WO2024053991A1 - 신규한 화합물 및 이를 포함한 유기 발광 소자 - Google Patents

신규한 화합물 및 이를 포함한 유기 발광 소자 Download PDF

Info

Publication number
WO2024053991A1
WO2024053991A1 PCT/KR2023/013239 KR2023013239W WO2024053991A1 WO 2024053991 A1 WO2024053991 A1 WO 2024053991A1 KR 2023013239 W KR2023013239 W KR 2023013239W WO 2024053991 A1 WO2024053991 A1 WO 2024053991A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
unsubstituted
compound
formula
Prior art date
Application number
PCT/KR2023/013239
Other languages
English (en)
French (fr)
Inventor
허동욱
한수진
홍성길
이재탁
윤정민
윤희경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202380013620.6A priority Critical patent/CN117999260A/zh
Publication of WO2024053991A1 publication Critical patent/WO2024053991A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to novel compounds and organic light-emitting devices containing the same.
  • organic luminescence refers to a phenomenon that converts electrical energy into light energy using organic materials.
  • Organic light-emitting devices using the organic light-emitting phenomenon have a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, so much research is being conducted.
  • Organic light emitting devices generally have a structure including an anode, a cathode, and an organic material layer between the anode and the cathode.
  • the organic material layer is often composed of a multi-layer structure made of different materials to increase the efficiency and stability of the organic light-emitting device, and may be composed of, for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer.
  • a voltage when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode into the organic material layer. When the injected holes and electrons meet, an exciton is formed, and this exciton is When it falls back to the ground state, it glows.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to novel compounds and organic light-emitting devices containing them.
  • the present invention provides a compound represented by the following formula (1):
  • Each X is independently N, CH, or CD, but at least two of the
  • L is a single bond, or substituted or unsubstituted C 6-60 arylene
  • Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl,
  • Ar 3 and Ar 4 are each independently phenyl unsubstituted or substituted with one or more deuterium,
  • HAr is unsubstituted or substituted with 1 to 3 substituents each independently selected from the group consisting of deuterium, substituted or unsubstituted C 1-60 alkyl, and substituted or unsubstituted C 6-60 aryl.
  • substituents each independently selected from the group consisting of deuterium, substituted or unsubstituted C 1-60 alkyl, and substituted or unsubstituted C 6-60 aryl.
  • a and b are each independently an integer from 0 to 4,
  • n and m are each independently 0 or 1
  • n+m is 1,
  • a+n is an integer from 0 to 4,
  • b+m is an integer from 0 to 4.
  • the present invention includes a first electrode; a second electrode provided opposite to the first electrode; and an organic light-emitting device comprising at least one organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes a compound represented by Formula 1. do.
  • the compound represented by the above-mentioned formula 1 can be used as a material for the organic layer of an organic light-emitting device, and can improve efficiency, low driving voltage, and/or lifespan characteristics of the organic light-emitting device.
  • the compound represented by the above-mentioned formula 1 can be used as a hole injection, hole transport, hole injection and transport, light emitting, electron transport, or electron injection material.
  • Figure 1 shows an example of an organic light emitting device consisting of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • Figure 2 shows an organic light emitting device consisting of a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), a light emitting layer (3), an electron transport and injection layer (7), and a cathode (4). An example is shown.
  • substituted or unsubstituted refers to deuterium; halogen group; Cyano group; nitro group; hydroxyl group; carbonyl group; ester group; imide group; amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkylthioxy group; Arylthioxy group; Alkyl sulphoxy group; Aryl sulfoxy group; silyl group; boron group; Alkyl group; Cycloalkyl group; alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; heteroarylamine group; Arylamine group; Arylphosphine group; or substituted or unsubstituted with one or more substituents selected from the group consisting of heterocyclic groups containing one or more of N, O and S atoms, or substituted or unsubstituted with a substituent in which two
  • a substituent group in which two or more substituents are connected may be a biphenylyl group. That is, the biphenylyl group may be an aryl group, or it may be interpreted as a substituent in which two phenyl groups are connected.
  • substituted or unsubstituted means "unsubstituted or selected from the group consisting of deuterium, halogen, cyano, C 1-10 alkyl, C 1-10 alkoxy and C 6-20 aryl.
  • substituted with one or more substituents any substituent selected from the group consisting of deuterium, halogen, cyano, methyl, ethyl, phenyl and naphthyl.
  • substituted with one or more substituents can be understood to mean “substituted with one to the maximum number of substitutable hydrogens.”
  • substituted with one or more substituents as used herein may be understood to mean “substituted with 1 to 5 substituents,” or “substituted with 1 or 2 substituents.”
  • the carbon number of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms.
  • the substituent may have the following structure, but is not limited thereto.
  • the oxygen of the ester group may be substituted with a straight-chain, branched-chain, or ring-chain alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a substituent of the following structural formula, but is not limited thereto.
  • the carbon number of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms.
  • the substituent may have the following structure, but is not limited thereto.
  • substituted or unsubstituted silyl group refers to -Si(Z 1 )(Z 2 )(Z 3 ), where Z 1 , Z 2 and Z 3 are each independently hydrogen, deuterium, substituted or unsubstituted.
  • Z 1 , Z 2 and Z 3 are each independently hydrogen, deuterium, substituted or unsubstituted C 1-10 alkyl, substituted or unsubstituted C 1-10 haloalkyl, substituted or unsubstituted It may be C 1-10 haloalkyl, or substituted or unsubstituted C 6-20 aryl.
  • Specific examples of the silyl group include trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, and phenylsilyl group. It is not limited.
  • the boron group specifically includes trimethyl boron group, triethyl boron group, t-butyldimethyl boron group, triphenyl boron group, and phenyl boron group, but is not limited thereto.
  • halogen groups include fluoro, chloro, bromo, or iodo.
  • the alkyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the carbon number of the alkyl group is 1 to 20. According to another embodiment, the carbon number of the alkyl group is 1 to 10.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethylbutyl, pentyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, 1-ethyl-propyl, 1,1-dimethylpropyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n-heptyl, isohexyl, 1-methylhexyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5 -methylhexy
  • the alkenyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group, etc., but are not limited thereto.
  • the alicyclic group refers to a monovalent substituent derived from a saturated or unsaturated hydrocarbon ring compound that contains only carbon as a ring-forming atom and has no aromaticity, and includes both monocyclic or condensed polycyclic compounds. It is understood to be inclusive. According to one embodiment, the carbon number of the aliphatic ring group is 3 to 60. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 30. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 20. Examples of such aliphatic groups include monocyclic groups such as cycloalkyl groups, bridged hydrocarbon groups, spiro hydrocarbon groups, substituents derived from hydrogenated derivatives of aromatic hydrocarbon compounds, etc. can be mentioned.
  • examples of the cycloalkyl group include cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3- Examples include dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, and cyclooctyl, but are not limited thereto.
  • bridged hydrocarbon group examples include bicyclo[1.1.0]butyl, bicyclo[2.2.1]heptyl, bicyclo[4.2.0]octa-1,3,5-trienyl, adamantyl, Decalinil, etc., but is not limited thereto.
  • examples of the spiro ring hydrocarbon group include spiro[3.4]octyl and spiro[5.5]undecanyl, but are not limited thereto.
  • the substituent derived from the hydrogenated derivative of the aromatic hydrocarbon compound refers to a substituent derived from a compound in which hydrogen is added to a portion of the unsaturated bond of a monocyclic or polycyclic aromatic hydrocarbon compound.
  • An example of such a substituent is 1 H -indenyl.
  • an aryl group is understood to mean a substituent derived from a monocyclic or condensed polycyclic compound containing only carbon as a ring-forming atom and having aromaticity.
  • the number of carbon atoms is not particularly limited, but is preferably 6 to 60 carbon atoms.
  • the aryl group has 6 to 30 carbon atoms.
  • the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a monocyclic aryl group, such as a phenyl group, a biphenylyl group, or a terphenylyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, etc., but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be combined with each other to form a spiro structure.
  • the fluorenyl group is substituted, It can be etc. However, it is not limited to this.
  • heterocyclic group refers to a monovalent substituent derived from a monocyclic or condensed polycyclic compound that further contains one or more heteroatoms selected from O, N, Si, and S in addition to carbon as a ring-forming atom. This is understood to encompass both substituents with aromaticity and substituents without aromaticity.
  • the carbon number of the heterocyclic group is 2 to 60 carbon atoms.
  • the heterocyclic group has 2 to 30 carbon atoms.
  • the heterocyclic group has 2 to 20 carbon atoms. Examples of such heterocyclic groups include heteroaryl groups and substituents derived from hydrogenated derivatives of heteroaromatic compounds.
  • the heteroaryl group refers to a substituent derived from a monocyclic or condensed polycyclic compound further containing one or more heteroatoms selected from N, O, and S in addition to carbon as a ring forming atom, and refers to a substituent having aromaticity. do.
  • the carbon number of the heteroaryl group is 2 to 60 carbon atoms.
  • the heteroaryl group has 2 to 30 carbon atoms.
  • the heteroaryl group has 2 to 20 carbon atoms.
  • heteroaryl group examples include thiophenyl group, furanyl group, pyrrolyl group, imidazolyl group, thiazolyl group, oxazolyl group, oxadiazolyl group, triazolyl group, pyridinyl group, bipyridinyl group, pyrimidinyl group, and triazinyl group.
  • the substituent derived from the hydrogenated derivative of the heteroaromatic compound refers to a substituent derived from a compound in which hydrogen is added to a portion of the unsaturated bond of a monocyclic or polycyclic heteroaromatic compound.
  • An example of such a substituent is 1,3-di.
  • Hydroisobenzofuranyl (1,3-dihydroisobenzofuranyl), 2,3-dihydrobenzofuranyl (2,3-dihydrobenzofuranyl), 1,3-dihydrobenzo [ c ] thiophenyl (1,3-dihydrobenzo [ c ]thiophenyl), 2,3-dihydro[ b ]thiophenyl (2,3-dihydro[ b ]thiophenyl), etc., but are not limited thereto.
  • the aryl group among the aralkyl group, aralkenyl group, alkylaryl group, arylamine group, and arylsilyl group is the same as the example of the aryl group described above.
  • the aralkyl group, alkylaryl group, and alkylamine group are the same as the examples of the alkyl group described above.
  • the description regarding heteroaryl described above may be applied to heteroaryl among heteroarylamines.
  • the alkenyl group among the aralkenyl groups is the same as the example of the alkenyl group described above.
  • the description of the aryl group described above can be applied, except that arylene is a divalent group.
  • the description of heteroaryl described above can be applied, except that heteroarylene is a divalent group.
  • the description of the aryl group or cycloalkyl group described above can be applied, except that the hydrocarbon ring is not monovalent and is formed by combining two substituents.
  • the description of heteroaryl described above can be applied, except that the heterocycle is not monovalent and is formed by combining two substituents.
  • deuterated or substituted with deuterium means that at least one of the replaceable hydrogens in a compound, a divalent linking group, or a monovalent substituent is replaced with deuterium.
  • unsubstituted or substituted with deuterium or “substituted or unsubstituted with deuterium” means “one to the maximum number of unsubstituted or replaceable hydrogens is substituted with deuterium.”
  • phenanthryl unsubstituted or substituted with deuterium means “unsubstituted or substituted with 1 to 9 deuteriums,” considering that the maximum number of hydrogens that can be substituted with deuterium in the phenanthryl structure is 9. It can be understood to mean “substituted phenanthryl.”
  • deuterated structure refers to compounds of all structures in which at least one hydrogen is replaced with deuterium, a divalent linking group, or a monovalent substituent.
  • deuterated structure of phenyl can be understood to refer to monovalent substituents of all structures in which at least one replaceable hydrogen in the phenyl group is replaced with deuterium, as follows.
  • the “deuterium substitution rate” or “deuteration degree” of a compound is the number of substituted deuteriums relative to the total number of hydrogens that can be present in the compound (the total sum of the number of hydrogens that can be replaced by deuterium and the number of substituted deuteriums in the compound). It means calculating the ratio as a percentage. Therefore, when the “deuterium substitution rate” or “deuteration degree” of a compound is “K%”, it means that K% of the hydrogen replaceable by deuterium in the compound has been replaced with deuterium.
  • the “deuterium substitution rate” or “deuteration degree” is determined by MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer), nuclear magnetic resonance spectroscopy ( 1H NMR), TLC/MS (Thin -It can be measured according to commonly known methods using Layer Chromatography/Mass Spectrometry) or GC/MS (Gas Chromatography/Mass Spectrometry). More specifically, when using MALDI-TOF MS, the “deuterium substitution rate” or “deuteration degree” is calculated by calculating the number of deuterium substituted in the compound through MALDI-TOF MS analysis, and then comparing the total number of hydrogens that may exist in the compound. The ratio of the number of deuteriums formed can be calculated as a percentage.
  • the present invention provides a compound represented by Formula 1 above.
  • Formula 1 is represented by any one of the following Formulas 1-1 to 1-3:
  • X, L, Ar 1 , Ar 2 , Ar 3 , Ar 4 , a, b, n and m are as previously defined,
  • Y is N or CR', but at least two of Y are N,
  • R' is hydrogen, deuterium, substituted or unsubstituted C 1-60 alkyl, or substituted or unsubstituted C 6-60 aryl,
  • R 1 and R 2 are each independently substituted or unsubstituted C 6-60 aryl
  • c is an integer from 0 to 4.
  • Formula 1 is represented by any one of the following Formulas 1-4 to 1-9:
  • X, L, Ar 1 , Ar 2 , Ar 3 , Ar 4 , HAr, a, and b are as previously defined.
  • L is a single bond, phenylene, or biphenyldiyl
  • the phenylene and biphenyldiyl are unsubstituted or substituted with one or more deuterium.
  • Ar 1 is phenyl unsubstituted or substituted with one or more deuterium.
  • Ar 2 is phenyl, biphenylyl, or naphthyl, and Ar 2 is unsubstituted or substituted with one or more deuterium.
  • L is phenylene or biphenyldiyl, wherein L is unsubstituted or substituted with one or more deuterium,
  • Ar 2 is phenyl substituted with cyano, or naphthyl substituted with cyano, where Ar 2 is unsubstituted or substituted with deuterium.
  • L is phenylene, unsubstituted or substituted with one or more deuteriums, or biphenyldiyl, unsubstituted or substituted with one or more deuteriums;
  • Ar 2 is phenyl substituted with 1 cyano and 0 to 4 deuteriums, or naphthyl substituted with 1 cyano and 0 to 6 deuteriums.
  • L is a single bond
  • Ar 2 is phenyl or biphenylyl, wherein Ar 2 is unsubstituted or substituted with one or more deuterium,
  • Ar 3 is phenyl substituted with cyano, where Ar 3 is substituted or unsubstituted with deuterium.
  • L is a single bond
  • Ar 2 is phenyl unsubstituted or substituted with one or more deuteriums, or biphenylyl unsubstituted or substituted with one or more deuteriums
  • Ar 3 is phenyl substituted with 1 cyano and 0 to 4 deuterium.
  • R' is hydrogen, deuterium, or methyl unsubstituted or substituted with one or more deuterium.
  • R 1 and R 2 are each independently phenyl, biphenylyl, or naphthyl, and R 1 and R 2 are unsubstituted or substituted with one or more deuterium.
  • the present invention provides a method for producing a compound represented by Chemical Formula 1, as shown in Scheme 1 below.
  • the compound represented by Formula 1 can be prepared by Suzuki-coupling reaction.
  • the Suzuki-coupling reaction is preferably performed under a palladium catalyst and a base, and the reactor for the reaction can be changed to a reactor known in the art.
  • This manufacturing method can be further detailed in the manufacturing examples described later.
  • the present invention provides an organic light-emitting device containing the compound represented by Formula 1 above.
  • the present invention includes a first electrode; a second electrode provided opposite to the first electrode; and an organic light-emitting device comprising at least one organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes a compound represented by Formula 1. .
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light-emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, an electron suppression layer, a light-emitting layer, an electron transport layer, an electron injection layer, etc. as an organic material layer.
  • the structure of the organic light emitting device is not limited to this and may include fewer organic layers.
  • the organic layer may include a light-emitting layer, and the light-emitting layer may include the compound represented by Formula 1.
  • the compound according to the present invention can be used as a dopant in the light-emitting layer.
  • the organic material layer may include an electron transport layer, an electron injection layer, or a layer that simultaneously performs electron transport and electron injection, and the electron transport layer, the electron injection layer, or a layer that performs both electron transport and electron injection has the formula above: It may include a compound represented by 1.
  • the organic material layer may include a hole injection layer, a hole transport layer, a light-emitting layer, and an electron transport and injection layer.
  • the organic material layer containing the compound may be an electron transport and injection layer.
  • the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. Additionally, the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
  • Figure 1 shows an example of an organic light emitting device consisting of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • the compound represented by Formula 1 may be included in the light-emitting layer.
  • Figure 2 shows an organic light emitting device consisting of a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), a light emitting layer (3), an electron transport and injection layer (7), and a cathode (4).
  • a substrate (1) an anode (2)
  • a hole injection layer (5) a hole transport layer (6)
  • a light emitting layer (3) a light emitting layer (3)
  • an electron transport and injection layer (7) an electron transport and injection layer (7)
  • a cathode (4) a cathode
  • the organic light emitting device according to the present invention can be manufactured using materials and methods known in the art, except that at least one of the organic layers includes the compound represented by Formula 1 above. Additionally, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device can be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • an anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation. It can be manufactured by forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • an organic light-emitting device can be made by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 may be formed as an organic layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light-emitting device.
  • the solution application method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
  • an organic light-emitting device can be manufactured by sequentially depositing a cathode material, an organic layer, and an anode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited to this.
  • the first electrode is an anode and the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.
  • the anode material is generally preferably a material with a large work function to facilitate hole injection into the organic layer.
  • Specific examples of the anode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline are included, but are not limited to these.
  • the cathode material is generally preferably a material with a small work function to facilitate electron injection into the organic layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof;
  • multi-layer structure materials such as LiF/Al or LiO 2 /Al, but they are not limited to these.
  • the hole injection layer is a layer that injects holes from an electrode.
  • the hole injection material has the ability to transport holes, has an excellent hole injection effect at the anode, a light-emitting layer or a light-emitting material, and has an excellent hole injection effect on the light-emitting layer or light-emitting material.
  • a compound that prevents movement of excitons to the electron injection layer or electron injection material and has excellent thin film forming ability is preferred. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic material layer.
  • HOMO highest occupied molecular orbital
  • hole injection materials include metal porphyrin, oligothiophene, arylamine-based organic substances, hexanitrilehexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based organic substances.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light-emitting layer. It is a hole transport material that can receive holes from the anode or hole injection layer and transfer them to the light-emitting layer, and is a material with high mobility for holes. This is suitable. Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers with both conjugated and non-conjugated portions, but are not limited to these.
  • the light-emitting material is a material that can emit light in the visible light range by transporting holes and electrons from the hole transport layer and the electron transport layer, respectively, and combining them, and is preferably a material with good quantum efficiency for fluorescence or phosphorescence.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV) series polymer; Spiro compounds; Polyfluorene, rubrene, etc., but are not limited to these.
  • the light emitting layer may include a host material and a dopant material.
  • Host materials include condensed aromatic ring derivatives or heterocyclic ring-containing compounds.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, and ladder-type compounds. These include, but are not limited to, furan compounds and pyrimidine derivatives.
  • Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • aromatic amine derivatives include condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, such as pyrene, anthracene, chrysene, and periplanthene
  • styrylamine compounds include substituted or unsubstituted arylamino groups.
  • substituents selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group, and arylamino group.
  • styrylamine, styryldiamine, styryltriamine, styryltetraamine, etc. are included, but are not limited thereto.
  • metal complexes include, but are not limited to, iridium complexes and platinum complexes.
  • the electron injection and transport layer is a layer that simultaneously performs the roles of an electron transport layer and an electron injection layer, injecting electrons from an electrode and transporting the received electrons to the light-emitting layer, and is formed on the light-emitting layer or the hole blocking layer.
  • an electron injection and transport material a material that can easily inject electrons from the cathode and transfer them to the light emitting layer, and a material with high mobility for electrons, is suitable.
  • the compound represented by Formula 1 above can be used as the electron injection and transport layer material.
  • additional electron injection and transport agents include the Al complex of 8-hydroxyquinoline; Complex containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complex; Triazine derivatives, etc., but are not limited thereto. or fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone, etc. and their derivatives, metal complex compounds. , or a nitrogen-containing 5-membered ring derivative, etc., but is not limited thereto.
  • the electron injection and transport layer may also be formed as separate layers such as an electron injection layer and an electron transport layer.
  • the electron transport layer is formed on the light emitting layer or the hole blocking layer, and the electron injection and transport material described above may be used as the electron transport material included in the electron transport layer.
  • an electron injection layer is formed on the electron transport layer, and electron injection materials included in the electron injection layer include LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone, Thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone and their derivatives, metal complex compounds and nitrogen-containing five-membered ring derivatives can be used.
  • electron injection materials included in the electron injection layer include LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone, Thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone and their derivatives
  • metal complex compounds include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, Tris(2-methyl-8-hydroxyquinolinato)aluminum, Tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-hydroxyquinolinato)chlorogallium, bis(2-methyl-8-hydroxyquinolinato) Nolinato) (o-cresolato) gallium, bis (2-methyl-8-hydroxyquinolinato) (1-naphtolato) aluminum, bis (2-methyl-8-hydroxyquinolinato) (2- Naphtolato) gallium, etc., but is not limited thereto.
  • the electron transport layer, the electron injection layer, or the electron injection and transport layer of the organic light emitting device may include the compound represented by Formula 1 and the metal complex compound.
  • the electron transport layer, the electron injection layer, or the electron injection and transport layer is composed of the compound represented by Formula 1 and the metal complex compound at a weight ratio of 10:90 to 90:10, a weight ratio of 30:70 to 70:30, Alternatively, it may be included in a weight ratio of 50:50.
  • the organic light-emitting device according to the present invention may be a bottom-emitting device, a top-emitting device, or a double-sided light-emitting device. In particular, it may be a bottom-emitting device that requires relatively high luminous efficiency.
  • the compound according to the present invention may be included in an organic solar cell or an organic transistor in addition to an organic light-emitting device.
  • E1-A (20 g, 38.4 mmol) and E1-B (16.7 g, 38.4 mmol) were added to 400 ml of 1,4-Dioxane, stirred and refluxed. Afterwards, tripotassium phosphate (24.4 g, 115.2 mmol) was dissolved in 24 ml of water, stirred sufficiently, and dibenzylideneacetone palladium (0.7 g, 1.2 mmol) and tricyclohexylphosphine (0.6 g, 2.3 mmol) were added. ) was added. After 7 hours of reaction, the reaction mixture was cooled to room temperature and the resulting solid was filtered.
  • Compound E2 was prepared in the same manner as in Example 1, except that each starting material was used according to the above reaction scheme.
  • Compound E3 was prepared in the same manner as in Example 1, except that each starting material was used according to the above reaction scheme.
  • Compound E4 was prepared in the same manner as in Example 1, except that each starting material was used according to the above reaction scheme.
  • Compound E5 was prepared in the same manner as in Example 1, except that each starting material was used according to the above reaction scheme.
  • Compound E6 was prepared in the same manner as in Example 1, except that each starting material was used according to the above reaction scheme.
  • Compound E7 was prepared in the same manner as in Example 1, except that each starting material was used according to the above reaction scheme.
  • Compound E8 was prepared in the same manner as in Example 1, except that each starting material was used according to the above reaction scheme.
  • Compound E9 was prepared in the same manner as in Example 1, except that each starting material was used according to the above reaction scheme.
  • Compound E10 was prepared in the same manner as in Example 1, except that each starting material was used according to the above reaction scheme.
  • Compound E11 was prepared in the same manner as in Example 1, except that each starting material was used according to the above reaction scheme.
  • Compound E12 was prepared in the same manner as in Example 1, except that each starting material was used according to the above reaction scheme.
  • Compound E13 was prepared in the same manner as in Example 1, except that each starting material was used according to the above reaction scheme.
  • a glass substrate coated with a thin film of ITO (indium tin oxide) with a thickness of 1,000 ⁇ was placed in distilled water with a detergent dissolved in it and washed ultrasonically.
  • a detergent from Fischer Co. was used, and distilled water filtered secondarily using a filter from Millipore Co. was used as distilled water.
  • ultrasonic cleaning was repeated twice with distilled water for 10 minutes.
  • HI-A was thermally vacuum deposited to a thickness of 600 ⁇ to form a hole injection layer.
  • Hexanitrile hexaazatriphenylene (HAT, 50 ⁇ ) of the following formula and HT-A (600 ⁇ ) of the following compound were sequentially vacuum deposited on the hole injection layer to form a hole transport layer.
  • the following compounds BH and BD were vacuum deposited on the hole transport layer to a film thickness of 200 ⁇ at a weight ratio of 25:1 to form a light emitting layer.
  • compound E1 prepared in Example 1 and the following compound LiQ (Lithiumquinolate) were vacuum deposited at a 1:1 weight ratio to form an electron transport and injection layer with a thickness of 360 ⁇ .
  • a cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 10 ⁇ and aluminum to a thickness of 1,000 ⁇ on the electron transport and injection layer.
  • the deposition rate of organic matter was maintained at 0.4 ⁇ 0.9 ⁇ /sec
  • the deposition rate of lithium fluoride of the cathode was maintained at 0.3 ⁇ /sec
  • aluminum was maintained at 2 ⁇ /sec
  • the vacuum degree during deposition was 1 ⁇ 10.
  • An organic light emitting device was manufactured by maintaining -7 to 5 ⁇ 10 -8 torr.
  • An organic light-emitting device was manufactured in the same manner as Experiment 1, except that the compound shown in Table 1 below was used instead of Compound E1 of Experiment 1.
  • An organic light-emitting device was manufactured in the same manner as in Experimental Example 1, except that the compound in Table 1 below was used instead of Compound E1 in Experimental Example 1.
  • the compounds ET-A to ET-M used in Table 1 below are as follows.
  • the driving voltage, luminous efficiency, and color coordinates were measured at a current density of 10 mA/cm 2 , and the luminance was 90% of the initial luminance at a current density of 20 mA/cm 2
  • the time (T90) was measured.
  • Table 1 The results are shown in Table 1 below.
  • the organic light-emitting device containing the compound of Formula 1 of the present invention has a substituent between heterocyclic groups. It was confirmed that it showed significantly better characteristics in terms of efficiency than organic light-emitting devices using different compounds.
  • the organic light-emitting device containing the compound of Formula 1 of the present invention is more efficient than the organic light-emitting device using a compound with two cyano groups substituted. It was confirmed that it showed significantly excellent characteristics.
  • the organic light-emitting device containing the compound of Formula 1 of the present invention has a longer lifespan than the organic light-emitting device using a compound with an unsubstituted cyano group. It was confirmed that it showed significantly excellent characteristics in this respect.
  • Substrate 2 Anode

Abstract

본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자를 제공한다.

Description

신규한 화합물 및 이를 포함한 유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2022년 9월 5일자 한국 특허 출원 제10-2022-0112123호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 신규한 화합물 및 이를 포함한 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
선행기술문헌
특허문헌
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2023013239-appb-img-000001
상기 화학식 1에서,
X는 각각 독립적으로, N, CH, 또는 CD이되, X 중 둘 이상은 N이고,
L은 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴이고,
Ar3 및 Ar4는 각각 독립적으로, 비치환되거나, 또는 1개 이상의 중수소로 치환된 페닐이고,
Ar1 내지 Ar4 중 어느 하나는 시아노로 치환되고,
HAr은 비치환되거나, 또는 중수소, 치환 또는 비치환된 C1-60 알킬, 및 치환 또는 비치환된 C6-60 아릴로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 3개의 치환기로 치환된 피리미디닐; 2개의 치환 또는 비치환된 C6-60 아릴로 치환된 트리아지닐; 또는 1개의 치환 또는 비치환된 C6-60 아릴로 치환된 퀴나졸리닐이고,
a 및 b는 각각 독립적으로, 0 내지 4의 정수이고,
n 및 m은 각각 독립적으로, 0 또는 1이고,
단, n+m은 1이고,
a+n은 0 내지 4의 정수이고,
b+m은 0 내지 4의 정수이다.
또한, 본 발명은 제1전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(3), 전자수송 및 주입층(7) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서,
Figure PCTKR2023013239-appb-img-000002
Figure PCTKR2023013239-appb-img-000003
는 다른 치환기에 연결되는 결합을 의미하고, "D"는 중수소를 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐릴기일 수 있다. 즉, 비페닐릴기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다. 일례로, "치환 또는 비치환된" 이라는 용어는 "비치환되거나, 또는 중수소, 할로겐, 시아노, C1-10 알킬, C1-10 알콕시 및 C6-20 아릴로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환된"; 또는 "비치환되거나, 또는 중수소, 할로겐, 시아노, 메틸, 에틸, 페닐 및 나프틸로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환된"이라는 의미로 이해될 수 있다. 또한, 본 명세서에서 "1개 이상의 치환기로 치환된"이라는 용어는 "1개 내지 치환 가능한 수소의 최대 개수로 치환된"이라는 의미로 이해될 수 있다. 또는, 본 명세서에서 "1개 이상의 치환기로 치환된"이라는 용어는 "1개 내지 5개의 치환기로 치환된", 또는 "1개 또는 2개의 치환기로 치환된"이라는 의미로 이해될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2023013239-appb-img-000004
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2023013239-appb-img-000005
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2023013239-appb-img-000006
본 명세서에 있어서, 치환 또는 비치환된 실릴기는 -Si(Z1)(Z2)(Z3)를 의미하고, 여기서 Z1, Z2 및 Z3는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1-60 알킬, 치환 또는 비치환된 C1-60 할로알킬, 치환 또는 비치환된 C2-60 알케닐, 치환 또는 비치환된 C2-60 할로알케닐, 또는 치환 또는 비치환된 C6-60 아릴일 수 있다. 일 실시상태에 따르면, Z1, Z2 및 Z3는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1-10 알킬, 치환 또는 비치환된 C1-10 할로알킬, 치환 또는 비치환된 C1-10 할로알킬, 또는 치환 또는 비치환된 C6-20 아릴일 수 있다. 상기 실릴기의 구체적인 예로는 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되는 것은 아니다.
본 명세서에 있어서, 할로겐기의 예로는 플루오로, 클로로, 브로모, 또는 아이오도가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 1-에틸-프로필, 1,1-디메틸프로필, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 이소헥실, 1-메틸헥실, 2-메틸헥실, 3-메틸헥실, 4-메틸헥실, 5-메틸헥실, 사이클로펜틸메틸, 사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2,4,4-트리메틸-1-펜틸, 2,4,4-트리메틸-2-펜틸, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 지방족고리기(Alicyclic group)는 고리 형성 원자로 탄소만을 포함하면서 방향족성을 갖지 않는 포화 또는 불포화 탄화수소 고리 화합물로부터 유래된 1가의 치환기를 의미하는 것으로, 단환 또는 축합다환 화합물 모두를 포괄하는 것으로 이해된다. 일 실시상태에 따르면, 상기 지방족고리기의 탄소수는 3 내지 60 이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 이러한 지방족고리기의 예로 사이클로알킬기와 같은 단일고리기(monocyclic group), 다리 걸친 탄화수소기(bridged hydrocarbon group), 스피로 고리 탄화수소기(spiro hydrocarbon group), 방향족 탄화수소 화합물의 수소화된 유도체로부터 유래된 치환기 등을 들 수 있다.
구체적으로, 상기 사이클로알킬기의 예로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되는 것은 아니다.
또한, 상기 다리 걸친 탄화수소기의 예로 바이사이클로[1.1.0]부틸, 바이사이클로[2.2.1]헵틸, 바이사이클로[4.2.0]옥타-1,3,5-트리에닐, 아다만틸, 데칼리닐 등이 있으나, 이에 한정되는 것은 아니다.
또한, 상기 스피로 고리 탄화수소기의 예로 스피로[3.4]옥틸, 스피로[5.5]운데카닐 등이 있으나, 이에 한정되는 것은 아니다.
또한, 상기 방향족 탄화수소 화합물의 수소화된 유도체로부터 유래된 치환기는 단환 또는 다환의 방향족 탄화수소 화합물의 불포화 결합 일부에 수소가 첨가된 화합물로부터 유래된 치환기를 의미하는 것으로, 이러한 치환기의 예로 1H-인데닐, 2H-인데닐, 4H-인데닐, 2,3-디하이드로-1H-인데닐, 1,4-디하이드로나프탈레닐, 1,2,3,4-테트라하이드로나프탈레닐, 6,7,8,9-테트라하이드로-5H-벤조[7]아눌레닐(6,7,8,9-tetrahydro-5H-benzo[7]annulenyl), 6,7-디하이드로-5H-벤조사이클로헵테닐 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴기는 고리 형성 원자로 탄소만을 포함하면서 방향족성을 갖는 단환 또는 축합다환 화합물로부터 유래된 치환기를 의미하는 것으로 이해되며, 탄소수는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 비페닐릴기, 터페닐릴기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2023013239-appb-img-000007
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기(Heterocyclic group)는 고리 형성 원자로 탄소 외에 O, N, Si 및 S 중에서 선택되는 1개 이상의 헤테로원자를 더 포함하는 단환 또는 축합다환 화합물로부터 유래된 1가의 치환기를 의미하는 것으로, 방향족성을 갖는 치환기 또는 방향족성을 갖지 않는 치환기 모두를 포괄하는 것으로 이해된다. 일 실시상태에 따르면, 상기 헤테로고리기의 탄소수는 탄소수 2 내지 60이다. 또 하나의 실시상태에 따르면, 상기 헤테로고리기의 탄소수는 2 내지 30이다. 또 하나의 실시상태에 따르면, 상기 헤테로고리기의 탄소수는 2 내지 20이다. 이러한 헤테로고리기의 예로 헤테로아릴기, 헤테로방향족 화합물의 수소화된 유도체로부터 유래된 치환기 등을 들 수 있다.
구체적으로, 상기 헤테로아릴기는 고리 형성 원자로 탄소 외에 N, O 및 S 중에서 선택되는 1개 이상의 헤테로원자를 더 포함하는 단환 또는 축합다환 화합물로부터 유래된 치환기를 의미하는 것으로, 방향족성을 갖는 치환기를 의미한다. 일 실시상태에 따르면, 상기 헤테로아릴기의 탄소수는 탄소수 2 내지 60이다. 또 하나의 실시상태에 따르면, 상기 헤테로아릴기의 탄소수는 2 내지 30이다. 또 하나의 실시상태에 따르면, 상기 헤테로아릴기의 탄소수는 2 내지 20이다. 상기 헤테로아릴기의 예로 티오페닐기, 퓨라닐기, 피롤일기, 이미다졸일기, 티아졸일기, 옥사졸일기, 옥사디아졸일기, 트리아졸일기, 피리디닐기, 비피리디닐기, 피리미디닐기, 트리아지닐기, 아크리디닐기, 피리다지닐기, 피라지닐기, 퀴놀리닐기, 퀴나졸리닐기, 퀴녹살리닐기, 프탈라지닐기, 피리도피리미디닐기, 피리도피라지닐기, 이소퀴놀리닐기, 인돌일기, 카바졸일기, 벤즈옥사졸일기, 벤조이미다졸일기, 벤조티아졸일기, 벤조카바졸일기, 벤조티오페닐기, 디벤조티오페닐기, 벤조퓨라닐기, 디벤조퓨라닐기, 페난트롤리닐기, 이소옥사졸일기, 티아디아졸일기 및 페노티아지닐기 등이 있으나, 이에 한정되는 것은 아니다.
또한, 상기 헤테로방향족 화합물의 수소화된 유도체로부터 유래된 치환기는 단환 또는 다환의 헤테로방향족 화합물의 불포화 결합 일부에 수소가 첨가된 화합물로부터 유래된 치환기를 의미하는 것으로, 이러한 치환기의 예로 1,3-디하이드로이소벤조퓨라닐(1,3-dihydroisobenzofuranyl), 2,3-디하이드로벤조퓨라닐(2,3-dihydrobenzofuranyl), 1,3-디하이드로벤조[c]티오페닐(1,3-dihydrobenzo[c]thiophenyl), 2,3-디하이드로[b]티오페닐(2,3-디하이드로[b]티오페닐) 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기, 아릴실릴기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, "중수소화된 또는 중수소로 치환된"이라는 의미는 화합물, 2가의 연결기 또는 1가의 치환기 내 치환 가능한 수소 중 적어도 하나가 중수소로 치환됨을 의미한다.
또한, "비치환되거나 또는 중수소로 치환된" 또는 "중수소로 치환 또는 비치환된" 이라는 의미는 "비치환되거나 또는 치환 가능한 수소 중 1개 내지 최대 개수가 중수소로 치환된"을 의미한다. 일례로, "비치환되거나 또는 중수소로 치환된 페난트릴"이라는 용어는 페난트릴 구조 내 중수소로 치환 가능한 수소의 최대 개수가 9개라는 점 고려할 때, "비치환되거나 또는 1개 내지 9개의 중수소로 치환된 페난트릴"이라는 의미로 이해될 수 있다.
또한, "중수소화된 구조"라는 의미는 적어도 하나의 수소가 중수소로 치환된 모든 구조의 화합물, 2가의 연결기 또는 1가의 치환기를 포괄하는 것을 의미한다. 일례로, 페닐의 중수소화된 구조는 하기와 같이 페닐기 내 치환가능한 적어도 하나의 수소가 중수소로 치환된 모든 구조의 1가의 치환기들을 일컫는 것으로 이해될 수 있다.
Figure PCTKR2023013239-appb-img-000008
또한, 화합물의 "중수소 치환율" 또는 "중수소화도"는 화합물 내 존재할 수 있는 수소의 총 개수(화합물 내 중수소로 치환 가능한 수소의 개수 및 치환된 중수소의 개수의 총 합)에 대한 치환된 중수소의 개수의 비율을 백분율로 계산한 것을 의미한다. 따라서 화합물의 "중수소 치환율" 또는 "중수소화도"가 "K%"라고 함은, 화합물 내 중수소로 치환 가능한 수소 중 K%가 중수소로 치환된 것을 의미한다.
이 때, 상기 "중수소 치환율" 또는 "중수소화도"는 MALDI-TOF MS(Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer), 핵자기 공명 분광법(1H NMR), TLC/MS(Thin-Layer Chromatography/Mass Spectrometry), 또는 GC/MS(Gas Chromatography/Mass Spectrometry) 등을 이용하여 통상적으로 알려진 방법에 따라 측정할 수 있다. 보다 구체적으로, MALDI-TOF MS를 이용하는 경우 상기 "중수소 치환율" 또는 "중수소화도"는 MALDI-TOF MS 분석을 통해 화합물 내에 치환된 중수소 개수를 구한 다음, 화합물 내 존재할 수 있는 수소의 총 개수 대비 치환된 중수소의 개수의 비율을 백분율로 계산하여 구할 수 있다.
(화합물)
본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다.
바람직하게는, 상기 화학식 1은 하기 화학식 1-1 내지 1-3 중 어느 하나로 표시된다:
[화학식 1-1]
Figure PCTKR2023013239-appb-img-000009
[화학식 1-2]
Figure PCTKR2023013239-appb-img-000010
[화학식 1-3]
Figure PCTKR2023013239-appb-img-000011
상기 화학식 1-1 내지 1-3에서,
X, L, Ar1, Ar2, Ar3, Ar4, a, b, n 및 m은 앞서 정의한 바와 같고,
Y는 N 또는 CR’이되, Y 중 둘 이상은 N이고,
R’은 수소, 중수소, 치환 또는 비치환된 C1-60 알킬, 또는 치환 또는 비치환된 C6-60 아릴이고,
R1 및 R2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴이고,
c는 0 내지 4의 정수이다.
바람직하게는, 상기 화학식 1은 하기 화학식 1-4 내지 1-9 중 어느 하나로 표시된다:
[화학식 1-4]
Figure PCTKR2023013239-appb-img-000012
[화학식 1-5]
Figure PCTKR2023013239-appb-img-000013
[화학식 1-6]
Figure PCTKR2023013239-appb-img-000014
[화학식 1-7]
Figure PCTKR2023013239-appb-img-000015
[화학식 1-8]
Figure PCTKR2023013239-appb-img-000016
[화학식 1-9]
Figure PCTKR2023013239-appb-img-000017
상기 화학식 1-4 내지 1-9에서,
X, L, Ar1, Ar2, Ar3, Ar4, HAr, a, 및 b는 앞서 정의한 바와 같다.
바람직하게는, L은 단일 결합, 페닐렌, 또는 비페닐디일이고,
상기 페닐렌 및 비페닐디일은 비치환되거나, 또는 1개 이상의 중수소로 치환된다.
바람직하게는, Ar1은 비치환되거나, 또는 1개 이상의 중수소로 치환된 페닐이다.
바람직하게는, Ar2는 페닐, 비페닐릴, 또는 나프틸이고, 상기 Ar2는 비치환되거나, 또는 1개 이상의 중수소로 치환된다.
바람직하게는, L은 페닐렌, 또는 비페닐디일이고, 여기서, 상기 L은 비치환되거나, 또는 1개 이상의 중수소로 치환되고,
Ar2는 시아노로 치환된 페닐, 또는 시아노로 치환된 나프틸이고, 여기서, 상기 Ar2는 중수소로 치환 또는 비치환된다.
보다 바람직하게는, L은 비치환되거나, 또는 1개 이상의 중수소로 치환된 페닐렌, 또는 비치환되거나, 또는 1개 이상의 중수소로 치환된 비페닐디일이고; Ar2는 1개의 시아노 및 0 내지 4개의 중수소로 치환된 페닐, 또는 1개의 시아노 및 0 내지 6개의 중수소로 치환된 나프틸이다.
바람직하게는, L은 단일 결합이고; Ar2는 페닐, 또는 비페닐릴이고, 여기서, 상기 Ar2는 비치환되거나, 또는 1개 이상의 중수소로 치환되고,
Ar3는 시아노로 치환된 페닐이고, 여기서, 상기 Ar3는 중수소로 치환 또는 비치환된다.
보다 바람직하게는, L은 단일 결합이고; Ar2는 비치환되거나, 또는 1개 이상의 중수소로 치환된 페닐, 또는 비치환되거나, 또는 1개 이상의 중수소로 치환된 비페닐릴이고; Ar3는 1개의 시아노 및 0 내지 4개의 중수소로 치환된 페닐이다.
바람직하게는, R’은 수소, 중수소, 또는 비치환되거나, 또는 1개 이상의 중수소로 치환된 메틸이다.
바람직하게는, R1 및 R2는 각각 독립적으로, 페닐, 비페닐릴, 또는 나프틸이고, 상기 R1 및 R2는 비치환되거나, 또는 1개 이상의 중수소로 치환된다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2023013239-appb-img-000018
Figure PCTKR2023013239-appb-img-000019
Figure PCTKR2023013239-appb-img-000020
Figure PCTKR2023013239-appb-img-000021
Figure PCTKR2023013239-appb-img-000022
Figure PCTKR2023013239-appb-img-000023
Figure PCTKR2023013239-appb-img-000024
.
또한, 본 발명은 하기 반응식 1과 같은 상기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다.
[반응식 1]
Figure PCTKR2023013239-appb-img-000025
상기 반응식 1에서, X, L, Ar1, Ar2, Ar3, Ar4, HAr, a, b, n, 및 m은 앞서 정의한 바와 같고, Y는 할로겐이고, 바람직하게는 브로모 또는 클로로이다.
상기 화학식 1로 표시되는 화합물은 Suzuki-coupling 반응에 의해 제조될 수 있다. 이때, Suzuki-coupling 반응은 팔라듐 촉매 및 염기 하에서 수행되는 것이 바람직하며, 반응을 위한 반응기는 당해 기술 분야에서 알려진 반응기로 변경될 수 있다. 이러한 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
(유기 발광 소자)
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 전자억제층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 특히, 본 발명에 따른 화합물은 발광층의 도펀트로 사용할 수 있다.
또한, 상기 유기물 층은 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층을 포함할 수 있고, 상기 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
또한, 상기 유기물층은 정공주입층, 정공수송층, 발광층, 전자수송 및 주입층을 포함할 수 있고, 이때 상기 화합물을 포함하는 유기물층은 전자수송 및 주입층일 수 있다.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다.
도 2는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(3), 전자수송 및 주입층(7) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 전자수송 및 주입층에 포함될 수 있다.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송 받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
상기 전자 주입 및 수송층은 전극으로부터 전자를 주입하고, 수취된 전자를 발광층까지 수송하는 전자수송층 및 전자주입층의 역할을 동시에 수행하는 층으로, 상기 발광층 또는 상기 정공저지층 상에 형성된다. 이러한 전자 주입 및 수송물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 이러한 전자 주입 및 수송층 물질로 상기 화학식 1로 표시되는 화합물을 사용할 수 있다. 추가적인 전자 주입 및 수송물질의 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물; 트리아진 유도체 등이 있으나, 이에 한정되는 것은 아니다. 또는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물, 또는 질소 함유 5원환 유도체 등과 함께 사용할 수도 있으나, 이에 한정되는 것은 아니다.
상기 전자 주입 및 수송층은 전자주입층 및 전자수송층과 같은 별개의 층으로도 형성될 수 있다. 이와 같은 경우, 전자 수송층은 상기 발광층 또는 상기 정공저지층 상에 형성되고, 상기 전자 수송층에 포함되는 전자 수송 물질로는 상술한 전자 주입 및 수송 물질이 사용될 수 있다. 또한, 전자 주입층은 상기 전자 수송층 상에 형성되고, 상기 전자 주입층에 포함되는 전자 주입 물질로는 LiF, NaCl, CsF, Li2O, BaO, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 사용될 수 있다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-하이드록시퀴놀리나토)클로로갈륨, 비스(2-메틸-8-하이드록시퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-하이드록시퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-하이드록시퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되는 것은 아니다.
일 구현예에서, 상기 유기 발광 소자의 전자수송층, 전자주입층, 또는 전자주입 및 수송층은 상기 화학식 1로 표시되는 화합물 및 상기 금속 착체 화합물을 같이 포함할 수 있다. 이 경우, 상기 전자수송층, 전자주입층, 또는 전자주입 및 수송층은 상기 화학식 1로 표시되는 화합물 및 상기 금속 착체 화합물을 10:90 내지 90:10의 중량비, 30:70 내지 70:30의 중량비, 또는 50:50의 중량비로 포함할 수 있다.
본 발명에 따른 유기 발광 소자는 배면 발광(bottom emission) 소자, 전면 발광(top emission) 소자, 또는 양면 발광 소자일 수 있으며, 특히 상대적으로 높은 발광 효율이 요구되는 배면 발광 소자일 수 있다.
또한, 본 발명에 따른 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
[실시예]
실시예 1: 화합물 E1의 제조
Figure PCTKR2023013239-appb-img-000026
질소 분위기에서 E1-A(20 g, 38.4 mmol)와 E1-B(16.7 g, 38.4mmol)를 1,4-Dioxane 400ml에 넣고 교반 및 환류하였다. 이 후 제3인산칼륨(24.4 g, 115.2mmol)을 물 24 ml에 녹여 투입하고 충분히 교반한 후, 디벤질리덴아세톤팔라듐(0.7 g, 1.2 mmol) 및 트리시클로헥실포스핀(0.6 g, 2.3 mmol)을 투입하였다. 7시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 914 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 E1(4.6 g, 15%)을 제조하였다.
MS: [M+H]+ = 794
실시예 2: 화합물 E2의 제조
Figure PCTKR2023013239-appb-img-000027
각 출발 물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 1의 제조 방법과 동일한 방법으로 상기 화합물 E2를 제조하였다.
MS: [M+H]+ = 794
실시예 3: 화합물 E3의 제조
Figure PCTKR2023013239-appb-img-000028
각 출발 물질을 상기 반응식과 같이 하는 것을 제외하고는, 상기 실시예 1의 제조 방법과 동일한 방법으로 상기 화합물 E3를 제조하였다.
MS: [M+H]+ = 794
실시예 4: 화합물 E4의 제조
Figure PCTKR2023013239-appb-img-000029
각 출발 물질을 상기 반응식과 같이 하는 것을 제외하고는, 상기 실시예 1의 제조 방법과 동일한 방법으로 상기 화합물 E4를 제조하였다.
MS: [M+H]+ = 844
실시예 5: 화합물 E5의 제조
Figure PCTKR2023013239-appb-img-000030
각 출발 물질을 상기 반응식과 같이 하는 것을 제외하고는, 상기 실시예 1의 제조 방법과 동일한 방법으로 상기 화합물 E5를 제조하였다.
MS: [M+H]+ = 718
실시예 6: 화합물 E6의 제조
Figure PCTKR2023013239-appb-img-000031
각 출발 물질을 상기 반응식과 같이 하는 것을 제외하고는, 상기 실시예 1의 제조 방법과 동일한 방법으로 상기 화합물 E6를 제조하였다.
MS: [M+H]+ = 718
실시예 7: 화합물 E7의 제조
Figure PCTKR2023013239-appb-img-000032
각 출발 물질을 상기 반응식과 같이 하는 것을 제외하고는, 상기 실시예 1의 제조 방법과 동일한 방법으로 상기 화합물 E7을 제조하였다.
MS: [M+H]+ = 794
실시예 8: 화합물 E8의 제조
Figure PCTKR2023013239-appb-img-000033
각 출발 물질을 상기 반응식과 같이 하는 것을 제외하고는, 상기 실시예 1의 제조 방법과 동일한 방법으로 상기 화합물 E8을 제조하였다.
MS: [M+H]+ = 767
실시예 9: 화합물 E9의 제조
Figure PCTKR2023013239-appb-img-000034
각 출발 물질을 상기 반응식과 같이 하는 것을 제외하고는, 상기 실시예 1의 제조 방법과 동일한 방법으로 상기 화합물 E9를 제조하였다.
MS: [M+H]+ = 767
실시예 10: 화합물 E10의 제조
Figure PCTKR2023013239-appb-img-000035
각 출발 물질을 상기 반응식과 같이 하는 것을 제외하고는, 상기 실시예 1의 제조 방법과 동일한 방법으로 상기 화합물 E10을 제조하였다.
MS: [M+H]+ = 843
실시예 11: 화합물 E11의 제조
Figure PCTKR2023013239-appb-img-000036
각 출발 물질을 상기 반응식과 같이 하는 것을 제외하고는, 상기 실시예 1의 제조 방법과 동일한 방법으로 상기 화합물 E11을 제조하였다.
MS: [M+H]+ = 793
실시예 12: 화합물 E12의 제조
Figure PCTKR2023013239-appb-img-000037
각 출발 물질을 상기 반응식과 같이 하는 것을 제외하고는, 상기 실시예 1의 제조 방법과 동일한 방법으로 상기 화합물 E12를 제조하였다.
MS: [M+H]+ = 767
실시예 13: 화합물 E13의 제조
Figure PCTKR2023013239-appb-img-000038
각 출발 물질을 상기 반응식과 같이 하는 것을 제외하고는, 상기 실시예 1의 제조 방법과 동일한 방법으로 상기 화합물 E13을 제조하였다.
MS: [M+H]+ = 799
[실험예]
실험예 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 하기 화합물 HI-A를 600 Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 위에 하기 화학식의 헥사니트릴 헥사아자트리페닐렌(hexaazatriphenylene; HAT, 50 Å) 및 하기 화합물 HT-A(600 Å)를 순차적으로 진공 증착하여 정공수송층을 형성하였다.
이어서, 상기 정공수송층 위에 막 두께 200 Å으로 하기 화합물 BH와 BD를 25:1의 중량비로 진공 증착하여 발광층을 형성하였다. 상기 발광층 위에 실시예 1에서 제조한 화합물 E1과 하기 화합물 LiQ(Lithiumquinolate)를 1:1 중량비로 진공 증착하여 360 Å의 두께로 전자수송 및 주입층을 형성하였다. 상기 전자수송 및 주입층 위에 순차적으로 10 Å 두께로 리튬 플루오라이드(LiF)와 1,000 Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure PCTKR2023013239-appb-img-000039
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.9 Å/sec를 유지하였고, 음극의 리튬 플루오라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착 시 진공도는 1 × 10-7 ~ 5 × 10-8 torr를 유지하여, 유기 발광 소자를 제작하였다.
실험예 2 내지 13
실험예 1의 화합물 E1 대신 하기 표 1의 화합물을 사용한 것을 제외하고는 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교실험예 1 내지 13
실험예 1의 화합물 E1 대신 하기 표 1의 화합물을 사용한 것을 제외하고는 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 1에서 사용한 ET-A 내지 ET-M의 화합물은 하기와 같다.
Figure PCTKR2023013239-appb-img-000040
상기 실험예 및 비교실험예에서 제조한 유기 발광 소자에 대하여, 10 mA/cm2의 전류밀도에서 구동 전압, 발광 효율 및 색좌표를 측정하였고, 20 mA/cm2의 전류밀도에서 초기 휘도 대비 90%가 되는 시간(T90)을 측정하였다. 그 결과를 하기 표 1에 나타내었다.
화합물
(전자수송 및 주입층)
전압
(V@10mA/cm2)
효율
(cd/A@10mA/cm2)
색좌표
(x,y)
T90
(hr@20mA/cm2)
실험예 1 E1 3.89 4.51 (0.136, 0.112) 201
실험예 2 E2 3.85 4.61 (0.136, 0.111) 183
실험예 3 E3 3.81 4.71 (0.136, 0.112) 166
실험예 4 E4 3.97 4.42 (0.136, 0.111) 225
실험예 5 E5 3.93 4.46 (0.136, 0.111) 219
실험예 6 E6 3.89 4.56 (0.136, 0.111) 199
실험예 7 E7 3.94 4.44 (0.136, 0.112) 221
실험예 8 E8 4.01 4.24 (0.136, 0.111) 192
실험예 9 E9 3.97 4.28 (0.136, 0.112) 175
실험예 10 E10 3.93 4.32 (0.136, 0.111) 159
실험예 11 E11 3.89 4.37 (0.136, 0.111) 145
실험예 12 E12 3.85 4.41 (0.136, 0.111) 132
실험예 13 E13 3.89 4.51 (0.136, 0.112) 220
비교실험예 1 ET-A 4.28 2.71 (0.136, 0.111) 121
비교실험예 2 ET-B 4.24 2.77 (0.136, 0.111) 110
비교실험예 3 ET-C 4.71 2.16 (0.136, 0.112) 133
비교실험예 4 ET-D 4.19 2.79 (0.136, 0.111) 99
비교실험예 5 ET-E 4.41 3.18 (0.136, 0.112) 127
비교실험예 6 ET-F 4.36 3.25 (0.136, 0.111) 115
비교실험예 7 ET-G 4.08 4.01 (0.136, 0.111) 20
비교실험예 8 ET-H 4.41 2.54 (0.136, 0.112) 115
비교실험예 9 ET-I 4.00 4.19 (0.136, 0.111) 17
비교실험예 10 ET-J 4.85 2.03 (0.136, 0.111) 127
비교실험예 11 ET-K 4.00 4.19 (0.136, 0.112) 19
비교실험예 12 ET-L 4.30 2.75 (0.136, 0.111) 90
비교실험예 13 ET-M 4.28 2.70 (0.136, 0.111) 85
상기 표 1에 기재된 바와 같이, 본 발명의 화학식 1로 표시되는 화합물을 사용한 유기 발광 소자의 경우, 전압, 효율 및/또는 수명(T90)에서 우수한 특성을 나타내는 것을 확인하였다.
상기 표 1의 실험예 1 내지 13과 비교실험예 1, 2, 4 내지 6, 8, 12 및 13을 비교하면, 본 발명의 화학식 1의 화합물을 포함하는 유기 발광소자는 헤테로 고리기 사이의 치환기가 상이한 화합물을 사용한 유기 발광 소자보다 효율 면에서 현저히 우수한 특성을 보임을 확인할 수 있었다.
상기 표 1의 실험예 1 내지 13과 비교실험예 3 및 10을 비교하면, 본 발명의 화학식 1의 화합물을 포함하는 유기 발광소자는 시아노기가 두 개 치환된 화합물을 사용한 유기 발광 소자보다 효율 면에서 현저히 우수한 특성을 보임을 확인할 수 있었다.
상기 표 1의 실험예 1 내지 13과 비교실험예 7 및 9, 11을 비교하면, 본 발명의 화학식 1의 화합물을 포함하는 유기 발광소자는 시아노기가 비치환된 화합물을 사용한 유기 발광 소자보다 수명 면에서 현저히 우수한 특성을 보임을 확인할 수 있었다.
[부호의 설명]
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자수송 및 주입층

Claims (13)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2023013239-appb-img-000041
    상기 화학식 1에서,
    X는 각각 독립적으로, N, CH, 또는 CD이되, X 중 둘 이상은 N이고,
    L은 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
    Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴이고,
    Ar3 및 Ar4는 각각 독립적으로, 비치환되거나, 또는 1개 이상의 중수소로 치환된 페닐이고,
    Ar1 내지 Ar4 중 어느 하나는 시아노로 치환되고,
    HAr은 비치환되거나, 또는 중수소, 치환 또는 비치환된 C1-60 알킬, 및 치환 또는 비치환된 C6-60 아릴로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 3개의 치환기로 치환된 피리미디닐; 2개의 치환 또는 비치환된 C6-60 아릴로 치환된 트리아지닐; 또는 1개의 치환 또는 비치환된 C6-60 아릴로 치환된 퀴나졸리닐이고,
    a 및 b는 각각 독립적으로, 0 내지 4의 정수이고,
    n 및 m은 각각 독립적으로, 0 또는 1이고,
    단, n+m은 1이고,
    a+n은 0 내지 4의 정수이고,
    b+m은 0 내지 4의 정수이다.
  2. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 1-1 내지 1-3 중 어느 하나로 표시되는,
    화합물:
    [화학식 1-1]
    Figure PCTKR2023013239-appb-img-000042
    [화학식 1-2]
    Figure PCTKR2023013239-appb-img-000043
    [화학식 1-3]
    Figure PCTKR2023013239-appb-img-000044
    상기 화학식 1-1 내지 1-3에서,
    X, L, Ar1, Ar2, Ar3, Ar4, a, b, n 및 m은 제1항에서 정의한 바와 같고,
    Y는 N 또는 CR’이되, Y 중 둘 이상은 N이고,
    R’은 수소, 중수소, 치환 또는 비치환된 C1-60 알킬, 또는 치환 또는 비치환된 C6-60 아릴이고,
    R1 및 R2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴이고,
    c는 0 내지 4의 정수이다.
  3. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 1-4 내지 1-9 중 어느 하나로 표시되는,
    화합물:
    [화학식 1-4]
    Figure PCTKR2023013239-appb-img-000045
    [화학식 1-5]
    Figure PCTKR2023013239-appb-img-000046
    [화학식 1-6]
    Figure PCTKR2023013239-appb-img-000047
    [화학식 1-7]
    Figure PCTKR2023013239-appb-img-000048
    [화학식 1-8]
    Figure PCTKR2023013239-appb-img-000049
    [화학식 1-9]
    Figure PCTKR2023013239-appb-img-000050
    상기 화학식 1-4 내지 1-9에서,
    X, L, Ar1, Ar2, Ar3, Ar4, HAr, a, 및 b는 제1항에서 정의한 바와 같다.
  4. 제1항에 있어서,
    L은 단일 결합, 페닐렌, 또는 비페닐디일이고,
    상기 페닐렌 및 비페닐디일은 비치환되거나, 또는 1개 이상의 중수소로 치환된,
    화합물.
  5. 제1항에 있어서,
    Ar1은 비치환되거나, 또는 1개 이상의 중수소로 치환된 페닐인,
    화합물.
  6. 제1항에 있어서,
    Ar2는 페닐, 비페닐릴, 또는 나프틸이고,
    상기 Ar2는 비치환되거나, 또는 1개 이상의 중수소로 치환된,
    화합물.
  7. 제1항에 있어서,
    L은 페닐렌, 또는 비페닐디일이고,
    여기서, 상기 L은 비치환되거나, 또는 1개 이상의 중수소로 치환되고,
    Ar2는 시아노로 치환된 페닐, 또는 시아노로 치환된 나프틸이고,
    여기서, 상기 Ar2는 중수소로 치환 또는 비치환되는,
    화합물.
  8. 제1항에 있어서,
    L은 단일 결합이고,
    Ar2는 페닐, 또는 비페닐릴이고,
    여기서, 상기 Ar2는 비치환되거나, 또는 1개 이상의 중수소로 치환되고,
    Ar3는 시아노로 치환된 페닐이고,
    여기서, 상기 Ar3는 중수소로 치환 또는 비치환되는,
    화합물.
  9. 제2항에 있어서,
    R’은 수소, 중수소, 또는 비치환되거나, 또는 1개 이상의 중수소로 치환된 메틸인,
    화합물.
  10. 제2항에 있어서,
    R1 및 R2는 각각 독립적으로, 페닐, 비페닐릴, 또는 나프틸이고,
    상기 R1 및 R2는 비치환되거나, 또는 1개 이상의 중수소로 치환되는,
    화합물.
  11. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    Figure PCTKR2023013239-appb-img-000051
    Figure PCTKR2023013239-appb-img-000052
    Figure PCTKR2023013239-appb-img-000053
    Figure PCTKR2023013239-appb-img-000054
    Figure PCTKR2023013239-appb-img-000055
    Figure PCTKR2023013239-appb-img-000056
    Figure PCTKR2023013239-appb-img-000057
    .
  12. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제11항 중 어느 하나의 항에 따른 화합물을 포함하는, 유기 발광 소자.
  13. 제12항에 있어서
    상기 화합물을 포함하는 유기물층은 전자수송층, 전자주입층, 또는 전자수송 및 주입층인,
    유기 발광 소자.
PCT/KR2023/013239 2022-09-05 2023-09-05 신규한 화합물 및 이를 포함한 유기 발광 소자 WO2024053991A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380013620.6A CN117999260A (zh) 2022-09-05 2023-09-05 新的化合物和包含其的有机发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0112123 2022-09-05
KR1020220112123A KR102566290B1 (ko) 2022-09-05 2022-09-05 신규한 화합물 및 이를 포함한 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2024053991A1 true WO2024053991A1 (ko) 2024-03-14

Family

ID=87560662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/013239 WO2024053991A1 (ko) 2022-09-05 2023-09-05 신규한 화합물 및 이를 포함한 유기 발광 소자

Country Status (3)

Country Link
KR (1) KR102566290B1 (ko)
CN (1) CN117999260A (ko)
WO (1) WO2024053991A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102566290B1 (ko) * 2022-09-05 2023-08-10 주식회사 엘지화학 신규한 화합물 및 이를 포함한 유기 발광 소자

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자
WO2003012890A2 (de) 2001-07-20 2003-02-13 Novaled Gmbh Lichtemittierendes bauelement mit organischen schichten
KR20140087804A (ko) * 2012-12-31 2014-07-09 제일모직주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR20190143282A (ko) * 2018-06-20 2019-12-30 삼성전자주식회사 유기 발광 소자
JP2021070682A (ja) * 2019-10-24 2021-05-06 東ソー株式会社 ピリジル基を有するトリアジン化合物
CN114057660A (zh) * 2020-07-31 2022-02-18 江苏三月科技股份有限公司 一种含双三嗪结构的化合物及其应用
KR20220065123A (ko) * 2020-11-12 2022-05-20 주식회사 랩토 트리아진 또는 피리미딘 유도체, 및 이를 포함한 유기전계발광소자
KR102566290B1 (ko) * 2022-09-05 2023-08-10 주식회사 엘지화학 신규한 화합물 및 이를 포함한 유기 발광 소자

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102246691B1 (ko) * 2017-09-29 2021-04-30 삼성에스디아이 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
KR102016015B1 (ko) * 2018-07-25 2019-08-30 경북보건대학교 산학협력단 노약자를 위한 보호조끼 기구
KR20200115134A (ko) * 2019-03-29 2020-10-07 삼성전자주식회사 유기 발광 소자

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자
WO2003012890A2 (de) 2001-07-20 2003-02-13 Novaled Gmbh Lichtemittierendes bauelement mit organischen schichten
KR20140087804A (ko) * 2012-12-31 2014-07-09 제일모직주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR20190143282A (ko) * 2018-06-20 2019-12-30 삼성전자주식회사 유기 발광 소자
JP2021070682A (ja) * 2019-10-24 2021-05-06 東ソー株式会社 ピリジル基を有するトリアジン化合物
CN114057660A (zh) * 2020-07-31 2022-02-18 江苏三月科技股份有限公司 一种含双三嗪结构的化合物及其应用
KR20220065123A (ko) * 2020-11-12 2022-05-20 주식회사 랩토 트리아진 또는 피리미딘 유도체, 및 이를 포함한 유기전계발광소자
KR102566290B1 (ko) * 2022-09-05 2023-08-10 주식회사 엘지화학 신규한 화합물 및 이를 포함한 유기 발광 소자

Also Published As

Publication number Publication date
CN117999260A (zh) 2024-05-07
KR102566290B1 (ko) 2023-08-10

Similar Documents

Publication Publication Date Title
WO2017204594A1 (ko) 유기 발광 소자
WO2016182388A2 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021125813A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022102992A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2024053991A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2021125648A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021080253A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021080254A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020262861A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2015178740A2 (ko) 헤테로환 화합물 및 이를 포함하는 유기발광소자
WO2018074881A1 (ko) 다중고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020222433A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2023096405A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2022060047A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022059923A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021149954A1 (ko) 유기 발광 소자
WO2022031020A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021194261A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021034156A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246835A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246837A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020231242A1 (ko) 유기 발광 소자
WO2024054010A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2024049067A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2023140649A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023863463

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023863463

Country of ref document: EP

Effective date: 20240408

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863463

Country of ref document: EP

Kind code of ref document: A1