WO2010072858A1 - Transportador para transportar artículos suspendidos impulsados por chorros de aire - Google Patents

Transportador para transportar artículos suspendidos impulsados por chorros de aire Download PDF

Info

Publication number
WO2010072858A1
WO2010072858A1 PCT/ES2009/000556 ES2009000556W WO2010072858A1 WO 2010072858 A1 WO2010072858 A1 WO 2010072858A1 ES 2009000556 W ES2009000556 W ES 2009000556W WO 2010072858 A1 WO2010072858 A1 WO 2010072858A1
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor
height adjustment
passive
width
unit
Prior art date
Application number
PCT/ES2009/000556
Other languages
English (en)
French (fr)
Inventor
Jaime Martí Sala
Alex Martí Mercadé
Original Assignee
Sala Jaime Marti
Marti Mercade Alex
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sala Jaime Marti, Marti Mercade Alex filed Critical Sala Jaime Marti
Publication of WO2010072858A1 publication Critical patent/WO2010072858A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G21/00Supporting or protective framework or housings for endless load-carriers or traction elements of belt or chain conveyors
    • B65G21/20Means incorporated in, or attached to, framework or housings for guiding load-carriers, traction elements or loads supported on moving surfaces
    • B65G21/2045Mechanical means for guiding or retaining the load on the load-carrying surface
    • B65G21/2063Mechanical means for guiding or retaining the load on the load-carrying surface comprising elements not movable in the direction of load-transport
    • B65G21/2072Laterial guidance means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G51/00Conveying articles through pipes or tubes by fluid flow or pressure; Conveying articles over a flat surface, e.g. the base of a trough, by jets located in the surface
    • B65G51/02Directly conveying the articles, e.g. slips, sheets, stockings, containers or workpieces, by flowing gases
    • B65G51/03Directly conveying the articles, e.g. slips, sheets, stockings, containers or workpieces, by flowing gases over a flat surface or in troughs
    • B65G51/035Directly conveying the articles, e.g. slips, sheets, stockings, containers or workpieces, by flowing gases over a flat surface or in troughs for suspended articles, e.g. bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0235Containers
    • B65G2201/0244Bottles
    • B65G2201/0247Suspended bottles

Definitions

  • the present invention concerns a conveyor for transporting suspended articles driven by air jets.
  • the conveyor is useful, for example, in the field of handling empty plastic bottles on packaging lines or the like.
  • BACKGROUND OF THE INVENTION Conveyors for transporting suspended articles driven by air jets are well known in the art, comprising, in essence, a suspension rail and guide for supporting and guiding said suspended articles, an air jet emission device for emitting air jets in a direction of advance and against the suspended articles, and at least a pair of guide members as rails supported on the side and side of the trajectory of the suspended articles, below said suspension and guide rail and substantially parallel to it.
  • the suspension and guide rail comprises a pair of parallel rails separated by a suitable distance to allow the bottleneck to pass between them, and the bottles have a flange below the neck perimeter dimension to be supported and slide along said rails under the impulse of air jets emitted from multiple outlets or nozzles associated with one or more air ducts arranged along the suspension and guide rail.
  • the suspension and guide rail is fixed to the air duct or ducts, and the guide members are supported by a multitude of supports also attached to the air duct or ducts and distributed along the path of the conveyor.
  • bottles that have the neck and the perimeter flange of standard configuration, which is common for a multitude of different shapes and sizes of the body of the bottles.
  • bottles of different formats can be transported with the same conveyor without altering the suspension and guide rail or the air jet emission device.
  • the above-mentioned guide members by way of railings to adequately fulfill their function of lateral support, must be positioned according to the body dimensions of the specific type of bottle being transported.
  • Conveyors provided with motorized means have been proposed to regulate the separation of said pair of guide members from each other and the height of the guide members with respect to the suspension and guide rail including a motor or actuator associated with each support of each guide member for the regulation of the width and a motor or actuator associated with each support of each guide member for the regulation of the height.
  • this solution is economically unfeasible due to the large number of motors or actuators used.
  • Said beam also supports a plurality of width regulation motorization units distributed along its length and arranged so that each width regulation motorization unit drives several of said passive width regulation mechanisms in cooperation with rods. rigid motion transmission housed in a groove of the elongated structural member.
  • Each support support of the beam is equipped with a motorized height adjustment mechanism, so that, to regulate the height of the rails, the entire beam, with the railing supports, the passive width adjustment mechanisms, and its motorization units installed on said beam, is moved vertically by the mentioned motorized height adjustment mechanisms.
  • a drawback of the conveyor of the aforementioned international patent application WO 2006/077287 lies in the fact that the beam given its structural stiffness requirements is economically expensive, and the number of necessary actuators or motors remains relatively high because each support of the beam is associated with a motorized height adjustment mechanism.
  • the actuators or height adjustment motors must be relatively powerful and this increases their economic cost and energy consumption.
  • the use of said beam for curved or sinuous sections of the conveyor makes it difficult to implement this solution, since it requires the use of several spliced sections, for example, by welding, and each section must be properly formed.
  • the present invention contributes to solving the above and other inconveniences by providing, as detailed in its claim 1, a conveyor for transporting suspended articles by its neck section, driven by air jets, comprising a suspension rail and guide for supporting and guiding said suspended articles, an air jet emission device for emitting air jets in a forward direction and against the suspended articles, and at least a pair of guide members or railings supported on either side and side of the trajectory of the suspended articles, below said suspension and guide rail, and substantially parallel thereto.
  • the conveyor further comprises width regulation means to regulate the separation of said pair of guide members from each other and height adjustment means to regulate the height of the pair of guide members relative to the suspension and guide rail.
  • said width regulating means and height regulating means comprise a plurality of mechanism support units, separated, distributed along the conveyor.
  • Each of said mechanism support units supports a passive width adjustment mechanism and / or a passive height adjustment mechanism.
  • Two or more of said mechanism support units receive driving force for actuating their respective passive width regulation mechanisms from a width regulation motorization unit in cooperation with one or more first flexible movement transmission elements and / or driving force for driving their respective passive height adjustment mechanisms from a height adjustment motorization unit in cooperation with one or more second flexible motion transmission elements.
  • each width regulation motorization unit and each height regulation motorization unit can provide the driving force to drive the passive width and height regulation mechanisms installed in a relatively large number of mechanism support units, since a passive width regulation mechanism installed in a mechanism support unit and directly connected to the width regulation converter mechanism of a width regulation motorization unit by a first flexible motion transmission element can be connected to its time to the passive width adjustment mechanism installed in another mechanism support unit by another first flexible movement transmission element, and this it can be connected in turn to the passive width adjustment mechanism installed in yet another mechanism support unit by a further first flexible movement transmission element, and so on.
  • This construction is relatively light and uses a small number of motorization units, that is, a small number of actuators or motors, in comparison with the prior art conveyors.
  • the passive width and height adjustment mechanisms and the width and height adjustment converting mechanisms are carried out in a simple, light, economical manner and with a low coefficient of friction losses by means of mechanisms of belt, chain or cable mounted on pulleys.
  • the construction is easily adaptable to curved and even sinuous sections, as it does not depend, as in the state of the aforementioned technique, on a single support member, of longitudinal development that extends parallel to the air conduction of the conveyor.
  • Fig. 1 is a perspective view of a straight conveyor section of a conveyor for transporting suspended articles driven by air jets in accordance with an embodiment of the present invention, with a width adjustment motorization unit arranged between two mechanism support units;
  • Fig. 2 is a perspective view of a straight conveyor section with a height adjustment motorization unit arranged between two mechanism support units;
  • Fig. 3 is a perspective view of a section of curved conveyor with several mechanism support units
  • Fig. 4 is an enlarged perspective view of one of the mechanism support units
  • Fig. 5 is a front view of a mechanism support unit of Fig. 4 in a position adapted for articles of a large format;
  • Fig. 6 is a front view of a mechanism support unit of Fig. 4 in a position adapted for articles of a small format
  • Fig. 7 is a front view of the regulation motorization unit of. width of Fig. 1
  • Y Fig. 8 is a front view of the height adjustment motorization unit of Fig. 2.
  • Figs. 5 and 6 show in detail passive mechanisms of width regulation and height regulation, included in each mechanism support unit.
  • bottles A (see Figs. 5 to 8) are provided with a neck and have a perimeter flange located just below the neck for easy support and handling by automatic means.
  • the conventional construction structure conveyor comprises a suspension rail and guide 1a, 1b supported in an air duct 13 that is part of an air jet emission device 2.
  • said suspension and guide rail 1a, 1b comprises two parallel rails, separated by a suitable distance to allow the passage of the neck of the bottle A between them, so that the perimeter flange of the bottle A is supported in said rails 1a, 1b and slides along them under the impulse of some air jets emitted from multiple outlets or nozzles 55 (better shown in Figs. 5 to 8) associated with the air duct 13.
  • Ia air conduit 13 circulates pressurized air and said nozzles are arranged to emit air jets in a forward direction and against the suspended articles A.
  • the air conduit 13 is arranged along the suspension and guide rail 1a, 1 b, which defines a path for the conveyor.
  • the conveyor may comprise two or more air ducts provided with outlets or nozzles associated with the suspension and guide rail 1a, 1b, and the various ducts and the suspension and guide rail 1a, 1b are supported in a common structure.
  • the body of the bottle A hangs freely below the rails 1a, 1b, and a pair of guide members 3a, 3b, or handrails, supported by guide member supports 8a, 8b in positions below said suspension and guide rail 1a, 1b and substantially parallel thereto.
  • the Said railings 3a, 3b can be approached or moved away by the action of means for regulating width 4, 5, and can be approached or removed from the suspension and guide rail 1a, 1 b, to act efficiently as guiding means (Figs 5, 6) by the action of height adjustment means 6, 7.
  • Distributed along the conveyor are a plurality of separate mechanism support units 10, each of which supports a passive regulation mechanism of width 4, which is part of said width adjustment means 4, 5, and a passive height adjustment mechanism 6, which is part of the height adjustment means 6, 7.
  • the said guide member supports 8a, 8b are connected to said passive width adjustment mechanism 4.
  • the mechanism support units 10 could include only passive width regulation mechanisms 4 or only me passive height adjustment mechanisms 6, or there could be alternating mechanism support units 10, some of them carrying only passive width adjustment mechanisms 4 and the other only passive height adjustment mechanisms 6.
  • a straight conveyor section is shown, with a width adjustment motorization unit 5 disposed between two mechanism support units 10.
  • This width regulation motorization unit 5 supplies the necessary driving force to drive the passive width adjustment mechanisms 4 installed in the two adjacent mechanism support units 10 by means of first flexible movement transmission elements 11.
  • the width adjustment motorization unit 5 is installed in a first motorization support unit 17 fixed to the air duct 13 that supports the suspension and guide rail 1a, 1b, although alternatively it could be fixed to any other associated or related structure (eg fixing on a floor) to the air ducting or conduits and / or to the suspension and guide rail 1a, 1 b.
  • the first flexible movement transmission elements 11 are twist-turn transmission cables
  • the width regulation motorization unit 5 includes (see also Figs.
  • each passive width adjustment mechanism 4 is configured to convert a rotational movement of said first flexible movement transmission element 11 around its longitudinal axis into translational movements of the pair of guide member supports 8a, 8b in opposite horizontal directions perpendicular to the direction of the suspension and guide rail 1a, 1b, thus varying the mutual distance between the rails 3a, 3b.
  • two of said mechanism support units 10 receive the actuation of their respective passive width adjustment mechanisms 4 from a single width regulation motorization unit 5 by means of respective first flexible movement transmission elements 11.
  • each of the passive width regulation mechanisms 4 installed in these two mechanism support units 10 may be connected to the passive width regulation mechanism 4 installed in another adjacent mechanism support unit 10 by means of another first element Flexible transmission of movement 11 to supply the same the driving force generated by the motorization unit of width regulation 5, and so on.
  • the transmission of the driving force from one passive mechanism to another has a limit due to friction losses in each passive mechanism and depending on the power of the actuator or motor used, but it is estimated that a single motorization unit regulating width 5 can drive the passive width adjustment mechanisms 4 installed in up to six or more mechanism support units 10 in the straight conveyor sections.
  • the width regulation motorization unit 5 could be directly connected to a single passive width regulation mechanism 4 installed in an adjacent mechanism support unit 10 by means of a first flexible motion transmission element 11, and the driving force generated by the width regulation motorization unit 5 could be transmitted from this passive width regulation mechanism 4 to several other passive width regulation mechanisms 4 installed in successive mechanism support units 10 by means of corresponding first flexible movement transmission elements 11.
  • a straight conveyor section is shown, with a height adjustment motorization unit 7 arranged between two mechanism support units 10.
  • the said height adjustment motor unit 7 provides the necessary driving force to drive the passive height adjustment mechanisms 6 installed in the two adjacent mechanism support units 10 by means of a few second flexible movement transmission elements 12.
  • the height adjustment motorization unit 7 is installed in a second motorization support unit 20 fixed to the air duct 13 that supports the suspension and guide rail 1a, 1b, although alternatively it could be fixed to any other structure associated with the conduction or air ducts and / or the suspension and guide rail 1a, 1 b.
  • the second flexible movement transmission elements 12 are twist-turn transmission cables
  • the height adjustment motorization unit 7 includes (see also Figs. 4 to 6 and 8) a second linear actuator 18 connected to a height adjustment converter mechanism 19, which is configured to convert a linear movement of said second linear actuator 18 into a rotational movement of said second flexible movement transmission element 12 about its longitudinal axis.
  • each passive height adjustment mechanism 6 is configured to convert a rotational movement of said second flexible movement transmission element 12 around its longitudinal axis into a translation movement of an elevation / descent support 14 into a vertical direction
  • the passive width adjustment mechanism 4, together with the guide member supports 8a, 8b, is fixed to said lifting / lowering support 14, and thus a vertical displacement of the lifting / lowering support 14 varies the distance between the rails 3a, 3b and the suspension and guide rail 1a, 1b.
  • two of said mechanism support units 10 receive the drive of their respective passive height adjustment mechanisms 6 from a single height adjustment motorization unit 7 by means of respective second flexible movement transmission elements 12.
  • each of the passive height adjustment mechanisms 6 installed in these two mechanism support units 10 may be connected to the passive height adjustment mechanism 6 installed in another adjacent mechanism support unit 10 by means of another second element.
  • Flexible motion transmission 12 to supply the same driving force generated by the height adjustment motorization unit 7, and so on.
  • the transmission of the driving force from one passive mechanism to another has a limit due to frictional losses in each passive mechanism and depending on the power of the actuator or motor used, but it is estimated that a single height adjustment motorization unit 7 can drive the passive width adjustment mechanisms 4 installed in up to six or more mechanism support units 10 in the straight conveyor sections.
  • the height adjustment motorization unit 7 could be directly connected to a single passive height adjustment mechanism 6 installed in an adjacent mechanism support unit 10 by means of a second flexible motion transmission element 12, and the driving force generated by the height adjustment motorization unit 7 could be transmitted from this passive height adjustment mechanism 6 to several other passive height adjustment mechanisms 6 installed in successive mechanism support units 10 by means of corresponding second flexible motion transmission elements 12.
  • a curved conveyor section is shown, in which the air duct 13 is curved and configured to support the support and guide rail 1a, 1b (not shown).
  • Several separate mechanism support units 10 are distributed along the curved conveyor section and fixed to the air duct 13.
  • the passive width adjustment mechanisms 4 installed in the various mechanism support units 10 are connected to the to each other by corresponding first flexible movement transmission elements 11, and the passive height adjustment mechanisms 6 are connected to each other by corresponding second flexible movement transmission elements 12.
  • one or more width regulation motorization units 5 and / or one or more height adjustment motorization units 7 connected to one or two could also be installed in the curved conveyor section.
  • respective passive width adjustment mechanisms 4 and passive height adjustment mechanisms 6 installed in adjacent mechanism support units 10 by means of corresponding first and second flexible movement transmission elements 11, 12, in a manner analogous to that described more above in relation to Figs. 1 and 2.
  • Each mechanism support unit 10 comprises a structural support 39, which , according to the illustrated embodiment example, defines a "U" shaped frame with upper ends of its branches configured to be connected to lateral walls of the air duct 13.
  • the passive height adjustment mechanism 6 In a substantially vertical portion of one of the branches of the structural support 39 are fixed the passive height adjustment mechanism 6.
  • This comprises a pair of housings 40a, 40b connected by a guide arrangement 41 and a slide 32 coupled so that it can slide to Io along said guide arrangement 41.
  • a belt 30 is mounted on a pair of end pulleys 31a, 31b (Figs.
  • the passive width adjustment mechanism 4 comprises a pair of housings 42a, 42b connected by an arrangement of upper and lower guides 43a, 43b, and upper and lower slides 23a, 23b are coupled so that it can slide along said length. arrangement of upper and lower guides 43a, 43b without interfering with each other. Said housings 42a, 42b and the arrangement of upper and lower guides 43a, 43b form a structural assembly that is fixed to the lifting / lowering support 14 of the passive height adjustment mechanism 6.
  • a pair of extreme pulleys 22a, 22b (Figs 5 and 6) are rotatably installed inside said housings 42a, 42b, respectively, and on said pulleys 22a, 22b a belt 21 is mounted, so that said belt has an upper section and a lower section.
  • the upper slide 23a is fixed to the upper section of the belt 21 and the lower slide is connected to the lower section of the belt 21, and the aforementioned guide member supports 8a, 8b are respectively fixed to said upper and lower slides 23a, 23b
  • Each guide member support 8a, 8b is fitted with a corresponding jaw 44a, 44b configured to hold a corresponding guide member 3a, 3b.
  • One of said pulleys 22a is fixed to a shaft having protruding opposite ends terminated in a respective pair of couplings 24 configured to engage with a corresponding end coupling of the first flexible motion transmission element 11.
  • a rotation of one of the couplings 24 of the passive width adjustment mechanism 4 causes a displacement of both upper and lower slides 23a, 23b together with the respective guide member supports 8a, 8b in opposite directions, so that the railings 3a, 3b approach or move away from each other regardless of the height of the railings 3a, 3b with respect to the support and guide rail 1a, 1 b.
  • a rotation of one of the couplings 33 of the passive height adjustment mechanism causes a sliding of the slide 32 together with the lifting / lowering support 14 and the passive width adjustment mechanism 4 fixed thereto, so that the railings 3a, 3b rise or fall, that is, they approach or move away from the support and guide rail 1a, 1b regardless of the mutual distance between said railings 3a, 3b (with which they adapt their functionality as guide members to the characteristics dimensions and shape of bottles A).
  • the passive width and height adjustment mechanisms 4, 6 are arranged to handle bottles A of a relatively large size
  • the passive width and height adjustment mechanisms 4, 6 are arranged to handle A bottles of a relatively small size.
  • the width adjustment motorization unit 5 shown in Fig. 7 is installed in a first motorization support unit 17 fixed, in this example, to a side wall of the air duct 13, and comprises, as mentioned above, a first linear actuator 15 and a width regulating converter mechanism 16.
  • the first linear actuator 15 comprises, in the illustrated embodiment, an electric motor 45 connected to a nut and spindle mechanism 46 having a body connected in a fixed position with respect to the first motor support unit 17 by means of an appendix 47, and a mobile organ 28 in the form of an extensible rod.
  • the width adjustment converter mechanism 16 comprises a pair of housings 48a, 48b connected by a guide arrangement 49 and a slide 27 coupled so that it can slide along said guide arrangement 49.
  • said housings 48a, 48b are a pair of end pulleys 26a, 26b are rotatably installed, and a belt 25 is mounted on said pair of pulleys 26a, 26b, so that the belt 25 has a section close to the first motor support unit 17 and another section separated from it.
  • the slide 27 is fixed to said section of the belt 25 separated from the first motor support unit 17, and the movable member 28 of the first linear actuator 15 is fixed to the slide 27.
  • One of said pulleys 26a is connected to an axis having opposite protruding ends terminated in a respective pair of couplings 29 configured, for example in the form of pins of polygonal cross-section, to engage with a corresponding end coupling of the first flexible movement transmission element 11.
  • a displacement of the slide 27 driven by the first linear actuator 15 causes a movement of the belt 25 and a rotation of the pulleys 26a, 26b, and consequently an equivalent rotation of the couplings 29 associated with the axis of one of the pulleys 26a and the first or first flexible movement transmission elements 11 coupled thereto.
  • the height adjustment motorization unit 7 shown in Fig. 8 is installed in a second motorization support unit 20 fixed for example to a side wall of the air duct 13, and comprises, as mentioned above, a second linear actuator 18 and a height adjustment converter mechanism 19.
  • the second linear actuator 18 comprises, in the illustrated embodiment, an electric motor 50 connected to a nut and spindle mechanism 51 having a body connected in a fixed position with respect to the second motor support unit 20 by means of an appendix 52, and mobile organ 37 in the form of an extensible rod.
  • the height adjustment converter mechanism 19 comprises a pair of housings 53a, 53b connected by a guide arrangement 54 and a slide 36 coupled so that it can slide along said guide arrangement 54.
  • a pair of end pulleys 35a, 35b are rotatably installed, and a belt 25 is mounted on said pair of pulleys 35a, 35b, so that the belt 34 has a section close to the second motor support unit 20 and another section separated from it.
  • the slider 36 is fixed to said section of the belt 34 separated from the second motor support unit 20, and the mobile member 37 of the second linear actuator 18 is fixed to the slider 36.
  • One of said pulleys 35a is connected to an axis having protruding opposite ends terminated in respective configured couplings 38, for example in the form of pins of polygonal cross-section, to engage with a corresponding end coupling of the second flexible movement transmission element 12.
  • a displacement of the slide 36 driven by the second linear actuator 18 causes a movement of the belt 34 and a rotation of the pulleys 35a, 35b, and therefore an equivalent rotation of the couplings 38 associated with the axis of one of the pulleys. 35a and of the second or second flexible movement transmission elements 12 coupled thereto.
  • a motor control Electrical 50 of the second linear actuator 18 can establish an equivalence relationship between the movements of the mobile member 37 of the second linear actuator 18 and the resulting displacements of the lifting / lowering support 14 to which the passive width adjustment mechanism 4 is fixed with the guide member supports 8a, 8b, and consequently the distance between the railings 3a, 3b and the suspension and guide rail 1a, 1 b.
  • the second motor support unit 20 is arranged so as not to interfere with the first flexible movement transmission element 11, as best shown in Fig. 2.
  • the passive width and height adjustment mechanisms 4, 6 and the width and height adjustment converting mechanisms 16, 19 could use other flexible tensile elements, such as chains or cables, instead of belts, or alternatively they could be mechanisms based on gears, connecting rods, cams, etc., capable of converting a turning movement into a linear movement or vice versa.
  • each or some of the passive width and height adjustment mechanisms 4, 6 and the width and height adjustment converting mechanisms 16, 19 may have a single coupling 24, 33, 29, 38 instead of two.
  • first and second linear actuators 15, 18 may alternatively be electric linear motors or actuators driven by hydraulic or pneumatic means instead of the electric motor assemblies 45, 50 and spindle and nut mechanism 46, 51.
  • the mechanism support units 10 and the first and second motorization support units 17, 20 may alternatively be fixed to other support structures other than the air duct 13. It will be observed that the passive mechanisms of width regulation and regulation high, they have a very similar structure, which also happens with motorization units of width regulation and width regulation, resulting in a considerable construction economy of the proposed conveyor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Escalators And Moving Walkways (AREA)
  • Framework For Endless Conveyors (AREA)

Abstract

El transportador comprende un raíl de suspensión y guía para soportar y guiar dichos artículos suspendidos; un dispositivo (2) para emitir chorros de aire en una dirección de avance y contra los artículos suspendidos; un par de miembros de guía soportados a lado y lado de la trayectoria de los artículos suspendidos, bajo el raíl de suspensión y guía; y unos medios de regulación de anchura y unos medios de regulación de altura para regular, respectivamente, la separación entre los miembros de guía y la altura de éstos respecto al raíl de suspensión y guía. Ambos medios de regulación de anchura y altura comprenden unas unidades de soporte de mecanismos (10), separadas, distribuidas a Io largo del transportador, cada una de ellas soportando un mecanismo pasivo de regulación de anchura (4) y/o un mecanismo pasivo de regulación de altura (6).

Description

TRANSPORTADOR PARA TRANSPORTAR ARTÍCULOS SUSPENDIDOS IMPULSADOS POR CHORROS DE AIRE
Campo de Ia técnica La presente invención concierne a un transportador para transportar artículos suspendidos impulsados por chorros de aire. El transportador es útil, por ejemplo, en el campo del manejo de botellas de plástico vacías en líneas de envasado o similares.
Antecedentes de Ia invención Son bien conocidos en Ia técnica transportadores para transportar artículos suspendidos impulsados por chorros de aire que comprenden, en esencia, un raíl de suspensión y guía para soportar y guiar dichos artículos suspendidos, un dispositivo de emisión de chorros de aire para emitir chorros de aire en una dirección de avance y contra los artículos suspendidos, y al menos un par de miembros de guía a modo de barandillas soportados a lado y lado de Ia trayectoria de los artículos suspendidos, por debajo de dicho raíl de suspensión y guía y substancialmente paralelos al mismo. Cuando los artículos a transportar son botellas de plástico vacías, el raíl de suspensión y guía comprende un par de rieles paralelos separados por una distancia adecuada para permitir el paso del gollete de Ia botella entre ellos, y las botellas tienen por debajo del gollete una pestaña perimetral dimensionada para ser soportada y resbalar a Io largo de dichos rieles bajo el impulso de unos chorros de aire emitidos desde múltiples salidas o boquillas asociadas a uno o más conductos de aire dispuestos a Io largo del raíl de suspensión y guía. En general, el raíl de suspensión y guía está fijado al conducto o conductos de aire, y los miembros de guía son soportados por multitud de soportes fijados asimismo al conducto o conductos de aire y repartidos a Io largo de Ia trayectoria del transportador.
Existen botellas de plástico que tienen el gollete y Ia pestaña perimetral de configuración estándar, Ia cual es común para una multitud de diferentes formas y tamaños del cuerpo de las botellas. Así, botellas de diferentes formatos pueden ser transportadas con un mismo transportador sin alterar el raíl de suspensión y guía ni el dispositivo de emisión de chorros de aire. Sin embargo, los mencionados miembros de guía a modo de barandillas, para cumplir adecuadamente su función de soporte lateral, deben ser posicionados de acuerdo con las dimensiones del cuerpo del tipo específico de botella que está siendo transportado. Se han propuesto transportadores provistos de medios motorizados para regular Ia separación de dicho par de miembros de guía el uno del otro y Ia altura de los miembros de guía respecto al raíl de suspensión y guía incluyendo un motor o actuador asociado a cada soporte de cada miembro de guía para Ia regulación de Ia anchura y un motor o actuador asociado a cada soporte de cada miembro de guía para Ia regulación de Ia altura. Sin embargo, esta solución resulta económicamente inviable debido al gran número de motores o actuadores empleados. La solicitud de patente internacional WO 2006/077287 describe un transportador para transportar artículos suspendidos impulsados por chorros de aire del tipo descrito más arriba, el cual está provisto de un miembro estructural alargado o viga maciza o preferentemente en forma de un perfil rígido, hueco, de contorno no cerrado, dispuesto paralelamente y por debajo del raíl de suspensión y guía todo a Io largo de Ia trayectoria del transportador sustentado por medio de una pluralidad de soportes fijados a una conducción de aire que soporta el raíl de suspensión y guía. Esta viga es portadora de una pluralidad de mecanismos pasivos de regulación de anchura, espaciados a Io largo del transportador, cada uno configurado para desplazar un par de soportes móviles en direcciones horizontales opuestas, perpendiculares a Ia dirección del raíl de suspensión y guía. Cada uno de los miembros de guía o barandillas está ligado a uno de dichos soportes móviles. La citada viga también soporta una pluralidad de unidades de motorización de regulación de anchura distribuidas a Io largo de su longitud y dispuestas de manera que cada unidad de motorización de regulación de anchura acciona varios de dichos mecanismos pasivos de regulación de anchura en cooperación con unas varillas rígidas de transmisión de movimiento alojadas en una acanaladura del miembro estructural alargado. Cada soporte de sustentación de Ia viga está equipado con un mecanismo motorizado de regulación de altura, de manera que, para regular Ia altura de las barandillas, toda Ia viga, con los soportes de las barandillas, los mecanismos pasivos de regulación de anchura, y sus unidades de motorización instalados sobre dicha viga, es movido verticalmente por los mencionados mecanismos motorizados de regulación de altura.
Un inconveniente del transportador de Ia citada solicitud de patente internacional WO 2006/077287 reside en el hecho de que Ia viga dadas sus exigencias de rigidez estructural resulta costosa económicamente, y el número de actuadores o motores necesarios sigue siendo relativamente alto debido a que cada soporte de Ia viga está asociado a un mecanismo motorizado de regulación de altura. Además, debido al peso de Ia viga, los actuadores o motores de regulación de altura deben ser relativamente potentes y esto incrementa el coste económico de los mismos y el consumo de energía. Además el uso de Ia citada viga para tramos curvos o sinuosos del transportador dificulta Ia implementación de esta solución, por cuanto exige emplear varios tramos empalmados, por Ej., por soldadura, debiendo de conformar debidamente cada tramo. Exposición de Ia invención
La presente invención contribuye a solucionar los anteriores y otros inconvenientes aportando, según se detalla en su reivindicación 1 , un transportador para transportar artículos suspendidos por su sección de cuello, impulsados por chorros de aire, que comprende un raíl de suspensión y guía para soportar y guiar dichos artículos suspendidos, un dispositivo de emisión de chorros de aire para emitir chorros de aire en una dirección de avance y contra los artículos suspendidos, y al menos un par de miembros de guía o barandillas soportados a lado y lado de Ia trayectoria de los artículos suspendidos, por debajo de dicho raíl de suspensión y guía, y substancialmente paralelos al mismo. El transportador comprende además unos medios de regulación de anchura para regular Ia separación de dicho par de miembros de guía el uno del otro y unos medios de regulación de altura para regular Ia altura del par de miembros de guía respecto al raíl de suspensión y guía. De acuerdo con Ia presente invención, los mencionados medios de regulación de anchura y medios de regulación de altura comprenden una pluralidad de unidades de soporte de mecanismos, separadas, distribuidas a Io largo del transportador. Cada una de dichas unidades de soporte de mecanismos soporta un mecanismo pasivo de regulación de anchura y/o un mecanismo pasivo de regulación de altura. Dos o más de dichas unidades de soporte de mecanismos reciben fuerza motriz para el accionamiento de sus respectivos mecanismos pasivos de regulación de anchura desde una unidad de motorización de regulación de anchura en cooperación con uno o más primeros elementos flexibles de transmisión de movimiento y/o fuerza motriz para el accionamiento de sus respectivos mecanismos pasivos de regulación de altura desde una unidad de motorización de regulación de altura en cooperación con uno o más segundos elementos flexibles de transmisión de movimiento.
En Ia práctica, cada unidad de motorización de regulación de anchura y cada unidad de motorización de regulación de altura pueden proporcionar Ia fuerza motriz para accionar los mecanismos pasivos de regulación de anchura y altura instalados en un número relativamente grande de unidades de soporte de mecanismos, puesto que un mecanismo pasivo de regulación de anchura instalado en una unidad de soporte de mecanismos y conectado directamente al mecanismo conversor de regulación de anchura de una unidad de motorización de regulación de anchura por un primer elemento flexible de transmisión de movimiento puede estar conectado a su vez al mecanismo pasivo de regulación de anchura instalado en otra unidad de soporte de mecanismos por otro primer elemento flexible de transmisión de movimiento, y éste puede estar conectada a su vez al mecanismo pasivo de regulación de anchura instalado en todavía otra unidad de soporte de mecanismos por un ulterior primer elemento flexible de transmisión de movimiento, y así sucesivamente.
Esta construcción resulta relativamente ligera y utiliza un pequeño número de unidades de motorización, es decir, un pequeño número de actuadores o motores, en comparación con los transportadores del estado de Ia técnica. Además, de acuerdo con un ejemplo de realización, los mecanismos pasivos de regulación de anchura y altura y los mecanismos conversores de regulación de anchura y altura están realizados de una manera simple, ligera, económica y con un bajo coeficiente de pérdidas por fricción mediante mecanismos de correa, cadena o cable montado sobre poleas. La construcción es fácilmente adaptable a tramos curvos e incluso sinuosos, al no depender, como sucede en el estado de Ia técnica citado, de un miembro de soporte único, de desarrollo longitudinal que se extiende paralelo a Ia conducción de aire del transportador. Breve descripción de los dibujos
Las anteriores y otras características y ventajas se comprenderán más plenamente a partir de Ia siguiente descripción detallada de un ejemplo de realización con referencia a los dibujos adjuntos, en los que:
Ia Fig. 1 es una vista en perspectiva de una sección de transportador recta de un transportador para transportar artículos suspendidos impulsados por chorros de aire de acuerdo con un ejemplo de realización de presente invención, con una unidad de motorización de regulación de anchura dispuesta entre dos unidades de soporte de mecanismos;
Ia Fig. 2 es una vista en perspectiva de una sección de transportador recta con una unidad de motorización de regulación de altura dispuesta entre dos unidades de soporte de mecanismos;
Ia Fig. 3 es una vista en perspectiva de una sección de transportador curva con varias unidades de soporte de mecanismos;
Ia Fig. 4 es una vista en perspectiva ampliada de una de las unidades de soporte de mecanismos;
Ia Fig. 5 es una vista frontal de una unidad de soporte de mecanismos de Ia Fig. 4 en una posición adaptada para artículos de un formato grande;
Ia Fig. 6 es una vista frontal de una unidad de soporte de mecanismos de Ia Fig. 4 en una posición adaptada para artículos de un formato pequeño; Ia Fig. 7 es una vista frontal de Ia unidad de motorización de regulación de. anchura de Ia Fig. 1 ; y Ia Fig. 8 es una vista frontal de Ia unidad de motorización de regulación de altura de Ia Fig. 2.
Las Figs. 5 y 6 muestran en detalle unos mecanismos pasivos de regulación de anchura y de regulación de altura, incluidos en cada unidad de soporte de mecanismos.
Descripción detallada de un ejemplo de realización
En las figuras se muestra un transportador para transportar artículos suspendidos impulsados por chorros de aire de acuerdo con un ejemplo de realización de Ia presente invención, el cual está configurado para transportar botellas A de plástico, vacías. Como es habitual, las botellas A (véanse las Figs. 5 a 8) están provistas de un gollete y tienen una pestaña perimetral situada justo por debajo del gollete para facilitar su sustentación y manejo por medios automáticos.
Haciendo referencia específica a Ia Fig. 1 , el transportador de estructura constructiva convencional, comprende un raíl de suspensión y guía 1a, 1 b soportado en una conducción de aire 13 que forma parte de un dispositivo de emisión de chorros de aire 2. Tal como se muestra mejor en las Figs. 5 a 8, el mencionado raíl de suspensión y guía 1a, 1b comprende dos rieles paralelos, separados por una distancia adecuada para permitir el paso del gollete de Ia botella A entre los mismas, de manera que Ia pestaña perimetral de Ia botella A se apoya en dichos rieles 1a, 1 b y resbala a Io largo de los mismos bajo el impulso de unos chorros de aire emitidos desde múltiples salidas o boquillas 55 (mejor mostradas en las Figs. 5 a 8) asociadas a Ia conducción de aire 13. Por Ia conducción de aire 13 circula aire a presión y las mencionadas boquillas están dispuestas para emitir chorros de aire en una dirección de avance y contra los artículos suspendidos A. La conducción de aire 13 está dispuesta a Io largo del raíl de suspensión y guía 1a, 1 b, el cual define una trayectoria para el transportador. Alternativamente, el transportador puede comprender dos o más conducciones de aire provistas de salidas o boquillas asociadas al raíl de suspensión y guía 1a, 1 b, y las varias conducciones y el raíl de suspensión y guía 1a, 1b están soportados en una estructura común. El cuerpo de Ia botella A cuelga libremente por debajo de los rieles 1a, 1 b, y a lado y lado de Ia trayectoria de los cuerpos de las botellas A suspendidas están dispuestos un par de miembros de guía 3a, 3b, o barandillas, sustentados por unos soportes de miembro de guía 8a, 8b en unas posiciones situadas por debajo de dicho raíl de suspensión y guía 1a, 1b y substancialmente paralelas al mismo. Para adaptar el transportador a diferentes formaros de botella que tienen una misma configuración de gollete y pestaña perimetral pero diferentes configuraciones y/o tamaños de cuerpo, las mencionadas barandillas 3a, 3b pueden ser acercadas o alejadas por Ia acción de unos medios de regulación de anchura 4, 5, y pueden ser acercados o alejados del raíl de suspensión y guía 1a, 1 b, para actuar eficientemente como medios de guiado (Figs. 5, 6) por Ia acción de unos medios de regulación de altura 6, 7. Distribuidas a Io largo del transportador están dispuestas una pluralidad de unidades de soporte de mecanismos 10, separadas, cada una de las cuales soporta un mecanismo pasivo de regulación de anchura 4, que forma parte de los mencionados medios de regulación de anchura 4, 5, y un mecanismo pasivo de regulación de altura 6, que forma parte de los medios de regulación de altura 6, 7. Los mencionados soportes de miembro de guía 8a, 8b están conectados a dicho mecanismo pasivo de regulación de anchura 4. Se comprenderá que, alternativamente, las unidades de soporte de mecanismos 10 podrían incluir sólo mecanismos pasivos de regulación de anchura 4 o sólo mecanismos pasivos de regulación de altura 6, o podría haber unidades de soporte de mecanismos 10 alternadas, unas de ellas llevando sólo mecanismos pasivos de regulación de anchura 4 y las otras sólo mecanismos pasivos de regulación de altura 6.
En Ia Fig. 1 se muestra una sección de transportador recta, con una unidad de motorización de regulación de anchura 5 dispuesta entre dos unidades de soporte de mecanismos 10. Esta unidad de motorización de regulación de anchura 5 suministra Ia fuerza motriz necesaria para accionar los mecanismos pasivos de regulación de anchura 4 instalados en las dos unidades de soporte de mecanismos 10 adyacentes por medio de unos primeros elementos flexibles de transmisión de movimiento 11. La unidad de motorización de regulación de anchura 5 está instalada en una primera unidad de soporte de motorización 17 fijada a Ia conducción de aire 13 que soporta el raíl de suspensión y guía 1a, 1b, aunque alternativamente podría estar fijada a cualquier otra estructura asociada o relacionada (por Ej. fijación en un piso) a Ia conducción o conducciones de aire y/o al raíl de suspensión y guía 1a, 1 b. En el ejemplo de realización ilustrado, los primeros elementos flexibles de transmisión de movimiento 11 son cables de transmisión de giro a torsión, y Ia unidad de motorización de regulación de anchura 5 incluye (véanse también las Figs. 4 a 7) un primer actuador lineal 15 conectado a un mecanismo conversor de regulación de anchura 16 configurado para convertir un movimiento lineal de dicho primer actuador lineal 15 en un movimiento de giro de dicho primer elemento flexible de transmisión de movimiento 11 alrededor de su eje longitudinal. A su vez, cada mecanismo pasivo de regulación de anchura 4 está configurado para convertir un movimiento de giro de dicho primer elemento flexible de transmisión de movimiento 11 alrededor de su eje longitudinal en unos movimientos de traslación del par de soportes de miembro de guía 8a, 8b en direcciones horizontales opuestas perpendiculares a Ia dirección del raíl de suspensión y guía 1a, 1b, variando así Ia distancia mutua entre las barandillas 3a, 3b.
De este modo, dos de dichas unidades de soporte de mecanismos 10 reciben el accionamiento de sus respectivos mecanismos pasivos de regulación de anchura 4 desde una única unidad de motorización de regulación de anchura 5 por medio de respectivos primeros elementos flexibles de transmisión de movimiento 11. Además, cada uno de los mecanismos pasivos de regulación de anchura 4 instalados en estas dos unidades de soporte de mecanismos 10 puede estar conectado al mecanismo pasivo de regulación de anchura 4 instalado en otra unidad de soporte de mecanismos 10 adyacente por medio de otro primer elemento flexible de transmisión de movimiento 11 para suministrar al mismo Ia fuerza motriz generada por Ia unidad de motorización de regulación de anchura 5, y así sucesivamente. Obviamente, Ia transmisión de fuerza motriz de un mecanismo pasivo a otro tiene un límite debido a las pérdidas por fricción en cada mecanismo pasivo y en función de Ia potencia del actuador o motor empleado, pero se estima que una única unidad de motorización de regulación de anchura 5 puede accionar los mecanismos pasivos de regulación de anchura 4 instalados en hasta seis o más unidades de soporte de mecanismos 10 en las secciones de transportador rectas. Se comprenderá que, alternativamente, Ia unidad de motorización de regulación de anchura 5 podría estar conectada directamente a un único mecanismo pasivo de regulación de anchura 4 instalado en una unidad de soporte de mecanismos 10 adyacente por medio de un primer elemento flexible de transmisión de movimiento 11 , y Ia fuerza motriz generada por Ia unidad de motorización de regulación de anchura 5 podría ser transmitida desde este mecanismo pasivo de regulación de anchura 4 a varios otros mecanismos pasivos de regulación de anchura 4 instalados en sucesivas unidades de soporte de mecanismos 10 por medio de correspondientes primeros elementos flexibles de transmisión de movimiento 11.
En Ia Fig. 2 (de Ia que se han omitido el raíl de suspensión y guía 1a, 1 b y las barandillas 3a, 3b para mayor claridad del dibujo) se muestra una sección de transportador recta, con una unidad de motorización de regulación de altura 7 dispuesta entre dos unidades de soporte de mecanismos 10. La mencionada unidad de motorización de regulación de altura 7 suministra Ia fuerza motriz necesaria para accionar los mecanismos pasivos de regulación de altura 6 instalados en las dos unidades de soporte de mecanismos 10 adyacentes por medio de unos segundos elementos flexibles de transmisión de movimiento 12. La unidad de motorización de regulación de altura 7 está instalada en una segunda unidad de soporte de motorización 20 fijada a Ia conducción de aire 13 que soporta el raíl de suspensión y guía 1a, 1b, aunque alternativamente podría estar fijada a cualquier otra estructura asociada a Ia conducción o conducciones de aire y/o al raíl de suspensión y guía 1a, 1 b. En el ejemplo de realización ilustrado, los segundos elementos flexibles de transmisión de movimiento 12 son cables de transmisión de giro a torsión, y Ia unidad de motorización de regulación de altura 7 incluye (véanse también las Figs. 4 a 6 y 8) un segundo actuador lineal 18 conectado a un mecanismo conversor de regulación de altura 19, el cual está configurado para convertir un movimiento lineal de dicho segundo actuador lineal 18 en un movimiento de giro de dicho segundo elemento flexible de transmisión de movimiento 12 alrededor de su eje longitudinal. A su vez, cada mecanismo pasivo de regulación de altura 6 está configurado para convertir un movimiento de giro de dicho segundo elemento flexible de transmisión de movimiento 12 alrededor de su eje longitudinal en un movimiento de traslación de un soporte de elevación/descenso 14 en una dirección vertical. El mecanismo pasivo de regulación de anchura 4, junto con los soportes de miembro de guía 8a, 8b, está fijado al mencionado soporte de elevación/descenso 14, y así un desplazamiento vertical del soporte de elevación/descenso 14 varía Ia distancia entre las barandillas 3a, 3b y el raíl de suspensión y guía 1a, 1b.
Con esta disposición, dos de dichas unidades de soporte de mecanismos 10 reciben el accionamiento de sus respectivos mecanismos pasivos de regulación de altura 6 desde una única unidad de motorización de regulación de altura 7 por medio de respectivos segundos elementos flexibles de transmisión de movimiento 12. Además, cada uno de los mecanismos pasivos de regulación de altura 6 instalados en estas dos unidades de soporte de mecanismos 10 puede estar conectado al mecanismo pasivo de regulación de altura 6 instalado en otra unidad de soporte de mecanismos 10 adyacente por medio de otro segundo elemento flexible de transmisión de movimiento 12 para suministrar al mismo Ia fuerza motriz generada por Ia unidad de motorización de regulación de altura 7, y así sucesivamente. Obviamente, Ia transmisión de fuerza motriz de un mecanismo pasivo a otro tiene un límite debido a las pérdidas por fricción en cada mecanismo pasivo y dependiendo de Ia potencia del actuador o motor empleado, pero se estima que una única unidad de motorización de regulación de altura 7 puede accionar los mecanismos pasivos de regulación de anchura 4 instalados en hasta seis o más unidades de soporte de mecanismos 10 en las secciones de transportador rectas. Se comprenderá que, alternativamente, Ia unidad de motorización de regulación de altura 7 podría estar conectada directamente a un único mecanismo pasivo de regulación de altura 6 instalado en una unidad de soporte de mecanismos 10 adyacente por medio de un segundo elemento flexible de transmisión de movimiento 12, y la fuerza motriz generada por Ia unidad de motorización de regulación de altura 7 podría ser transmitida desde este mecanismo pasivo de regulación de altura 6 a varios otros mecanismos pasivos de regulación de altura 6 instalados en sucesivas unidades de soporte de mecanismos 10 por medio de correspondientes segundos elementos flexibles de transmisión de movimiento 12.
En Ia Fig. 3 (de Ia que se han omitido el raíl de suspensión y guía 1a, 1b y las barandillas 3a, 3b para mayor claridad del dibujo) se muestra una sección de transportador curva, en Ia que Ia conducción de aire 13 es curva y está configurada para soportar el raíl de soporte y guía 1a, 1 b (no mostrado). Varias unidades de soporte de mecanismos 10, separadas, están distribuidas a Io largo del tramo de transportador curvo y fijadas a Ia conducción de aire 13. Los mecanismos pasivos de regulación de anchura 4 instalados en las diversas unidades de soporte de mecanismos 10 están conectados el uno al otro por correspondientes primeros elementos flexibles de transmisión de movimiento 11 , y los mecanismos pasivos de regulación de altura 6 están conectados el uno al otro por correspondientes segundos elementos flexibles de transmisión de movimiento 12. Aquí, los primeros y segundos elementos flexibles de transmisión de movimiento 11 , 12, en virtud de su flexibilidad, se adaptan cómodamente a Ia curvatura de Ia sección de transportador manteniendo plenamente su capacidad para transmitir el movimiento de giro. Aunque en Ia Fig. 3 no están ilustrados, en el tramo de transportador curvo también podrían estar instaladas una o más unidades de motorización de regulación de anchura 5 y/o una o más unidades de motorización de regulación de altura 7 conectadas a uno o dos respectivos mecanismos pasivos de regulación de anchura 4 y mecanismos pasivos de regulación de altura 6 instalados en unidades de soporte de mecanismos 10 adyacentes por medio de correspondientes primeros y segundos elementos flexibles de transmisión de movimiento 11 , 12, de una manera análoga a Ia descrita más arriba en relación con las Figs. 1 y 2.
Con referencia al ejemplo de ejecución ilustrado en las Figs. 4, 5 y 6, a continuación se detalla Ia configuración de las unidades de soporte de mecanismos 10 y de los mecanismos pasivos de regulación de anchura y altura 4, 6. Cada unidad de soporte de mecanismos 10 comprende un soporte estructural 39, el cual, de acuerdo con el ejemplo de realización ilustrado, define un marco en forma de "U" con unos extremos superiores de sus ramas configurados para ser conectados a unas paredes laterales de Ia conducción de aire 13. En una porción substancialmente vertical de una de las ramas del soporte estructural 39 está fijado el mecanismo pasivo de regulación de altura 6. Éste comprende un par de carcasas 40a, 40b conectadas por una disposición de guías 41 y una corredera 32 acoplada de manera que puede deslizar a Io largo de dicha disposición de guías 41. Una correa 30 está montada sobre un par de poleas 31a, 31 b extremas (Figs. 5 y 6) respectivamente instaladas de manera giratoria dentro de dichas carcasas 4Oa1 40b, de manera que Ia correa 30 tiene un tramo cercano a Ia rama vertical del soporte estructural 39 y otro tramo separado de Ia rama vertical del soporte estructural 39. La corredera 32 está fijada a dicho tramo de dicha correa 30 separado de Ia rama vertical del soporte estructural 39, y el mencionado soporte de elevación/descenso 14 está fijado a Ia corredera 32. Una de dichas poleas 31a está conectada a un eje que tiene unos extremos opuestos sobresalientes terminados en un respectivo par de acoplamientos 33 (mejor mostrados en Ia Fig. 4) configurados, por ejemplo en forma de espigas de sección transversal poligonal, para acoplarse con un correspondiente acoplamiento extremo del segundo elemento flexible de transmisión de movimiento 12.
El mecanismo pasivo de regulación de anchura 4 comprende un par de carcasas 42a, 42b conectadas por una disposición de guías superior e inferior 43a, 43b, y unas correderas superior e inferior 23a, 23b están acoplada de manera que puede deslizar a Io largo de dicha disposición de guías superior e inferior 43a, 43b sin interferirse Ia una con Ia otra. Las citadas carcasas 42a, 42b y Ia disposición de guías superior e inferior 43a, 43b forman un conjunto estructural que está fijado al soporte de elevación/descenso 14 del mecanismo pasivo de regulación de altura 6. Un par de poleas 22a, 22b extremas (Figs. 5 y 6) están instaladas de manera giratoria dentro de dichas carcasas 42a, 42b, respectivamente, y sobre dichas poleas 22a, 22b está montada una correa 21 , de manera que dicha correa tiene un tramo superior y un tramo inferior. La corredera superior 23a está fijada al tramo superior de Ia correa 21 y Ia corredera inferior está conectado al tramo inferior de Ia correa 21 , y los anteriormente mencionados soportes de miembro de guía 8a, 8b están fijados respectivamente a dichas correderas superior e inferior 23a, 23b. Cada soporte de miembro de guía 8a, 8b lleva fijada una correspondiente mordaza 44a, 44b configurada para sujetar un correspondiente miembro de guía 3a, 3b. Una de dichas poleas 22a está fijada a un eje que tiene unos extremos opuestos sobresalientes terminados en un respectivo par de acoplamientos 24 configurados para acoplarse con un correspondiente acoplamiento extremo del primer elemento flexible de transmisión de movimiento 11.
Así, un giro de uno de los acoplamientos 24 del mecanismo pasivo de regulación de anchura 4 ocasiona un desplazamiento de ambas correderas superior e inferior 23a, 23b junto con los respectivos soportes de miembro de guía 8a, 8b en direcciones opuestas, con Io que las barandillas 3a, 3b se acercan o se alejan en uno del otro sea cual sea Ia altura de las barandillas 3a, 3b respecto al raíl de soporte y guía 1a, 1 b. Además, un giro de uno de los acoplamientos 33 del mecanismo pasivo de regulación de altura ocasiona un desplazamiento de la corredera 32 junto con el soporte de elevación/descenso 14 y el mecanismo pasivo de regulación de anchura 4 fijado al mismo, de manera que las barandillas 3a, 3b suben o bajan, es decir, se acercan o se alejan del raíl de soporte y guía 1a, 1b independientemente de Ia distancia mutua entre dichas barandillas 3a, 3b (con Io que adaptan su funcionalidad de miembros de guía a las características dimensionales y de forma de las botellas A). En Ia Fig. 5 los mecanismos pasivos de regulación de anchura y altura 4, 6 están dispuestos para manejar botellas A de un tamaño relativamente grande, mientras que en Ia Fig. 6 los mecanismos pasivos de regulación de anchura y altura 4, 6 están dispuestos para manejar botellas A de un tamaño relativamente pequeño.
En relación con las Figs. 7 y 8 se describen a continuación las unidades de motorización de regulación de anchura y altura 5, 7, respectivamente. La unidad de motorización de regulación de anchura 5 mostrada en Ia Fig. 7 está instalada en una primera unidad de soporte de motorización 17 fijada, en este ejemplo, a una pared lateral de Ia conducción de aire 13, y comprende, según se ha mencionado anteriormente, un primer actuador lineal 15 y un mecanismo conversor de regulación de anchura 16. El primer actuador lineal 15 comprende, en el ejemplo de realización ilustrado, un motor eléctrico 45 conectado a un mecanismo de tuerca y husillo 46 que tiene un cuerpo conectado en una posición fija respecto a Ia primera unidad de soporte de motorización 17 por medio de un apéndice 47, y un órgano móvil 28 en forma de un vastago extensible. El mecanismo conversor de regulación de anchura 16 comprende un par de carcasas 48a, 48b conectadas por una disposición de guías 49 y una corredera 27 acoplada de manera que puede deslizar a Io largo de dicha disposición de guías 49. En dichas carcasas 48a, 48b están instaladas de manera giratoria un par de poleas 26a, 26b extremas, y una correa 25 está montada sobre dicho par de poleas 26a, 26b, de manera que Ia correa 25 tiene un tramo cercano a Ia primera unidad de soporte de motorización 17 y otro tramo separado de Ia misma. La corredera 27 está fijada a dicho tramo de Ia correa 25 separado de Ia primera unidad de soporte de motorización 17, y el órgano móvil 28 del primer actuador lineal 15 está fijado a Ia corredera 27. Una de dichas poleas 26a está conectada a un eje que tiene unos extremos opuestos sobresalientes terminados en un respectivo par de acoplamientos 29 configurados, por ejemplo en forma de espigas de sección transversal poligonal, para acoplarse con un correspondiente acoplamiento extremo del primer elemento flexible de transmisión de movimiento 11. Con esta disposición, un desplazamiento de Ia corredera 27 accionado por el primer actuador lineal 15 ocasiona un movimiento de Ia correa 25 y un giro de las poleas 26a, 26b, y por consiguiente un giro equivalente de los acoplamientos 29 asociados al eje de una de las poleas 26a y del primer o primeros elementos flexibles de transmisión de movimiento 11 acoplados a los mismos. Mediante una selección de los diámetros de las poleas 26a, 26b del mecanismo conversor de regulación de anchura 16 y de las poleas 22a, 22b del mecanismo pasivo de regulación de anchura 4 (Figs. 5 y 6), y mediante un control del motor eléctrico 45 del primer actuador lineal 15 se puede establecer una relación de equivalencia entre los desplazamientos del órgano móvil 28 del primer actuador lineal 15 y los desplazamientos resultantes de los soportes de miembro de guía 8a, 8b, y en consecuencia Ia distancia mutua entre las barandillas 3a, 3b. Se observará que Ia primera unidad de soporte de motorización 17 está desplazada hacia fuera para no interferir con el segundo elemento flexible de transmisión de movimiento 12, y Ia flexibilidad de los primeros elementos flexibles de transmisión de movimiento 11 permite una correcta transmisión del movimiento de torsión a pesar de este desplazamiento, tal como se muestra mejor en Ia Fig. 1.
La unidad de motorización de regulación de altura 7 mostrada en Ia Fig. 8 está instalada en una segunda unidad de soporte de motorización 20 fijada por ejemplo a una pared lateral de Ia conducción de aire 13, y comprende, según se ha mencionado anteriormente, un segundo actuador lineal 18 y un mecanismo conversor de regulación de altura 19. El segundo actuador lineal 18 comprende, en el ejemplo de realización ilustrado, un motor eléctrico 50 conectado a un mecanismo de tuerca y husillo 51 que tiene un cuerpo conectado en una posición fija respecto a Ia segunda unidad de soporte de motorización 20 por medio de un apéndice 52, y órgano móvil 37 en forma de un vastago extensible. El mecanismo conversor de regulación de altura 19 comprende un par de carcasas 53a, 53b conectadas por una disposición de guías 54 y una corredera 36 acoplada de manera que puede deslizar a Io largo de dicha disposición de guías 54. En dichas carcasas 53a, 53b están instaladas de manera giratoria un par de poleas 35a, 35b extremas, y una correa 25 está montada sobre dicho par de poleas 35a, 35b, de manera que Ia correa 34 tiene un tramo cercano a Ia segunda unidad de soporte de motorización 20 y otro tramo separado de Ia misma. La corredera 36 está fijada a dicho tramo de Ia correa 34 separado de Ia segunda unidad de soporte de motorización 20, y el órgano móvil 37 del segundo actuador lineal 18 está fijado a Ia corredera 36. Una de dichas poleas 35a está conectada a un eje que tiene unos extremos opuestos sobresalientes terminados en unos respectivos acoplamientos 38 configurados, por ejemplo en forma de espigas de sección transversal poligonal, para acoplarse con un correspondiente acoplamiento extremo del segundo elemento flexible de transmisión de movimiento 12.
Así, un desplazamiento de Ia corredera 36 accionado por el segundo actuador lineal 18 ocasiona un movimiento de Ia correa 34 y un giro de las poleas 35a, 35b, y por consiguiente un giro equivalente de los acoplamientos 38 asociados al eje de una de las poleas 35a y del segundo o segundos elementos flexibles de transmisión de movimiento 12 acoplados a los mismos. Mediante una selección de los diámetros de las poleas 35a, 35b del mecanismo conversor de regulación de altura 19 y de las poleas 31a, 31 b del mecanismo pasivo de regulación de altura 6 (Figs. 5 y 6), y mediante un control del motor eléctrico 50 del segundo actuador lineal 18 se puede establecer una relación de equivalencia entre los desplazamientos del órgano móvil 37 del segundo actuador lineal 18 y los desplazamientos resultantes del soporte de elevación/descenso 14 al que está fijado el mecanismo pasivo de regulación de anchura 4 con los soportes de miembro de guía 8a, 8b, y en consecuencia Ia distancia entre las barandillas 3a, 3b y el raíl de suspensión y guía 1a, 1 b. Se observará que Ia segunda unidad de soporte de motorización 20 está dispuesta de manera que no interfiere con el primer elemento flexible de transmisión de movimiento 11 , tal como se muestra mejor en Ia Fig. 2.
Un experto en Ia técnica será capaz de efectuar modificaciones y variaciones a partir del ejemplo de realización mostrado y descrito sin salirse del alcance de Ia presente invención. Por ejemplo, los mecanismos pasivos de regulación de anchura y altura 4, 6 y los mecanismos conversores de regulación de anchura y altura 16, 19 podrían utilizar otros elementos flexibles de tracción, tales como cadenas o cables, en lugar de de correas, o alternativamente podrían ser mecanismos basados en engranajes, bielas, levas, etc., capaces de convertir un movimiento de giro en un movimiento lineal o viceversa. Asimismo, cada uno o algunos de los mecanismos pasivos de regulación de anchura y altura 4, 6 y los mecanismos conversores de regulación de anchura y altura 16, 19 pueden tener un único acoplamiento 24, 33, 29, 38 en lugar de dos. Además, los primer y segundo actuadores lineales 15, 18 pueden ser alternativamente motores lineales eléctricos o actuadores accionados por medios hidráulicos o neumáticos en lugar de los conjuntos de motor eléctrico 45, 50 y mecanismo de husillo y tuerca 46, 51. Por otra parte, las unidades de soporte de mecanismos 10 y las primera y segunda unidades de soporte de motorización 17, 20 pueden estar fijadas alternativamente a otras estructuras de soporte diferentes de Ia conducción de aire 13. Se observará que los mecanismos pasivos de regulación de anchura y de regulación de altura, tienen una estructura muy similar Io que ocurre asimismo con las unidades de motorización de regulación de anchura y de regulación de anchura, redundando todo ello en una considerable economía constructiva del transportador propuesto.
El alcance de Ia presente invención está definido en las reivindicaciones adjuntas.

Claims

REIVINDICACIONES
1.- Transportador para transportar artículos suspendidos impulsados por chorros de aire, del tipo que comprende: un raíl de suspensión y guía (1a, 1 b) para soportar y guiar dichos artículos suspendidos (A); un dispositivo de emisión de chorros de aire (2) para emitir chorros de aire en una dirección de avance y contra los artículos suspendidos (A); al menos un par de miembros de guía (3a, 3b) o barandillas, soportados a lado y lado de Ia trayectoria de los artículos suspendidos (A), por debajo de dicho raíl de suspensión y guía (1a, 1b), y substancialmente paralelos al mismo; unos medios de regulación de anchura (4, 5) para regular Ia separación de dicho par de barandillas (3a, 3b), y unos medios de regulación de altura (6, 7) para regular Ia altura del par de barandillas (3a, 3b) respecto al raíl de suspensión y guía (1a, 1b), caracterizado porque dichos medios de regulación de anchura (4, 5) y medios de regulación de altura (6, 7) comprenden una pluralidad de unidades de soporte de mecanismos (10), separadas, distribuidas a Io largo del transportador, siendo portadora cada una de dichas unidades de soporte de mecanismos (10) de un mecanismo pasivo de regulación de anchura (4) y/o un mecanismo pasivo de regulación de altura (6), donde al menos dos de dichas unidades de soporte de mecanismos (10) reciben el accionamiento de sus respectivos mecanismos pasivos de regulación de anchura (4) desde una unidad de motorización de regulación de anchura (5) en cooperación con al menos un primer elemento flexible de transmisión de movimiento (11) y/o el accionamiento de sus respectivos mecanismos pasivos de regulación de altura (6) desde una unidad de motorización de regulación de altura (7) en cooperación con al menos un segundo elemento flexible de transmisión de movimiento (12).
2.- Transportador, de acuerdo con Ia reivindicación 1 , caracterizado porque las unidades de soporte de mecanismos (10) están fijadas a una conducción de aire (13) que soporta el raíl de suspensión y guía (1a, 1 b).
3.- Transportador, de acuerdo con Ia reivindicación 1 ó 2, caracterizado porque dicho primer elemento flexible de transmisión de movimiento (11) es un cable de transmisión de giro a torsión y cada mecanismo pasivo de regulación de anchura (4) está configurado para convertir un movimiento de giro de dicho primer elemento flexible de transmisión de movimiento (11) alrededor de su eje longitudinal en unos movimientos de traslación de un par de soportes de miembro de guía (8a, 8b) en direcciones horizontales opuestas perpendiculares a Ia dirección del raíl de suspensión y guía (1a, 1b), estando cada una de las barandillas (3a, 3b) soportada en uno de dichos soportes de miembro de guía (8a, 8b).
4.- Transportador, de acuerdo con Ia reivindicación 3, caracterizado porque dicha unidad de motorización de regulación de anchura (5) incluye un primer actuador lineal (15) conectado a un mecanismo conversor de regulación de anchura (16) configurado para convertir un movimiento lineal de dicho primer actuador lineal (15) en un movimiento de giro de dicho primer elemento flexible de transmisión de movimiento (11) alrededor de su eje longitudinal.
5.- Transportador, de acuerdo con Ia reivindicación 4, caracterizado porque dicha unidad de motorización de regulación de anchura (5) está instalada en una primera unidad de soporte de motorización (17) dispuesta entre dos de dichas unidades de soporte de mecanismos (10) y distanciada de las mismas, estando dicho mecanismo conversor de regulación de anchura (16) de Ia unidad de motorización de regulación de anchura (5) conectado directamente a los mecanismos pasivos de regulación de anchura (4) instalados en las dos unidades de soporte de mecanismos (10) adyacentes por dos respectivos primeros elementos flexibles de transmisión de movimiento (11).
6.- Transportador, de acuerdo con Ia reivindicación 4, caracterizado porque dicha unidad de motorización de regulación de anchura (5) está instalada en una primera unidad de soporte de motorización (17) adyacente a una de dichas unidades de soporte de mecanismos (10) y distanciado de Ia misma, estando dicho mecanismo conversor de regulación de anchura (16) de Ia unidad de motorización de regulación de anchura (5) conectado directamente al mecanismo pasivo de regulación de anchura (4) instalado en Ia unidad de soporte de mecanismos (10) adyacente por uno de dichos primeros elementos flexibles de transmisión de movimiento (11).
7.- Transportador, de acuerdo con Ia reivindicación 5 ó 6, caracterizado porque uno o más de los mecanismos pasivos de regulación de anchura (4) conectados directamente a un mecanismo conversor de regulación de anchura (16), está conectado a su vez a otro mecanismo pasivo de regulación de anchura (4) instalado en otra unidad de soporte de mecanismos (10) por otro primer elemento flexible de transmisión de movimiento (11).
8.- Transportador, de acuerdo con Ia reivindicación 5 ó 6, caracterizado porque dicha primera unidad de soporte de motorización (17) está fijada a una conducción de aire (13) que soporta el raíl de suspensión y guía (1a, 1b).
9.- Transportador, de acuerdo con Ia reivindicación 1 ó 2, caracterizado porque dicho segundo elemento flexible de transmisión de movimiento (12) es un cable de transmisión de giro a torsión y cada mecanismo pasivo de regulación de altura (6) está configurado para convertir un movimiento de giro de dicho segundo elemento flexible de transmisión de movimiento (12) alrededor de su eje longitudinal en un movimiento de traslación de un soporte de elevación/descenso (14) en una dirección vertical, estando el mecanismo pasivo de regulación de anchura (4) junto con los soportes de miembro de guía (8a, 8b) fijado a dicho soporte de elevación/descenso (14) para moverse con el mismo.
10.- Transportador, de acuerdo con Ia reivindicación 9, caracterizado porque dicha unidad de motorización de regulación de altura (7) incluye un segundo actuador lineal (18) conectado a un mecanismo conversor de regulación de altura (19) configurado para convertir un movimiento lineal de dicho segundo actuador lineal (18) en un movimiento de giro de dicho segundo elemento flexible de transmisión de movimiento (12) alrededor de su eje longitudinal.
11.- Transportador, de acuerdo con Ia reivindicación 10, caracterizado porque dicha unidad de motorización de regulación de altura (7) está instalada en una segunda unidad de soporte de motorización (20) dispuesta entre dos de dichas unidades de soporte de mecanismos (10) y distanciada de las mismas, estando dicho mecanismo conversor de regulación de altura (19) de Ia unidad de motorización de regulación de altura (7) conectado directamente a los mecanismos pasivos de regulación de altura (6) instalados en las dos unidades de soporte de mecanismos (10) adyacentes por dos respectivos segundos elementos flexibles de transmisión de movimiento (12).
12.- Transportador, de acuerdo con Ia reivindicación 10, caracterizado porque dicha unidad de motorización de regulación de altura (7) está instalada en una segunda unidad de soporte de motorización (20) adyacente a una de dichas unidades de soporte de mecanismos (10) y distanciado de Ia misma, estando dicho mecanismo conversor de regulación de altura (19) de Ia unidad de motorización de regulación de altura (7) conectado directamente al mecanismo pasivo de regulación de altura (6) instalado en Ia unidad de soporte de mecanismos (10) adyacente por uno de dichos segundos elementos flexibles de transmisión de movimiento (12).
13.- Transportador, de acuerdo con Ia reivindicación 11 ó 12, caracterizado- porqué al menos uno de los mecanismos pasivos de regulación de altura (6) conectados directamente al mecanismo conversor de regulación de altura (19) está conectado a su vez a otro mecanismo pasivo de regulación de altura (6) instalado en otra unidad de soporte de mecanismos (10) por otro segundo elemento flexible de transmisión de movimiento (12).
14.- Transportador, de acuerdo con Ia reivindicación 11 ó 12, caracterizado porque dicha segunda unidad de soporte de motorización (20) está fijada a una conducción de aire (13) que soporta el raíl de suspensión y guía (1a, 1b).
15.- Transportador, de acuerdo con Ia reivindicación 3, caracterizado porque el mecanismo pasivo de regulación de anchura (4) comprende una correa (21), cadena o cable montada sobre poleas (22a, 22b) y un par de correderas (23a, 23b) fijadas respectivamente a tramos opuestos de dicha correa (21), cadena o cable, estando dichos soportes de miembro de guía (8a, 8b) fijados respectivamente a dichas correderas (23a, 23b), y estando una de dichas poleas (22a) relacionada con un eje terminado en al menos un acoplamiento (24) configurado para acoplarse con un extremo del primer elemento flexible de transmisión de movimiento (11).
16.- Transportador, de acuerdo con Ia reivindicación 4, caracterizado porque dicho mecanismo conversor de regulación de anchura (16) comprende una correa (25), cadena o cable montada sobre poleas (26a, 26b) y una corredera (27) fijada a un tramo de dicha correa (25), cadena o cable, estando un órgano móvil (28) del primer actuador lineal (15) conectado a dicha corredera, y estando una de dichas poleas (26a) relacionada con un eje terminado en al menos un acoplamiento (29) configurado para acoplarse con otro extremo del primer elemento flexible de transmisión de movimiento (11).
17.- Transportador, de acuerdo con Ia reivindicación 9, caracterizado porque el mecanismo pasivo de regulación de altura (6) comprende una correa (30), cadena o cable montada sobre poleas (31 a, 31b) y una corredera (32) fijada a un tramo de dicha correa (30), cadena o cable, estando dicho soporte de elevación/descenso (14) fijado a dicha corredera (32), y estando una de dichas poleas (31a) relacionada con un eje terminado en al menos un acoplamiento (33) configurado para acoplarse con un extremo del segundo elemento flexible de transmisión de movimiento (12).
18.- Transportador, de acuerdo con Ia reivindicación 10, caracterizado porque dicho mecanismo conversor de regulación de altura (19) comprende una correa (34), cadena o cable montada sobre poleas (35a, 35b) y una corredera (36) fijada a un tramo de dicha correa (34), cadena o cable, estando un órgano móvil (37) del segundo actuador lineal (18) conectado a dicha corredera (36), y estando una de dichas poleas (26a) relacionada con un eje terminado en al menos un acoplamiento (38) configurado para acoplarse con otro extremo del segundo elemento flexible de transmisión de movimiento (12).
PCT/ES2009/000556 2008-12-26 2009-12-03 Transportador para transportar artículos suspendidos impulsados por chorros de aire WO2010072858A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200803701 2008-12-26
ES200803701A ES2341831B1 (es) 2008-12-26 2008-12-26 Transportador para transportar articulos suspendidos impulsados por chorros de aire.

Publications (1)

Publication Number Publication Date
WO2010072858A1 true WO2010072858A1 (es) 2010-07-01

Family

ID=42243997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000556 WO2010072858A1 (es) 2008-12-26 2009-12-03 Transportador para transportar artículos suspendidos impulsados por chorros de aire

Country Status (2)

Country Link
ES (1) ES2341831B1 (es)
WO (1) WO2010072858A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900007193A1 (it) * 2019-05-24 2020-11-24 Gd Spa Sistema di convogliamento per una macchina riempitrice di flaconi, in particolare del settore farmaceutico

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017073A1 (en) * 1998-09-22 2000-03-30 Moore Leslie A Adjustable guide rail for transporting products
US20030094352A1 (en) * 2001-11-02 2003-05-22 Rexnord Marbett S.P.A. Positioning system of conveyor guides
US20030164280A1 (en) * 2000-03-16 2003-09-04 Pascal Delaporte Curved conveyor section having guide rails with adjustable spacing
WO2005118437A1 (en) * 2004-06-01 2005-12-15 Flexlink Components Ab Arrangement and method for guide rail adjustment on a conveyor
WO2006077287A1 (fr) * 2005-01-20 2006-07-27 Netra Systems Convoyeur a air pour articles suspendus avec poutre porteuse pour accessoires de convoyage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017073A1 (en) * 1998-09-22 2000-03-30 Moore Leslie A Adjustable guide rail for transporting products
US20030164280A1 (en) * 2000-03-16 2003-09-04 Pascal Delaporte Curved conveyor section having guide rails with adjustable spacing
US20030094352A1 (en) * 2001-11-02 2003-05-22 Rexnord Marbett S.P.A. Positioning system of conveyor guides
WO2005118437A1 (en) * 2004-06-01 2005-12-15 Flexlink Components Ab Arrangement and method for guide rail adjustment on a conveyor
WO2006077287A1 (fr) * 2005-01-20 2006-07-27 Netra Systems Convoyeur a air pour articles suspendus avec poutre porteuse pour accessoires de convoyage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900007193A1 (it) * 2019-05-24 2020-11-24 Gd Spa Sistema di convogliamento per una macchina riempitrice di flaconi, in particolare del settore farmaceutico
WO2020240381A1 (en) * 2019-05-24 2020-12-03 G.D Societa' Per Azioni Conveying method and system for a machine to fill bottles, in particular in the pharmaceutical industry
CN113811489A (zh) * 2019-05-24 2021-12-17 吉第联合股份公司 供灌装瓶子特别是制药行业中的瓶子的机器使用的传送方法和系统
US11845617B2 (en) 2019-05-24 2023-12-19 G.D Societa' Per Azioni Conveying method and system for a machine to fill bottles, in particular in the pharmaceutical industry

Also Published As

Publication number Publication date
ES2341831A1 (es) 2010-06-28
ES2341831B1 (es) 2011-06-28

Similar Documents

Publication Publication Date Title
US7909159B1 (en) Adjustable multi-lane conveyor
ES2618040T3 (es) Robot industrial
ES2929732T3 (es) Aparato de mando para un dispositivo de preparación de pedidos
ES2323471T3 (es) Unidad de transferencia para transferir articulos de vidrio.
ES2939611T3 (es) Sistemas de accionamiento para transportadoras extensibles
ES2563481T3 (es) Instalación para el transporte de personas
ES2392285B1 (es) Dispositivo de transferencia para transferir envases flexibles vacios desde una hilera de envases a dos o más hileras de envases en una máquina envasadora automática
US8205740B2 (en) Pneumatic conveyor for containers
US7210572B2 (en) Adjustable guide for a bottle handling system
KR101088138B1 (ko) 비닐하우스용 분사장치
RU2008127256A (ru) Устройство и способ для укладки жгута волокон
ES2785955T3 (es) Cruzamiento portador de cable que suministra cuatro ubicaciones no estáticas
MX2008008452A (es) Transportador neumatico.
ES2641051T3 (es) Instalación de ascensor
ES2401790B5 (es) Dispositivo para el guiado de un tejido
ES2639232T3 (es) Instalación de ascensor
ES2341831B1 (es) Transportador para transportar articulos suspendidos impulsados por chorros de aire.
ES2543885T3 (es) Instalación de ascensor de doble cabina
ES2356869T3 (es) Aparato manipulador para un almacén de bultos sueltos automatizado.
ES2337420T3 (es) Dispositivo de transporte para maquina plegadora encoladora.
ES2879449T3 (es) Aparato para transportar un carrito
WO2012140295A1 (es) Cuna de elevación y transelevador para el transporte de cargas
FI121208B (fi) Kasvienkasvatuslaite
ES2554838B1 (es) Dispositivo de adaptación a tamaño de caja para máquina apiladora de cajas
ES2227410T3 (es) Dispositivo de transferencia de objetos industriales entre dos posiciones.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834145

Country of ref document: EP

Kind code of ref document: A1