WO2010071352A2 - 비대칭 구조의 유기전기발광소자용 아릴아민유도체, 그 제조방법, 이를 포함하는 유기전기발광소자용 유기박막재료 및 이를 이용한 유기 전기발광소자 - Google Patents

비대칭 구조의 유기전기발광소자용 아릴아민유도체, 그 제조방법, 이를 포함하는 유기전기발광소자용 유기박막재료 및 이를 이용한 유기 전기발광소자 Download PDF

Info

Publication number
WO2010071352A2
WO2010071352A2 PCT/KR2009/007518 KR2009007518W WO2010071352A2 WO 2010071352 A2 WO2010071352 A2 WO 2010071352A2 KR 2009007518 W KR2009007518 W KR 2009007518W WO 2010071352 A2 WO2010071352 A2 WO 2010071352A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
aryl group
aryl
carbon atoms
represented
Prior art date
Application number
PCT/KR2009/007518
Other languages
English (en)
French (fr)
Other versions
WO2010071352A3 (ko
Inventor
김상동
김세훈
이지혜
오용호
Original Assignee
동우화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090071884A external-priority patent/KR20100070979A/ko
Application filed by 동우화인켐 주식회사 filed Critical 동우화인켐 주식회사
Priority to JP2011542006A priority Critical patent/JP5540339B2/ja
Priority to CN200980151207.6A priority patent/CN102257097B/zh
Priority to US13/139,715 priority patent/US8586211B2/en
Publication of WO2010071352A2 publication Critical patent/WO2010071352A2/ko
Publication of WO2010071352A3 publication Critical patent/WO2010071352A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/58Naphthylamines; N-substituted derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • C07D215/42Nitrogen atoms attached in position 4
    • C07D215/44Nitrogen atoms attached in position 4 with aryl radicals attached to said nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/50Pyrenes; Hydrogenated pyrenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons

Definitions

  • the present invention relates to an arylamine derivative for an organic electroluminescent device having an asymmetric structure, a manufacturing method thereof, an organic thin film material for an organic electroluminescent device comprising the same, and an organic electroluminescent device using the same.
  • An organic electroluminescent device is a self-luminous device that uses a principle that a fluorescent material emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying an electric field.
  • Organic materials have been constructed since low-voltage driving organic electroluminescent devices (CWTang, SAVanslyke, Applied Physics Letters, Vol. 51, p. 913, 1987, etc.) by stacked devices have been reported by Eastman Kodak's Tang et al. Research on organic electroluminescent elements made of materials has been actively conducted.
  • the organic light emitting device the biggest influence on the lifespan is a blue light emitting material, and there have been many attempts to improve the life by improving the blue light emitting material.
  • the conventionally developed ones are organic light emitting devices having high efficiency by using distyryl compounds and adding styrylamine as an organic light emitting material (International Patent Publication No. 94-6175).
  • Korean Unexamined Patent Publication No. KR 2002-0070333 discloses a blue light emitting compound having a diphenyl anthracene structure, an aryl group substituted at its end, and an organic electroluminescent device using the same, but not having sufficient luminous efficiency and luminance. There was this.
  • U.S. Patent No. 6852429 Korean Patent Publication Nos. 2005-0107809 and 2006-0006760 disclose organic electroluminescent devices using substituted pyrene-based compounds, but the problem is that blue color purity is low. there was.
  • a phenylanthracene derivative is used as a host material of the light emitting material (Japanese Patent Publication No. 1996-012600), or a material having a naphthyl group at the 9,10 position of anthracene (Japan Japanese Patent Laid-Open No. 1999-3782) and a method using an element material having a fluoranthene group at the 9,10 position of anthracene (Japanese Patent Laid-Open No. 2001-257074) are disclosed.
  • Japanese Patent Laid-Open No. 1999-3782 Japanese Patent Laid-Open No. 1999-3782
  • Japanese Patent Laid-Open No. 2001-257074 Japanese Patent Laid-Open No.
  • an object of the present invention is to provide an arylamine derivative for an organic electroluminescent device having an asymmetric structure that can provide an organic electroluminescent device having high efficiency and long life.
  • Another object of the present invention is to provide a method for preparing an arylamine derivative for an organic electroluminescent device having an asymmetric structure that can easily prepare the arylamine derivative.
  • Still another object of the present invention is to provide an organic electroluminescent device using the organic thin film material for the organic electroluminescent device.
  • the present invention for achieving the above object is represented by the following formula (1) by introducing a secondary amine and a tertiary amine as a substituent to Ar, which is an aryl compound of the central structure so as not to have a symmetry axis and a plane of symmetry in the structure of the molecule
  • An arylamine derivative for an organic electroluminescent device having an asymmetric structure is provided.
  • Ar is a divalent aryl group having 10 to 20 carbon atoms
  • Ar 1 is a bivalent aryl group having 6 to 30 carbon atoms
  • At least one of Ar 2 to Ar 5 has a different structure, and when the substitution positions of the secondary amine and the tertiary amine of Ar are asymmetric, Ar 2 to Ar 5 have the same or different structure and the substitution position is different.
  • Ar in the compound represented by the formula (1) is preferably selected from naphthalene, pyrene, perylene or pentacene.
  • Ar in the compound represented by Chemical Formula 1, it is more preferable that the compound represented by Chemical Formula 2, wherein Ar is naphthalene, or the compound represented by Chemical Formula 3, wherein Ar is pyrene.
  • Ar 1 is a divalent C 6 to C 30 aryl group, and when the substitution positions of the secondary amine and the tertiary amine of naphthalene are symmetrical, Ar 2 to Ar 5 have a structure different from at least one of them. When the substitution positions of the secondary amine and the tertiary amine of naphthalene are asymmetric, Ar 2 to Ar 5 have the same or different structure, and the substitution positions are each independently an aryl group having 6 to 30 carbon atoms.
  • Ar 1 is a divalent C 6 to C 30 aryl group, and when the substitution positions of the secondary amine and the tertiary amine of pyrene are symmetric, Ar 2 to Ar 5 have a structure different from at least one of them. In the case where the substituted positions of the secondary amine and the tertiary amine of the pyrene are asymmetric, Ar 2 to Ar 5 have the same or different structure and the substituted positions are each independently an aryl group having 6 to 30 carbon atoms.
  • Ar 1 in Chemical Formula 1 is an aryl group represented by Chemical Formula 4, an aryl group represented by Chemical Formula 5, an aryl group represented by Chemical Formula 6, an aryl group represented by Chemical Formula 7, an aryl group represented by Chemical Formula 8, and Chemical Formula
  • At least two aryl groups of the aryl group represented by 9, the aryl group represented by the formula (10), the aryl group represented by the formula (11) and the aryl group represented by the formulas (4) to (11) is an aryl group selected from the group consisting of aryl groups connected to each other desirable.
  • m is 1 or 2
  • R is independently an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group which may form an unsaturated ring having 6 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms.
  • n is an integer of 1 to 3.
  • R 3 is an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • Ar 2 to Ar 5 each have the same or different structure and are each independently an aryl group having 6 to 30 carbon atoms, and are represented by the aryl groups represented by the following Chemical Formula 12 and Chemical Formula 13, respectively.
  • At least two aryl groups of the group and the aryl groups represented by the formulas (12) to (19) are preferably aryl groups selected from the group consisting of aryl groups linked to each other.
  • R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group which may form an unsaturated ring having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms). to be.
  • Ar, Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 are each at least one hydrogen position independently of each other, deuterium, halogen atoms, nitro groups, alkyl groups of 1 to 20 carbon atoms, Arylsilyl which may contain a cycloalkyl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a cyano group or a trifluoromethyl group, an alkylsilyl group consisting of an alkyl group having 1 to 6 carbon atoms, and a hetero element having 4 to 8 carbon atoms It may be substituted with a substituent selected from the group consisting of groups.
  • the present invention through the aryl amination reaction or the Suzuki-coupling reaction using the aryl compounds disubstituted with the same or different functional groups as starting materials as shown in Scheme 1 below
  • Aryl for an organic electroluminescent device having an asymmetric structure characterized in that by sequentially replacing the functional group with a secondary amine or tertiary amine group, a compound having an asymmetric structure represented by Chemical Formula 1 having no symmetry axis and symmetry plane in the structure of the molecule is prepared.
  • a method for preparing an amine derivative is provided.
  • X and Y are the same as or different from each other, and represent a functional group capable of an aryl amination reaction
  • Ar is a divalent aryl group having 10 to 20 carbon atoms
  • Ar 1 is a bivalent aryl group having 6 to 30 carbon atoms.
  • substitution positions of the secondary amine and the tertiary amine of Ar are symmetric, at least one of Ar 2 to Ar 5 has a different structure, and the substitution positions of the secondary amine and the tertiary amine of Ar are asymmetric.
  • Ar 2 to Ar 5 have the same or different structure, each substituted position is independently an aryl group having 6 to 30 carbon atoms.
  • Ar in Scheme 1 is preferably selected from naphthalene, pyrene, perylene or pentacene, and more preferably naphthalene or pyrene, as shown in Scheme 2 and Scheme 3 below.
  • the present invention provides an organic thin film material for an organic electroluminescent device comprising an arylamine derivative for an organic electroluminescent device having an asymmetric structure represented by the formula (1).
  • the present invention provides an organic electroluminescent device having an anode, a cathode and a plurality of organic thin film layers positioned between the anode and the cathode, wherein the at least one layer of the plurality of organic thin film layers is It provides an organic electroluminescent device comprising an arylamine derivative for an organic electroluminescent device having an asymmetric structure represented by the formula (1).
  • the organic thin film layer may include at least one selected from a hole injection layer, a hole transport layer, a light emitting layer, an electron injection layer and an electron transport layer.
  • the organic thin film layer is preferably a light emitting layer.
  • the organic thin film layer preferably contains a host compound and a dopant compound.
  • FIG. 1 is a view schematically showing the structure of an organic electroluminescent device according to an embodiment of the present invention.
  • the present invention is an organic electroluminescent device having an asymmetric structure represented by the following formula (1) having no symmetry axis and no symmetry plane in the structure of a molecule by introducing a secondary amine and a tertiary amine into a aryl compound having a central structure as a substituent.
  • An arylamine derivative is provided.
  • Ar is a divalent aryl group having 10 to 20 carbon atoms
  • Ar 1 is a bivalent aryl group having 6 to 30 carbon atoms
  • At least one of Ar 2 to Ar 5 has a different structure, and when the substitution positions of the secondary amine and the tertiary amine of Ar are asymmetric, Ar 2 to Ar 5 have the same or different structure and the substitution position is different.
  • Ar in the compound represented by the formula (1) is preferably selected from naphthalene, pyrene, perylene or pentacene.
  • Ar in the compound represented by Chemical Formula 1, it is more preferable that the compound represented by Chemical Formula 2, wherein Ar is naphthalene, or the compound represented by Chemical Formula 3, wherein Ar is pyrene.
  • Ar 1 is a divalent C 6 to C 30 aryl group, and when the substitution positions of the secondary amine and the tertiary amine of naphthalene are symmetrical, Ar 2 to Ar 5 have a structure different from at least one of them. When the substitution positions of the secondary amine and the tertiary amine of naphthalene are asymmetric, Ar 2 to Ar 5 have the same or different structure, and the substitution positions are each independently an aryl group having 6 to 30 carbon atoms.
  • Ar 1 in Chemical Formula 1 is an aryl group represented by Chemical Formula 4, an aryl group represented by Chemical Formula 5, an aryl group represented by Chemical Formula 6, an aryl group represented by Chemical Formula 7, an aryl group represented by Chemical Formula 8, and Chemical Formula
  • At least two aryl groups of the aryl group represented by 9, the aryl group represented by the formula (10), the aryl group represented by the formula (11) and the aryl group represented by the formulas (4) to (11) is an aryl group selected from the group consisting of aryl groups connected to each other desirable.
  • m is 1 or 2
  • R is independently an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group which may form an unsaturated ring having 6 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms.
  • n is an integer of 1 to 3.
  • R 3 is an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • Ar 2 to Ar 5 each have the same or different structure and are each independently an aryl group having 6 to 30 carbon atoms, and are represented by the aryl groups represented by the following Chemical Formula 12 and Chemical Formula 13, respectively.
  • At least two aryl groups of the group and the aryl groups represented by the formulas (12) to (19) are preferably aryl groups selected from the group consisting of aryl groups linked to each other.
  • R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group which may form an unsaturated ring having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms). to be)
  • Ar, Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 are each at least one hydrogen position independently of each other, deuterium, halogen atoms, nitro groups, alkyl groups of 1 to 20 carbon atoms, Arylsilyl which may contain a cycloalkyl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a cyano group or a trifluoromethyl group, an alkylsilyl group consisting of an alkyl group having 1 to 6 carbon atoms, and a hetero element having 4 to 8 carbon atoms It may be substituted with a substituent selected from the group consisting of groups.
  • Specific examples of the compound represented by Chemical Formula 2 wherein Ar is naphthalene in the compound represented by Chemical Formula 1 may include a compound represented by the following Chemical Formulas 20 to 25.
  • the present invention is not limited to this.
  • Specific examples of the compound represented by Chemical Formula 3 wherein Ar is pyrene in the compound represented by Chemical Formula 1 may include a compound represented by Chemical Formulas 26 to 63 below. However, the present invention is not limited to this.
  • a method of synthesizing an arylamine derivative for an organic electroluminescence device having an asymmetric structure having no symmetry axis and symmetry plane in one molecule represented by Chemical Formula 1 is disubstituted with the same or different functional groups as shown in Scheme 1 below.
  • the aryl compound having a central structure as a starting material can be easily prepared by sequentially replacing the functional group with a secondary amine or tertiary amine group through a known aryl amination reaction or Suzuki-coupling reaction.
  • Ar is a divalent aryl group having 10 to 20 carbon atoms
  • Ar 1 is a bivalent aryl group having 6 to 30 carbon atoms
  • At least one of Ar 2 to Ar 5 has a different structure, and when the substitution positions of the secondary amine and the tertiary amine of Ar are asymmetric, Ar 2 to Ar 5 have the same or different structure and the substitution position is different.
  • Ar in Scheme 1 is preferably selected from naphthalene, pyrene, perylene or pentacene, and more preferably naphthalene or pyrene, as shown in Scheme 2 and Scheme 3 below.
  • X and Y are preferably selected from halogen, amine, and hydroxy groups, but are not limited thereto. Any functional group capable of introducing different substituents through sequential reactions is included in the present invention.
  • an arylamine derivative for an organic electroluminescent device having an asymmetric structure represented by Chemical Formula 1 according to the present invention is an aryl compound substituted with the same or different functional groups, for example, the same or different halogen, halogen and amine,
  • an aryl compound having a central structure having a halogen and a hydroxyl group is used as a starting material, the starting material is sequentially reacted with an arylamine or boronic acid of an arylamine to easily obtain an asymmetric compound.
  • Suzuki coupling reaction for introducing amino groups through borohydration reaction has been reported (Chem. Rev., Vo 1.95, No. 7, 2457 (1995), etc.). It may also be carried out under the reaction conditions described.
  • the Suzuki coupling reaction is usually carried out under an inert atmosphere such as nitrogen, argon, helium and the like under normal pressure, but may be carried out under pressurized conditions as necessary.
  • reaction temperature is the range of 15-300 degreeC, Especially preferably, it is 30-200 degreeC.
  • the boronic acidification reaction according to the present invention is a well-known method (Japanese Chemistry Part No. 4, pp. 24, 61-90, J. Org. Chem., Vol. 60, 7508 (1995), etc.). It is possible to carry out by.
  • the compound having a structure selected from Formulas 64 to 69 As the arylboronic acid, a compound having a structure selected from Chemical Formulas 70 to 74 may be used, but is not limited thereto.
  • the arylamine derivatives of the asymmetric structure represented by the formula (1) according to the present invention in which secondary amines and tertiary amines are introduced into the aryl compound having a central structure so as not to have a symmetry axis and symmetry plane in one molecule are organic electroluminescence.
  • blue color purity is much better than that of the arylamine derivative having the structure of the same secondary amine or tertiary amine introduced in the prior art, and the blue light emission efficiency and long life effect can be obtained.
  • the present invention provides an organic thin film material for an organic electroluminescent device comprising an arylamine derivative having an asymmetric structure represented by Chemical Formula 1.
  • Any organic thin film material for an organic electroluminescent device containing an arylamine derivative having an asymmetric structure represented by Chemical Formula 1 is included in the present invention.
  • the organic thin film material including an arylamine derivative having an asymmetric structure represented by Chemical Formula 1 is preferably a light emitting material or a dopant material.
  • organic thin film material for an organic electroluminescent device except an arylamine derivative having an asymmetric structure of Formula 1 according to the present invention is well known in the art, and thus a detailed description thereof will be omitted, but the organic electroluminescent device of the present invention In the description, an example will be described.
  • the organic electroluminescent device according to the present invention is an organic electroluminescent device having an anode, a cathode, and a plurality of organic thin film layers positioned between the anode and the cathode, wherein the organic electroluminescent device is formed on at least one of the organic thin film layers.
  • the organic thin film layer includes at least one selected from a hole injection layer, a hole transport layer, a light emitting layer, an electron injection layer and an electron transport layer. More preferably, the organic thin film layer containing the organic thin film material for organic electroluminescent devices is a light emitting layer.
  • the substrate 1, the anode 2, the hole transport layer 4, the light emitting layer 5, the electron transport layer 6, and the cathode 7 may be provided.
  • An electron injection layer (not shown) may be further provided between the electron transport layer 6 and the cathode 7, and a hole injection layer 3 may be further provided between the anode 2 and the hole transport layer 4.
  • This organic thin film layer includes an organic thin film material containing an arylamine derivative having an asymmetric structure represented by Chemical Formula 1 in all or part thereof.
  • Examples of the material for the anode 2 include metal oxides or metal nitrides such as ITO, IZO, tin oxide, zinc oxide, zinc aluminum oxide, and titanium nitride; Metals such as gold, platinum, silver, copper, aluminum, nickel, cobalt, lead, molybdenum, tungsten, tantalum and niobium; Alloys of these metals or alloys of copper iodides; Conductive polymers such as polyaniline, polythiopine, polypyrrole, polyphenylenevinylene, poly (3-methylthiopine), and polyphenylenesulfagard.
  • the anode 2 may be formed of only one type of the aforementioned materials or may be formed of a mixture of a plurality of materials. In addition, a multilayer structure composed of a plurality of layers of the same composition or different compositions can be formed.
  • the hole injection layer 3 of the present invention may use organic thin film materials known in the art, in addition to the arylamine derivative represented by Chemical Formula 1 according to the present invention, but is not limited to PEDOT / PSS or copper phthalocyanine (CuPc), 4,4 ', 4 "-tris (3-methylphenylphenylamino) triphenylamine (m-MTDATA), 4,4', 4" -tris (N- (2-naphthyl) -N-phenyl-amino) -Materials, such as triphenylamine (2-TNATA), can be formed in 5 nm-40 nm thickness.
  • the hole transport layer 4 is, in addition to the arylamine derivative represented by Chemical Formula 1 according to the present invention, 4,4'-bis [N- (1-naphthyl) -N-phenyl-, which is an organic thin film material known in the art. Substances such as amino] -biphenyl (NPD) or N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine (TPD) Can be used.
  • the light emitting layer 5 may use fluorescent and phosphorescent host and dopant materials known in the art.
  • the content of the arylamine derivative represented by Chemical Formula 1 according to the present invention may be added within a range of ordinary fluorescent and phosphorescent dopant addition.
  • the host material of the light emitting layer is not limited, 4,4′-N, N-dicarbazole biphenyl (CBP), 1,3-N, N-dicarbazolebenzene (mCP) and derivatives thereof may be used. Recently, BAlq or similar Al complex materials with electron transport properties are known to be useful as phosphorescent hosts.
  • the above-described host and dopant may be added by selecting one or more than two.
  • the electron transport layer (6) in addition to the arylamine derivative having an asymmetric structure represented by the formula (1) according to the present invention, aryl substituted oxadiazole, aryl-substituted triazole, aryl-substituted phenanthroline, benzoxazole, Or benzoxazole compounds, for example, 1,3-bis (N, Nt-butyl-phenyl) -1,3,4-oxadiazole (OXD-7); 3-phenyl-4- (1'-naphthyl) -5-phenyl-1,2,4-triazole (TAZ); 2,9-dimethyl-4,7-diphenyl-phenanthroline (vasocuproin or BCP); Bis (2- (2-hydroxyphenyl) -benzoxazolate) zinc; Or bis (2- (2-hydroxyphenyl) -benziazolate) zinc; As the electron transporting material, a compound selected from (4-biphenyl) (4-t-buty
  • the electron injection layer and the cathode 7 may use a material known in the art, but is not limited to LiF as an electron injection layer and a metal having a low work function such as Al, Ca, Mg, Ag or the like may be used as the cathode. And Al is preferred.
  • the above-described organic electroluminescent device according to the present invention can be applied to a display device.
  • the display device may be a display device using a backlight unit, and the organic electroluminescent device may be used as a light source and a single light source of the backlight unit.
  • the display device may be an organic electroluminescent display (OLED).
  • the present invention will be described in more detail with reference to the following examples, but the present invention is not limited only to the following examples.
  • the synthesis examples exemplify some compound synthesis methods, but other compounds are also synthesized through the same synthetic route, and those skilled in the art do not have a symmetry axis or plane of symmetry in the molecule of the present invention according to the present invention or known methods. Since it is possible to synthesize
  • N, N'-di of Formula 87 in which the same secondary amine as a target was substituted in the same manner as in Comparative Synthesis Example 2, except that naphthalen-1-yl-phenylamine was used instead of diphenylamine in the aryl amination reaction.
  • -Nphthalen-1-yl-N, N'-diphenyl-pyrene-1,6-diamine was synthesized.
  • a glass substrate with an ITO transparent electrode coated with an insulating film so as to be fabricated as a 22 mm ⁇ 2 mm unit device was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • the glass substrate with a transparent electrode line after cleaning is mounted on the substrate holder of the vacuum deposition apparatus, and first, the transparent electrode is covered on the surface of the side where the transparent electrode line is formed, so that 2-TNATA (4,4 ') is a hole injection material.
  • 4 "-Tris (N- (2-naphthyl) -N-phenyl-amino) -tri-phenylamine) was formed to a thickness of 600 kPa by resistive heating deposition.
  • NPD N, N '
  • a hole transport material a hole transport material
  • -bis (naphthalen-1-yl) -N, N'-bis (phenyl) benzidine) was deposited to a thickness of 200 kPa by the same vapor deposition method, and as a light emitting layer thereon a material of the formula 78 as a fluorescent host,
  • the compound of Chemical Formula 22 prepared in Synthesis Example 1 was co-deposited to a thickness of 40 nm using a fluorescent dopant (3% by weight), and then Alq3 (tris- (8-hydroxyquinoline) aluminium- (III)) was used as an electron transporting material.
  • a Li film was formed thereon at a film thickness of 10 nm at a film formation rate of 1.5 msec / sec: 1 m / min, and Al was deposited on the Li film.
  • a metal cathode having a thickness of 100 nm was formed to fabricate an organic electroluminescent device, and the equipment used for deposition was an EL deposition machine manufactured by VTS.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of Formula 23 prepared in Synthesis Example 2 was used instead of the compound of Formula 22 prepared in Synthesis Example 1.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of Formula 24 prepared in Synthesis Example 3 was used instead of the compound of Formula 22 prepared in Synthesis Example 1.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of Formula 29 prepared in Synthesis Example 4 was used instead of the compound of Formula 22 prepared in Synthesis Example 1.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of Formula 35 prepared in Synthesis Example 5 was used instead of the compound of Formula 22 prepared in Synthesis Example 1.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of Formula 36 prepared in Synthesis Example 6 was used instead of the compound of Formula 22 prepared in Synthesis Example 1.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of Formula 37 prepared in Synthesis Example 7 was used instead of the compound of Formula 22 prepared in Synthesis Example 1.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of Formula 41 prepared in Synthesis Example 8 was used instead of the compound of Formula 22 prepared in Synthesis Example 1.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of Formula 44 prepared in Synthesis Example 9 was used instead of the compound of Formula 22 prepared in Synthesis Example 1.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of Formula 56 prepared in Synthesis Example 10 was used instead of the compound of Formula 22 prepared in Synthesis Example 1.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of Formula 85 prepared in Comparative Synthesis Example 1 was used instead of the compound of Formula 22 prepared in Synthesis Example 1.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of Formula 86 prepared in Comparative Synthesis Example 2 was used instead of the compound of Formula 22 prepared in Synthesis Example 1.
  • An organic electroluminescent device was manufactured according to the same method as Example 1 except for using the compound of Formula 87 prepared in Comparative Synthesis Example 3 instead of the compound of Formula 22 prepared in Synthesis Example 1.
  • the change of current density according to the voltage change was measured for the manufactured organic electroluminescent device.
  • the measurement measured the current value flowing through the unit device using a current-voltmeter (Kethely 237) while increasing the current density by 2.5 mA from 2.5 mA / cm 2 to 100 mA / cm 2 .
  • the current density of the prepared organic electroluminescent device was measured using a luminance meter (PR650) while increasing the current density by 2.5 mA from 2.5 mA / cm 2 to 100 mA / cm 2 .
  • Power was supplied from a current-voltmeter (Kethley SMU 236) and measured using a luminance meter (PR650).
  • Luminous efficiency was calculated using the brightness and current density measured above.
  • Arylamine derivatives can be used to form organic thin film layers of organic electroluminescent devices.
  • the arylamine derivatives emit light in the blue wavelength range and have excellent color purity and excellent luminous efficiency and lifetime compared to symmetrical materials. It was confirmed that the characteristics were improved.
  • an arylamine derivative for an organic electroluminescent device having an asymmetric structure having no symmetry axis and no symmetry plane in the molecule structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 중심구조의 아릴화합물인 Ar에 서로 다른 2급 아민과 3급 아민을 순차적으로 도입하여서 된 것으로서 분자의 구조 내에 대칭축 및 대칭면을 갖지 않는 비대칭 구조를 갖는 유기전기발광소자용 아릴아민유도체, 그 제조방법, 이를 포함하는 유기전기발광소자용 유기박막재료 및 이를 이용한 유기 전기발광소자에 관한 것이다. 본 발명에 따른 중심구조의 아릴화합물인 Ar에 서로 다른 치환기가 도입된 비대칭 구조의 아릴아민유도체는 유기전기발광소자의 유기박막 형성시 이용 가능하며, 발광층 재료로, 특히 도펀트 재료로 사용하여 유기전기발광소자를 제작 시, 청색 파장 영역에서 우수한 발광 효율 특성을 나타낼 뿐만 아니라 우수한 수명 특성을 나타낸다.

Description

비대칭 구조의 유기전기발광소자용 아릴아민유도체, 그 제조방법, 이를 포함하는 유기전기발광소자용 유기박막재료 및 이를 이용한 유기 전기발광소자
본 발명은 비대칭 구조의 유기전기발광소자용 아릴아민유도체, 그 제조방법, 이를 포함하는 유기전기발광소자용 유기박막재료 및 이를 이용한 유기 전기발광소자에 관한 것이다.
최근 표시장치의 대형화로 인해 공간 점유가 작은 평면표시소자의 요구가 증대됨에 따라, 경량화 및 시야각의 확대가 강조 되고 있다. 이에 자기 발광 현상을 이용하는 것으로, 경량화 및 넓은 시야각, 빠른 응답속도를 장점으로 하는 새로운 평면표시소자인 유기전기발광소자가 부각되고 있다.
유기전기발광소자는 전계를 인가함으로써 양극으로부터 주입된 정공과 음극으로부터 주입된 전자의 재결합에너지에 의해 형광성 물질이 발광하는 원리를 이용하는 자발광 소자이다. 이스트만 코닥사의 탕(C.W.Tang) 등에 의해 적층형 소자에 의한 저전압 구동 유기전기발광소자(C.W.Tang, S.A.Vanslyke, Applied Physics Letters, 51권, 913페이지, 1987년 등)가 보고된 이래, 유기 물질을 구성 재료로 하는 유기전기발광소자에 관한 연구가 활발히 실시되고 있다.
유기발광소자에 있어서, 그 수명에 가장 큰 영향을 주는 것은 청색발광 재료로서, 종래에는 청색발광 재료를 개량하여 수명을 개선하고자 하는 많은 시도가 있었다. 이중, 종래에 주로 개발된 것은, 유기 발광재료로써, 디스티릴 화합물을 사용하고, 추가로 스티릴아민 등을 첨가함으로써 고효율의 유기전기발광소자를 꾀하거나(국제 특허 공개공보 제 94-6175호), 대한민국공개특허공보 제KR 2002-0070333호에는 중심부는 디페닐 안트라센 구조를 가지며, 아릴기가 말단에 치환된 청색 발광 화합물 및 이를 이용한 유기전기발광소자가 개시되어 있지만 발광효율 및 휘도가 충분하지 않다는 문제점이 있었다. 또한 미국등록특허공보 제 US 6852429호, 대한민국공개특허공보 제 2005-0107809호 및 제2006-0006760호에는 치환된 피렌계 화합물을 이용한 유기전기발광소자가 개시되어 있으나, 청색의 색순도가 낮다는 문제점이 있었다.
한편, 고품위의 진한 청색을 구현하기 위하여 발광 재료의 호스트 재료로서 페닐안트라센 유도체를 이용하거나(일본 특허공개 제1996-012600호), 안트라센의 9,10위치에 나프틸기를 갖는 재료를 이용하거나(일본 특허공개 제1999-3782호), 안트라센의 9,10위치에 플루오란텐기를 갖는 소자 재료를 이용하는(일본 특허공개 제2001-257074호) 등의 방법이 개시되어 있다. 이처럼 안트라센 유도체를 사용하는 연구가 많이 진행되었으나, 소자 수명의 문제와 함께 균일한 박막 형성이 용이하지 않기 때문에 등 성막가공성이 우수하지 않고, 내열성이 우수하지 못하며, 판상구조로 인하여 증착시 분자상호간 응집(aggregation)이 발생하여, 특히 고효율 및 고품위의 청색발광과 더불어 장수명을 실현하기에는 문제점이 있다.
따라서 본 발명은 높은 효율과 장수명의 유기전기발광소자를 제공할 수 있는 비대칭 구조의 유기전기발광소자용 아릴아민유도체를 제공하는데 그 목적이 있는 것이다.
본 발명의 다른 목적은 상기 아릴아민유도체를 용이하게 제조할 수 있는 비대칭 구조의 유기전기발광소자용 아릴아민유도체의 제조방법을 제공하는 데 다른 목적이 있다.
본 발명의 또 다른 목적은 상기 비대칭 구조의 유기전기발광소자용 아릴아민유도체를 포함하는 유기전기발광소자용 유기박막재료를 제공하는데 있다.
본 발명의 또 다른 목적은 상기 유기전기발광소자용 유기박막재료를 이용한 유기전기발광소자를 제공하는 것이다.
상기의 목적을 달성하기 위한 본 발명은, 중심구조의 아릴화합물인 Ar에 치환기로 2급 아민과 3급 아민을 도입하여 분자의 구조 내에 대칭축 및 대칭면을 갖지 않도록 한 하기 화학식 1로 표현되는 것을 특징으로 하는 비대칭 구조의 유기전기발광소자용 아릴아민유도체를 제공한다.
화학식 1
Figure PCTKR2009007518-appb-I000001
(상기 화학식 1에서 Ar은 탄소수 10 내지 20의 2가의 아릴기이고, Ar1은 2가의 탄소수 6 내지 탄소수 30의 아릴기이고, Ar의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, Ar의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 치환 위치가 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기이다.)
상기 화학식 1로 표현되는 화합물에서 Ar은 나프탈렌, 피렌, 퍼릴렌 또는 펜타센에서 선택되는 것이 바람직하다. 특히 상기 화학식 1로 표현되는 화합물에서 Ar이 나프탈렌인 하기 화학식 2로 표현되는 화합물 또는 Ar이 피렌인 하기 화학식 3으로 표현되는 화합물인 것이 더욱 바람직하다.
화학식 2
Figure PCTKR2009007518-appb-I000002
(상기 화학식 2에서 Ar1은 2가의 탄소수 6 내지 탄소수 30의 아릴기이고, 나프탈렌의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, 나프탈렌의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 치환 위치가 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기이다.)
화학식 3
Figure PCTKR2009007518-appb-I000003
(상기 화학식 3에서 Ar1은 2가의 탄소수 6 내지 탄소수 30의 아릴기이고, 피렌의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, 피렌의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 치환 위치가 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기이다.)
상기 화학식 1에서 Ar1은 하기의 화학식 4로 표현되는 아릴기, 화학식 5로 표현되는 아릴기, 화학식 6으로 표현되는 아릴기, 화학식 7로 표현되는 아릴기, 화학식 8로 표현되는 아릴기, 화학식 9로 표현되는 아릴기, 화학식 10으로 표현되는 아릴기, 화학식 11로 표현되는 아릴기 및 화학식 4 내지 화학식 11로 표현되는 아릴기 중 적어도 두 개의 아릴기가 서로 연결된 아릴기로 이루어진 군으로부터 선택된 아릴기인 것이 바람직하다.
화학식 4
Figure PCTKR2009007518-appb-I000004
(상기 화학식 4에서 k는 1 내지 3의 정수이다.)
화학식 5
Figure PCTKR2009007518-appb-I000005
(상기 화학식 5에서 l은 1 또는 2이다.)
화학식 6
Figure PCTKR2009007518-appb-I000006
(상기 화학식 6에서 m은 1 또는 2이고, R은 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 불포화환을 형성해도 좋은 시클로알킬기 또는 탄소수 1 내지 20의 알콕시기이다.)
화학식 7
Figure PCTKR2009007518-appb-I000007
화학식 8
Figure PCTKR2009007518-appb-I000008
(상기 화학식 8에서 n은 1 내지 3의 정수이다.)
화학식 9
Figure PCTKR2009007518-appb-I000009
(상기 화학식 9에서 o는 1 또는2이다.)
화학식 10
Figure PCTKR2009007518-appb-I000010
(상기 화학식 10에서 p는 1 또는2이다.)
화학식 11
Figure PCTKR2009007518-appb-I000011
(상기 화학식 11에서 q는 1 또는 2이고, R3는 탄소수 1 내지 20의 알킬기 또는 탄소수 6 내지 12의 아릴기이다.)
상기 화학식 1에서 중심의 아릴화합물인 Ar의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, Ar의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기인 것으로서 각각 하기의 화학식12으로 표현되는 아릴기, 화학식 13로 표현되는 아릴기, 화학식 14로 표현되는 아릴기, 화학식 15으로 표현되는 아릴기, 화학식 16로 표현되는 아릴기, 화학식 17로 표현되는 아릴기, 화학식 18으로 표현되는 아릴기, 화학식 19로 표현되는 아릴기 및 화학식 12 내지 화학식 19로 표현되는 아릴기 중 적어도 두 개의 아릴기가 서로 연결된 아릴기로 이루어진 군으로부터 선택된 아릴기인 것이 바람직하다.
화학식 12
Figure PCTKR2009007518-appb-I000012
화학식 13
Figure PCTKR2009007518-appb-I000013
화학식 14
Figure PCTKR2009007518-appb-I000014
화학식 15
Figure PCTKR2009007518-appb-I000015
화학식 16
Figure PCTKR2009007518-appb-I000016
화학식 17
Figure PCTKR2009007518-appb-I000017
화학식 18
Figure PCTKR2009007518-appb-I000018
화학식 19
Figure PCTKR2009007518-appb-I000019
(상기 화학식 19에서 R1과 R2는 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 불포화환을 형성해도 좋은 시클로알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 6 내지 12의 아릴기이다.)
바람직하게는 상기 화학식 1에서 Ar, Ar1, Ar2, Ar3, Ar4, Ar5는 각각 적어도 하나의 수소 위치가 서로 독립적으로, 중수소, 할로겐 원자, 니트로기, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 시클로알킬기, 탄소수 1 내지 20의 알콕시기, 시아노기 또는 트리플루오로메틸기, 탄소수 1 내지 6의 알킬기로 이루어진 알킬실릴기, 탄소수 4~8로 이루어진 헤테로 원소를 포함해도 좋은 아릴실릴기로 이루어진 군으로부터 선택된 치환기로 치환될 수 있다.
본 발명의 목적을 달성하기 위하여, 본 발명은 하기 반응식 1에 나타낸 바와 같이 서로 같거나 다른 작용기로 이치환된 아릴화합물을 출발물질로 하여 아릴 아민화반응 또는 스즈키 커플링(Suzuki-coupling)반응을 통해 작용기를 순차적으로 2급아민 또는 3급아민기로 치환시켜 분자의 구조 내에 대칭축 및 대칭면을 갖지 않는 상기 화학식 1로 표현되는 비대칭 구조의 화합물을 제조하는 것을 특징으로 하는 비대칭 구조의 유기전기발광소자용 아릴아민유도체의 제조방법을 제공한다.
반응식 1
Figure PCTKR2009007518-appb-I000020
(상기 반응식 1에서 X와 Y는 서로 같거나 다른 것으로서 아릴아민화반응이 가능한 작용기를 나타내며, Ar은 탄소수 10 내지 20의 2가의 아릴기이고, Ar1은 2가의 탄소수 6 내지 탄소수 30의 아릴기이고, Ar의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, Ar의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 치환 위치가 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기이다.)
상기 반응식 1에서 Ar은 나프탈렌, 피렌, 퍼릴렌 또는 펜타센에서 선택되는 것이 바람직하고, 특히 하기 반응식 2와 반응식 3에서 보는 바와 같이 나프탈렌 또는 피렌인 것이 더욱 바람직하다.
반응식 2
Figure PCTKR2009007518-appb-I000021
(상기 반응식 2에서 X, Y, Ar1 내지 Ar5는 상기 반응식 1에서 정의한 바와 같다.)
반응식 3
Figure PCTKR2009007518-appb-I000022
(상기 반응식 3에서 X, Y, Ar1 내지 Ar5는 상기 반응식 1에서 정의한 바와 같다.)
본 발명의 또 다른 목적을 위하여, 본 발명은 상기 화학식 1로 표현되는 비대칭 구조의 유기전기발광소자용 아릴아민유도체를 포함하는 것을 특징으로 하는 유기전기 발광소자용 유기박막재료를 제공한다.
본 발명의 또 다른 목적을 위하여, 본 발명은 양극, 음극 및 상기 양극과 음극 사이에 위치되는 다수의 유기박막층을 구비한 유기전기발광소자에 있어서, 상기 다수의 유기박막층 중 적어도 하나의 층에 상기 화학식 1로 표현되는 비대칭 구조의 유기전기발광소자용 아릴아민유도체가 포함되는 것을 특징으로 하는 유기전기발광소자를 제공한다.
상기 유기박막층은 정공 주입층, 정공 수송층, 발광층, 전자 주입층 및 전자 수송층 중에서 선택된 적어도 하나를 포함할 수 있다. 특히, 상기 유기박막층은 발광층인 것이 바람직하다. 또한 상기 유기박막층은 호스트 화합물과 도펀트 화합물을 함유하는 것이 바람직하다.
도 1은 본 발명의 일 실시예에 따른 유기전기발광소자의 구조를 개략적으로 나타내는 도면이다.
이하 본 발명을 보다 상세하게 설명한다.  하기의 구체적 설명은 본 발명을 일례를 들어 설명하는 것이므로 본 발명이 이에 한정되지 않는다.
본 발명은, 중심구조의 아릴화합물에 2급 아민과 3급 아민을 치환기로 도입하는 것에 의해 분자의 구조 내에 그 어떤 대칭축 및 대칭면을 갖지 않는 하기 화학식 1로 표현되는 비대칭 구조의 유기전기발광소자용 아릴아민유도체를 제공한다.
화학식 1
Figure PCTKR2009007518-appb-I000023
(상기 화학식 1에서 Ar은 탄소수 10 내지 20의 2가의 아릴기이고, Ar1은 2가의 탄소수 6 내지 탄소수 30의 아릴기이고, Ar의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, Ar의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 치환 위치가 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기이다.)
상기 화학식 1로 표현되는 화합물에서 Ar은 나프탈렌, 피렌, 퍼릴렌 또는 펜타센에서 선택되는 것이 바람직하다. 특히 상기 화학식 1로 표현되는 화합물에서 Ar이 나프탈렌인 하기 화학식 2로 표현되는 화합물 또는 Ar이 피렌인 하기 화학식 3으로 표현되는 화합물인 것이 더욱 바람직하다.
화학식 2
Figure PCTKR2009007518-appb-I000024
(상기 화학식 2에서 Ar1은 2가의 탄소수 6 내지 탄소수 30의 아릴기이고, 나프탈렌의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, 나프탈렌의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 치환 위치가 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기이다.)
화학식 3
Figure PCTKR2009007518-appb-I000025
(상기 화학식 3에서 Ar1내지 Ar5는 나프탈렌이 피렌인 것 이외에는 상기 화학식 2에서 정의한 바와 같다.)
상기 화학식 1에서 Ar1은 하기의 화학식 4로 표현되는 아릴기, 화학식 5로 표현되는 아릴기, 화학식 6으로 표현되는 아릴기, 화학식 7로 표현되는 아릴기, 화학식 8로 표현되는 아릴기, 화학식 9로 표현되는 아릴기, 화학식 10으로 표현되는 아릴기, 화학식 11로 표현되는 아릴기 및 화학식 4 내지 화학식 11로 표현되는 아릴기 중 적어도 두 개의 아릴기가 서로 연결된 아릴기로 이루어진 군으로부터 선택된 아릴기인 것이 바람직하다.
화학식 4
Figure PCTKR2009007518-appb-I000026
(상기 화학식 4에서 k는 1 내지 3의 정수이다.)
화학식 5
Figure PCTKR2009007518-appb-I000027
(상기 화학식 5에서 l은 1 또는 2이다.)
화학식 6
Figure PCTKR2009007518-appb-I000028
(상기 화학식 6에서 m은 1 또는 2이고, R은 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 불포화환을 형성해도 좋은 시클로알킬기 또는 탄소수 1 내지 20의 알콕시기이다.)
화학식 7
Figure PCTKR2009007518-appb-I000029
화학식 8
Figure PCTKR2009007518-appb-I000030
(상기 화학식 8에서 n은 1 내지 3의 정수이다.)
화학식 9
Figure PCTKR2009007518-appb-I000031
(상기 화학식 9에서 o는 1 또는2이다.)
화학식 10
Figure PCTKR2009007518-appb-I000032
(상기 화학식 10에서 p는 1 또는2이다.)
화학식 11
Figure PCTKR2009007518-appb-I000033
상기 화학식 11에서 q는 1 또는 2이고, R3는 탄소수 1 내지 20의 알킬기 또는 탄소수 6 내지 12의 아릴기이다)
상기 화학식 1에서 중심의 아릴화합물인 Ar의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, Ar의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기인 것으로서 각각 하기의 화학식12으로 표현되는 아릴기, 화학식 13로 표현되는 아릴기, 화학식 14로 표현되는 아릴기, 화학식 15으로 표현되는 아릴기, 화학식 16로 표현되는 아릴기, 화학식 17로 표현되는 아릴기, 화학식 18으로 표현되는 아릴기, 화학식 19로 표현되는 아릴기 및 화학식 12 내지 화학식 19로 표현되는 아릴기 중 적어도 두 개의 아릴기가 서로 연결된 아릴기로 이루어진 군으로부터 선택된 아릴기인 것이 바람직하다.
화학식 12
Figure PCTKR2009007518-appb-I000034
화학식 13
Figure PCTKR2009007518-appb-I000035
화학식 14
Figure PCTKR2009007518-appb-I000036
화학식 15
Figure PCTKR2009007518-appb-I000037
화학식 16
Figure PCTKR2009007518-appb-I000038
화학식 17
Figure PCTKR2009007518-appb-I000039
화학식 18
Figure PCTKR2009007518-appb-I000040
화학식 19
Figure PCTKR2009007518-appb-I000041
(상기 화학식 19에서 R1과 R2는 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 불포화환을 형성해도 좋은 시클로알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 6 내지 12의 아릴기이다)
바람직하게는 상기 화학식 1에서 Ar, Ar1, Ar2, Ar3, Ar4, Ar5는 각각 적어도 하나의 수소 위치가 서로 독립적으로, 중수소, 할로겐 원자, 니트로기, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 시클로알킬기, 탄소수 1 내지 20의 알콕시기, 시아노기 또는 트리플루오로메틸기, 탄소수 1 내지 6의 알킬기로 이루어진 알킬실릴기, 탄소수 4~8로 이루어진 헤테로 원소를 포함해도 좋은 아릴실릴기로 이루어진 군으로부터 선택된 치환기로 치환될 수 있다.
상기 화학식 1로 표현되는 화합물에서 Ar이 나프탈렌인 상기 화학식 2로 표현되는 화합물의 구체적인 예로는 하기의 화학식 20 내지 25로 표현되는 화합물을 들 수 있다. 그러나, 본 발명이 이에 한정되지는 않는다.
나프탈렌 유도체
Figure PCTKR2009007518-appb-I000042
상기 화학식 1로 표현되는 화합물에서 Ar이 피렌인 상기 화학식 3로 표현되는 화합물의 구체적인 예로는 하기의 화학식 26 내지 63으로 표현되는 화합물을 들 수 있다. 그러나, 본 발명이 이에 한정되지는 않는다.
피렌유도체
Figure PCTKR2009007518-appb-I000043
Figure PCTKR2009007518-appb-I000044
Figure PCTKR2009007518-appb-I000045
Figure PCTKR2009007518-appb-I000046
Figure PCTKR2009007518-appb-I000047
Figure PCTKR2009007518-appb-I000048
본 발명에 따른 화학식 1로 표현되는 하나의 분자 내에 대칭축 및 대칭면을 갖지 않는 비대칭 구조의 유기전기발광소자용 아릴아민유도체를 합성하는 방법은 하기 반응식1에 나타낸 바와 같이 서로 같거나 다른 작용기로 이치환된 중심구조의 아릴화합물을 출발물질로 하여 공지된 아릴 아민화반응 또는 스즈키 커플링(Suzuki-coupling)반응을 통해 작용기를 순차적으로 2급아민 또는 3급아민기로 치환시키면 용이하게 제조할 수 있다.
반응식 1
Figure PCTKR2009007518-appb-I000050
(상기 화학식 1에서 Ar은 탄소수 10 내지 20의 2가의 아릴기이고, Ar1은 2가의 탄소수 6 내지 탄소수 30의 아릴기이고, Ar의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, Ar의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 치환 위치가 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기이다.)
상기 반응식 1에서 Ar은 나프탈렌, 피렌, 퍼릴렌 또는 펜타센에서 선택되는 것이 바람직하고, 특히 하기 반응식 2 및 반응식 3에서 보는 바와 같이 나프탈렌 또는 피렌인 것이 더욱 바람직하다.
반응식 2
Figure PCTKR2009007518-appb-I000051
(상기 반응식 2에서 X, Y, Ar1 내지 Ar5는 상기 반응식 1에서 정의한 바와 같다.)
반응식 3
Figure PCTKR2009007518-appb-I000052
(상기 반응식 3에서 X, Y, Ar1 내지 Ar5는 상기 반응식 1에서 정의한 바와 같다.)
상기 반응식 1에서 X와 Y는 할로겐, 아민, 히드록시기에서 선택되는 것이 바람직하나 이에 한정되지 않고, 순차적인 반응을 통하여 서로 다른 치환기를 도입하는 것이 가능한 관능기라면 모두 본 발명에 포함된다.
좀더 구체적인 예를 들면 본 발명에 따른 화학식 1로 표현되는 비대칭 구조의 유기전기발광소자용 아릴아민유도체는 서로 같거나 다른 작용기로 이치환된 아릴화합물, 예를 들어 서로 같거나 다른 할로겐, 할로겐과 아민, 또는 할로겐과 히드록시기를 갖고 있는 중심구조의 아릴화합물을 출발물질로 하고, 상기 출발물질을 아릴아민 또는 아릴아민의 보로닉애시드와 순차적으로 반응시키면 용이하게 비대칭구조의 화합물을 얻을 수 있다.
서로 같거나 다른 작용기로 이치환된 중심구조의 아릴아민화합물을 제공하기 위한 2급 아민과 3급 아민을 도입하기 위한 아릴아민과 아릴할로겐 화합물과의 아릴-아릴 커플링 반응은 지금까지 수 많은 보고가 이루어져 있고, 이들에 기재된 반응 조건으로 실시하면 용이하게 본 발명에 따른 화학식 1로 표현되는 비대칭구조의 유기전기발광소자용 아릴아민 피렌유도체를 제조할 수 있다. 특히, 구리(Cu)를 이용한 커플링 반응(Canadian Journal Chemistry, 61, 1983, 86~91), t-BuOK 이용하는 반응(Organic Letters, 5, 19, 2003, 3515~3518) 이외에 니켈촉매를 이용하는 반응(Organic Letters, 7, 11, 2005, 2209~2211), 팔라듐 촉매를 이용하는 반응(Journal of Organic Chemistry, 64, 15, 1999, 5575~5580)들이 알려져 있다.
그리고 보로액시드화 반응을 통해 아미노기를 도입하는 스즈키 커플링 반응도 지금까지 수 많은 보고(문헌 'Chem. Rev., Vo1.95, No.7, 2457 (1995)' 등)가 이루어져 왔고, 이들에 기재된 반응 조건으로도 실시할 수 있다. 상기 스즈키 커플링 반응은 보통 상압하에 질소, 아르곤, 헬륨 등의 불활성 분위기 하에서 실시되지만, 필요에 따라 가압 조건하에 실시하는 것도 할 수 있다. 반응 온도는 15 내지 300℃의 범위이지만, 특히 바람직하게는 30 내지 200℃이다.
본 발명에 따른 보로닉애시드화 반응은, 공지의 방법(일본화학회편·실험화학강좌 제4판 24권 61 내지 90페이지 및 J. Org. Chem., Vol.60, 7508(1995) 등)에 의해 실시하는 것이 가능하다.
서로 같거나 다른 작용기로 이치환된 피렌화합물에 서로 다른 치환기를 도입하여 화학식 1로 표현되는 비대칭 구조의 아릴아민 피렌유도체를 합성하기 위해 사용되는 아릴아민으로는 하기 화학식 64 내지 69에서 선택된 구조의 화합물이 사용될 수 있으며, 아릴보로닉애시드로는 하기 화학식 70 내지 74에서 선택된 구조의 화합물이 사용될 수 있으나, 이에 한정되는 것은 아니다.
아릴아민
Figure PCTKR2009007518-appb-I000053
아릴보로닉애시드
Figure PCTKR2009007518-appb-I000054
상술한 바와 같이 중심구조의 아릴화합물에 2급 아민과 3급 아민을 도입하여 하나의 분자 내에 대칭축 및 대칭면을 갖지 않도록 한 본 발명에 따른 화학식 1로 표현되는 비대칭 구조의 아릴아민유도체들은 유기전기발광소자에 적용할 경우 종래 기술에서 제시한 동일한 2급 아민 또는 3급 아민이 도입된 구조의 아릴아민유도체에 비하여 청색의 색순도가 좋고 월등하게 향상된 청색 발광 효율과 장수명 효과를 얻을 수 있다.
이하에서는 본 발명에 따른 유기전기발광소자용 유기박막재료 및 유기전기발광소자를 설명한다.
본 발명은 상기 화학식 1로 표현되는 비대칭 구조의 아릴아민유도체를 포함하는 유기전기발광소자용 유기박막재료를 제공한다.  상기 화학식 1로 표현되는 비대칭 구조의 아릴아민유도체를 함유하는 유기전기발광소자용 유기박막재료라면 모두 본 발명에 포함된다. 
본 발명에 따르면, 상기 화학식 1로 표현되는 비대칭 구조를 갖는 아릴아민유도체를 포함하는 유기박막재료는 발광재료 또는 도펀트 재료인 것이 바람직하다.
본 발명에 따른 화학식 1의 비대칭 구조를 갖는 아릴아민유도체를 제외한 유기전기발광소자용 유기박막재료는 본 기술분야에서 잘 알려져 있으므로 이에 대한 자세한 설명을 생략하며, 다만, 본 발명의 유기전기발광소자에 대한 설명에서 일례를 들어 설명한다.
본 발명에 따른 유기전기발광소자는, 양극, 음극 및 상기 양극과 음극 사이에 위치되는 다수의 유기박막층을 구비한 유기전기발광소자에 있어서, 상기 유기박막층 중 적어도 하나의 층에 상기 유기전기발광소자용 유기박막재료가 포함된다.
상기 유기박막층은 정공 주입층, 정공 수송층, 발광층, 전자 주입층 및 전자 수송층 중에서 선택되는 적어도 하나를 포함한다. 보다 바람직하게는 상기 유기전기발광소자용 유기박막재료가 포함되는 유기박막층은 발광층인 것이 좋다.
보다 구체적인 일례를 들어 설명하면 다음과 같다.
도 1은 본 발명의 일 실시예에 따른 유기전기발광소자의 단면도이다.  도시된 바와 같이, 기판(1), 양극(2), 정공 수송층(4), 발광층(5), 전자 수송층(6), 음극(7)을 구비할 수 있다.  상기 전자 수송층(6)과 음극(7) 사이에 전자 주입층(도시되지 않음)을, 양극(2)과 정공 수송층(4) 사이에 정공 주입층(3)을 더 포함할 수도 있다.
여기서 양극(2)과 음극(7) 사이에 놓여질 수 있는 정공 주입층(3), 정공 수송층(4), 발광층(5), 전자 수송층(6), 전자 주입층(도면에 도시하지 않음) 등이 유기박막층에 해당되며, 이들의 전부 또는 일부에 상기 화학식 1로 표현되는 비대칭 구조의 아릴아민유도체가 포함된 유기박막재료가 포함된다.
상기 양극(2) 재료의 예로는 ITO, IZO, 주석 옥사이드, 아연 옥사이드, 아연 알루미늄 옥사이드, 및 티타늄 니트라이드 등의 금속 옥사이드 또는 금속 니트라이드; 금, 백금, 은, 구리, 알루미늄, 니켈, 코발트, 리드, 몰리브덴, 텅스텐, 탄탈륨, 니오븀 등의 금속; 이러한 금속의 합금 또는 구리 요오드화물의 합금; 폴리아닐린, 폴리티오핀, 폴리피롤, 폴리페닐렌비닐렌, 폴리(3-메틸티오핀), 및 폴리페닐렌설파가드 등의 전도성 중합체가 있다.  상기 양극(2)은 전술한 재료들 중 한가지 타입으로만 형성되거나 또는 복수개의 재료의 혼합물로도 형성될 수 있다. 또한, 동일한 조성 또는 상이한 조성의 복수개의 층으로 구성되는 다층 구조가 형성될 수 있다.
본 발명의 정공 주입층(3)은 본 발명에 따른 화학식 1로 표현되는 아릴아민유도체 이외에, 본 기술분야에서 알려진 유기박막 재료들을 사용할 수 있으며, 제한되지 않으나 PEDOT/PSS 또는 구리 프탈로시아닌(CuPc), 4,4',4"-트리스(3-메틸페닐페닐아미노)트리페닐아민(m-MTDATA), 4,4',4"-트리스(N-(2-나프틸)-N-페닐-아미노)-트리페닐아민(2-TNATA) 등의 물질을 5nm ~ 40nm 두께로 하여 형성할 수 있다.
상기 정공 수송층(4)은 본 발명에 따른 화학식 1로 표현되는 아릴아민유도체 이외에, 본 기술분야에서 알려진 유기박막 재료인 4,4'-비스[N-(1-나프틸)-N-페닐-아미노]-바이페닐 (NPD)나 N,N'-디페닐-N,N'-비스(3-메틸페닐)-1,1'-바이페닐-4,4'-디아민 (TPD) 등의 물질을 사용하여 형성할 수 있다.
상기 발광층(5)은 본 발명에 따른 화학식 1로 표현되는 아릴아민유도체 이외에, 본 기술분야에서 알려진 형광 및 인광 호스트 및 도펀트 재료가 사용될 수 있다. 여기서 본 발명에 따른 화학식 1로 표현되는 아릴아민유도체의 함량은 통상의 형광 및 인광 도펀트 첨가범위내에서 첨가 될 수 있다.
상기 발광층의 호스트 재료는 제한되지 않으나, 4,4'-N,N-디카바졸비페닐(CBP)과 1,3-N,N-디카바졸벤젠(mCP) 및 그 유도체를 사용할 수 있다. 또한 최근에는 전자수송성이 있는 BAlq 또는 그것과 비슷한 종류의 Al착체 물질들이 인광호스트로 유용하다고 알려져 있으며, 구체적으로 (4,4'-비스(2,2-디페닐-에텐-1-일)디페닐(DPVBi), 비스(스티릴)아민(DSA)계, 비스(2-메틸-8-퀴놀리놀라토)(트리페닐실록시)알루미늄(III)(SAlq), 비스(2-메틸-8-퀴놀리놀라토)(파라-페놀라토)알루미늄(III)(BAlq), 비스(살렌)진크(II), 1,3-비스[4-(N,N-디메틸아미노)페닐-1,3,4-옥사디아조릴]벤젠(OXD8), 3-(비페닐-4-일)-5-(4-디메틸아미노)4-(4-에틸페닐)-1,2,4-트리아졸(p-EtTAZ), 3-(4-비페닐)-4-페닐-5-(4-터셔리-부틸페닐)-1,2,4-트리아졸(TAZ), 2,2',7,7'-테트라키스(비-페닐-4-일)-9,9'-스피로플루오렌(Spiro-DPVBI), 트리스(파라-터-페닐-4-일)아민(p-TTA), 5,5-비스(디메지틸보릴)-2,2-비티오펜(BMB-2T) 및 퍼릴렌(perylene) 등이 사용 가능하다.
또한, 트리스(8-퀴놀리나토)알루미늄(III)(Alq3), DCM1(4-디시아노메틸렌-2-메틸-6-(파라-디메틸아미노스틸릴)-4H-피란), DCM2(4-디시아노메틸렌-2-메틸-6-(줄로리딘-4-일-비닐)-4H-피란), DCJT(4-(디시아노메틸렌)-2-메틸-6-(1,1,7,7-테트라메틸줄로리딜-9-에닐)-4H-피란), DCJTB(4-(디시아노메틸렌)-2-터셔리부틸-6-(1,1,7,7-테트라메틸줄로리딜-9-에닐)-4H-피란), DCJTI(4-디시아노메틸렌)-2-아이소프로필-6-(1,1,7,7-테트라메틸줄로리딜-9-에닐)-4H-피란) 및 나일레드(Nile red), 루브렌(Rubrene) 등이 호스트 또는 도펀트로 사용 가능하다.
상술한 호스트와 도펀트는 하나 또는 둘 이상을 선택하여 추가할 수 있다.
상기 전자 수송층(6)은 본 발명에 따른 화학식 1로 표현되는 비대칭 구조를 갖는 아릴아민유도체 이외에, 아릴 치환된 옥사디아졸, 아릴-치환된 트리아졸, 아릴-치환된 펜안트롤린, 벤족사졸, 또는 벤즈시아졸 화합물을 포함할 수 있으며, 예를 들면, 1,3-비스(N,N-t-부틸-페닐)-1,3,4-옥사디아졸(OXD-7); 3-페닐-4-(1'-나프틸)-5-페닐-1,2,4-트리아졸(TAZ); 2,9-디메틸-4,7-디페닐-펜안트롤린(바소큐프로인 또는 BCP); 비스(2-(2-히드록시페닐)-벤족사졸레이트)징크; 또는 비스(2-(2-히드록시페닐)-벤즈시아졸레이트)아연; 전자 수송 물질은 (4-비페닐)(4-t-부틸페닐)옥시디아졸(PDB)과 트리스(8-퀴놀리나토)알루미늄(III)(Alq3) 등에서 선택된 화합물을 사용할 수 있으며, 바람직하게는 트리스(8-퀴놀리나토)알루미늄(III)(Alq3)이 바람직하다.
상기 전자 주입층과 음극(7)은 본 기술분야에서 알려진 재료를 사용할 수 있으며, 제한되지 않으나 LiF를 전자 주입층으로 사용하고 Al, Ca, Mg, Ag 등 일함수가 낮은 금속을 음극으로 사용할 수 있으며, 바람직하게는 Al이 바람직하다.
전술한 본 발명에 따른 유기전기발광소자는 표시장치에 적용될 수 있다. 상기 표시장치는 백라이트 유닛을 사용하는 표시장치 등일 수 있으며, 상기 유기전기발광소자는 백라이트 유닛의 광원 및 단독 광원으로 사용될 수도 있다. 또한, 상기 표시장치는 유기전기발광 디스플레이(OLED)일 수 있다.
이하, 본 발명을 하기 실시예를 들어 보다 상세하게 설명하기로 하되, 본 발명은 하기 실시예로만 한정되는 것은 아니다. 특히, 합성예에서는 일부 의 화합물 합성법을 예시하고 있으나, 그 이외의 화합물 역시 동일한 합성 경로를 통하여 합성되는 것으로, 당업자라면 누구나 본 발명 또는 공지된 방법에 따라 본 발명의 분자 내에 대칭축 또는 대칭면을 갖지 않는 것을 구조적 특징으로 하는 비대칭 구조의 아릴아민유도체를 합성하는 것이 가능하므로, 본 발명이 이에 한정되는 것은 아니다.
<합성예 1> 화학식 22의 화합물 합성
전체 합성과정은 하기 반응식 4에 나타내었다.
먼저 250mL 3구 플라스크에 질소분위기 하에서 6-브로모-1-아이오도-나프탈렌 5.00g(15.0mmol)과 4-(나프탈렌-2-일-페닐-아미노)-페닐보로닉 애시드4.33g(12.8mmol) 그리고 촉매량의 테트라키스(트리페닐포스핀)-팔라듐을 투입하고 1,2-디메톡시에탄 60mL, 2M-탄산나트륨 수용액 30mL을 넣고 섭씨 95℃에서 18시간 환류시켰다. 반응 종료 후 반응 온도를 상온으로 냉각시키고, 증류수와 에틸아세테이트로 유기층을 추출한 후 황산마그네슘으로 건조시키고, 감압하에서 용매를 제거한 후, 테트라하이드로퓨란과 메탄올을 이용하여 재침전시켜 여과하였다. 진공건조 후 목적물인 화학식 75의 [4-(6-브로모-나프탈렌-2-일)-페닐]-나프탈렌-2-일-페닐-아민(MS (EI) (calcd for C32H22BrN, 500.43; Found: 499)을 8.18g(64%) 수율로 얻었다.
그런 다음, 250mL 3구 플라스크에 질소분위기 하에서 화학식 75의 [4-(6-브로모-나프탈렌-2-일)-페닐]-나프탈렌-2-일-페닐-아민을 4.00g (8.0mmol), 나프탈렌-2-일-나프탈렌-1-일-아민을 2.48g(9.2mmol), 그리고 촉매량의 비스(디벤질리딘아세톤)-팔라듐과 트리-t-부틸포스핀, 나트륨-t-부톡사이드를 투입하고 톨루엔 80mL을 넣고 상온에서 5시간 교반시켰다. 반응 종료 후 반응 온도를 상온으로 내린 후 증류수와 에틸아세테이트로 유기층을 추출한 후 황산마그네슘으로 건조시키고, 감압하에서 용매를 제거한 후 테트라하이드로퓨란과 메탄올을 이용하여 재침전시켜 여과하였다. 진공건조후 목적물인 화학식 22의 6-[(4-(나프탈렌-2-일-페닐-아미노)-페닐]-나프탈렌-2-일-나프탈렌-2일-나프탈렌-1-일-아민을 4.35g(79%) 수율로 얻었다.
MS (EI) (calcd for C52H36N2, 688.86; Found: 688)
반응식 4
Figure PCTKR2009007518-appb-I000055
<합성예 2> 화학식 23의 화합물 합성
전체 합성과정은 하기 반응식 5에 나타내었으며, 반응식 5에서 보는 바와 같이 합성예 1의 스즈키 커플링 반응에서 나프탈렌-2-일-페닐-아민 대신에 나프탈렌-2일-나프탈렌-1일-페닐보로닉 애시드를 사용하여 화학식 76의 [4-(6-브로모-나프탈렌-2-일)-페닐]-나프탈렌-1-일-나프탈렌-2-일-아민을 합성한 후, 아릴아민화 반응을 위하여 합성예1의 나프탈렌-2-일-나프탈렌-1-일-아민 대신에 나프탈렌-2-일-페닐 아민을 사용하여 최종 목적물인 화학식 23의 6-[(4-(나프탈렌-2-일-나프탈렌-1-아미노)-페닐]-나프탈렌-2-일-나프탈렌-2일-페닐-아민을 합성한 것 이외에는 상기 합성예 1과 동일하게 실시하였다.
MS (EI) (calcd for C52H36N2, 688.86; Found: 688)
반응식 5
Figure PCTKR2009007518-appb-I000056
<합성예 3> 화학식 24의 화합물 합성
전체 합성과정은 하기 반응식 6에 나타내었으며, 반응식 6에서 보는 바와 같이 아릴아민화 반응을 위하여 합성예2의 나프탈렌-2-일-나프탈렌-1-일-아민 대신에 나프탈렌-1-일-페닐 아민을 사용하여 최종 목적물인 화학식 24의 6-[(4-(나프탈렌-2-일-나프탈렌-1-아미노)-페닐]-나프탈렌-2-일-나프탈렌-1일-페닐-아민을 합성한 것 이외에는 상기 합성예 2와 동일하게 실시하였다.
MS (EI) (calcd for C52H36N2, 688.86; Found: 688)
반응식 6
Figure PCTKR2009007518-appb-I000057
<합성예 4> 화학식 29의 화합물 합성
전체 합성과정은 하기 반응식 7에 나타내었다.
먼저 500mL 3구 플라스크에 질소분위기 하에서 1,6-디브로모피렌 45.0mmol과 4-(나프탈렌-2-일-페닐-아미노)-페닐보로닉 애시드 12.8mmol 그리고 촉매량의 테트라키스(트리페닐포스핀)-팔라듐을 투입하고 1,2-디메톡시에탄 225mL, 2M-탄산나트륨 수용액 60mL을 넣고 섭씨 95℃에서 18시간 환류시켰다. 반응 종료 후 반응 온도를 상온으로 냉각시키고, 과량의 디브로모피렌을 여과를 통하여 회수하고 증류수와 에틸아세테이트로 유기층을 추출한 후 황산마그네슘으로 건조시키고, 감압하에서 용매를 제거한 후, 테트라하이드로퓨란과 메탄올을 이용하여 재침전시켜 여과하였다. 진공건조 후 목적물인 화학식 77의 [4-(6-브로모-피렌-1-일)-페닐]-나프탈렌-2-일-페닐-아민(MS (EI) (calcd for C38H24BrN, 574.51; Found: 574)을 84% 수율로 얻었다.
그런 다음, 250mL 3구 플라스크에 질소분위기 하에서 화학식 77의 [4-(6-브로모-나프탈렌-2-일)-페닐]-나프탈렌-2-일-페닐-아민을 8.0mmol, 나프탈렌-2-일-나프탈렌-1-일-아민을 9.2mmol, 그리고 촉매량의 비스(디벤질리딘아세톤)-팔라듐과 트리-t-부틸포스핀, 나트륨-t-부톡사이드를 투입하고 톨루엔 80mL을 넣고 섭씨 105℃에서 5시간 교반시켰다. 반응 종료 후 반응 온도를 상온으로 내린 후 증류수와 에틸아세테이트로 유기층을 추출한 후 황산마그네슘으로 건조시키고, 감압하에서 용매를 제거한 후 테트라하이드로퓨란과 메탄올을 이용하여 재침전시켜 여과하였다. 진공건조후 목적물인 화학식 29의 나프탈렌-2-일-나프탈렌-1-일-{6-[4-(나프탈렌-2-일-페닐-아미노)-페닐]-피렌-1-일}-아민을 79% 수율로 얻었다.
MS (EI) (calcd for C58H38N2, 762.94; Found: 762)
반응식 7
Figure PCTKR2009007518-appb-I000058
<합성예 5> 화학식 35의 화합물 합성
전체 합성과정은 하기 반응식 8에 나타내었으며, 반응식 8에서 보는 바와 같이 합성예 1의 스즈키 커플링 반응에서 4-(나프탈렌-2-일-페닐-아미노)-페닐보로닉 애시드 대신에 4-(나프탈렌-1-일-나프탈렌-2-일-아미노)페닐보로닉 애시드를 사용하여 화학식 78의 [4-(6-브로모-피렌-1-일)-페닐]-나프탈렌-1-일-나프탈렌-2-일-아민을 합성한 후, 아릴아민화 반응을 위하여 합성예1의 나프탈렌-1-일-나프탈렌-2-일-아민 대신에 나프탈렌-2-일-페닐 아민을 사용하여 최종 목적물인 화학식 35의 나프탈렌-2-일-{6-[4-(나프탈렌-1-일-나프탈렌-2-일-아미노)-페닐]-피렌-1-일}-페닐-아민 합성한 것 이외에는 상기 합성예 4와 동일하게 실시하였다.
MS (EI) (calcd for C58H38N2, 762.94; Found: 762)
반응식 8
Figure PCTKR2009007518-appb-I000059
<합성예 6> 화학식 36의 화합물 합성
전체 합성과정은 하기 반응식 9에 나타내었으며, 반응식 9에서 보는 바와 같이 합성예 1의 스즈키 커플링 반응에서 4-(나프탈렌-2-일-페닐-아미노)-페닐보로닉 애시드 대신에 4-(디-나프탈렌-1-일-아미노)-페닐보로닉 애시드를 사용하여 화학식 79의 [4-(6-브로모-피렌-1-일)-페닐]-디-나프탈렌-1-일-아민을 합성한 후, 아릴아민화 반응을 위하여 합성예1의 나프탈렌-1-일-나프탈렌-2-일-아민 대신에 나프탈렌-2-일-페닐 아민을 사용하여 최종 목적물인 화학식 36의 {6-[4-(디-나프탈렌-1-일-아미노)-페닐]-피렌-1-일}-나프탈렌-2-일-페닐-아민을 합성한 것 이외에는 상기 합성예 4와 동일하게 실시하였다.
MS (EI) (calcd for C58H38N2, 762.94; Found: 762)
반응식 9
Figure PCTKR2009007518-appb-I000060
<합성예 7> 화학식 37의 화합물 합성
전체 합성과정은 하기 반응식 10에 나타내었으며, 반응식 10에서 보는 바와 같이 합성예 1의 스즈키 커플링 반응에서 4-(나프탈렌-2-일-페닐-아미노)-페닐보로닉 애시드 대신에 4-(디-나프탈렌-2-일-아미노)-페닐보로닉 애시드를 사용하여 화학식 80의 [4-(6-브로모-피렌-1-일)-페닐]-디-나프탈렌-2-일-아민을 합성한 후, 아릴아민화 반응을 위하여 합성예1의 나프탈렌-1-일-나프탈렌-2-일-아민 대신에 나프탈렌-2-일-페닐 아민을 사용하여 최종 목적물인 화학식 37의 {6-[4-(디-나프탈렌-2-일-아미노)-페닐]-피렌-1-일}-나프탈렌-2-일-페닐-아민을 합성한 것 이외에는 상기 합성예 1과 동일하게 실시하였다.
MS (EI) (calcd for C58H38N2, 762.94; Found: 762)
반응식 10
Figure PCTKR2009007518-appb-I000061
<합성예 8> 화학식 41의 화합물 합성
전체 합성과정은 하기 반응식 11과 12에 나타내었다.
공지의 방법에 의한 보로닉애시드화 반응으로 반응식 11의 경로를 통하여 화학식 81의 4'-(디-나프탈렌-2-일-아미노)-비페닐-4-보로닉 애시드를 합성하였다.
그리고 반응식 12에서 보는 바와 같이 스즈키 커플링 반응에서 합성예 7의 4-(디-나프탈렌-2-일-아미노)-페닐보로닉 애시드 대신에 화학식81의 4'-(디-나프탈렌-2-일-아미노)-비페닐-4-보로닉 애시드를 이용한 것 이외에는 합성예 7과 동일하게 실시하여 목적물인 화학식 41의 {6-[4'-(디-나프탈렌-2-일-아미노)-비페닐-4-일]-피렌-1-일}-나프탈렌-2-일-페닐-아민을 합성 하였다.
MS (EI) (calcd for C64H42N2, 839.03; Found: 838)
반응식 11
Figure PCTKR2009007518-appb-I000062
반응식 12
Figure PCTKR2009007518-appb-I000063
<합성예 9> 화학식 44의 화합물 합성
전체 합성과정은 하기 반응식 13에 나타내었다.
먼저500mL 3구 플라스크에 질소분위기 하에서 1,6-디브로모피렌을 26.0mmol), 나프탈렌-2-일-페닐-아민을 14.8mmol, 그리고 촉매량의 비스(디벤질리딘아세톤)-팔라듐과 트리-t-부틸포스핀, 나트륨-t-부톡사이드를 투입하고 톨루엔 200mL를 넣고 섭씨 105℃에서 5시간 교반시켰다. 반응 종료 후 반응 온도를 상온으로 내린 후 석출된 과량의 1,6-디브로모피렌을 여과로 회수하고 증류수와 에틸아세테이트로 유기층을 추출한 후 황산마그네슘으로 건조시키고, 감압하에서 용매를 제거한 후 에틸아세테이트와 n-헥산을 전개용매로 이용하는 컬럼크로마토그래피법으로 정제를 수행하였다. 진공건조 후 목적물인 화학식 83의 (6-브로모-파이렌-1-일)-나프탈렌-2-일-페닐아민(MS (EI) (calcd for C32H20BrN, 498.41; Found: 497)을 36% 수율로 얻었다.
그리고 500mL 3구 플라스크에 질소분위기 하에서 1,6-디브로모파이렌 26.0mmol과 4-디페닐아미노-페닐-1-보로닉애시드 12.8mmol 그리고 촉매량의 테트라키스(트리페닐포스핀)-팔라듐을 투입하고 1,2-디메톡시에탄 225mL, 2M-탄산나트륨 수용액 80mL을 넣고 섭씨 95℃에서 20시간 환류시켰다. 반응 종료 후 반응 온도를 상온으로 냉각시키고, 과량의 1,6-디브로모피렌을 여과로 회수하고 증류수와 에틸아세테이트로 유기층을 추출한 후 황산마그네슘으로 건조시키고, 감압하에서 용매를 제거한 후, 에틸아세테이트와 n-헥산을 전개용매로 이용하는 컬럼크로마토그래피법으로 정제를 수행하였다. 진공건조 후 목적물인 화학식 84의 [4-(6-브로모-파이렌-1-일)-페닐]-디페닐아민(MS (EI) (calcd for C34H22BrN, 524.45; Found: 523)을 28% 수율로 얻었다.
화학식 83의 (6-브로모-파이렌-1-일)-나프탈렌-2-일-페닐아민 3.8mmol을 질소 분위기의 무수 테트라히드로퓨란 용매 40mL하에서 그리니아(Grignard) 반응을 수행한다. 생성된 그리니아반응의 생성물을, 화학식 74의 [4-(6-브로모-파이렌-1-일)-페닐]-디페닐아민 3.0mmol과 촉매량의 [1,3-비스(디페닐포스피노)프로판]니켈(II)가 녹아있는 무수 테트라히드로퓨란 용액에 cannular를 이용하여 서서히 dropwise하고 추가적인 4시간의 교반을 수행한다. 반응 종류 후, 증류수와 에틸아세테이트로 유기층을 추출한 후 황산마그네슘으로 건조시키고, 감압하에서 용매를 제거한 후, 에틸아세테이트와 n-헥산을 전개용매로 이용하는 컬럼크로마토그래피법으로 정제를 수행하였다. 진공건조 후 목적물인 화학식44의 [6'-(4-디페닐아미노-페닐)-[1,1']비피렌닐-6-일]-나프탈렌-2-일-페닐아민을 합성하였다.
MS (EI) (calcd for C66H42N2, 863.05; Found: 862)
반응식 13
Figure PCTKR2009007518-appb-I000064
<합성예 10> 화학식 56의 화합물 합성
전체 합성과정은 하기 반응식 14에 나타내었으며, 반응식 14에서 보는 바와 같이 합성예 4의 스즈키 커플링 반응에서 4-(나프탈렌-2-일-페닐-아미노)-페닐보로닉 애시드 대신에 4-(디-나프탈렌-2-일-아미노)-페닐보로닉 애시드를 사용하여 화학식 80의 [4-(6-브로모-피렌-1-일)-페닐]-디-나프탈렌-2-일-아민을 합성한 후, 아릴아민화 반응을 위하여 합성예1의 나프탈렌-1-일-나프탈렌-2-일-아민 대신에 페닐-퀴놀린-4-일-아민을 사용하여 최종 목적물인 화학식 56의 {6-[4-(디-나프탈렌-2-일-아미노)-페닐]-피렌-1-일}-페닐-퀴놀린-4-일-아민을 합성한 것 이외에는 상기 합성예 4와 동일하게 실시하였다.
MS (EI) (calcd for C57H37N3, 763.92; Found: 763)
반응식 14
Figure PCTKR2009007518-appb-I000065
<비교합성예 1> 화학식 85의 화합물 합성
합성과정은 하기 반응식14에 나타내었다.
100mL 3구 플라스크에 질소분위기 하에서 1,6-디브로모피렌을 2.00g(5.6mmol), 4-(디페닐아미노)-페닐보로닉애시드 를 3.53g(12.2mmol), 그리고 촉매량의 테트라키스(트리페닐포스핀)팔라듐을 투입하고 1,2-디메톡시에탄 40mL, 2M-탄산나트륨 수용액 20mL을 넣고 섭씨 95℃에서 20시간 환류시켰다. 반응 종료 후 반응 온도를 상온으로 내린 후 증류수와 에틸아세테이트로 유기층을 추출한 후 황산마그네슘으로 건조시키고, 감압하에서 용매를 제거한 후 테트라하이드로퓨란과 메탄올을 이용하여 재침전시켜 여과하였다. 진공건조후 3.10g(81%)의 수율로 목적물인 화학식 85의 동일한 3급 아민이 치환된 화합물을 얻었다.
MS (EI) (calcd for C52H36N2, 688.86; Found: 688)
반응식 15
Figure PCTKR2009007518-appb-I000066
<비교합성예 2> 화학식 86의 화합물 합성
합성과정은 하기 반응식16에 나타내었다.
100mL 3구 플라스크에 질소분위기 하에서 1,6-디브로모피렌을 2.00g(5.6mmol), 디페닐아민을 1.90g(11.2mmol), 그리고 촉매량의 비스(디벤질리딘아세톤)-팔라듐과 트리-t-부틸포스핀, 나트륨-t-부톡사이드를 투입하고 톨루엔 40mL을 넣고 상온에서 8시간 교반시켰다. 반응 종료 후 반응 온도를 상온으로 내린 후 증류수와 에틸아세테이트로 유기층을 추출한 후 황산마그네슘으로 건조시키고, 감압하에서 용매를 제거한 후 테트라하이드로퓨란과 메탄올을 이용하여 재침전시켜 여과하였다. 진공건조후 2.35g(74%)의 수율로 목적물인 동일한 2급 아민이 치환되어 있는 N,N,N',N'-테트라페닐-피렌-1,6-디아민(화학식86)을 얻었다.
MS (EI) (calcd for C40H28N2, 536.66; Found: 535)
반응식 16
Figure PCTKR2009007518-appb-I000067
<비교합성예 3> 화학식 87의 화합물 합성
합성과정은 하기 반응식17에 나타내었다.
아릴아민화 반응에서 디페닐아민 대신에 나프탈렌-1-일-페닐아민을 이용한 것 이외에는 비교합성예2와 동일하게 실시하여 목적물인 동일한 2급 아민이 치환되어 있는 화학식 87의 N,N'-디-나프탈렌-1-일-N,N'-디페닐-피렌-1,6-디아민을 합성하였다.
MS (EI) (calcd for C48H32N2, 636.78; Found: 636)
반응식 17
Figure PCTKR2009007518-appb-I000068
실시예 1: 유기전기발광소자 1의 제작 및 평가
22mm×2mm단위소자로 제작할 수 있도록 절연막이 도포된 ITO 투명 전극 부착 유리 기판을 아이소프로필알코올 중에서 초음파 세정을 5분간 실시한 후, UV 오존 세정을 30분간 실시하였다. 세정 후의 투명 전극 라인 부착 유리 기판을 진공 증착 장치의 기판 홀더에 장착하고, 우선 투명 전극 라인이 형성되어 있는 측의 면상에 상기 투명 전극을 덮도록 하여 정공주입재료인 2-TNATA(4,4',4"-Tris(N-(2-naphthyl)-N-phenyl-amino)-tri-phenylamine)를 저항 가열 증착에 의해 600Å의 두께로 성막하였다. 그 위에 정공수송재료인 NPD(N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine)를 동일한 증착 방법에 의해 200Å의 두께로 성막하였다. 그리고 그 위에 발광층으로 하기 화학식 78의 재료를 형광호스트로 하고, 합성예 1에서 제조한 화학식 22의 화합물을 형광도펀트(3중량%)로 하여 40nm 두께로 공증착한 후, 전자수송재료로 Alq3(tris-(8-hydroxyquinoline)aluminium-(III))를 300Å의 두께로 성막하였다. 그 위에 Li막을, 성막 속도 1.5Å/sec:1Å/min로 막 두께 10nm로 형성하고, 이 Li막상에 Al을 증착시켜 막 두께 100nm의 금속 음극을 형성하여 유기전기발광소자를 제작하였다. 증착에 사용한 장비는 브이티에스사의 EL증착기를 사용하였다.
화학식 88
Figure PCTKR2009007518-appb-I000069
실시예 2: 유기전기발광소자 2의 제작 및 평가
합성예 1에서 제조한 화학식 22의 화합물 대신 합성예 2에서 제조한 화학식 23의 화합물을 이용한 것 이외에는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
실시예 3: 유기전기발광소자 3의 제작 및 평가
합성예 1에서 제조한 화학식 22의 화합물 대신 합성예 3에서 제조한 화학식 24의 화합물을 이용한 것 이외에는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
실시예 4: 유기전기발광소자 4의 제작 및 평가
합성예 1에서 제조한 화학식 22의 화합물 대신 합성예 4에서 제조한 화학식 29의 화합물을 이용한 것 이외에는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
실시예 5: 유기전기발광소자 5의 제작 및 평가
합성예 1에서 제조한 화학식 22의 화합물 대신 합성예 5에서 제조한 화학식 35의 화합물을 이용한 것 이외에는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
실시예 6: 유기전기발광소자 6의 제작 및 평가
합성예 1에서 제조한 화학식 22의 화합물 대신 합성예 6에서 제조한 화학식 36의 화합물을 이용한 것 이외에는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
실시예 7: 유기전기발광소자 7의 제작 및 평가
합성예 1에서 제조한 화학식 22의 화합물 대신 합성예 7에서 제조한 화학식 37의 화합물을 이용한 것 이외에는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
실시예 8: 유기전기발광소자 8의 제작 및 평가
합성예 1에서 제조한 화학식 22의 화합물 대신 합성예 8에서 제조한 화학식 41의 화합물을 이용한 것 이외에는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
실시예9: 유기전기발광소자 9의 제작 및 평가
합성예 1에서 제조한 화학식 22의 화합물 대신 합성예 9에서 제조한 화학식 44의 화합물을 이용한 것 이외에는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
실시예10: 유기전기발광소자 10의 제작 및 평가
합성예 1에서 제조한 화학식 22의 화합물 대신 합성예 10에서 제조한 화학식 56의 화합물을 이용한 것 이외에는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
비교예 1: 유기전기발광소자 11의 제작 및 평가
합성예 1에서 제조한 화학식 22의 화합물 대신 비교합성예 1에서 제조한 화학식 85의 화합물을 이용한 것 이외에는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
비교예 2: 유기전기발광소자 12의 제작 및 평가
합성예 1에서 제조한 화학식 22의 화합물 대신 비교합성예 2에서 제조한 화학식 86의 화합물을 이용한 것 이외에는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
비교예 3: 유기전기발광소자 13의 제작 및 평가
합성예 1에서 제조한 화학식 22의 화합물 대신 비교합성예 3에서 제조한 화학식 87의 화합물을 이용한 것 이외에는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<실험예>
상기 실시예 1 내지 10 및 비교예 1 내지 3에서 제조한 유기전기 발광소자를 이용하여 아래와 같은 방법으로 특성평가를 실시하였으며, 그 결과를 표 1에 나타내었다.
1)전류밀도
제조된 유기전기발광소자에 대하여 전압변화에 따른 전류밀도의 변화를 측정하였다. 측정은 전류밀도를 2.5mA/cm2에서부터 100mA/cm2까지 2.5mA씩 증가시키면서 전류-전압계(Kethely 237)을 이용하여 단위소자에 흐르는 전류값을 측정하였다.
2)색좌표
제조된 유기전기발광소자에 대하여 전류밀도를 2.5mA/cm2에서부터 100mA/cm2까지 2.5mA씩 증가시키면서 휘도계(PR650)를 이용하여 측정하였다.
3)휘도
전류-전압계(Kethley SMU 236)에서 전원을 공급하고, 휘도계(PR650)을 이용하여 측정하였다.
4)효율
위에서 측정한 휘도와 전류밀도를 이용하여 발광효율을 계산하였다.
표 1
Figure PCTKR2009007518-appb-I000070
상기 표 1의 결과로부터 확인할 수 있는 바와 같이 본 발명에 따른 화학식1로 표현되는 분자 내에 대칭축 및 대칭면을 갖지 않도록 중심구조의 아릴화합물에 서로 다른 2급 아민과 3급 아민을 치환기로 도입한 비대칭 구조의 아릴아민유도체는 유기전기발광소자의 유기박막층 형성에 이용 가능하며, 발광층으로 사용하여 유기전기발광소자를 제작 시, 청색 파장 영역에서 발광하고 대칭 구조의 재료에 비해서 색순도가 우수하고 발광 효율 및 수명 특성이 향상됨을 확인할 수 있었다. 특히 본 발명에 따른 비대칭 구조의 아릴아민유도체를 사용한 실시예 1 내지 10의 경우 피렌화합물에 동일 3급아민 또는 동일 2급아민을 도입한 피렌유도체를 사용한 비교예 1내지 3에 비하여 매우 월등하게 향상된 색순도 또는 효율과 수명 특성을 보여주고 있음을 확인할 수 있다.
본 발명에 따르면, 중심구조의 아릴화합물에 2급 아민과 3급 아민을 치환기로 도입하여 된 것으로 의해 분자의 구조 내에 그 어떤 대칭축 및 대칭면을 갖지 않는 비대칭 구조의 유기전기발광소자용 아릴아민유도체를 제공함으로써, 이를 유기전기발광소자에 이용시 청색 파장 영역에서 우수한 발광 효율과 우수한 수명 특성을 얻을 수 있다.

Claims (15)

  1. 중심구조의 아릴화합물인 Ar에 치환기로 2급 아민과 3급 아민을 도입하여 분자의 구조 내에 대칭축 및 대칭면을 갖지 않도록 한 하기 화학식 1로 표현되는 것을 특징으로 하는 비대칭 구조의 유기전기발광소자용 아릴아민유도체.
    화학식 1
    Figure PCTKR2009007518-appb-I000071
    (상기 화학식 1에서, Ar은 탄소수 10 내지 20의 2가의 아릴기이고 ,Ar1은 2가의 탄소수 6 내지 탄소수 30의 아릴기이고, Ar의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, Ar의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 치환 위치가 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기이다.)
  2. 청구항 1에 있어서, 상기 화학식 1로 표현되는 화합물에서 Ar은 나프탈렌, 피렌, 퍼릴렌 또는 펜타센에서 선택되는 2가의 아릴기인 것을 특징으로 하는 비대칭 구조의 유기전기발광소자용 아릴아민유도체.
  3. 청구항 1에 있어서, 상기 화학식 1로 표현되는 화합물에서 Ar이 나프탈렌인 하기 화학식 2로 표현되는 화합물 또는 Ar이 피렌인 하기 화학식 3으로 표현되는 화합물인 것을 특징으로 하는 비대칭 구조의 유기전기발광소자용 아릴아민유도체.
    화학식 2
    Figure PCTKR2009007518-appb-I000072
    (상기 화학식 2에서 Ar1은 2가의 탄소수 6 내지 탄소수 30의 아릴기이고, 나프탈렌의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, 나프탈렌의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 치환 위치가 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기이다.)
    화학식 3
    Figure PCTKR2009007518-appb-I000073
    (상기 화학식 3에서 Ar1은 2가의 탄소수 6 내지 탄소수 30의 아릴기이고, 피렌의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, 피렌의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 치환 위치가 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기이다.)
  4. 청구항 1에 있어서, 상기 화학식 1에서 Ar1은 하기의 화학식 4로 표현되는 아릴기, 화학식 5로 표현되는 아릴기, 화학식 6으로 표현되는 아릴기, 화학식 7로 표현되는 아릴기, 화학식 8로 표현되는 아릴기, 화학식 9로 표현되는 아릴기, 화학식 10으로 표현되는 아릴기, 화학식 11로 표현되는 아릴기 및 화학식 4 내지 화학식 11로 표현되는 아릴기 중 적어도 두 개의 아릴기가 서로 연결된 아릴기로 이루어진 군으로부터 선택된 아릴기인 비대칭의 아릴아민유도체.
    화학식 4
    Figure PCTKR2009007518-appb-I000074
    (상기 화학식 4에서 k는 1 내지 3의 정수이다.)
    화학식 5
    Figure PCTKR2009007518-appb-I000075
    (상기 화학식 5에서 l은 1 또는 2이다.)
    화학식 6
    Figure PCTKR2009007518-appb-I000076
    (상기 화학식 6에서 m은 1 또는 2이고, R은 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 불포화환을 형성해도 좋은 시클로알킬기 또는 탄소수 1 내지 20의 알콕시기이다.)
    화학식 7
    Figure PCTKR2009007518-appb-I000077
    화학식 8
    Figure PCTKR2009007518-appb-I000078
    (상기 화학식 8에서 n은 1 내지 3의 정수이다.)
    화학식 9
    Figure PCTKR2009007518-appb-I000079
    (상기 화학식 9에서 o는 1 또는2이다.)
    화학식 10
    Figure PCTKR2009007518-appb-I000080
    (상기 화학식 10에서 p는 1 또는2이다.)
    화학식 11
    Figure PCTKR2009007518-appb-I000081
    (상기 화학식 11에서 q는 1 또는 2이고, R3는 탄소수 1 내지 20의 알킬기 또는 탄소수 6 내지 12의 아릴기이다.)
  5. 청구항 1에 있어서, 상기 화학식 1에서 중심의 아릴화합물인 Ar의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, 중심의 아릴화합물인 Ar의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기인 것으로서 각각 하기의 화학식12으로 표현되는 아릴기, 화학식 13로 표현되는 아릴기, 화학식 14로 표현되는 아릴기, 화학식 15으로 표현되는 아릴기, 화학식 16로 표현되는 아릴기, 화학식 17로 표현되는 아릴기, 화학식 18으로 표현되는 아릴기, 화학식 19로 표현되는 아릴기 및 화학식 12 내지 화학식 19로 표현되는 아릴기 중 적어도 두 개의 아릴기가 서로 연결된 아릴기로 이루어진 군으로부터 선택된 아릴기인 비대칭의 아릴아민유도체.
    화학식 12
    Figure PCTKR2009007518-appb-I000082
    화학식 13
    Figure PCTKR2009007518-appb-I000083
    화학식 14
    Figure PCTKR2009007518-appb-I000084
    화학식 15
    Figure PCTKR2009007518-appb-I000085
    화학식 16
    Figure PCTKR2009007518-appb-I000086
    화학식 17
    Figure PCTKR2009007518-appb-I000087
    화학식 18
    Figure PCTKR2009007518-appb-I000088
    화학식 19
    Figure PCTKR2009007518-appb-I000089
    (상기 화학식 19에서 R1과 R2는 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 불포화환을 형성해도 좋은 시클로알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 6 내지 12의 아릴기이다.)
  6. 청구항 1에 있어서, 상기 화학식 1에서 Ar, Ar1, Ar2, Ar3, Ar4, Ar5는 각각 적어도 하나의 수소 위치가 서로 독립적으로, 중수소, 할로겐 원자, 니트로기, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 시클로알킬기, 탄소수 1 내지 20의 알콕시기, 시아노기 또는 트리플루오로메틸기, 탄소수 1 내지 6의 알킬기로 이루어진 알킬실릴기, 탄소수 4~8로 이루어진 헤테로 원소를 포함해도 좋은 아릴실릴기로 이루어진 군으로부터 선택된 치환기로 치환되어도 좋은 비대칭 아릴아민유도체.
  7. 하기 반응식 1에 나타낸 바와 같이 서로 같거나 다른 작용기로 이치환된 중심구조의 아릴화합물인 Ar을 출발물질로 하여 아릴 아민화반응 또는 스즈키 커플링(Suzuki-coupling)반응을 통해 작용기를 순차적으로 2급아민 또는 3급아민기로 치환시켜 분자의 구조 내에 대칭축 및 대칭면을 갖지 않는 하기 화학식 1로 표현되는 비대칭 구조의 화합물을 제조하는 것을 특징으로 하는 비대칭 구조의 유기전기발광소자용 아릴아민유도체의 제조방법.
    화학식 1
    Figure PCTKR2009007518-appb-I000090
    (상기 화학식 1에서, Ar1은 2가의 탄소수 6 내지 탄소수 30의 아릴기이고, Ar의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, Ar의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 치환 위치가 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기이다.)
    반응식 1
    Figure PCTKR2009007518-appb-I000091
    (상기 반응식 1에서 X와 Y는 서로 같거나 다른 것으로서 아릴아민화반응이 가능한 작용기를 나타내며, Ar1은 2가의 탄소수 6 내지 탄소수 30의 아릴기이고, Ar의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, Ar의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 치환 위치가 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기이다.)
  8. 청구항 7에 있어서, 상기 반응식 1에서 Ar은 하기 반응식 2 또는 반응식 3에서 보는 바와 같이 나프탈렌 또는 피렌인 것을 특징으로 하는 비대칭 구조의 유기전기발광소자용 아릴아민유도체의 제조방법.
    반응식 2
    Figure PCTKR2009007518-appb-I000092
    (상기 반응식 2에서 X와 Y는 서로 같거나 다른 것으로서 아릴아민화반응이 가능한 작용기를 나타내며, Ar1은 2가의 탄소수 6 내지 탄소수 30의 아릴기이고, 나프탈렌의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, 나프탈렌의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 치환 위치가 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기이다.)
    반응식 3
    Figure PCTKR2009007518-appb-I000093
    (상기 반응식 3에서 X와 Y는 서로 같거나 다른 것으로서 아릴아민화반응이 가능한 작용기를 나타내며, Ar1은 2가의 탄소수 6 내지 탄소수 30의 아릴기이고, 피렌의 2급 아민과 3급 아민의 치환 위치가 대칭인 경우, Ar2 내지 Ar5는 그 중 적어도 하나가 다른 구조를 갖는 것으로, 피렌의 2급 아민과 3급아민의 치환 위치가 비대칭인 경우, Ar2 내지 Ar5는 같거나 다른 구조를 갖는 것으로 치환 위치가 각각 독립적으로 탄소수 6 내지 탄소수 30의 아릴기이다.)
  9. 청구항 7에 있어서, 상기 X와 Y는 서로 같거나 다른 것으로서 할로겐, 아민 또는 히드록시기에서 선택되는 것으로 아릴아민화반응이 가능한 작용기임을 특징으로 하는 비대칭 구조의 유기전기발광소자용 아릴아민유도체의 제조방법.
  10. 청구항 1 내지 6 중 어느 한 항의 비대칭 구조의 유기전기발광소자용 아릴아민유도체를 포함하는 것을 특징으로 하는 유기전기발광소자용 유기박막재료.
  11. 청구항 10에 있어서, 상기 유기박막재료가 발광 재료 또는 도펀트 재료인 것을 특징으로 하는 유기전기발광소자용 유기박막재료.
  12. 양극, 음극 및 상기 양극과 음극 사이에 위치되는 다수의 유기박막층을 구비한 유기전기발광소자에 있어서,
    상기 다수의 유기박막층 중 적어도 하나의 층에 청구항 1 내지 6 중 어느 한 항의 비대칭 구조의 유기전기발광소자용 아릴아민유도체가 포함되는 것을 특징으로 하는 유기전기발광소자.
  13. 청구항 12에 있어서, 상기 유기박막층이 정공 주입층, 정공 수송층, 발광층, 전자 주입층 및 전자 수송층 중에서 선택된 적어도 하나를 포함하는 것을 특징으로 하는 유기전기발광소자.
  14. 청구항 12에 있어서, 상기 유기박막층이 발광층인 것을 특징으로 하는 유기전기발광소자.
  15. 청구항 12에 있어서,
    상기 유기박막층이 호스트 화합물과 도펀트 화합물을 함유하는 것을 특징으로 하는 유기전기발광소자.
PCT/KR2009/007518 2008-12-18 2009-12-16 비대칭 구조의 유기전기발광소자용 아릴아민유도체, 그 제조방법, 이를 포함하는 유기전기발광소자용 유기박막재료 및 이를 이용한 유기 전기발광소자 WO2010071352A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011542006A JP5540339B2 (ja) 2008-12-18 2009-12-16 非対称構造の有機電気発光素子用アリールアミン誘導体、その製造方法、これを含む有機電気発光素子用有機薄膜材料及びこれを利用した有機電気発光素子
CN200980151207.6A CN102257097B (zh) 2008-12-18 2009-12-16 非对称结构的芳胺衍生物、其制备方法、相应的薄膜材料以及有机电致发光器件
US13/139,715 US8586211B2 (en) 2008-12-18 2009-12-16 Asymmetrical aryl amine derivative for organic electroluminescence devices, method for preparing same, organic thin film for organic electroluminescence devices and organic electroluminescence device using same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20080129685 2008-12-18
KR10-2008-0129685 2008-12-18
KR10-2009-0071884 2009-08-05
KR1020090071884A KR20100070979A (ko) 2008-12-18 2009-08-05 비대칭 구조의 유기전기발광소자용 아릴아민유도체, 그 제조방법, 이를 포함하는 유기전기발광소자용 유기박막재료 및 이를 이용한 유기 전기발광소자
KR10-2009-0124172 2009-12-14
KR1020090124172A KR101695489B1 (ko) 2008-12-18 2009-12-14 비대칭 구조의 유기전기발광소자용 아릴아민유도체, 그 제조방법, 이를 포함하는 유기전기발광소자용 유기박막재료 및 이를 이용한 유기 전기발광소자

Publications (2)

Publication Number Publication Date
WO2010071352A2 true WO2010071352A2 (ko) 2010-06-24
WO2010071352A3 WO2010071352A3 (ko) 2010-09-10

Family

ID=42269236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007518 WO2010071352A2 (ko) 2008-12-18 2009-12-16 비대칭 구조의 유기전기발광소자용 아릴아민유도체, 그 제조방법, 이를 포함하는 유기전기발광소자용 유기박막재료 및 이를 이용한 유기 전기발광소자

Country Status (1)

Country Link
WO (1) WO2010071352A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113443997A (zh) * 2020-03-26 2021-09-28 北京夏禾科技有限公司 芳香族胺衍生物有机电致发光材料及其器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040265632A1 (en) * 2003-06-27 2004-12-30 Canon Kabushiki Kaisha Organic electroluminescent device
US20060251925A1 (en) * 2005-04-18 2006-11-09 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
US20070075635A1 (en) * 2005-09-30 2007-04-05 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
KR20070104086A (ko) * 2006-04-21 2007-10-25 주식회사 엘지화학 신규한 안트라센 유도체, 이의 제조방법 및 이를 이용한유기전자소자
US7405326B2 (en) * 2005-08-08 2008-07-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and electroluminescence device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040265632A1 (en) * 2003-06-27 2004-12-30 Canon Kabushiki Kaisha Organic electroluminescent device
US20060251925A1 (en) * 2005-04-18 2006-11-09 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
US7405326B2 (en) * 2005-08-08 2008-07-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and electroluminescence device using the same
US20070075635A1 (en) * 2005-09-30 2007-04-05 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
KR20070104086A (ko) * 2006-04-21 2007-10-25 주식회사 엘지화학 신규한 안트라센 유도체, 이의 제조방법 및 이를 이용한유기전자소자

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113443997A (zh) * 2020-03-26 2021-09-28 北京夏禾科技有限公司 芳香族胺衍生物有机电致发光材料及其器件
CN113443997B (zh) * 2020-03-26 2024-02-27 北京夏禾科技有限公司 芳香族胺衍生物有机电致发光材料及其器件

Also Published As

Publication number Publication date
WO2010071352A3 (ko) 2010-09-10

Similar Documents

Publication Publication Date Title
WO2020017931A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2019132506A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2017052261A1 (ko) 화합물 및 이를 포함하는 유기 전자 소자
WO2014010824A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2019083327A2 (ko) 헤테로고리 화합물을 이용한 유기 발광 소자
WO2014178532A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016108596A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2014021569A1 (en) Compound for organic electroluminescent device and organic electroluminescent device including the same
WO2020145725A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2020159279A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2019147077A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020122451A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2012111927A9 (ko) 화합물 및 이를 이용한 유기전기소자, 그 전자장치, 내열성 측정법
WO2011139129A2 (ko) 방향족 아민을 포함하는 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019045405A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2019135633A1 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
WO2019235902A1 (ko) 다환 화합물 및 이를 포함하는 유기전자소자
WO2017105039A9 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
WO2020036459A1 (ko) 중합체, 이를 포함하는 코팅 조성물 및 이를 이용한 유기 발광 소자
WO2020045831A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019078692A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2021015417A1 (ko) 유기발광 화합물 및 유기발광소자
WO2022092837A1 (ko) 신규한 화합물, 이를 포함하는 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조 방법
WO2022050710A1 (ko) 다환 방향족 유도체 화합물 및 이를 이용한 유기발광소자
WO2024053991A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151207.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833630

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13139715

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011542006

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833630

Country of ref document: EP

Kind code of ref document: A2