有機分子16の具体例)
 機能性有機分子11の具体例としては、下記化1で示される化合物が挙げられる(式中のm、nは自然数)。
Figure JPOXMLDOC01-appb-C000001
 この例では、第一官能基がチオール基であり、第二官能基が水酸基であり、主鎖部の一部が芳香族イミドである。
 図19は、上記化1で示される有機分子11を製造する製法の一例を示す図である。
 当図に示すように、まず、ピロメリット酸ジイミドとブロモメチレンアセチルスルフィドを、NaOCH3の存在下において一当量臭化水素脱離反応させる。次いでヒドロキシブロモメチレンを、NaOCH3存在下において反応させる。その後、アセチルスルフィド部をエチルアミンによりチオールに置換させることによって、目的物を合成することができる。
 機能性有機分子16の具体例としては、下記化2で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 この例では、第一官能基がチオール基であり、第二官能基がビニル基、ハイドロジェンシラン、水酸基または第一級アミンであり、主鎖部B11はトリアゾールであり、主鎖部B12は、アリール骨格またはアセン骨格もしくはその両方である。
 図20は、上記化2で示される有機分子16を製造する製法の一例を示す図であって、第一官能基がチオール基、第二官能基が水酸基、主鎖部B11がトリアゾール、主鎖部B12がアセン骨格で構成された機能性有機分子を合成する場合を示している。
 当図に示すように、まず、末端に水酸基を有するカルボン酸アセンを、塩化アセチルにより水酸基をアセチル化し、その後塩化チオニルによりカルボン酸をカルボン酸塩化物にした後、チオセミカルバジドによりカルボン酸塩化物とアミド結合させる。その後水酸化カリウムによりトリアゾールチオール環の生成およびアセチルを脱保護することにより水酸基を生成させることによって、目的物を合成することができる。
 図21は、上記有機分子16を製造する他の製法例を示す図であって、第一官能基がチオール基、第二官能基が水酸基、主鎖部B11がトリアジン、主鎖部B12がアリール骨格で構成される機能性有機分子を合成する場合を示している。
 当図に示すように、Org. Lett., Vol. 10, No. 5, 2008に記載内容に基づき、シアヌル酸クロライドを、グリニャール試薬化した臭素化アリールシリルエーテルと、テトラヒドロフラン中でカップリング反応させ、その後、フッ化テトラ-n-ブチルアンモニウムによりtert-ブチルジメチルシリル基を脱保護して水酸基を生成させ、水硫化ナトリウムにより塩素をチオールと置換することによって、目的物を合成することができる。
 <実施の形態2>
 実施の形態1では、機能性有機分子11からなる有機被膜110を、半導体チップを備えた半導体装置に適用することで種々の効果を奏することを示したが、本実施形態では、発光ダイオード素子(LED)を備えるLED装置に適用する。
 図6は、実施の形態2にかかるLED装置ユニット31xの配線リード部30及びリフレクター22の構成を示す模式断面図である。
 当該装置ユニット31xは、擂鉢状のリフレクター22の底部に、配線リード部30が配設された構成を有する。リフレクター22は、たとえば熱硬化性樹脂材料(エポキシ樹脂やシリコーン樹脂等)を用い、樹脂成型により形成される。或いはセラミック材料を用いても構成できる。
 このような装置ユニット31xにおいても、実施の形態1と同様に樹脂バリの問題が発生しうる。すなわち、配線リード部30のうちリフレクター22の底部において露出される領域301、302は、後にLEDチップ42が搭載されるため導電性を保持しておく必要があるが(図6(b)を参照)、樹脂成型時に当該露出領域301、302上に実施の形態1と同様の原理により、リフレクター22の裾から金型間に存在する間隙を通じて樹脂バリが発生しうる。このため、樹脂バリの除去処理が別途必要となり、LEDチップを良好な製造効率で搭載することができない。
 そこで、樹脂固着工程前に、予め配線リード部30の少なくとも露出領域301、302の表面にわたり、機能性有機分子11あるいは機能性有機分子16からなる有機被膜110を形成しておくことで、樹脂成型時に熱硬化性樹脂材料を迅速に硬化させることができる。これによりリフレクター22の裾から樹脂材料が漏出するのを防止し、樹脂バリの発生に伴う上記諸問題を解決できる。
 (実施の形態1及び2に関する補足)
 実施の形態1及び2では、有機被膜110を設けて熱硬化性樹脂の硬化促進作用が発揮されるが、この作用を利用することで、微細な樹脂パターンを強固に形成することもできる。
 例えば配線基板表面の一部にインクジェット法等を用いて局所的に樹脂成型を行う技術分野においては、精密な樹脂成型が要求される場合がある。この場合、配線リード部30上に直接樹脂成型を行う場合に比べて、有機被膜を形成した上から樹脂成型を行うことで、より迅速に樹脂成型を行える。この場合、硬化までの時間が短いので、樹脂の液ダレ・塗布後の型崩れが発生しにくく、設計通りの精密パターンに合わせて樹脂成型ができるといったメリットが得られる。
 また実施の形態1及び2の有機被膜は、ダイパッド又は配線リード部の上に直接成膜するとは限らず、例えば、予めダイパッド又は配線リード部の表面にメッキ被膜を形成しておき、この上に有機被膜を形成してもよい。但し、この場合、第一官能基Cは、メッキ被膜と結合性が得られるように選択する必要がある。
 <実施の形態3>
 実施の形態3について、実施の形態2との差異を中心に説明する。
 (LED装置の構成)
 図6は、実施の形態3に係るLED装置31の構成及び製造工程を示す断面図である。
 当該LED装置31は、基本的には実施の形態2の装置ユニット31xを有し、さらに図6(b)に示すように、リフレクター22に囲繞される配線リード部30上にペースト42aを介してLEDチップ42が接合されてなる。LEDチップ42は、配線リード部30とワイヤー52を介して接続されている。
 当該LEDチップ42等を封止するように、リフレクター22内におけるリフレクター面201及び露出領域301、302には透明の封止樹脂82が充填されている。
 封止樹脂82は、ここでは熱硬化性樹脂の一例としてシリコーン樹脂を使用している。
 ここにおいて本実施の形態3では、配線リード部30の露出領域301、302の表面に、機能性有機分子12の自己組織化による単分子膜からなる有機被膜120が形成されている。当該機能性有機分子12は、A2-B2-C2の一般式で示され、主鎖部B2の一端に、金属結合性を持つ第一官能基A2を備え、他端に、シリコーン樹脂に対する樹脂結合性を持つ第二官能基C2を備えている(図6(c))。ここで、主鎖部B2は、実施の形態1で説明した主鎖部B1と同様のもの、第一官能基A2は、実施の形態1で説明した第一官能基A1と同様のものである。
 (機能性有機分子12の第二官能基C2について)
 本実施の形態3の機能性有機分子12における第二官能基C2には、熱硬化性樹脂、特にシリコーン樹脂に対して硬化性を呈する官能基又は化合物、構造体を用いる。具体的にはビニル基、有機ハイドロジェンシランの内の一種以上を含む化合物、化学構造体若しくは誘導体のいずれかを用いることができる。
 また、エポキシ基もしくはアルコキシシリル基の少なくともいずれかを含むシリコーン樹脂に対しては、エポキシ基またはアルコキシシリル基と結合性を有する官能基又は化合物、構造体を用いる。具体的には水酸基、酸無水物、第一級アミン、第二級アミンの内の一種類以上を含む化合物、化学構造体若しくは誘導体のいずれかを用いることができる。これらのエポキシ基またはアルコキシシリル基と結合性を有する官能基又は化合物、構造体は親水性を有する為、前述の疎水性アウトガス成分の付着抑制に効果を発揮する。
 なお、第二官能基C2との結合力を高めるために、封止樹脂82の樹脂成分に、エポキシ基、アルコキシシリル基を含む親水性添加剤を、接着向上剤として配合することも可能である。これにより、配線リード部30と封止樹脂82とを高度に密着させることができる。また、シリコーン樹脂を、親水性を発揮するエポキシ基、アルコキシシリル基で修飾した透明樹脂材料を用いることもできる。また、前記封止樹脂で封止する前に、第二官能基C2上にアルコキシリル基を含むシランカップリング剤を塗布することにより封止樹脂との接合ネットワークを強化することもできる。
 上記エポキシ基またはアルコキシシリル基と結合性を有する官能基又は化合物、構造体は、ビニル基や有機ハイドロジェンシランよりも安定性が高いため、当該有機被膜の安定化・長寿命化を図る事が可能になる。
 以上の構成を有する本実施の形態3では、上記第一官能基A2及び第二官能基C2を有する機能性有機分子12からなる有機被膜120が介在することにより、配線リード部30とシリコーン樹脂との剥離が防止できる。
 即ち、シリコーン樹脂は、エポキシ樹脂等と比較して、耐褪色性・透明性に優れるものの、熱膨張率が高いため高温下では変形しやすく、当該変形によって、シリコーン樹脂が配線リード部30から剥離・脱離するおそれがある。
 これに対し、上記機能性有機分子12による有機被膜120が形成されていれば、配線リード部30とシリコーン樹脂との密着性が飛躍的に向上される。
 また、有機被膜120を構成する機能性有機分子12は、隣り合う主鎖部B2どうしが強く結合しているので、有機被膜120は緻密で熱に対しても安定である。
 従って、たとえシリコーン樹脂が多少の熱変形等を生じても、配線リード部30からシリコーン樹脂が剥離や脱離するのが抑制される。そのため、高温になりやすい環境や、長時間駆動される条件下であっても、LED装置31の性能を安定して発揮することが期待できる。
 さらに本実施の形態3では、LEDチップ42と配線リード部30とをボンディングするワイヤー52が「ワイヤー不着」が生じるのを防止し、ワイヤーボンディングの信頼性を向上させる効果も奏する。
 すなわち、リフレクター22の樹脂材料には、上記した熱硬化性樹脂のほか、PPA(ポリフタルアミド)やLCP(液晶ポリマー)等の熱可塑性樹脂の材料が用いられることがある。当該材料には主たる熱可塑性樹脂成分のほか、熱安定剤、光安定剤、フィラー、離型剤、白色顔料等の各種添加剤が混合されている。加熱により溶融された樹脂材料をインジェクション成型する際には、この添加剤を含めた材料中の揮発成分がアウトガスとなって雰囲気中に飛散する。このようなガスのうち、離型剤やベースレジン由来のアウトガスは、配線リード部の表面に付着すると薄膜(不純物膜)を形成する。不純物膜が配線リードの表面に存在すると、ワイヤーボンディングの際にワイヤーの先端が配線リード部側とうまくボンディングできなかったり、仮にボンディングできたとしても接合強度が足らず、その後の軽い振動で外れてワイヤー不着を生じることがある。なお、不純物膜の存在はSEM等で確認可能である。
 これに対して本実施形態では、配線リード部30の表面領域に予め有機被膜を形成しているので、当該領域にアウトガスによる不純物膜が形成されるのが防止される。ここで、離型剤やベースレジン由来のアウトガスは疎水性(親油性)であるため、機能性有機分子12を用いて有機被膜120を形成すれば、第二官能基C2が親水性を発揮し、疎水性のアウトガスが近づいても第二官能基C2と反発し、外部へ弾かれる。このため、配線リード部30上の不純物膜の形成を極めて効率よく排除することができる。一方、ワイヤー52は配線リード部30に対し、有機被膜120を介して接合されるが、有機被膜120の厚みは機能性有機分子12の単分子長さしかないのに対して、ワイヤー52の径は約20~30μmと相対的に非常に太い(有機被膜厚みの約2000~3000倍)。従って、ボンディングの際には、ボンディング領域に存在するわずかな機能性有機分子12がボンディング荷重および超音波エネルギーにより容易に溶融したワイヤー中に拡散し、ワイヤー中の接合金属中に溶け込むだけである。これにより、ワイヤー52と配線リード部30とは良好に接合される。
 よって本実施形態によれば、アウトガスによる不具合を回避して、従来に比べて接合信頼性の高いワイヤーボンディングを行うことができる。
 なお、ボンディングを良好に行うためには、有機被膜は少なくともワイヤーボンディングを行う配線リード部30の表面領域に形成されていればよい。有機被膜を部分的に成膜するには、配線リード部30に公知のマスキングを施し、図3に示す分散液に浸漬することで形成できる。
 また、配線リード部30の表面に、Agメッキ被膜を形成する場合には、当該メッキ被膜上に有機被膜を設けることもできる。この場合、有機被膜はAgメッキ被膜を外界の反応性ガスや触媒より保護するので、Agメッキ被膜の良好な反射特性を維持できる。
 本実施形態では、上記機能性有機分子12の主鎖部B2に代えて、実施の形態1で説明した主鎖部B11(窒素を2原子以上含有する含窒素複素環化合物を有する)を含むものや、実施の形態1で説明した主鎖部B12(アリール骨格、アセン骨格、ピレン骨格、フェナントレン骨格、フルオレン骨格の一種以上が含まれている)を含むものを用いてもよい。
 例えば、図8に示す機能性有機分子17のように、第一官能基A2、主鎖部B11、主鎖部B12、第二官能基C2を同順に結合したものを用いることもできる。
 機能性有機分子が主鎖部B11を有することによって、実施の形態1で説明した分子レベルのアンカー効果が金属メッキ層に働いて、Cu等の母材金属がAg等の金属メッキ層の表面に拡散するのが防止される。
 図8は、この作用効果を説明する図であって、リード30は、Cuからなる下地層の上にAgメッキ被膜が形成されて構成され、そのAgメッキ被膜上に、機能性有機分子17からなる有機被膜が形成されている。
 一般に、リード30に熱が加えられると、Ag層の結晶粒界が大きく開いて、図8に矢印で示すように、下地層のCuがAgメッキ層の結晶粒界を通って、Agメッキ層の表面に拡散しようとする。そして、Ag層表面にCuが拡散すると、当該表面にCuOが生成して、Ag層が変色する原因となり、ワイヤーボンディング性を低下させる要因にもなる。ここで、Ag層の厚みを大きく設定してAg層表面へのCuの拡散を防止することもできるが、Ag使用量が増えるのでコストがかかる。
 また、Agの表面結晶が動くことによりAgの光沢度が変化しLED装置の光学特性にも悪影響を与える。
 これに対して、主鎖部B11を有する機能性有機分子17を用いて有機被膜を形成しているので、この機能性有機分子17実施の形態1で説明したように分子レベルのアンカー効果を奏して、Ag結晶粒界が大きく開くのを抑制する。従って、Ag層の厚みが薄くても、Ag層の変色を防止するとともに、ワイヤーボンディング性を維持することができる。また、Ag層の表面結晶の動きを抑制する事により、Agの光沢度の変化によるLED装置の光学特性への悪影響無くす事が可能になる。
 また、Ag層の表面にCuが拡散されても、機能性有機分子17の主鎖部B11が、拡散されたCuと錯体を形成するので、この点も、ワイヤーボンディング性を維持するのに寄与する。
 なお、ここでは、リード30がAgメッキ製品である場合について説明したがAuメッキ製品など、貴金属メッキ製品の場合に、同様の効果を奏する。
 次に、有機被膜を形成する機能性有機分子が、機能性有機分子17のように主鎖部12を有することによる効果について説明する。
 主鎖部12は、アリール骨格、アセン骨格、ピレン骨格、フェナントレン骨格、フルオレン骨格の一種以上が含まれているが、これらは、可視光を透過するが、紫外光を吸収する性質がある。
 従って、リード30上の有機被膜に、紫外光領域を吸収し、可視光領域を透過する機能を持たせることができ、それによって、外界からの紫外線を有機被膜で吸収するUVカット効果を持たせると共に、可視光をリード30で効率良く反射させることができる。
 一般にAgメッキ被膜は、外界からの紫外線によって表面変質(酸化銀の生成による黒変色)する傾向にあるが、上記の有機被膜によるUVカット効果によって、Agメッキ被膜の黒変色を抑制することができる。
 従って、長期信頼性に優れ、高発光効率のLED装置を実現することができる。
 (LED装置の製造方法について)
 LED装置の製造は、以下の各工程を順次行うことで実施できる。尚、有機被膜形成工程以外は公知のLED装置の製造方法を採用できる。
 [有機被膜形成工程]
 実施の形態1の有機被膜形成工程と同様の方法により、配線リード部30の表面に機能性有機分子12からなる有機被膜120を自己組織化された単分子膜として形成する。これにより、有機被膜が形成された配線リード部30を得る。
 [樹脂固着工程]
 上記有機被膜120を形成した配線リード部30を用い、図4に示した射出成型と同様の手順で、配線リード部30にポリフタルアミド樹脂等の熱可塑性樹脂材料を射出成型する。その後は樹脂を硬化させるため一定温度範囲で冷却する。これによりリフレクター22を形成し、LED装置ユニット31xを得る。
 その後はペースト42aを介し、配線リード部30上にLEDチップ42を搭載する。そして、配線リード部30及びLEDチップ42をワイヤー52で互いにボンディングする。
 その後、流動状態にあるシリコーン樹脂材料をリフレクター22内に充填する。そして熱硬化させることにより、LED装置31を得ることができる。
 <実施の形態4>
 図7(a)は、実施の形態4にかかるLED装置31の構成を示す断面図である。
 本実施形態のLED装置31について、実施の形態3との差異を中心に説明する。
 上記実施の形態3では、有機被膜120を構成する機能性有機分子12の第二官能基C2にシリコーン樹脂との化学結合性に特化した特性を有する官能基を選択したが、本実施の形態4では、有機被膜120aを形成する機能性有機分子12aが、第二官能基C2’として瞬間硬化性官能基を有する点に特徴がある。
 具体的には、第二官能基C2’として、白金錯体、パラジウム錯体、ルテニウム錯体、ロジウム錯体の内の一種以上を含む化合物、化学構造体若しくは誘導体のいずれかを用いることができる。
 本実施形態にかかるLED装置31の製造方法は、上記実施の形態3の製造方法と同様である。
 このようなLED装置31による効果について説明する。
 リフレクター22は、ポリフタルアミド樹脂等の熱可塑性樹脂を射出成型することによって作製するが、この際、上記熱可塑性樹脂を冷却硬化させるときに、樹脂が体積収縮することがある。そうすると、配線リード部30とリフレクターの間に間隙72が生じうる(図7(b))。
 このような間隙72が生じると、シリコーン樹脂の充填の際に余分な漏出樹脂82aの発生を招き、材料の無駄となる。また、漏出樹脂82aは配線リード部30におけるアウターリードの電気的接合性の劣化に繋がるため、後に別途除去工程が必要となり、製造効率の低下を招く。さらに、漏出樹脂82aが当該LED装置31の背面に取着されたヒートシンク(不図示)との間に介在すると、本来の放熱性能を損う原因となるため好ましくない。
 これに対し本実施の形態4では、機能性有機分子12aの第二官能基C2’が、瞬時硬化性を有しているので、製造工程においてリフレクター22の内面に充填されたシリコーン樹脂は、充填後に速やかに硬化する。
 また、有機被膜120aを形成する機能性有機分子12aの主鎖部B2どうしが強く結合しているので、有機被膜120aは緻密であって、熱に対しても安定である。
 その結果、擂鉢状のリフレクター22の底部に固形のシリコーン樹脂が早期に形成され、間隙72を閉塞する。このため、これに続いて充填されるシリコーン樹脂材料が前記間隙72から外部に漏出するのが効果的に防止されることとなる。従って、従来のように漏出樹脂82aを別途除去する工程が不要となり、その分、製造効率を向上させることが可能である。
 さらに、配線リード部30におけるアウターリードに漏出樹脂82aが被着することが無いため、当該アウターリードを介した外部との通電性が阻害されることもない。よって、高い信頼性でハンダ接続等の手段により当該LED装置31の電気接続を図ることができる。
 また、間隙72からシリコーン樹脂が漏出するのを防止することで、当該間隙72の空気がシリコーン樹脂中に混入して生じるボイド(気泡)の発生を抑制することもでき、一層、シリコーン樹脂によるLED装置31の封止信頼性を高めることもできる。
 なお、上記効果を良好に得るために、有機被膜120aの配設領域は図7(b)のS7部分拡大図に示すように、リフレクター22aと配線リード部30との隙間72に至る領域L22までとする。こうするとシリコーン樹脂82が上記隙間72内に多少流れ込んでも、当該漏出規模が拡大する前に樹脂を硬化でき、それ以上の漏出を防止することができるので好適である。
 (機能性有機分子12aの主鎖部について)
 図7(b)に示す機能性有機分子12aは、第一官能基A2、主鎖部B2、第二官能基C2‘が順に結合された構成であるが、機能性有機分子として、第一官能基A2、主鎖部B11、主鎖部B12、第二官能基C2‘が順に結合された構成のもの、あるいは主鎖部B11及び主鎖部B12のいずれかに第一官能基A2と第二官能基C2‘が結合されものを用いてもよい。
 機能性有機分子が主鎖部B11を有する場合、実施の形態1で述べたように分子レベルのアンカー効果が得られ、また、機能性有機分子が主鎖部B12を有する場合、実施の形態3で述べたようにUVカット効果が得られる。
 <実施の形態5>
 図10は、実施の形態5にかかるLED装置31の構成を示す断面図である。
 本実施形態について、実施の形態4との差異を中心に説明する。
 本実施形態のLED装置31では、図10(b)に示すように、機能性有機分子13を用いて有機被膜130を形成している。
 機能性有機分子13において、第一官能基A3及び主鎖部B3は、実施の形態1で説明した第一官能基A1及び主鎖部B1とそれぞれ同一であるが、第二官能基C3に蛍光又はリン光発光性官能基を用いている点に特徴を有している。
 これによって、有機被膜130の表面に蛍光又はリン光発光性官能基が配列されるので、LED装置31の発光効率を向上させることができる。
 特に、図10(a)に示すように、配線リード部30の表面にAgメッキ被膜63が形成されている場合には、以下に説明するように、LEDチップ42からの光を反射する反射率が向上して、する効果が得られる。
 一般的に、Ag材料による有効反射波長は約500nm以上とされており、これ以下の短波長光(380~500nm程度の青色発光・紫外発光等)では有効な反射率が得られにくい。
 これに対して本実施形態では、配線リード部30の露出領域301、302に対応するAgメッキ被膜63上に対し、第二官能基C3に短波長光を受光して蛍光・燐光発光する官能基・構造体を持つ機能性有機分子13で有機被膜130を形成し(S8拡大図10(b))、これによって、Agメッキ被膜63による可視光反射の効率を補完することができる。
 すなわち、このLED装置31を駆動した時にLEDチップ42から発光する光のうち、長波長光(約500nm以上の波長光)は、Agメッキ被膜63の表面で有効にチップ前面に直接反射される。このとき、有機被膜130は単分子膜であって分子レベルの厚みしかないので、この長波長光の進行は阻害されず、当該有機被膜を130を透過してAgメッキ被膜63に到達し、且つ当該Agメッキ被膜63で反射される。
 一方、LEDチップ42の発する短波長光(380~500nm程度の波長光)については、長波長光よりもエネルギーレベルが高いため、有機被膜130内を透過することなく、外界に近接する第二官能基C3において、その光エネルギー(E=hν)が、当該第二官能基C3のエネルギーレベルを励起状態(E0→E1)に移行させるのに利用される。その結果、当該光エネルギー(E=hν)は最終的には第二官能基C3から蛍光・燐光発光として形を変え、可視光発光に寄与される。
 つまりLEDチップ42由来の短波長光は、それ自体では有機被膜130でも反射されないが、当該短波長光の有する光エネルギー(E=hν)が蛍光・燐光発光としてそっくり利用される。その結果、短波長・長波長いずれの波長範囲にもわたるLEDチップ発光が、LED装置の発光効率として有効活用されることとなり、従来構成に比べて発光効率の優れたLED装置31を実現することが可能となる。
 なお、本実施の形態5につき、Agメッキ被膜63の代わりに他のメッキ被膜を用いた構成にも適用可能である。メッキ被膜において直接反射される可視光と、第二官能基C3における発光とをブレンドすることで、LEDチップ42の発光特性を調節することもできる。例えば金メッキ被膜を用いた場合、有効反射波長は約600nm以上である。従って、金メッキ被膜では600nm付近の波長の可視光発光を反射させ、且つ第二官能基C3において、約600~約700nmの波長の赤色蛍光・燐光発光させれば、赤色の輝度向上に特化させたLED装置31を実現できるメリットがある。
 (第二官能基C3について)
 第二官能基C3には、前述の通り短波長光による励起に基づく蛍光またはリン光発光性を有することが要求される。
 例示すると、ビススチリルビフェニル誘導体等のスチルベン誘導体、ビス(トリアジニルアミノ)スチルベンスルホン酸誘導体等のアゾール修飾スチルベン誘導体、クマリン誘導体、オキサゾール誘導体、ピラリゾン誘導体、ピレン誘導体、ポルフィリン誘導体等の内の一種以上を含む化合物、化学構造体若しくは誘導体のいずれかが利用できる。
 (機能性有機分子の主鎖部について)
 本実施形態においても、図10(b)に示す機能性有機分子13の代わりに、第一官能基A2、主鎖部B11、主鎖部B12、第二官能基C3が順に結合された機能性有機分子、あるいは主鎖部B11及び主鎖部B12のいずれかに第一官能基A2と第二官能基C3が結合された機能性有機分子を用いてもよい。
 機能性有機分子が主鎖部B11を有する場合は、実施の形態1で述べた分子レベルのアンカー効果が得られ、また、機能性有機分子が主鎖部B12を有する場合は、実施の形態3で述べたUVカット効果が得られる。
 <実施の形態6>
 図11(a)は、実施の形態6に係るLED装置の構成を示す断面図である。
 実施の形態6にかかるLED装置は、実施の形態4のLED装置をベースとし、リフレクター22の表面にAgメッキ被膜201aを配設して、さらにその表面に、上記実施の形態5で説明した機能性有機分子13を配列してなる有機被膜130が形成されている。
 このように、リフレクタの表面にAgメッキ被膜201aを配設することにより、駆動時にLEDチップ42の側面から発光された光が被膜201aで高効率で反射されて、装置前方(紙面では上方)に放射されるので、優れた発光効率が発揮される。
 さらに、Agメッキ被膜201aの表面に有機被膜130が形成されていることから、装置の製造時において、Agメッキ被膜201aが不要なガスや紫外線に曝されても変質するのが防止され、良好な反射特性が維持される。
 すなわち、一般にAg材料は化学的反応性に富んでいるので、製造工程時の雰囲気中に含まれる各種腐食性ガス(例えばリフレクター22の熱可塑性樹脂材料に含まれる各種成分)や、封止樹脂82をなすシリコーン樹脂の付加重合反応用触媒(白金族触媒等)と反応することがある。また、LED装置が完成した後も、シリコーン封止樹脂は非常にガス透過性が高い為、Ag材料が大気中の腐食性ガス(硫化水素等)と反応することが多い。このような腐食性ガスや触媒とAgとが反応すると、Agメッキ被膜が変色したり、曇ってしまい、反射特性の低下を招くことがある。また、LED光や太陽光に含まれる紫外線が照射されることによっても、Ag材料は表面変質(酸化銀の生成による黒変色)を起こし、反射特性が設計上の特性と比べて低くなる。このため、たとえLEDチップ42の発光特性が発揮されていても、LEDチップ42からの発光をAgメッキ被膜が良好に反射できなくなり、結果として装置全体の輝度が失われ、発光効率が低下する問題がある。
 同様のメッキ被膜と腐食性ガス又は触媒との反応による発光効率の低下の問題は、メッキ被膜にAg以外の材料を用いた場合でも発生しうる。
 これに対し本実施形態のLED装置では、Agメッキ被膜201aの表面に機能性有機分子13が緻密に配列されてなる有機被膜130を施している。
 このため、たとえ製造時の雰囲気に腐食性ガスや触媒が含まれていても、有機被膜130がAgメッキ被膜201aの保護手段として働き、腐食性ガスとAgメッキ被膜201aとの直接接触を回避する。従って、Agは不要な化学変化を起こすことがないので、Agメッキ被膜201aでは優れた反射特性を維持でき、良好な発光効率を有するLED装置を実現できる。
 また、Agメッキ被膜の反射特性が良いため、LEDチップ42の発光出力の利用効率が向上され、無駄な出力がAgメッキ被膜周辺の潜熱として篭もりにくい。従って本実施の形態6によれば、優れた発光効率を発揮できる上に、LEDチップ42の過熱損傷を防いで長寿命化が可能であるほか、装置の小パッケージ化にも有利に貢献できる。
 さらに、実施の形態5で説明したように、機能性有機分子13は、第二官能基C3において蛍光またはリン光発光を利用できるので、LEDチップ42の出力うち、高エネルギーの短波長側の光を発光に有効利用でき、優れた発光効率が期待できる。
 本実施形態のLED装置において、有機被膜を形成する方法としては、Agメッキ被膜201aの表面以外をマスキングして成膜する方法が挙げられる。或いは図11(c)に示すように、リフレクター22を配線リード部30側とは独立して金属材料で構成し、所定部分に電気メッキ処理等の方法でAgメッキ被膜201aを形成する。これを図3に示すように、所定の分散液に浸漬し、その表面全体に有機被膜130を形成する。その後は、リフレクター22を配線リード部30と短絡しないように、絶縁性の接着樹脂220(樹脂・セラミック等でも良い)を介して配線リード部30側に固着させることができる。この場合、有機被膜130は、Agメッキ被膜201a以外の領域にわたって広く形成されるが、LED装置において問題はない。
 (機能性有機分子の主鎖部及び第二官能基C3について)
 機能性有機分子の主鎖部に関して、機能性有機分子13の代わりに、第一官能基A3、主鎖部B11、主鎖部B12、第二官能基C3が順に結合された構成のもの、あるいは主鎖部B11及び主鎖部B12のいずれかに第一官能基A3と第二官能基C3が結合されものを用いてもよい。
 機能性有機分子が主鎖部B11を有する場合は、実施の形態1で述べた分子レベルのアンカー効果が得られ、また、機能性有機分子が主鎖部B12を有する場合は、実施の形態3で述べたUVカット効果が得られる。従って、このUVカットによってAgメッキ被膜が外界からの紫外線によって表面変質(酸化銀の生成による黒変色)するのを抑制すると共に、上記の可視光を効率良く反射させる効果を同時に得ることができる。
 第二官能基に関して、機能性有機分子13の代わりに、リフレクター22内に充填される封止樹脂82(シリコーン樹脂等)との密着性の向上を優先させるために、実施の形態3で説明した第二官能基C2を有する機能性有機分子12あるいは機能性有機分子17を用いてもよい。また、これらの機能性有機分子12と機能性有機分子13とを混合して用いることも可能である。
 (実施の形態1~6についての補足)
 上記実施の形態1~6で説明した有機被膜110等を、ダイパッド又は配線リード部の表面に形成した場合、さらに以下の効果が得られる。
 IC、LSI等の半導体装置における配線リードの表面には、これに固着される樹脂(エポキシ樹脂等)との密着性を向上させる為に、樹脂の食いつきを良くするための粗面加工処理が施されることがある。
 一方、製造される半導体装置の品質管理として外観検査工程が行われる。当該検査には、レーザ発信装置と受光素子を用いたレーザ測定法が一般的に用いられている。しかし、粗面加工された部材にレーザを照射すると不要な乱反射してしまい、受光素子での反射効率の低下或いは不要な受光により、精密測定が困難になりうる。この問題は、微細な外観形状を微弱レーザで検査する場合に顕著となる。
 これに対して、粗面処理されたダイパッド又は配線リード部表面に、実施の形態1~6で説明した有機被膜110などを施せば、機能性有機分子がレーザの光を吸収し、そのエネルギーを蛍光または燐光に変換して発光することにより、粗面の凹凸による、レーザの乱反射を防ぐことができる。よって正確な外観検査工程を効率良く行うことができ、装置の製造効率の向上を期待することも可能である。
 なお、LED装置においては、封止樹脂として100%のシリコーン樹脂を用いる代わりに、シリコーン樹脂含有導電性ペースト(Agペースト等のダイボンディング剤)も利用可能である。シリコーン樹脂含有導電性ペーストを用いてLEDチップ42をダイボンディングすれば、LEDチップ42と配線リード部30とを強固に接合できる。また、シリコーン樹脂含有導電性ペーストは従来のエポキシ樹脂含有導電性ペーストと比較して劣化が少ない為、導電率および熱伝導率の安定化が期待できる。
 更に、前記Agペースト中のAg粒子については、その粒子表面に、有機被膜110等を施しても良い、これにより、シリコーン樹脂を付加重合するための白金触媒等や、不要な腐食性ガスとAg粒子が直接接触するのが防止され、変質して変色を生じるのが抑制される。従って、透明性のよい封止樹脂82が維持でき、長期にわたり輝度低下を抑制して、良好にLED装置を駆動することが可能となる。
 <実施の形態7>
 以下、実施の形態7について説明する。
 実施の形態7は、IC、LSI等の電子部品の実装に用いられるTAB(Tape Automated Bonding)テープ、T-BGA(Tape Ball Grid Array)テープ、ASIC(Application Specific Integrated Circuit)テープ等のフィルムキャリアテープに関し、特に当該テープにおいて被着されるソルダーレジスト層の密着性の改善技術に関するものである。
 図12は、実施の形態7のフィルムキャリアテープ40の製造工程を示す模式的な断面図である。
 図12(d)に示されるように、フィルムキャリアテープ40は、ポリイミド等からなる絶縁フィルム401、Cuからなる配線パターン層402、及びソルダーレジスト層403を同順に積層してなる。
 絶縁フィルム401、ソルダーレジスト層403は、絶縁性の樹脂材料(例えばポリイミド系、エポキシ系、ウレタン系樹脂)から構成され、それぞれ配線パターン層402の短絡を防止するために絶縁手段として配される。
 配線パターン層402の表面には、ハンダにより実装部品と接続するため、予めSnメッキ層404が施されている。Sn材料はハンダ濡れ性、柔軟性、潤滑性等の特性を有し、フィルムキャリアテープへの用途に適したメッキ層404を形成できるので好適である。
 フィルムキャリアテープ40にSnメッキ層404を形成する際には、予め絶縁フィルム401、配線パターン層402、ソルダーレジスト層403を同順に積層し、これを一定温度に加熱したSnメッキ液(一例としてBF4溶媒にSn含有化合物を溶解させたもの)を満たしたSnメッキ槽に浸漬し、電解メッキ法等によりSnメッキ工程を行う。絶縁材料に錫成分が付着しない性質を利用して、配線パターン層402上に選択的にSnメッキ層404を形成する。
 ここで、本実施の形態7では、上記Snメッキ工程に先立ち、配線パターン層402の上に機能性有機分子14の自己組織化により有機被膜140を形成した点に特徴を有する。
 機能性有機分子14は、図12(e)に示すように、主鎖部B4の一端に金属結合性の第一官能基A4が配され、他端に第二官能基C4が配されて構成されている。そして、第二官能基C4は、ソルダーレジスト層403と高い密着性を有する官能基(一例として無水フタル酸、ピロメリット酸二無水物等の酸無水物、或いは第一級アミン化合物の内の一種以上を含む化合物、化学構造体若しくは誘導体のいずれか)から選択されたものである。
 なお、第一官能基A4は、実施の形態1で説明した第一官能基A1と同様のもの、主鎖部B4は、実施の形態1で説明した主鎖部B1と同様のものである。
 この機能性有機分子14が配列されてなる有機被膜140を介して、図12(f)に示すように、配線パターン層402とソルダーレジスト層403とは、互いに強固に被着されており、所定温度に加熱されたSnメッキ槽に浸漬しても、当該Snメッキ工程中にソルダーレジスト層403の端部が配線パターン層402より剥がれることがない。これにより、ソルダーレジスト層403の剥離を防止し、且つ、良好なSnメッキ層404を形成できる効果が奏される。
 また、本実施の形態7では配線パターン層402上において、所謂内部電池の発生を抑制し、配線パターン層402表面の浸蝕を防止する効果も奏される。その原理について、メッキ工程中の配線パターン層402及びソルダーレジスト層403付近の模式的な部分拡大図17(a)を用いて説明する。
 ソルダーレジスト層403及び配線パターン層402は各々の材料特性による固有の線膨張係数により、ソルダーレジスト硬化時に熱収縮し、内部応力が発生する。
 ここで、メッキ槽中のメッキ液は約60℃付近まで加熱されるため、ソルダーレジスト層403を積層した配線パターン層402を前記メッキ液に投入した場合、金属よりも高い内部応力を持ったソルダーレジスト層403が比較的大きく熱膨張する。これにより、当該熱収縮力の影響を最も受けやすいソルダーレジスト層403の端部403xが前記内部応力の影響により引っ張られ、配線パターン層402の表面からめくれ上がる。メッキ液が端部403xと配線パターン層402の間に浸入することにより、ソルダーレジスト層403に残留する内部応力によって、端部403xはさらに浮き上がることとなる。当該浮き上がった端部403xと配線パターン層402の間において、メッキ液の溶媒を主とし、Snイオンが希薄な溶媒領域500が形成される。
 この溶媒領域500とその近接領域501において、メッキ液のSn成分の濃度勾配が生じる。またSnとCuのイオン化傾向の違いにより、Snイオン量が希薄な溶媒領域500に対し、配線パターン層402表面からCuイオンが溶液中に溶け出す。このCuイオンの発生に伴って配線パターン層402中に放出される電子を、メッキ液中のSnイオンが受け取り、ソルダーレジスト層403の端部403x直下付近の配線パターン層402領域に、析出したSnの堆積層408が形成される。この錫イオンとCuイオンの一連の酸化還元反応により、図17(a)に示す、いわゆる局部電池が形成される(局部電池の形成過程については特許第3076342号を参照)。
 当該局部電池反応がさらに進行すると、Cuイオンの溶け出した部分は浸蝕領域406となる。浸蝕領域406はその後も外観上は端部403xに覆われた状態で残存する(図17(b))。浸蝕領域406は、外観上は目立たないが、フィルムキャリアテープを用いた製造工程時に引っ張り応力等が係ると、当該浸蝕領域406を基点として、フィルムキャリアテープが破断する等の不具合を生じうる。
 これに対して、本実施形態では、ソルダーレジスト層403と配線パターン層402とが有機被膜140により強固に被着されている上に、有機被膜140を構成する機能性有機分子14は、隣接する主鎖部B4どうしが相互に強く結合されているので、たとえメッキ工程時に配線パターン層402に対してソルダーレジスト層403が多少の内部応力を持っていても、端部403xが配線パターン層402からめくれ上がることはない。従って、ソルダーレジスト層403は常に配線パターン層402から剥離しないので、浸蝕領域406の発生を回避することができる。また、メッキ槽投入時にはソルダーレジスト層403の熱膨張は発生するが、メッキ工程後に通常のアニール処理等の後処理を施すことで前記内部応力を解消でき、ソルダーレジスト層403が応力により損傷する問題もない。従って本実施の形態7によれば、良好にSnメッキ層404を形成でき、且つ、機械的強度に優れるフィルムキャリアテープを実現することができる。
 なお特許第3076342号には、図18に示すように、ソルダーレジスト層403を設ける前に予め配線パターン層402表面にCu成分を含む第一Snメッキ層402xを施しておき、その後ソルダーレジスト層403の形成と第二Snメッキ層407をして、前記浸蝕領域406の発生を防止する技術を開示するが、本実施形態によれば、このような二度にわたるメッキ工程を実施する必要がなく、製造工程を短縮できるほか、メッキ液の使用量及び排液量を低減し、製造コスト及び環境問題の低減効果も期待できる点で、飛躍的差異が存在するものである。
 (製造方法について)
 上記フィルムキャリアテープ40の製造方法について説明する。
 まず、絶縁フィルム401上に、フォトエッチング法等を用いて所定の配線パターン層402(Cu箔)を形成する(図12(a))。
 次に有機被膜形成工程として、配線パターン層402上に、機能性有機分子14を付着させ、自己組織化現象により単分子膜からなる有機被膜140を形成する(図12(b))。
 次にソルダーレジスト層形成工程として、有機被膜140の上に、印刷法等を用いてソルダーレジスト材料のペーストを塗布し、ソルダーレジスト層403を形成する(図12(c))。このとき、第二官能基C4がソルダーレジスト材料を硬化させ、互いに化学結合することとなる。
 次に、ソルダーレジスト層403の形成領域以外の領域に設けた前記有機被膜140を剥離する。なお、この剥離処理の代わりに、前記形成領域以外の領域に予めマスキングを施しておくようにしてもよい。
 次に、Snメッキ槽に投入し、配線パターン層402の所定領域にSnメッキ層を形成する。無電解置換メッキ法を用いることで、Snメッキ層は導電材料表面のみに形成される。以上でフィルムキャリアテープ40が完成する。
 (機能性有機分子14の主鎖部について)
 図12(e)に示す機能性有機分子14は、第一官能基A4、主鎖部B4、第二官能基C4が順に結合された構成であるが、機能性有機分子として、第一官能基A4、主鎖部B11、主鎖部B12、第二官能基C4が順に結合された構成のもの、あるいは主鎖部B11及び主鎖部B12のいずれかに第一官能基A2と第二官能基C4が結合されものを用いてもよい。
 機能性有機分子が主鎖部B11を有する場合は、実施の形態1で述べたアンカー効果が得られ、また、機能性有機分子が主鎖部B12を有する場合は、実施の形態3で述べたUVカット効果が得られる。
 <実施の形態8>
 本実施の形態8のフィルムキャリアテープについて、実施の形態7との差異を中心に説明する。
 図13(e),(f)に示すように、本実施形態にかかるフィルムキャリアテープでは、配線パターン層402とソルダーレジスト層403とが、光重合開始性或いは光増感性を呈する第二官能基C5を備える機能性有機分子15を介して結合している。
 この機能性有機分子15は、図13(e)に示すように、主鎖部B5の一端に金属結合性の第一官能基A5が配され、他端に第二官能基C5が配されて構成されている。この第二官能基C5としては、ベンゾフェノン類、アセトフェノン類、アルキルフェノン類、ベンゾイン類、アントラキノン類、ケタール類、チオキサントン類、クマリン類、ハロゲン化トリアジン類、ハロゲン化オキサジアゾール類、オキシムエステル類、アクリジン類、アクリドン類、フルオレノン類、フルオラン類、アシルフォスフィンオキサイド類、メタロセン類、多核芳香族類、キサンテン類、シアニン類、スクアリウム類、アクリドン類、チタノセン類、テトラアルキルチウラムスルフィド類の一種以上を含む化合物、化学構造体若しくは誘導体のいずれかを用いることができる。また、これらの化合物以外でも、光励起重合開始性または光増感性を有するのであれば用いることができる。
 なお、第一官能基A5は、実施の形態1で説明した第一官能基A1と同様のもの、主鎖部B5は、実施の形態1で説明した主鎖部B1と同様のものである。
 このような機能性有機分子15を用いて有機被膜150を形成することによって、隣接する機能性有機分子15は、主鎖部B4どうしが相互に強く結合されるので、上記実施の形態7と同様にソルダーレジスト層と配線パターン層402との剥離防止効果を奏するが、それに加えて、ソルダーレジスト材料を塗布するときに、光重合開始剤を励起しつつ材料を迅速に硬化させ、ソルダーレジスト層を迅速に形成できる。これにより液ダレ、型崩れの発生を防止し、正確・緻密なパターンでソルダーレジスト層403を形成ができる。
 すなわち、塗布工程時におけるソルダーレジスト材料のペーストは、所定粘度に調節され、配線パターン層402上に予め配されたパターンマスクに沿って塗布される。塗布されたペーストを乾燥させた後にマスクを除去するが、塗布されたペーストは、乾燥後においても若干拡散し得る。このため、当該拡散規模を予め見込んで、パターニングマスクよりもやや小さい領域にペーストを塗布するように調整されるが、塗布されたペーストの端部が鋭角状となり、メッキ工程時に剥がれを生じ易くなる。
 これに対して、本実施の形態8では、ペースト塗布直前において、有機被膜に紫外線照射を行い、光エネルギー(E=hν)を第二官能基C5に与えておくことで、ペーストを早期に熱硬化させることができる。従って従来のように鋭角の端部が発生することがない。また、ペーストの流動が少ないため、パターンマスクに合わせて正確なペーストの塗布が行え、高精度な形状のソルダーレジスト層を形成できるメリットがある。
 (製造方法について)
 まず、絶縁フィルム401上に、フォトエッチング法等を用いて所定の配線パターン層402(Cu箔)を形成する(図13(a))。
 次に、配線パターン層402上に機能性有機分子15を付着させ、自己組織化現象により単分子膜からなる有機被膜140を形成する(図13(b))。
 次に、前記有機被膜140の機能性有機分子の第二官能基C5に対し、外部より所定波長(一例として約340nm以上)の紫外線を照射する。これにより、第二官能基C5を基底状態から励起状態(E0→E1)に移行させる。励起状態が維持される期間内に、ソルダーレジスト層の材料となるペースト材料を、ブレードBLを用いて所定厚みで塗布する(図13(c))。これにより、第二官能基は励起エネルギーを熱エネルギーとしてソルダーレジスト側に伝達し、結果としてソルダーレジストは熱硬化される。
 以上でフィルムキャリアテープが製造される(図13(d))。
 (機能性有機分子15の主鎖部について)
 図13(e)に示す機能性有機分子15は、第一官能基A5、主鎖部B5、二官能基C5が順に結合された構成であるが、機能性有機分子として、第一官能基A5、主鎖部B11、主鎖部B12、第二官能基C5が順に結合された構成のもの、あるいは主鎖部B11及び主鎖部B12のいずれかに第一官能基A5と第二官能基C5が結合されものを用いてもよい。
 機能性有機分子が主鎖部B11を有する場合は、実施の形態1で述べたアンカー効果が得られ、また、機能性有機分子が主鎖部B12を有する場合は、実施の形態3で述べたUVカット効果が得られる。
 <実施の形態9>
 本実施の形態9について、実施の形態7及び8との差異を中心に説明する。
 本実施の形態9では、上記実施の形態8で説明した機能性有機分子15、あるいは、機能性有機分子として、第一官能基A5、主鎖部B11、主鎖部B12、第二官能基C5が順に結合された構成のもの、あるいは主鎖部B11及び主鎖部B12のいずれかに第一官能基A5と第二官能基C5が結合されものを用いて配線パターン層402上に有機被膜を形成するが、ソルダーレジスト層403の形成に際してバッチ式手法を利用した点に特徴を持つ。
 これにより実施の形態8と同様にソルダーレジスト層403と配線パターン層402との結合性を強化できるほか、一般的な印刷法を採用する場合に比べてソルダーレジスト層403の厚み調整がより広範囲に行え、設計変更に伴う対応が柔軟であるといったメリットを有する。
 図14は、このフィルムキャリアテープ40の製造工程を示す図である。
 まず、絶縁フィルム401上に所定のパターンで配線パターン層402を形成する(図14(a))。
 次に、有機被膜形成工程として、配線パターン層402の表面に有機被膜150を成膜し、中間生成物を得る(図14(b))。この成膜は、実施の形態1で説明した方法と同様に行うことができる。
 次に、溶媒にソルダーレジスト材料となる光重合性化合物を分散させた樹脂分散液を調整する。光重合性化合物としては分子中にアクリレート基を有する化合物、分子中にメタクリレート基を含む化合物、分子中にアクリルアミド基を有する化合物、分子中にウレタン基を有する化合物、分子中にイソシアネート基を有する化合物、分子中にビニル基を有する化合物等のモノマー或いはオリゴマーの少なくともいずれかを用いることができる。調整した樹脂分散液を、バッチに満たす。
 上記中間生成物にソルダーレジスト層403を形成すべき領域に合わせたパターンマスクPMを施す。パターンマスクPMには、例えば公知の露光処理により形成したフォトレジスト層を用いることができる。
 これを上記バッチの樹脂分散液中に浸漬し、液中で安定状態に保ちつつ、外部より紫外線照射する(図14(c))ことによって、ソルダーレジスト層形成工程を実施する。
 すなわち、パターンマスクPMの開口部(フォトレジスト層を用いた場合は、そのパターンギャップ)における有機被膜150付近において、光重合開始剤である第二官能基C5を中心に、液中に分散された光重合性化合物の重合反応が生じる。当該重合反応は、第二官能基C5に接する位置から進行するため、紫外線照射時間を極めて短時間にすれば、単分子レベルの厚みのソルダーレジスト層403が形成される。また、反対に長時間照射を行えば、理論上は液中の第二官能基C5の深さに相当する厚みのソルダーレジスト層403が形成される。当該手法により、ソルダーレジスト層403の厚みを調整することができる。
 なお、ソルダーレジスト層403の厚みは、紫外線照射時間だけでなく、分散液中の化合物の分散濃度を調整することによっても制御することができる。
 紫外線硬化反応後、バッチから中間生成物を取り出し、マスクを除去して適宜洗浄する(図14(d))。
 その後は、ソルダーレジスト層403の下の領域以外の有機被膜150を除去し、Snメッキ層404を形成する(図14(e))。
 以上でフィルムキャリアテープ40が製造される。
 この製造方法によれば、分散液との比重差による浮力を受けて、有機被膜150上に形成されるソルダーレジスト層403が重力により型崩れを生ずることなく迅速に硬化形成されるので、精密なパターン形状及び厚みを有する薄膜或いは厚膜ソルダーレジスト層403を自在に形成できるメリットがある。
 なお、分散液の比重としては、光重合性化合物が一定期間、良好に分散できるように調整することが好適である。さらに、分散液中で光重合性化合物が徐々に沈降するように比重の関係を調整すれば、第二官能基周辺での重合反応時に、光重合性化合物が局所的に不足するのを防止することができる。
 <その他の事項>
 上記各実施の形態では、有機被膜を、機能性有機分子による単分子膜として説明しているが、半導体装置の基板等への接着強度が劣化しない程度であれば、複数層からなる膜であっても構わない。
 この場合、機能性有機分子からなる第一層と第二層との間で、隣接する分子の第二官能基と第一官能基との結合性が要求される。すなわち、第一官能基は配線リード部・ダイパッド等の金属結合性を有し、且つ、第二官能基とも結合性を呈することが必要である。
 また、本発明の機能性有機分子では、各実施の形態でそれぞれ例示した第一官能基および第二官能基、並びに主鎖部を、互いの機能が矛盾しない範囲で自由に組み合わせることができる。すなわち、機能性有機分子の構成は、各実施の形態毎に示した官能基等の化学構造に制限されるものではなく、各々の実施の形態に例示した化学構造を互いに組み合わせることが可能である。
  本発明は、IC、LSI、VLSI等の封止樹脂によりパッケージングされた半導体装置、またLED照明装置等に利用されるLED素子を実装したLED装置、及びフレキシブル基板等に利用されるフィルムキャリアテープ等への用途が期待できる。
 A1~A5 第一官能基
 B1~B5 主鎖部
 B11,B12 主鎖部
 C1~C5、C2’ 第二官能基
 3 配線リード
 3a、3b ダイパッド
 10 半導体装置(QFP)
 11~17、12a 機能性有機分子
 21 成型樹脂
 22 リフレクター
 30 配線リード部
 31 LED装置
 40 フィルムキャリアテープ
 42 LEDチップ
 63 Agメッキ被膜
 82a 漏出樹脂
 110、120、120a、130、140、150 有機被膜
 301、302 露出領域
 301a アウターリード
 302a インナーリード
 401 絶縁フィルム
 402 配線パターン層
 403x 端部
 403 ソルダーレジスト層
 404 Snメッキ層
 406 浸蝕領域
 408 Sn堆積層

 

Claims (38)

  1.  主鎖部の一端側を金属表面に配向して自己組織化膜を形成する有機化合物であって、
     前記主鎖部は、
     メチレン鎖、フルオロメチレン鎖、シロキサン鎖、グリコール鎖から選択される一種以上と、
     芳香族イミド骨格、アミド骨格から選択される一種以上とを有することを特徴とする有機化合物。
  2.  主鎖部の一端側を金属表面に配向して自己組織化膜を形成する有機化合物であって、
     前記主鎖部は、
     窒素を2原子以上含有する含窒素複素環を有することを特徴とする有機化合物。
  3.  前記含窒素複素環は、
     イミダソール、トリアゾール、テトラゾール、オキサジアゾール、チアジアゾール、ピリミジン、ピリダジン、ピラジン、トリアジンから選択される一種以上であることを特徴とする請求項2記載の有機化合物。
  4.  前記主鎖部は、さらに、前記含窒素複素環よりも前記一端から離れたところに、
     アリール骨格、アセン骨格、ピレン骨格、フェナントレン骨格、フルオレン骨格から選択される一種以上を有することを特徴とする請求項2記載の有機化合物。
  5.  主鎖部の一端側を金属表面に配向して自己組織化膜を形成する有機化合物であって、
     前記主鎖部は、アリール骨格、アセン骨格、ピレン骨格、フェナントレン骨格、フルオレン骨格から選択される一種以上を有することを特徴とする有機化合物。
  6.  前記主鎖部の一端に金属結合性の第一官能基を備え、
     前記主鎖部の他端に所定の特性を持つ第二官能基を備えることを特徴とする請求項1記載の有機化合物。
  7.  前記第一官能基が、
     チオール化合物、スルフィド化合物、含窒素複素環化合物から選択される一種以上を有することを特徴とする請求項6記載の有機化合物。
  8.  主鎖部の一端に金属結合性の第一官能基、他端に所定の特性を持つ第二官能基を備える機能性有機分子を含む材料を、金属材料からなる配線リードに被着させ、当該配線リードを構成する金属原子に前記第一官能基を結合させ、各々の機能性有機分子を自己組織化させることにより有機被膜を形成する有機被膜形成工程と、当該有機被膜形成工程の後に、前記有機被膜を配した配線リードの所定表面領域に樹脂を固着させる樹脂固着工程とを備える樹脂付金属部品の製造方法であって、
     前記有機被膜形成工程で用いる機能性有機分子は、主鎖部に、
     メチレン鎖、フルオロメチレン鎖、シロキサン鎖、グリコール鎖から選択される一種以上と、
     芳香族イミド骨格、アミド骨格から選択される一種以上とを有することを特徴とする樹脂付金属部品の製造方法。
  9.  主鎖部の一端に金属結合性の第一官能基、他端に所定の特性を持つ第二官能基を備える機能性有機分子を含む材料を、金属材料からなる配線リードに被着させ、当該配線リードを構成する金属原子に前記第一官能基を結合させ、各々の機能性有機分子を自己組織化させることにより有機被膜を形成する有機被膜形成工程と、当該有機被膜形成工程の後に、前記有機被膜を配した配線リードの所定表面領域に樹脂を固着させる樹脂固着工程とを備える樹脂付金属部品の製造方法であって、
     前記有機被膜形成工程で用いる機能性有機分子は、
     主鎖部に、窒素を2原子以上含有する含窒素複素環を有することを特徴とする樹脂付金属部品の製造方法。
  10.  主鎖部の一端に金属結合性の第一官能基、他端に所定の特性を持つ第二官能基を備える機能性有機分子を含む材料を、金属材料からなる配線リードに被着させ、当該配線リードを構成する金属原子に前記第一官能基を結合させ、各々の機能性有機分子を自己組織化させることにより有機被膜を形成する有機被膜形成工程と、当該有機被膜形成工程の後に、前記有機被膜を配した配線リードの所定表面領域に樹脂を固着させる樹脂固着工程とを備える樹脂付金属部品の製造方法であって、
     前記有機被膜形成工程で用いる機能性有機分子の主鎖部は、
     アリール骨格、アセン骨格、ピレン骨格、フェナントレン骨格、フルオレン骨格から選択される一種以上を有することを特徴とする樹脂付金属部品の製造方法。
  11.  前記有機被膜形成工程で用いる機能性有機分子の第一官能基は、
     チオール化合物、スルフィド化合物、含窒素複素環化合物から選択される一種以上を有することを特徴とする請求項8~10のいずれか記載の樹脂付金属部品の製造方法。
  12.  前記樹脂固着工程では、熱硬化性樹脂を用いることを特徴とする請求項8~10のいずれか記載の樹脂付金属部品の製造方法。
  13.  前記樹脂固着工程では、
     エポキシ樹脂、フェノール樹脂、アクリル樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリエーテル樹脂から選択される一種以上を前記熱硬化性樹脂として用い、
     前記第二官能基は、
     水酸基、カルボン酸、酸無水物、第一級アミン、第二級アミン、第三級アミン、アミド、チオール、スルフィド、イミド、ヒドラジド、イミダゾール、ジアザビシクロアルケン、有機フォスフィン、三フッ化ホウ素アミン錯体から選択される一種以上を有することを特徴とする請求項12記載の樹脂付金属部品の製造方法。
  14.  前記樹脂固着工程では、熱硬化性樹脂としてシリコーン樹脂を用い、
     前記第二官能基は、
     ビニル基、有機ハイドロジェンシラン、水酸基、酸無水物、第一級アミン、第二級アミンから選択される一種以上を有することを特徴とする請求項12記載の樹脂付金属部品の製造方法。
  15.  前記樹脂固着工程では、熱硬化性樹脂としてシリコーン樹脂を用い、
     前記第二官能基は、
     白金、パラジウム、ルテニウムあるいはロジウムを有する金属錯体から選択される一種以上を有することを特徴とする請求項12記載の樹脂付金属部品の製造方法。
  16.  前記第二官能基は、
     蛍光発光性化合物又はリン光発光性化合物から選択される一種以上を有することを特徴とする請求項8~10のいずれか記載の樹脂付金属部品の製造方法。
  17.  前記有機被膜形成工程では、
     前記樹脂固着工程において樹脂が固着されるべき配線リードの前記所定表面領域よりも広い面積にわたり、前記有機被膜を配線リード表面に形成することを特徴とする請求項8~10のいずれか記載の樹脂付金属部品の製造方法。
  18.  前記有機被膜形成工程は、
     溶媒に前記機能性有機分子を分散させて有機分子分散液を作製する分散液作製サブ工程と、
     前記配線リード表面のうち、前記樹脂が固着されるべき配線リードの前記所定表面領域よりも広い面積にわたり、当該配線リードを前記有機分子分散液に浸漬する浸漬サブ工程とを備えることを特徴とする請求項17記載の樹脂付金属部品の製造方法。
  19.  請求項8~10のいずれか記載の樹脂付金属部品の製造方法を工程に含み、
     さらに前記有機被膜形成工程と前記樹脂固着工程との間において、配線リードに半導体素子を電気的に接続する接続工程を有し、
     前記樹脂固着工程では、前記半導体素子を内包し、且つ前記配線リードの一部が外部に露出するように樹脂成型することを特徴とする半導体装置の製造方法。
  20.  金属材料からなる配線リードの表面に、有機化合物の自己組織化による有機被膜が被着された配線部材であって、
     前記有機化合物は、主鎖部の一端に前記配線リードに対して金属結合、水素結合、若しくは金属錯体による配位結合の少なくともいずれかの結合態様を呈する第一官能基、他端に樹脂硬化性若しくは樹脂硬化促進性を呈する第二官能基がそれぞれ配された化学構造を有し、
     前記有機化合物の主鎖部は、
     メチレン鎖、フルオロメチレン鎖、シロキサン鎖、グリコール鎖から選択される一種以上と、
     水酸基、ケトン、チオケトン、第一級アミン、第二級アミン、芳香族化合物から選択される一種以上の極性基とを有し、
     第一官能基が配線リードに結合されていることを特徴とする配線部材。
  21.  金属材料からなる配線リードの表面に、有機化合物の自己組織化による有機被膜が被着された配線部材であって、
     前記有機化合物は、主鎖部の一端に前記配線リードに対して金属結合、水素結合、若しくは金属錯体による配位結合の少なくともいずれかの結合態様を呈する第一官能基、他端に樹脂硬化性若しくは樹脂硬化促進性を呈する第二官能基がそれぞれ配された化学構造を有し、
     前記有機化合物の主鎖部は、
     メチレン鎖、フルオロメチレン鎖、シロキサン鎖、グリコール鎖から選択される一種以上と、
     芳香族イミド骨格、アミド骨格から選択される一種以上とを有し、
     第一官能基が配線リードに結合されていることを特徴とする配線部材。
  22.  金属材料からなる配線リードの表面に、有機化合物の自己組織化による有機被膜が被着された配線部材であって、
     前記有機化合物は、主鎖部の一端に前記配線リードに対して金属結合、水素結合、若しくは金属錯体による配位結合の少なくともいずれかの結合態様を呈する第一官能基、他端に樹脂硬化性若しくは樹脂硬化促進性を呈する第二官能基がそれぞれ配された化学構造を有し、
     前記有機化合物の主鎖部は、窒素を2原子以上含有する含窒素複素環を有し、
     第一官能基が配線リードに結合されていることを特徴とする配線部材。
  23.  前記含窒素複素環は、
     イミダソール、トリアゾール、テトラゾール、オキサジアゾール、チアジアゾール、ピリミジン、ピリダジン、ピラジン、トリアジンから選択される一種以上であることを特徴とする請求項22記載の配線部材。
  24.  有機化合物の主鎖部は、さらに、前記含窒素複素環よりも前記他端に近い側に、
     アリール骨格、アセン骨格、ピレン骨格、フェナントレン骨格、フルオレン骨格から選択される一種以上を有することを特徴とする請求項20~22のいずれか記載の配線部材。
  25.  金属材料からなる配線リードの表面に、有機化合物の自己組織化による有機被膜が被着された配線部材であって、
     前記有機化合物は、主鎖部の一端に前記配線リードに対して金属結合、水素結合、若しくは金属錯体による配位結合の少なくともいずれかの結合態様を呈する第一官能基、他端に樹脂硬化性若しくは樹脂硬化促進性を呈する第二官能基がそれぞれ配された化学構造を有し、
     前記有機化合物の主鎖部は、
     アリール骨格、アセン骨格、ピレン骨格、フェナントレン骨格、フルオレン骨格から選択される一種以上を有し、
     第一官能基が配線リードに結合されていることを特徴とする配線部材。
  26.  前記有機化合物の第一官能基は、
     チオール化合物、スルフィド化合物、含窒素複素環化合物から選択される一種以上を有することを特徴とする請求項20,21、22,25のいずれか記載の配線部材。
  27.  請求項20,21、22,25のいずれか記載の配線部材の一部に樹脂が固着され、前記有機被膜は、前記樹脂固着される配線部材の表面積よりも広い面積にわたり被着されてなることを特徴とする樹脂付金属部品。
  28.  前記配線部材に対し、LEDチップがマウントされる擂り鉢状表面を持つリフレクターが配設され、リフレクター表面にはAgからなるメッキ被膜が形成され、前記有機被膜は、さらに前記メッキ被膜の表面に被着され、前記有機化合物の第一官能基がメッキ被膜と結合していることを特徴とする請求項27記載の樹脂付金属部品。
  29.  請求項28記載の樹脂付金属部品のリフレクター内にLEDチップが配設され、リフレクター表面には透明樹脂が充填されてなることを特徴とするLED装置。
  30.  前記配線部材に対し、LEDチップがマウントされる擂り鉢状表面を持つリフレクターが配設され、当該リフレクターが熱可塑性樹脂で構成されていることを特徴とする請求項27記載の樹脂付金属部品。
  31.  請求項30記載の樹脂付金属部品のリフレクター内にLEDチップが配設され、
     リフレクター表面には透明樹脂が充填されてなることを特徴とするLED装置。
  32.  前記透明樹脂には、親水性の添加剤が混合されていることを特徴とする請求項31記載のLED装置。
  33.  前記樹脂は熱硬化性樹脂であることを特徴とする請求項27記載の樹脂付金属部品。
  34.  前記熱硬化性樹脂は、
     エポキシ樹脂、フェノール樹脂、アクリル樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリエーテル樹脂から選択される一種以上を含み、
     前記第二官能基は、
     水酸基、カルボン酸、酸無水物、第一級アミン、第二級アミン、第三級アミン、アミド、チオール、スルフィド、イミド、ヒドラジド、イミダゾール、ジアザビシクロアルケン、有機フォスフィン、三フッ化ホウ素アミン錯体から選択される一種以上を含むことを特徴とする請求項33記載の樹脂付金属部品。
  35.  前記熱硬化性樹脂は、シリコーン樹脂であり、
     前記第二官能基は、
     ビニル基、有機ハイドロジェンシラン、水酸基、酸無水物、第一級アミン、第二級アミンから選択される一種以上を含むことを特徴とする請求項33記載の樹脂付金属部品。
  36.  前記熱硬化性樹脂は、シリコーン樹脂であり、
     前記第二官能基は、
     白金、パラジウム、ルテニウム、ロジウムを有する金属錯体化合物の一種以上を含むことを特徴とする請求項33記載の樹脂付金属部品。
  37.  前記第二官能基は、
     蛍光発光性化合物及びリン光発光性化合物の一種以上を含むことを特徴とする請求項27記載の樹脂付金属部品。
  38.  請求項20,21、22,25のいずれか記載の配線部材に対し、
     前記配線リード上に半導体素子が電気接続され、前記配線部材が一部外部に露出され、且つ、前記有機被膜が形成された領域内において前記半導体素子が樹脂封止されてなることを特徴とする樹脂封止半導体装置。
PCT/JP2009/007177 2008-12-25 2009-12-24 リード、配線部材、パッケージ部品、樹脂付金属部品及び樹脂封止半導体装置、並びにこれらの製造方法 WO2010073660A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010543878A JPWO2010073660A1 (ja) 2008-12-25 2009-12-24 リード、配線部材、パッケージ部品、樹脂付金属部品及び樹脂封止半導体装置、並びにこれらの製造方法
CN2009801347596A CN102143952A (zh) 2008-12-25 2009-12-24 引线、配线构件、封装元件、附有树脂的金属元件、树脂密封的半导体器件、及它们的制造方法
US13/062,408 US8946746B2 (en) 2008-12-25 2009-12-24 Lead, wiring member, package part, metal part provided with resin and resin-sealed semiconductor device, and methods for producing same
US14/576,105 US9960325B2 (en) 2008-12-25 2014-12-18 Lead, wiring member, package part, metal part provided with resin and resin-sealed semiconductor device, and methods for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-330788 2008-12-25
JP2008330788 2008-12-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/062,408 A-371-Of-International US8946746B2 (en) 2008-12-25 2009-12-24 Lead, wiring member, package part, metal part provided with resin and resin-sealed semiconductor device, and methods for producing same
US14/576,105 Division US9960325B2 (en) 2008-12-25 2014-12-18 Lead, wiring member, package part, metal part provided with resin and resin-sealed semiconductor device, and methods for producing same

Publications (1)

Publication Number Publication Date
WO2010073660A1 true WO2010073660A1 (ja) 2010-07-01

Family

ID=42287305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007177 WO2010073660A1 (ja) 2008-12-25 2009-12-24 リード、配線部材、パッケージ部品、樹脂付金属部品及び樹脂封止半導体装置、並びにこれらの製造方法

Country Status (4)

Country Link
US (2) US8946746B2 (ja)
JP (1) JPWO2010073660A1 (ja)
CN (1) CN102143952A (ja)
WO (1) WO2010073660A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101806550B1 (ko) * 2011-06-14 2017-12-07 엘지이노텍 주식회사 발광소자 패키지
TWI455273B (zh) * 2011-08-04 2014-10-01 Chipmos Technologies Inc 晶片封裝結構
JP2013179271A (ja) * 2012-01-31 2013-09-09 Rohm Co Ltd 発光装置および発光装置の製造方法
US8895365B2 (en) * 2012-08-31 2014-11-25 Intel Corporation Techniques and configurations for surface treatment of an integrated circuit substrate
US10395947B2 (en) 2014-02-27 2019-08-27 Denso Corporation Manufacturing method of a resin molded article
TWI560914B (en) * 2014-06-09 2016-12-01 Prolight Opto Technology Corp Improvement structure for light emitting diode package
US9679831B2 (en) * 2015-08-13 2017-06-13 Cypress Semiconductor Corporation Tape chip on lead using paste die attach material
DE102016103790B8 (de) 2016-03-03 2021-06-02 Infineon Technologies Ag Herstellung einer Packung unter Verwendung eines platebaren Verkapselungsmaterials
US9799593B1 (en) * 2016-04-01 2017-10-24 Intel Corporation Semiconductor package substrate having an interfacial layer
DE102016109352B4 (de) * 2016-05-20 2022-03-24 Infineon Technologies Ag Chipgehäuse und verfahren zum bilden eines chipgehäuses
WO2018022456A1 (en) 2016-07-26 2018-02-01 Cree, Inc. Light emitting diodes, components and related methods
US20180331079A1 (en) * 2017-05-11 2018-11-15 Rohinni, LLC Waterproof sealed circuit apparatus and method of making the same
CN107316815B (zh) * 2017-06-30 2019-12-20 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、阵列基板和显示装置
WO2019071160A1 (en) 2017-10-06 2019-04-11 Glo Ab LIGHT-EMITTING DIODE CONTAINING OXIDIZED METAL CONTACTS
US11362238B2 (en) 2017-10-06 2022-06-14 Nanosys, Inc. Light emitting diode containing oxidized metal contacts
US11121298B2 (en) * 2018-05-25 2021-09-14 Creeled, Inc. Light-emitting diode packages with individually controllable light-emitting diode chips
US11233183B2 (en) 2018-08-31 2022-01-25 Creeled, Inc. Light-emitting diodes, light-emitting diode arrays and related devices
US11335833B2 (en) 2018-08-31 2022-05-17 Creeled, Inc. Light-emitting diodes, light-emitting diode arrays and related devices
EP3621417B1 (en) * 2018-09-07 2023-01-11 Lumileds LLC Method for applying electronic components
US11101411B2 (en) 2019-06-26 2021-08-24 Creeled, Inc. Solid-state light emitting devices including light emitting diodes in package structures

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557590A (en) * 1978-10-23 1980-04-28 Merck & Co Inc Novel pyromellitic acid diimide
JPS5558072A (en) * 1978-10-23 1980-04-30 Merck & Co Inc Symmetrically substituted pyromellitic acid diimide
JP2004200349A (ja) * 2002-12-18 2004-07-15 Sumitomo Bakelite Co Ltd 半導体用リードフレーム及びそれを用いた半導体装置
JP2004200350A (ja) * 2002-12-18 2004-07-15 Sumitomo Bakelite Co Ltd 半導体用リードフレーム及びそれを用いた半導体装置
JP2005132890A (ja) * 2003-10-28 2005-05-26 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2007266562A (ja) * 2006-03-03 2007-10-11 Matsushita Electric Ind Co Ltd 配線部材、樹脂付金属部品及び樹脂封止半導体装置、並びにこれらの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104048A (ja) * 1986-10-21 1988-05-09 Fuji Photo Film Co Ltd 画像形成方法
JPH0669366A (ja) 1992-08-21 1994-03-11 Ricoh Co Ltd 半導体装置実装体及び実装方法
JP3534347B2 (ja) * 1993-11-04 2004-06-07 日東電工株式会社 半導体素子の製造方法,ウエハ貼付用粘着シート
JP2810309B2 (ja) 1993-12-24 1998-10-15 三井化学株式会社 半導体装置用箱型樹脂成形体の製造方法
JP2731123B2 (ja) 1995-03-08 1998-03-25 三洋電機株式会社 半導体装置とその製造方法
JPH10329461A (ja) 1997-05-29 1998-12-15 Nec Yamagata Ltd 半導体装置及びその製造方法
JP3076342B1 (ja) 1999-11-11 2000-08-14 三井金属鉱業株式会社 電子部品実装用フィルムキャリアテ―プおよびその製造方法
JP2002033345A (ja) 2000-07-14 2002-01-31 Dainippon Printing Co Ltd 樹脂封止型半導体装置の製造方法
TWI373150B (en) * 2003-07-09 2012-09-21 Shinetsu Chemical Co Silicone rubber composition, light-emitting semiconductor embedding/protecting material and light-emitting semiconductor device
JP4586967B2 (ja) 2003-07-09 2010-11-24 信越化学工業株式会社 発光半導体被覆保護材及び発光半導体装置
US7749782B1 (en) * 2008-12-17 2010-07-06 Palo Alto Research Center Incorporated Laser roughening to improve LED emissions
JP2013062393A (ja) * 2011-09-14 2013-04-04 Sharp Corp 発光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557590A (en) * 1978-10-23 1980-04-28 Merck & Co Inc Novel pyromellitic acid diimide
JPS5558072A (en) * 1978-10-23 1980-04-30 Merck & Co Inc Symmetrically substituted pyromellitic acid diimide
JP2004200349A (ja) * 2002-12-18 2004-07-15 Sumitomo Bakelite Co Ltd 半導体用リードフレーム及びそれを用いた半導体装置
JP2004200350A (ja) * 2002-12-18 2004-07-15 Sumitomo Bakelite Co Ltd 半導体用リードフレーム及びそれを用いた半導体装置
JP2005132890A (ja) * 2003-10-28 2005-05-26 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2007266562A (ja) * 2006-03-03 2007-10-11 Matsushita Electric Ind Co Ltd 配線部材、樹脂付金属部品及び樹脂封止半導体装置、並びにこれらの製造方法

Also Published As

Publication number Publication date
CN102143952A (zh) 2011-08-03
US8946746B2 (en) 2015-02-03
US20150104657A1 (en) 2015-04-16
US20110169033A1 (en) 2011-07-14
JPWO2010073660A1 (ja) 2012-06-07
US9960325B2 (en) 2018-05-01

Similar Documents

Publication Publication Date Title
WO2010073660A1 (ja) リード、配線部材、パッケージ部品、樹脂付金属部品及び樹脂封止半導体装置、並びにこれらの製造方法
JP5519282B2 (ja) 樹脂付金属部品の製造方法および樹脂付金属部品
JP2007266562A (ja) 配線部材、樹脂付金属部品及び樹脂封止半導体装置、並びにこれらの製造方法
WO2010052856A1 (ja) リード、配線部材、パッケージ部品、樹脂付金属部品及び樹脂封止半導体装置、並びにこれらの製造方法
US20220123186A1 (en) Light emitting device
CN100585819C (zh) 布线部件、金属部件、半导体装置、以及它们的制造方法
CN102789994B (zh) 侧面可浸润半导体器件
CN103367300B (zh) 引线框、半导体装置以及引线框的制造方法
JP2011228589A (ja) 光半導体装置用部品ならびにその製造方法
JP5540466B2 (ja) 発光装置及びその製造方法
US7713787B2 (en) Mounted body and method for manufacturing the same
EP2485284B1 (en) Light emitting device
CN103377957B (zh) 芯片封装及形成芯片封装的方法
JP2008109061A (ja) リード、配線部材、パッケージ部品、樹脂付金属部品及び樹脂封止半導体装置、並びにこれらの製造方法
JP2009117822A (ja) リード、配線部材、パッケージ部品、樹脂付金属部品及び樹脂封止半導体装置、並びにこれらの製造方法
US20120119358A1 (en) Semicondiuctor package substrate and method for manufacturing the same
CN102005510B (zh) 发光二极管组件的制造方法
JP2010153632A (ja) リード、配線部材、パッケージ部品、樹脂付金属部品及び樹脂封止半導体装置、並びにこれらの製造方法
JP2009059910A (ja) リード、配線部材、パッケージ部品、樹脂付金属部品及び樹脂封止半導体装置、並びにこれらの製造方法
CN110323201A (zh) 柔性线路板与覆晶薄膜封装结构
JP6472596B2 (ja) 発光装置及びその製造方法
WO2021106781A1 (ja) 光半導体装置用金属構造の製造方法、パッケージ、及びポリアリルアミン重合体を含む溶液
JP7148793B2 (ja) 光半導体装置用金属材料、及びその製造方法、及びそれを用いた光半導体装置
JP2010199234A (ja) 光半導体装置用パッケージとこれを用いた光半導体装置
JP2011187698A (ja) 光半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134759.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834466

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010543878

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13062408

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834466

Country of ref document: EP

Kind code of ref document: A1