WO2010070735A1 - 光マトリックスデバイス - Google Patents

光マトリックスデバイス Download PDF

Info

Publication number
WO2010070735A1
WO2010070735A1 PCT/JP2008/072866 JP2008072866W WO2010070735A1 WO 2010070735 A1 WO2010070735 A1 WO 2010070735A1 JP 2008072866 W JP2008072866 W JP 2008072866W WO 2010070735 A1 WO2010070735 A1 WO 2010070735A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrated circuit
optical matrix
matrix device
flexible substrate
gate
Prior art date
Application number
PCT/JP2008/072866
Other languages
English (en)
French (fr)
Inventor
晋 足立
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2008/072866 priority Critical patent/WO2010070735A1/ja
Publication of WO2010070735A1 publication Critical patent/WO2010070735A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/30Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals

Definitions

  • the present invention relates to a two-dimensional pixel formed by a display element or a light receiving element, such as a thin image device used as a monitor of a television or a personal computer, or a radiation detector provided in a radiation imaging device used in the medical field or industrial field.
  • the present invention relates to an optical matrix device having a structure arranged in a matrix.
  • an optical matrix device in which elements relating to light including an active element formed by a thin film transistor (TFT) and a capacitor are arranged in a two-dimensional matrix is widely used.
  • Examples of light-related elements include a light receiving element and a display element.
  • the optical matrix device is roughly classified into a device composed of a light receiving element and a device composed of a display element.
  • Examples of the device including the light receiving element include an optical imaging sensor and a radiation imaging sensor used in the medical field or the industrial field.
  • a device constituted by a display element there is an image display used as a monitor of a television or a personal computer, such as a liquid crystal type provided with an element for adjusting the intensity of transmitted light and an EL type provided with a light emitting element.
  • light refers to infrared rays, visible rays, ultraviolet rays, radiation (X-rays), ⁇ rays, and the like.
  • a flat panel X-ray detector as a light receiving matrix device will be described as an example.
  • FPD flat panel X-ray detector
  • detection elements 50 for detecting X-rays are arranged in a two-dimensional matrix.
  • the detection element 50 includes an X-ray conversion layer such as a semiconductor layer that is sensitive to X-rays.
  • the X-rays are converted into carriers by the X-ray conversion layer, and the converted carriers are read out.
  • the semiconductor layer an amorphous amorphous selenium (a-Se) film or the like is used.
  • a radiation image transmitted through the subject is projected onto the a-Se film, and carriers proportional to the density of the image are generated in the a-Se film. To do. Thereafter, the carriers generated in the a-Se film are collected by the pixel electrode by the voltage applied to the voltage application electrode. Charges are induced in the capacitors arranged in a two-dimensional matrix by the collected carriers, and the charges are accumulated for a predetermined time. Thereafter, due to the switching action by the gate voltage sent from the gate drive IC 51 via the gate line 52, the electric charge accumulated in the capacitor is converted into a voltage signal by the signal read IC 54 via the data line 53 via the thin film transistor. The pixel signal is read out to the outside.
  • an a-Se film is vapor-deposited on an active matrix substrate having switching elements composed of thin film transistors arranged in a two-dimensional matrix or an insulating substrate on which the above-described capacitor is patterned. Can be obtained.
  • the optical matrix device provided in the FPD or the thin image display is connected to the data line 53 for writing or reading data and the gate electrode of the thin film transistor that performs the switching function of writing or reading data.
  • a gate line 52 is provided.
  • Patent Document 1 discloses a photoelectric conversion device as an optical matrix device.
  • a glass substrate 55 is adopted as a base material of an active matrix substrate provided in the photoelectric conversion device, and matrix wiring formed on the glass substrate 55 is mounted on a tape carrier package 56 (hereinafter referred to as TCP). It is configured to be connected to a gate drive IC 51 and a signal readout IC 54.
  • the TCP 56 is a foldable flexible substrate and can guide an electrical signal to the back surface of the active matrix substrate.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an optical matrix device capable of bending a substrate while mounting a driving integrated circuit on the substrate on which a thin film transistor is formed.
  • the optical matrix device of the present invention is an optical matrix device including a flexible substrate in which elements relating to light including a capacitor and a switching element are arranged in a two-dimensional matrix, and the switching element and the gate line are interposed.
  • a gate drive integrated circuit connected to send a switching command to the switching element; and a data drive integrated circuit connected to the capacitor via the data line and the switching element to read or write an electrical signal to the capacitor.
  • the gate driving integrated circuit and the data driving integrated circuit are mounted on the flexible substrate and between the switching element and the gate driving integrated circuit closest to the gate driving integrated circuit, and the data driving integrated circuit. Closest to the above Between one of at least one of between the switching element and the data driving integrated circuit, characterized by formed by bending the flexible substrate.
  • the gate drive integrated circuit and the data drive integrated circuit can be mounted on the same substrate as the flexible substrate on which the switching elements are formed.
  • the line and the gate drive integrated circuit or the data drive integrated circuit can be connected.
  • bypass capacitor connected to at least one of the gate drive integrated circuit and the data drive integrated circuit is mounted on the same substrate as the flexible substrate on which the gate drive integrated circuit and the data drive integrated circuit are mounted. Is preferred.
  • a bypass capacitor can be mounted on the flexible substrate in the vicinity of the gate drive integrated circuit rather than the distance between the gate drive integrated circuit and the connection portion connecting another printed circuit board. As a result, noise caused by the power source input to the gate drive integrated circuit can be removed.
  • a bypass capacitor can be mounted on the flexible board in the vicinity of the data driving integrated circuit rather than the distance between the data driving integrated circuit and the connecting portion connecting the other printed circuit board. As a result, noise caused by the power source input to the data driving integrated circuit can be removed.
  • the material of the flexible substrate is preferably an organic compound. If it is an organic compound, a flexible substrate with good flexibility can be formed. When the flexible substrate is bent at least two sides, it is preferable that a cutout is formed in the flexible substrate through the intersection of a plurality of folding lines. The flexible substrate can be easily bent by the notch.
  • the light-related element may be a light receiving element or a display element. If it is a light receiving element, the photodetector or radiation detector from which the frame area was small and noise was removed as an optical matrix device can be provided. If it is a display element, the image display apparatus from which the frame area was small and noise was removed as an optical matrix device can be provided.
  • the substrate can be bent while the driving integrated circuit is mounted on the substrate on which the thin film transistor is formed.
  • FIG. 1 is a circuit diagram showing a configuration of a flat panel X-ray detector (FPD) according to Embodiment 1.
  • FIG. 2 is a schematic longitudinal sectional view of the periphery of the X-ray conversion layer of the FPD according to Embodiment 1.
  • FIG. 1 is a block diagram of a signal readout IC of an FPD according to Embodiment 1.
  • FIG. 1 is a schematic longitudinal sectional view of an IC mounted on a substrate of an FPD according to Embodiment 1.
  • FIG. 1 is a schematic longitudinal sectional view of an IC mounted on a substrate of an FPD according to Embodiment 1.
  • FIG. 3 is a circuit diagram of an IC and a bypass capacitor mounted on a substrate of an FPD according to Embodiment 1.
  • FIG. 6 is a circuit diagram illustrating a configuration of an FPD according to another embodiment of the first embodiment.
  • FIG. 6 is a schematic perspective view illustrating an image display apparatus according to a second embodiment. It is a block diagram which shows the structure of the optical matrix device which concerns on a prior art example. It is a schematic longitudinal cross-sectional view of the connection part of the glass substrate and flexible substrate which concerns on a prior art example.
  • FIG. 1 is a circuit diagram showing a configuration of a flat panel X-ray detector (FPD) according to the first embodiment
  • FIG. 2 is a block diagram of an FPD signal readout IC
  • FIG. 3 is an FPD X-ray conversion layer. It is a schematic longitudinal cross-sectional view of a peripheral part.
  • FPD will be described below as an example of an optical matrix device.
  • the FPD 1 includes an X-ray detection unit 2 on which X-rays are incident, and X-ray detection elements 3 are arranged on a flexible substrate 4 in a two-dimensional matrix in the XY direction. Yes.
  • the X-ray detection element 3 outputs a charge signal for each pixel in response to incident X-rays.
  • the X-ray detection element 3 has a two-dimensional matrix configuration corresponding to 9 ⁇ 9 pixels, but the actual X-ray detection unit 2 includes, for example, 4096
  • the matrix configuration is adapted to the number of pixels of the FPD 1 to about 4096 pixels or more.
  • the gate signal is sent from the gate drive IC 6 to the X-ray detection element 3 through the gate line 5 connected thereto.
  • the X-ray detection element 3 reads the charge signal into the signal readout IC 8 via the connected data line 7.
  • the signal readout IC 8 converts the read charge signal into a voltage signal and amplifies it, and sends it out as a time division signal to the external printed circuit board via the wiring 15 and the connector 9.
  • a connector 9 is also connected to the gate driving IC 6 to transmit / receive control signals to / from an external printed board.
  • the gate drive IC 6 and the signal readout IC 8 are mounted on the same flexible substrate 4 as the flexible substrate 4 on which the X-ray detection elements 3 are arranged.
  • a bypass capacitor 10 is mounted on the flexible substrate 4 in the vicinity of the gate drive IC 6 or the signal readout IC 8 below the connection distance between the gate drive IC 6 or the signal readout IC 8 and the connector 9.
  • the signal readout IC 8 is connected.
  • the gate drive IC 6 corresponds to the gate drive integrated circuit in the present invention
  • the signal read IC 8 corresponds to the data drive integrated circuit in the present invention
  • the connector 9 corresponds to the connection portion in the present invention.
  • the gate drive IC group 11 is composed of three gate drive ICs 6, but this depends on the processing capability of the gate drive IC 6. That is, how many gate lines 5 are connected to the gate driving IC 6 depends on the processing capability of the gate driving IC 6, and thus, it is determined how many gate driving ICs the gate driving IC group 11 is configured. For example, if the gate driving IC 6 has a processing capacity of 256 channels, it can be connected to 256 gate lines 5. Accordingly, for example, in the case of the X-ray detection unit 2 having 4096 ⁇ 4096 pixels, 16 256 channel gate drive ICs 6 are required, and the 16 gate drive ICs 6 constitute the gate drive IC group 11.
  • three signal readout ICs 8 constitute the signal readout IC group 12, but the signals constituting the signal readout IC group 12 depend on how many data lines 7 are connected to the signal readout IC 8. The number of read ICs 8 can be changed.
  • the signal readout IC 8 includes an amplifier array circuit 13 and a multiplexer 14 inside.
  • the amplifier array circuit 13 the charge signal read via the data line 7 is converted into a voltage signal, amplified, and sent to the multiplexer 14.
  • the multiplexer 14 sends the amplified voltage signal as a time division signal to the external printed circuit board via the wiring 15 and the connector 9.
  • the X-ray detection element 3 has an X-ray conversion layer 17 that generates carriers (electron / hole pairs) by incidence of X-rays below the voltage application electrode 16 to which a bias voltage is applied. Is formed.
  • a pixel electrode 18 that collects carriers for each pixel is formed below the X-ray conversion layer 17.
  • an active matrix substrate 22 including the flexible substrate 4 that supports them.
  • An X-ray detection signal can be read for each pixel from the carrier generated in the X-ray conversion layer 17 by the active matrix substrate 22.
  • the X-ray detection element 3 corresponds to a light-related element in the present invention
  • the thin film transistor 20 corresponds to a switching element in the present invention.
  • the X-ray conversion layer 17 is made of an X-ray sensitive semiconductor, and is formed of, for example, an amorphous amorphous selenium (a-Se) film.
  • a-Se amorphous amorphous selenium
  • the X-ray conversion layer 17 may be another semiconductor film such as a polycrystalline semiconductor film.
  • the data line 7, the gate line 5, and the ground line 21 in the FPD 1 described above use silver, gold, copper, or the like as a wiring material.
  • These wirings can be formed by an inkjet method in which a metal ink in which a metal such as silver, gold, or copper is pasted is ejected. Further, in addition to the inkjet method, other offset printing, gravure printing, plating method, or the like may be used.
  • the semiconductor between the gate electrode G and the drain electrode D and the source electrode S of the thin film transistor 20 is preferably an inorganic semiconductor such as an oxide semiconductor (ZnO, InGaZnO 4, etc.), but in addition, amorphous silicon (a-Si ), Polysilicon (poly-Si), or an organic semiconductor such as pentacene.
  • an oxide semiconductor ZnO, InGaZnO 4, etc.
  • a-Si amorphous silicon
  • poly-Si Poly-Si
  • an organic semiconductor such as pentacene.
  • the FPD 1 of the first embodiment is a flat panel X-ray sensor having a two-dimensional array configuration in which a large number of detection elements 3 that are X-ray detection pixels are arranged along the X and Y directions. Local X-ray detection can be performed for each element 3, and two-dimensional distribution measurement of X-ray intensity is possible.
  • the X-ray detection operation by the FPD 1 of this embodiment is as follows. That is, when X-ray imaging is performed by irradiating the subject with X-rays, a radiation image transmitted through the subject is projected onto the a-Se film, and carriers proportional to the density of the image are a-Se film. Occurs within. The generated carriers are collected in the pixel electrode 18 by an electric field that generates a bias voltage, and charges are induced in the capacitor 19 according to the number of carriers generated and accumulated for a predetermined time. Thereafter, the thin film transistor 20 is switched by the gate signal sent from the gate drive circuit IC 6 through the gate line 5, and the charge accumulated in the capacitor 19 is read out as a charge signal through the thin film transistor 20 and the data line 7. Read to IC8. The read charge signal is converted and amplified to a voltage signal by the amplifier array circuit 13 in the signal read IC 8 and is sequentially read out as a time division signal as an X-ray detection signal by the multiplexer 14.
  • the material of the flexible substrate 4 examples include polyimide, polyethylene naphthalate (PEN), polyethersulfone (PES), and polyethylene terephthalate (PET). Among them, polyimide having excellent heat resistance is preferable. Since these synthetic resins are used as materials, the flexible substrate 4 can be bent unlike a glass substrate.
  • the flexible substrate 4 is formed with notches so that the end faces do not overlap when the end faces on which the gate drive IC group 6 and the signal readout IC group 8 are placed are bent. This notch is configured to pass through the intersection of fold lines AA and BB where the flexible substrate 4 is bent.
  • the gate drive IC 6 or the signal readout IC 8 is connected to the gate line 5 or the data line 7 on the flexible substrate 4 as shown in FIG.
  • the gate driving IC 6 or the signal readout IC 8 placed on the flexible substrate 4 and the gate line 5 or the data line 7 are connected via the wire line 23 by wire bonding.
  • a gold wire or the like may be used as the wire line 23.
  • the connection since each IC is mounted on and connected to the flexible substrate 4, it can be mounted much more easily than in the conventional case where the IC is mounted across the substrates. If the IC and the wiring are connected by wire bonding, it is easy to correct the connection pin at the time of connection failure. Further, as shown in FIG. 5, the connection may be made by a flip chip method using solder bumps 25.
  • the gate driving IC 6 and the signal readout IC 8 are sealed by potting a sealing material 24 such as epoxy or silicone. Thereby, the environmental resistance of each IC can be improved. It is preferable to seal each IC independently because the heat dissipation efficiency of each IC is good. If priority is given to heat dissipation efficiency, each IC need not be sealed.
  • the gate drive IC 6 and the signal readout IC 8 are connected to a bypass capacitor 10 as shown in FIGS.
  • the bypass capacitor can be connected only to the printed circuit board connected via the connector.
  • the gate drive IC 6 is disposed on the flexible substrate 4 at a distance shorter than the distance between the gate drive IC 6 and the connector 9.
  • a bypass capacitor 10 can be disposed in the vicinity.
  • the bypass capacitor 10 can be disposed near the signal readout IC 8 at a distance shorter than the distance between the signal readout IC 8 and the connector 9.
  • the bypass capacitor 10 is mounted on the connector 9 side with respect to the gate driving IC 6 or the signal readout IC 8, but is not limited thereto, and may be mounted on the X-ray detection unit 2 side.
  • the flexible substrate 4 described above includes the dotted line AA between the X-ray detection unit 2 and the gate drive IC group 11 of the flexible substrate 4 in FIG. 1 and the X-ray detection unit 2 and the signal readout IC group 12. Is bent to the back side of the X-ray detector 2 along the dotted line BB, and is arranged in the housing 26 as shown in FIGS.
  • FIG. 8 is a schematic cross-sectional view of the FPD 1 in which the flexible substrate 4 is bent and disposed in the housing 26.
  • the housing 26 is provided with an opening so that the X-ray detection unit 2 is exposed, and the irradiated X-rays enter the X-ray detection unit 2. If a material having good X-ray transparency, such as carbon, is used for the housing 26, a structure that covers all the folded flexible substrates 4 without providing openings may be used. Further, a backlight 27 is disposed in the FPD 1 so as to face the X-ray detection unit 2 and sandwich the flexible substrate 4. By irradiating light from the backlight 27, it is possible to form a charge bias so that carriers can easily move from the X-ray conversion layer 17 in the X-ray detection unit 2 to the pixel electrode 18.
  • the gate drive IC group 11 and the signal readout IC group 12 are arranged on the opposite side to the X-ray incident side of the X-ray detection unit 2 in the housing 26 by bending the flexible substrate 4.
  • the gate drive IC 6 and the signal readout IC 8 are opposed to the gate drive IC 6 and the signal readout IC 8 on the X-ray incident side with the flexible substrate 4 interposed therebetween because the semiconductor film is damaged and destroyed when X-rays are irradiated.
  • a shielding plate 28 is disposed. As the material of the shielding plate 28, lead having good X-ray absorption is suitable.
  • the flexible substrate 4 is bent so that the gate drive IC group 11 and the signal readout IC group 12 mounted on the same substrate as the X-ray detection unit 2 are replaced with the X-ray detection unit 2. Can be disposed on the opposite side to the X-ray incident side. As a result, the frame area of the FPD 1 can be reduced. Further, by bending the flexible substrate 4, the gate drive IC group 11 and the signal readout IC group 12 can be easily connected to an AD converter or the like mounted on another printed circuit board via the connector 9.
  • bypass capacitor can be mounted in the vicinity of the gate driving IC 6 and the signal readout IC 8, noise caused by the power supplied to each IC can be removed.
  • the FPD 1 is exemplified as the optical matrix device.
  • the present invention is not limited to this, and a radiation detector sensitive to other radiation may be used. Further, a photodetector having a photodiode may be used instead of the X-ray conversion layer 17.
  • FIG. 9 is a partially broken perspective view of a display (organic EL display) including an active matrix substrate as an example of an image display device.
  • the present invention is also preferably applied to an image display device.
  • the image display device include a thin electroluminescent display and a liquid crystal display.
  • the image display apparatus also includes a pixel circuit formed on an active matrix substrate, and is preferably applied to such a device.
  • an organic EL display 30 including an active matrix substrate is connected to a flexible substrate 31, a plurality of thin film transistor circuits 32 arranged in a matrix on the flexible substrate 31, and pixel electrodes 33. And a plurality of data lines 39 and gate lines 40 for connecting the thin film transistor circuits 32, the signal writing IC 37, and the gate driving IC 38, respectively.
  • the organic EL layer 34 is configured by laminating layers such as an electron transport layer, a light emitting layer, and a hole transport layer.
  • the thin film transistor circuit 32 includes a thin film transistor and a capacitor for storing a data signal sent via the data line 39.
  • the signal writing IC 37 corresponds to the data driving integrated circuit in the present invention.
  • the signal writing IC 37 mounted on the same flexible substrate as the substrate on which the organic EL layer 34 is laminated is connected to the data line 39.
  • the signal writing IC 37 is connected to a connector 41 for connection to an external printed circuit board via wiring, and the bypass capacitor 42 is connected to the signal writing IC 37 at a distance shorter than the distance between the signal writing IC 37 and the connector 41. It is mounted and connected in the vicinity.
  • the gate drive IC 38 mounted on the same flexible substrate 31 as the active matrix substrate is connected to the gate line 40. Further, the gate drive IC 38 is connected to the connector 41 for connection to the external printed circuit board via wiring, and the bypass capacitor 42 is connected to the gate drive IC 38 at a distance shorter than the distance between the gate drive IC 38 and the connector 41. It is mounted and connected in the vicinity.
  • the flexible substrate 31 is bent so that the gate drive IC 38 and the signal writing IC 37 mounted on the same substrate as the organic EL layer 34 are laminated with the organic EL layer 34 of the flexible substrate. Can be mounted on the opposite side. As a result, the frame area of the FPD 1 can be reduced.
  • bypass capacitor 42 can be disposed in the vicinity of the signal writing IC 37 and the gate driving IC 38, noise caused by the power input to the signal writing IC 37 and the gate driving IC 38 can be removed.
  • the image display device 30 described above is a display using a display element such as an organic EL, but is not limited thereto, and may be a liquid crystal display including a liquid crystal display element.
  • a liquid crystal display pixels are colored RGB by a color filter.
  • the display provided with the other display element may be sufficient.
  • polyimide is not transparent, so it is not preferable as a material for the flexible substrate 31. It is preferable to employ another transparent synthetic resin as the flexible substrate 31.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the gate drive IC group 11 and the signal readout IC group 12 are each mounted on one side of the flexible substrate 4, but are divided into two sides of the flexible substrate as shown in FIG. May be implemented.
  • the gate drive IC group 44 and the signal readout IC group 45 can be mounted so as to face each other with the X-ray detection unit 2 interposed therebetween.
  • the arrangement of the X-ray detection elements is the same as that of the first embodiment, a description thereof will be omitted.
  • the odd-numbered gate lines 5 can be distributed to the left gate drive IC group 44, and the even-numbered gate lines 5 can be distributed to the right gate drive IC group 44.
  • the odd-numbered data lines 7 can be assigned to the upper signal readout IC group 45, and the even-numbered data lines 7 can be assigned to the lower signal readout IC group 45.
  • the cutouts are formed in the four corners of the flexible substrate 46, the flexible substrate 46 is bent along all the four sides along the dotted lines AA, A′-A ′, BB, B′-B ′. be able to. As described above, the bending portion of the flexible substrate may be only one side depending on the mounting form of the gate driving IC and the signal readout IC or the size of the housing, or may be on all two sides, three sides, or all four sides. But you can.
  • the cutout formed in the flexible substrate 46 is formed so as to pass through the intersections of the folding lines AA, A′-A ′, BB, and B′-B ′ where the flexible substrate 47 is bent.
  • each IC is provided with a dedicated terminal for a single operation check. If each IC has a dedicated terminal for operation check, the operation state can be checked one by one with a probe, so that it is easy to find an IC with a malfunction.
  • the optical matrix device includes a bottom gate type active matrix substrate.
  • an optical matrix device including a top gate type active matrix substrate may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 本発明の光マトリックスデバイスによれば、薄膜トランジスタ20が形成される基板と、ゲート駆動IC6及びデータ駆動IC7が実装されている基板とが同一のフレキシブル基板4である。これより、薄膜トランジスタが形成された基板とゲート駆動ICまたはデータ駆動ICが実装されている基板とをTCPで接続する必要がないので、実装時間の大幅な短縮となる。また、ゲート駆動IC6及びデータ駆動IC7と同一のフレキシブル基板4上にバイパスコンデンサを実装することができるので、ゲート駆動IC6及びデータ駆動IC7への電源ノイズを除去することができる。

Description

光マトリックスデバイス
 本発明は、テレビやパーソナルコンピュータのモニタとして用いられる薄型画像装置、もしくは医療分野や産業分野などに用いられる放射線撮像装置に備わる放射線検出器など、表示素子または受光素子で形成される画素を二次元マトリックス状に配列した構造を有する光マトリックスデバイスに関するものである。
 現在、薄膜トランジスタ(TFT)等で形成されるアクティブ素子とコンデンサとを備えた光に関する素子を二次元マトリックス状に配列した光マトリックスデバイスが汎用されている。光に関する素子として、受光素子と表示素子とが挙げられる。また、この光マトリックスデバイスを大別すると、受光素子で構成されたデバイスと表示素子で構成されたデバイスとに分けられる。受光素子で構成されたデバイスとしては、光撮像センサや、医療分野または産業分野などで用いられる放射線撮像センサなどがある。表示素子で構成されたデバイスとしては、透過光の強度を調節する素子を備えた液晶型や、発光素子を備えたEL型などの、テレビやパーソナルコンピュータのモニタとして用いられる画像ディスプレイがある。ここで光とは、赤外線、可視光線、紫外線、放射線(X線)、γ線等をいう。
 上述した光マトリックスデバイスの中でも、受光マトリックスデバイスとしてのフラットパネル型X線検出器を例に採って説明する。図11に示すように、フラットパネル型X線検出器(以下、FPDと称す)は、X線を検出する検出素子50が2次元マトリックス状に配列されている。検出素子50内には、X線に感応する半導体層などのX線変換層を備えており、X線をX線変換層によりキャリアに変換し、その変換されたキャリアを読み出すことでX線を検出する。半導体層としては非晶質のアモルファスセレン(a-Se)膜などが用いられる。
 被検体にX線を照射して放射線撮像を行う場合には、被検体を透過した放射線像がa-Se膜上に投影されて、像の濃淡に比例したキャリアがa-Se膜内に発生する。その後、a-Se膜内で生成されたキャリアは、電圧印加電極に印加された電圧により画素電極に収集される。収集されるキャリアにより、2次元マトリックス状に配列されたコンデンサに電荷が誘起され、所定時間分だけ電荷が蓄積される。その後、ゲート駆動IC51からゲート線52を介して送られるゲート電圧によるスイッチング作用により、コンデンサに蓄積された電荷が、薄膜トランジスタを経由し、データ線53を介して、信号読み出しIC54で電圧信号に変換され、画素信号として外部に読み出される。
 このようなFPDを製造するには、2次元マトリックス状に配列された薄膜トランジスタからなるスイッチング素子を備えたアクティブマトリックス基板や上述したコンデンサなどをパターン形成した絶縁基板上に、a-Se膜を蒸着することで得られる。
 このように、FPDや薄型画像ディスプレイに備えられている光マトリックスデバイスには、データの書き込みまたは読み込みを行うデータ線53と、データの書き込みまたは読み込みのスイッチ作用をする薄膜トランジスタのゲート電極と接続されたゲート線52が備えられている。
 特許文献1には、光マトリックスデバイスとして光電変換装置が開示されている。この光電変換装置に備わるアクティブマトリックス基板の基材として、ガラス基板55が採用されており、ガラス基板55上に形成されたマトリックス配線は、テープキャリアパッケージ56(以下、TCPと称す)に実装されたゲート駆動IC51、及び、信号読み出しIC54に接続されて構成されている。TCP56は折り曲げ可能なフレキシブル基板であり、電気信号をアクティブマトリックス基板の裏面へと導くことができる。
特許第3685446号
 しかしながら、このTCP56にはゲート線52及びデータ線53を何本かまとめて配線されるものの、TCP56一枚に対して1個の駆動ICしか実装されていないので、これを一枚一枚ガラス基板55に異方性導電膜(ACF)57を用いて接着していかなければならず、手間がかかっていた。また、他のプリント基板58、59との接続もTCP56を異方性導電膜(ACF)57を用いて一枚一枚接着しなければならないので、非常に煩雑であった。
 本発明は、このような事情に鑑みてなされたものであって、薄膜トランジスタが形成されている基板上に駆動集積回路を実装しつつ、基板を折り曲げることができる光マトリックスデバイスを提供することを目的とする。
 この発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、この発明の光マトリックスデバイスは、コンデンサ及びスイッチング素子とを備えた光に関する素子を2次元マトリックス状に配列されたフレキシブル基板を備える光マトリックスデバイスであって、前記スイッチング素子とゲート線を介して接続され、前記スイッチング素子へスイッチング指令を送るゲート駆動集積回路と、前記コンデンサとデータ線及び前記スイッチング素子を介して接続され、前記コンデンサへ電気信号の読み出しまたは書き出しを行うデータ駆動集積回路とを備え、前記ゲート駆動集積回路及び前記データ駆動集積回路は、前記フレキシブル基板上に実装されつつ、前記ゲート駆動集積回路に最も近い前記スイッチング素子と前記ゲート駆動集積回路との間、及び前記データ駆動集積回路に最も近い前記スイッチング素子と前記データ駆動集積回路との間の少なくともいずれか一方の間で、前記フレキシブル基板を折り曲げて構成することを特徴とする。
 この発明の光マトリックスデバイスによれば、スイッチング素子が形成されたフレキシブル基板と同一の基板上にゲート駆動集積回路及びデータ駆動集積回路を実装することができるので、TCPを用いなくともゲート線またはデータ線とゲート駆動集積回路またはデータ駆動集積回路とを接続することができる。これより、TCPを一枚一枚貼り付けなくてよいので、実装するワーク時間が大幅に短縮することができる。また、フレキシブル基板は折り曲げることが可能であるので、実装されたゲート駆動集積回路及びデータ駆動集積回路をフレキシブル基板の裏側に配置することができる。これより、光マトリックス基板の額縁面積を減少させることができる。
 また、ゲート駆動集積回路またはデータ駆動集積回路の少なくともいずれか一方と接続されたバイパスコンデンサが、ゲート駆動集積回路およびデータ駆動集積回路が実装されているフレキシブル基板と同一の基板上に実装されるのが好ましい。また、ゲート駆動集積回路と他のプリント基板を接続する接続部との距離よりも、ゲート駆動集積回路の近傍にバイパスコンデンサをフレキシブル基板上に実装することができる。これより、ゲート駆動集積回路に入力される電源によるノイズを除去することができる。
 また、データ駆動集積回路と他のプリント基板を接続する接続部との距離よりも、データ駆動集積回路の近傍にバイパスコンデンサをフレキシブル基板上に実装することができる。これより、データ駆動集積回路に入力される電源によるノイズを除去することができる。
 また、フレキシブル基板の材料は有機化合物であることが好ましい。有機化合物であれば、柔軟性のよいフレキシブル基板を形成することができる。また、フレキシブル基板を少なくとも2辺以上折り曲げる場合、複数の折線の交点を通ってフレキシブル基板に切り欠きが形成されていることが好ましい。切り欠きにより、フレキシブル基板を容易に折り曲げることができる。
 また、光に関する素子は、受光素子でもよいし、表示素子でもよい。受光素子であれば、光マトリックスデバイスとして額縁面積が小さくノイズが除去された光検出器または放射線検出器を提供することができる。表示素子であれば、光マトリックスデバイスとして額縁面積が小さくノイズが除去された画像表示装置を提供することができる。
 この発明に係る光マトリックスデバイスによれば、薄膜トランジスタが形成されている基板上に駆動集積回路を実装しつつ、基板を折り曲げることができる。
実施例1に係るフラットパネル型X線検出器(FPD)の構成を示す回路図である。 実施例1に係るFPDのX線変換層周辺部の概略縦断面図である。 実施例1に係るFPDの信号読み出しICのブロック図である。 実施例1に係るFPDの基板上に実装されたICの概略縦断面図である。 実施例1に係るFPDの基板上に実装されたICの概略縦断面図である。 実施例1に係るFPDの基板上に実装されたICとバイパスコンデンサとの回路図である。 実施例1に係る匡体内に配置されたFPDの概略斜視図である。 実施例1に係る匡体内に配置されたFPDの概略縦断面図である。 実施例1の他の形態に係るFPDの構成を示す回路図である。 実施例2に係る画像表示装置を示す概略斜視図である。 従来例に係る光マトリックスデバイスの構成を示すブロック図である。 従来例に係るガラス基板とフレキシブル基板との接続部の概略縦断面図である。
符号の説明
 1 … フラットパネル型X線検出器(FPD)
 3 … X線検出素子
 4 … フレキシブル基板
 5 … ゲート線
 6 … ゲート駆動IC
 7 … データ線
 8 … 信号読み出しIC
 9 … コネクタ
 10 … バイパスコンデンサ
 17 … X線変換層
 19 … コンデンサ
 20 … 薄膜トランジスタ
 以下、図面を参照してこの発明の実施例1を説明する。
 図1は実施例1に係るフラットパネル型X線検出器(FPD)の構成を示す回路図であり、図2はFPDの信号読み出しICのブロック図であり、図3はFPDのX線変換層周辺部の概略縦断面図である。実施例1では、FPDを光マトリックスデバイスの一例として以下に説明する。
 <フラットパネル型X線検出器>
 実施例1のFPD1は、図1に示すように、X線が入射されるX線検出部2には、XY方向に2次元マトリックス状にX線検出素子3がフレキシブル基板4上に配列されている。X線検出素子3は、入射されたX線に感応して電荷信号を画素ごとに出力するものである。なお、説明の都合上、図1では、X線検出素子3が9×9画素分の2次元マトリックス構成としているが、実際のX線検出部2にはX線検出素子3が、例えば、4096×4096画素分程度あるいはそれ以上に、FPD1の画素数に合わせたマトリックス構成としている。
 X線検出素子3は、それぞれ接続されたゲート線5を介してゲート駆動IC6よりゲート信号が送られる。このゲート信号により、X線検出素子3はそれぞれ接続されたデータ線7を介して、信号読み出しIC8へ電荷信号が読み込まれる。信号読み出しIC8は、読み出した電荷信号を電圧信号へ変換するとともに増幅し、さらに時分割信号として、配線15及びコネクタ9を介して外部のプリント基板へ送り出す。また、ゲート駆動IC6にもコネクタ9が接続されており、外部のプリント基板と制御信号の送受信をする。
 ゲート駆動IC6及び信号読み出しIC8はX線検出素子3が配列されているフレキシブル基板4と同一のフレキシブル基板4上に実装されている。また、ゲート駆動IC6または信号読み出しIC8とコネクタ9との接続距離以下に、バイパスコンデンサ10がゲート駆動IC6または信号読み出しIC8の近傍にフレキシブル基板4上に実装され、バイパスコンデンサ10は、ゲート駆動IC6及び信号読み出しIC8と接続している。ゲート駆動IC6は本発明におけるゲート駆動集積回路に相当し、信号読み出しIC8は本発明におけるデータ駆動集積回路に相当し、コネクタ9は本発明における接続部に相当する。
 実施例1では、ゲート駆動IC6が3個でゲート駆動IC群11を構成しているが、これは、ゲート駆動IC6の処理能力による。つまり、ゲート駆動IC6に何本のゲート線5を接続するかはゲート駆動IC6の処理能力によるので、これにより、ゲート駆動IC群11が何個のゲート駆動ICで構成されるかが決められる。例えば、ゲート駆動IC6が256チャンネルの処理能力があれば、256本のゲート線5と接続することができる。これより、例えば、4096×4096画素のX線検出部2であれば、256チャンネルのゲート駆動IC6が16個必要であり、16個のゲート駆動IC6でゲート駆動IC群11を構成する。同様に、信号読み出しIC8も実施例1では3個で信号読み出しIC群12を構成しているが、信号読み出しIC8に何本のデータ線7を接続するかによって信号読み出しIC群12を構成する信号読み出しIC8の個数は変えられる。
 また、信号読み出しIC8は、図2に示すように、内部にアンプアレイ回路13とマルチプレクサ14を構成する。アンプアレイ回路13では、データ線7を介して読み出した電荷信号を電圧信号に変換するとともに増幅してマルチプレクサ14へ送り出す。マルチプレクサ14は、増幅された電圧信号を時分割信号として、配線15及びコネクタ9を介して外部のプリント基板へ送り出す。
 また、X線検出素子3は図3に示すように、バイアス電圧が印加される電圧印加電極16の下層に、X線の入射によりキャリア(電子・正孔対)を生成するX線変換層17が形成されている。そして、X線変換層17の下層には、画素ごとにキャリアを収集する画素電極18が形成され、さらに、画素電極18に収集されたキャリアにより誘起された電荷を蓄積するコンデンサ19と、コンデンサ19と電気的に接続された薄膜トランジスタ20及びグランド線21と、薄膜トランジスタ20へスイッチ作用のゲート信号を送るゲート線5と、薄膜トランジスタ20を通してコンデンサ19に蓄積された電荷をX線検出信号として読み出すデータ線7と、それらを支持するフレキシブル基板4とを備えるアクティブマトリックス基板22が形成されている。このアクティブマトリックス基板22によりX線変換層17にて生成したキャリアからX線検出信号を画素ごとに読み出すことができる。X線検出素子3は本発明における光に関する素子に相当し、薄膜トランジスタ20は本発明におけるスイッチング素子に相当する。
 X線変換層17は、X線感応型半導体からなり、例えば、非晶質のアモルファスセレン(a-Se)膜で形成されている。これより、X線変換層17にX線が入射すると、このX線のエネルギーに比例した所定個数のキャリアが直接生成される構成(直接変換型)となっている。このa-Se膜は特に検出エリアの大面積化を容易にすることができる。X線変換層17として、上記以外にも他の半導体膜、例えば、多結晶半導体膜等でもよい。
 上述したFPD1におけるデータ線7、ゲート線5、グランド線21は、銀、金、銅等を配線材料としている。これらの配線は、銀、金、銅等の金属をペースト状にした金属インクを射出するインクジェット法により形成することができる。また、インクジェット法以外にもその他のオフセット印刷、グラビア印刷、またはメッキ法等で形成してもよい。
 薄膜トランジスタ20のゲート電極Gとドレイン電極D及びソース電極Sとの間の半導体は、酸化物半導体(ZnO、InGaZnO4等)の無機半導体であることが好ましいが、その他にもアモルファスシリコン(a-Si)やポリシリコン(poly-Si)、あるいは、ペンタセンなどの有機半導体であってもよい。
 このように、実施例1のFPD1はX線検出画素である検出素子3がX、Y方向に沿って多数配列された2次元アレイ構成のフラットパネル型X線センサとなっているので、各検出素子3ごとに局所的なX線検出が行うことができ、X線強度の2次元分布測定が可能となる。
 本実施例のFPD1によるX線検出動作は以下の通りである。
 すなわち、被検体にX線を照射してX線撮像を行う場合には、被検体を透過した放射線像がa-Se膜上に投影されて、像の濃淡に比例したキャリアがa-Se膜内に発生する。発生したキャリアは、バイアス電圧が生じる電界により画素電極18に収集され、キャリアの生成した数に相応して電荷がコンデンサ19に誘起されて所定時間蓄積される。その後、ゲート駆動回路IC6からゲート線5を介して送られるゲート信号により薄膜トランジスタ20はスイッチング作用をして、コンデンサ19に蓄積された電荷が薄膜トランジスタ20及びデータ線7を経由して電荷信号として信号読み出しIC8に読み出される。読み出された電荷信号は、信号読み出しIC8内のアンプアレイ回路13で電圧信号に変換及び増幅され、マルチプレクサ14によりX線検出信号として時分割信号として順に外部に読み出される。
 図1に戻り、フレキシブル基板4とこれに実装されるゲート駆動IC6及び信号読み出しIC8について説明する。
 フレキシブル基板4は、ポリイミド、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエチレンテレフタレート(PET)などの合成樹脂が材料の例として挙げられるが、なかでも耐熱性に優れたポリイミドが好ましい。これらの合成樹脂を材料とするので、フレキシブル基板4はガラス基板と異なり折り曲げが可能である。
 また、フレキシブル基板4には、ゲート駆動IC群6及び信号読み出しIC群8の載置されている各端面を折り曲げた時に、各端面が重ならないように切り欠きが形成されている。この切り欠きは、フレキシブル基板4が折り曲げられる折線A-AとB-Bの交点を通るように構成されている。
 ゲート駆動IC6または信号読み出しIC8はフレキシブル基板4上において、図4に示すようにゲート線5またはデータ線7と接続される。図4は、ワイヤーボンディングにより、フレキシブル基板4上に載置されたゲート駆動IC6または信号読み出しIC8と、ゲート線5またはデータ線7とをワイヤ線23を介して接続している。ワイヤ線23として金線等を用いればよい。このように、各ICはフレキシブル基板4上に載置して接続するので、従来にあった、基板間を跨いでICを実装することに比べるとはるかに容易に実装することができる。ワイヤーボンディングでICと配線を接続すれば、接続不良時の接続ピンを修正するのが容易である。また、図5に示すように半田バンプ25を用いたフリップチップ法により接続してもよい。
 また、ゲート駆動IC6及び信号読み出しIC8は、エポキシ、またはシリコーン等の封止材24をポッティングすることで封止されている。これより、各ICの耐環境性を向上することができる。各ICごとに単独で封止する方が各ICの放熱効率が良いので好ましい。放熱効率を優先するのであれば、各ICを封止しなくてもよい。
 ゲート駆動IC6及び信号読み出しIC8は、図1及び図6に示すように、バイパスコンデンサ10と接続されている。従来では、コネクタを介して接続されたプリント基板上にしかバイパスコンデンサが接続できなかったのが、本願ではフレキシブル基板4上に、ゲート駆動IC6とコネクタ9間の距離より短い距離でゲート駆動IC6の近傍にバイパスコンデンサ10を配設することができる。また、信号読み出しIC8も同様に、信号読み出しIC8とコネクタ9間の距離よりも短い距離で信号読み出しIC8の近傍にバイパスコンデンサ10を配設することができる。これより、ゲート駆動IC6及び信号読み出しIC8に供給される電源によるノイズを除去することができる。また、図1では、バイパスコンデンサ10はゲート駆動IC6または信号読み出しIC8に対してコネクタ9側に実装されているが、これに限らず、X線検出部2側に実装されてもよい。
 上述したフレキシブル基板4は、図1のフレキシブル基板4のX線検出部2とゲート駆動IC群11との間である点線A-A、及びX線検出部2と信号読み出しIC群12との間である点線B-Bに沿ってX線検出部2の裏側へ折り曲げられて、図7及び図8に示すように匡体26内に配置される。図8は匡体26内にフレキシブル基板4を折り曲げて配置したFPD1の概略断面図を示す。
 匡体26にはX線検出部2が露出するように開口部が設けられており、照射されたX線はX線検出部2に入射する。匡体26にカーボンなどのX線透過性の良い材料を採用するのであれば、開口部を設けずに、折り曲げたフレキシブル基板4を全て覆う構造でもよい。また、FPD1には、X線検出部2と対向してフレキシブル基板4を挟んでバックライト27が配設されている。このバックライト27による光の照射により、X線検出部2内のX線変換層17から画素電極18へキャリアが移動しやすいように電荷の偏りを形成することができる。
 ゲート駆動IC群11及び信号読み出しIC群12は、フレキシブル基板4が折り曲げられることで、筐体26内においてX線検出部2のX線入射側と反対側に配置される。また、ゲート駆動IC6及び信号読み出しIC8は、X線が照射されると半導体膜が損傷しやがて破壊されるので、フレキシブル基板4を挟んで、X線入射側にゲート駆動IC6及び信号読み出しIC8と対向して遮蔽板28が配設されている。遮蔽板28の材料は、X線の吸収性のよい鉛が適している。
 上記のように構成したFPD1によれば、フレキシブル基板4を折り曲げることで、X線検出部2と同一基板上に実装されたゲート駆動IC群11及び信号読み出しIC群12を、X線検出部2のX線入射側と逆側に配置することができる。これより、FPD1の額縁面積を小さくすることができる。また、フレキシブル基板4を折り曲げることで、ゲート駆動IC群11及び信号読み出しIC群12はコネクタ9を介して他のプリント基板に実装されているAD変換器等とも容易に接続することができる。
 また、ゲート駆動IC6及び信号読み出しIC8の近傍にバイパスコンデンサを実装することができるので、各ICに供給される電源を原因とするノイズを除去することができる。
 上述した実施例では、光マトリックスデバイスとしてFPD1を例示したが、これに限らず、他の放射線に感応する放射線検出器でもよい。また、X線変換層17の代わりにフォトダイオードを備えた光検出器でもよい。
 次に、本発明の実施例2について図9を参照して説明する。図9は、画像表示装置の一例としてアクティブマトリックス基板を備えるディスプレイ(有機ELディスプレイ)の一部破断斜視図である。
 本発明は、画像表示装置に応用することも好ましい。画像表示装置として、薄型のエレクトロルミネイトディスプレイや液晶ディスプレイなどが挙げられる。画像表示装置においても、アクティブマトリックス基板に形成された画素回路を備えており、このようなデバイスに適用することが好ましい。
 図9に示すように、アクティブマトリックス基板を備える有機ELディスプレイ30は、フレキシブル基板31と、フレキシブル基板31上にマトリックス状に複数個配置された薄膜トランジスタ回路32と画素電極33に接続され、フレキシブル基板31に順次積層された有機EL層34、透明電極35及び保護フィルム36と、各薄膜トランジスタ回路32と信号書き出しIC37とゲート駆動IC38とそれぞれを接続する複数本のデータ線39及びゲート線40とを備えている。ここで、有機EL層34は、電子輸送層、発光層、正孔輸送層等の各層が積層されて構成されている。また、薄膜トランジスタ回路32には、薄膜トランジスタとデータ線39を介して送られてくるデータ信号を蓄積するコンデンサとが備えられている。信号書き出しIC37は、本発明におけるデータ駆動集積回路に相当する。
 そして、有機ELディスプレイ30において、有機EL層34が積層された基板と同一のフレキシブル基板上に実装された信号書き出しIC37はデータ線39と接続されている。また、信号書き出しIC37は外部プリント基板との接続のためのコネクタ41と配線を介して接続され、さらに、信号書き出しIC37とコネクタ41との距離よりも短い距離に、バイパスコンデンサ42が信号書き出しIC37の近傍に実装されて接続されている。
 また、アクティブマトリックス基板と同一のフレキシブル基板31上に実装されたゲート駆動IC38はゲート線40と接続されている。また、ゲート駆動IC38は外部プリント基板との接続のためのコネクタ41と配線を介して接続され、さらに、ゲート駆動IC38とコネクタ41との距離よりも短い距離に、バイパスコンデンサ42がゲート駆動IC38の近傍に実装されて接続されている。
 このように、有機ELディスプレイ30においても、フレキシブル基板31を折り曲げることで、有機EL層34と同一基板上に実装されたゲート駆動IC38及び信号書き出しIC37を、フレキシブル基板の有機EL層34が積層された側と逆側に実装することができる。これより、FPD1の額縁面積を小さくすることができる。
 また、信号書き出しIC37及びゲート駆動IC38の近傍にバイパスコンデンサ42を配設することができるので、信号書き出しIC37及びゲート駆動IC38に入力される電源によるノイズを除去することができる。
 また、上述した画像表示装置30は有機ELなどの表示素子を用いたディスプレイであったが、これに限ず、液晶表示素子を備えた液晶型ディスプレイでもよい。液晶型ディスプレイの場合、カラーフィルターにて画素がRGBに着色される。また、他の表示素子を備えたディスプレイであってもよい。
 画像表示装置の場合、ポリイミドは透明ではないので、フレキシブル基板31の材料としては好ましくない。他の透明な合成樹脂をフレキシブル基板31として採用することが好ましい。
 この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
 (1)上述した実施例では、ゲート駆動IC群11及び信号読み出しIC群12は、フレキシブル基板4のそれぞれ一辺に実装されていたが、図10に示すように、フレキシブル基板の2辺にそれぞれ分割して実装してもよい。ゲート駆動IC群44及び信号読み出しIC群45は、それぞれX線検出部2を挟んで対抗するように実装することができる。ここで、X線検出素子の配列は実施例1と同様であるので省略する。ゲート線5及びデータ線7の振り分けは、例えば、奇数番目のゲート線5は左側のゲート駆動IC群44、偶数番目のゲート線5は右側のゲート駆動IC群44に振り分けることができる。同様に、奇数番目のデータ線7は上側の信号読み出しIC群45、偶数番目のデータ線7は下側の信号読み出しIC群45に振り分けることができる。また、フレキシブル基板46には切り欠きが四隅に形成されているので、フレキシブル基板46は点線A-A、A´-A´、B-B、B´-B´に沿って、4辺とも折り曲げることができる。このように、フレキシブル基板の折り曲げ箇所は、ゲート駆動IC及び信号読み出しICの実装形態または匡体の大きさにより、1辺のみであってもよいし、2辺、3辺、または4辺すべてにおいてでもよい。フレキシブル基板46に形成された切り欠きはフレキシブル基板47が折り曲げられる各折線A-A、A´-A´、B-B、B´-B´の交点と通るように形成されている。
 (2)上述した実施例のゲート駆動IC及び信号読み出しICまたは信号書き出しICにおいて、各ICには単体での動作チェック用の専用端子を備えていることが好ましい。動作チェック用の専用端子が各ICに備えてあれば、プローブで1つ1つ動作状態をチェックできるので、動作不良のICを見つけやすい。
 (3)上述した実施例のゲート駆動IC及び信号読み出しICまたは信号書き出しIC等が実装されたフレキシブル基板の両面の最上層を厚いパッシベーション膜で覆うものであってもよいし、耐環境性を備えた保護フィルムを貼り付けてもよい。
 (4)上述した実施例では、ボトムゲート型アクティブマトリックス基板を備えた光マトリックスデバイスであったが、トップゲート型アクティブマトリックス基板を備えた光マトリックスデバイスでもよい。

Claims (11)

  1.  コンデンサ及びスイッチング素子とを備えた光に関する素子を2次元マトリックス状に配列されたフレキシブル基板を備える光マトリックスデバイスであって、
     前記スイッチング素子とゲート線を介して接続され、前記スイッチング素子へスイッチング指令を送るゲート駆動集積回路と、
     前記コンデンサとデータ線及び前記スイッチング素子を介して接続され、前記コンデンサへ電気信号の読み出しまたは書き出しを行うデータ駆動集積回路とを備え、
     前記ゲート駆動集積回路及び前記データ駆動集積回路は、前記フレキシブル基板上に実装されつつ、
     前記ゲート駆動集積回路に最も近い前記スイッチング素子と前記ゲート駆動集積回路との間、及び前記データ駆動集積回路に最も近い前記スイッチング素子と前記データ駆動集積回路との間の少なくともいずれか一方の間で、前記フレキシブル基板を折り曲げて構成する
     ことを特徴とする光マトリックスデバイス。
  2.  請求項1に記載の光マトリックスデバイスにおいて、
     前記ゲート駆動集積回路または前記データ駆動集積回路の少なくともいずれか一方と接続されたバイパスコンデンサが、前記フレキシブル基板上に実装されている
    ことを特徴とする光マトリックスデバイス
  3.  請求項1に記載の光マトリックスデバイスにおいて、
     前記ゲート駆動集積回路と他のプリント基板とを接続する接続部が備えられ、
    前記ゲート駆動集積回路と前記接続部との距離よりも前記ゲート駆動集積回路の近傍にバイパスコンデンサを前記フレキシブル基板上に実装する
     ことを特徴とする光マトリックスデバイス。
  4.  請求項1に記載の光マトリックスデバイスにおいて、
     前記データ駆動集積回路と他のプリント基板とを接続する接続部が備えられ、
    前記データ駆動集積回路と前記接続部との距離よりも前記データ駆動集積回路の近傍にバイパスコンデンサを前記フレキシブル基板上に実装する
     ことを特徴とする光マトリックスデバイス。
  5.  請求項1から4いずれか1つに記載の光マトリックスデバイスにおいて、
     前記フレキシブル基板が有機化合物である
     ことを特徴とする光マトリックスデバイス。
  6.  請求項1から5いずれか1つに記載の光マトリックスデバイスにおいて、
     前記フレキシブル基板を少なくとも2辺以上折り曲げる場合、前記フレキシブル基板が折り曲げられる複数の折線の交点を通って前記フレキシブル基板に切り欠きが形成されている
     ことを特徴とする光マトリックスデバイス。
  7.  請求項1から6いずれか1つに記載の光マトリックスデバイスにおいて、
     前記光に関する素子が、受光素子である
     ことを特徴とする光マトリックスデバイス。
  8.  請求項7に記載の光マトリックスデバイスにおいて、
     前記光マトリックスデバイスが光検出器である
     ことを特徴とする光マトリックスデバイス。
  9.  請求項8に記載の光マトリックスデバイスにおいて、
     前記光マトリックスデバイスが放射線検出器である
     ことを特徴とする光マトリックスデバイス。
  10.  請求項1から6いずれか1つに記載の光マトリックスデバイスにおいて、
     前記光に関する素子が、表示素子である
     ことを特徴とする光マトリックスデバイス。
  11.  請求項10に記載の光マトリックスデバイスにおいて、
     前記光マトリックスデバイスが画像表示装置である
     ことを特徴とする光マトリックスデバイス。
PCT/JP2008/072866 2008-12-16 2008-12-16 光マトリックスデバイス WO2010070735A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/072866 WO2010070735A1 (ja) 2008-12-16 2008-12-16 光マトリックスデバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/072866 WO2010070735A1 (ja) 2008-12-16 2008-12-16 光マトリックスデバイス

Publications (1)

Publication Number Publication Date
WO2010070735A1 true WO2010070735A1 (ja) 2010-06-24

Family

ID=42268426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072866 WO2010070735A1 (ja) 2008-12-16 2008-12-16 光マトリックスデバイス

Country Status (1)

Country Link
WO (1) WO2010070735A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128006A (ja) * 2010-12-13 2012-07-05 Sony Corp 表示装置及び電子機器
JP2012211898A (ja) * 2011-03-30 2012-11-01 Ge Medical Systems Global Technology Co Llc X線検出器用のフラット・パネル・イメージャ、及びモジュールを配置する方法
US20130082984A1 (en) * 2011-10-04 2013-04-04 Paul S. Drzaic Display and multi-layer printed circuit board with shared flexible substrate
DE102014110728B4 (de) * 2013-07-30 2017-02-02 Lg Display Co., Ltd. Anzeigevorrichtung und verfahren zu deren herstellung
JP2017049591A (ja) * 2009-07-07 2017-03-09 株式会社半導体エネルギー研究所 表示装置及び電子機器
CN106782088A (zh) * 2016-11-22 2017-05-31 上海天马微电子有限公司 柔性显示面板及柔性显示装置
JP2018025807A (ja) * 2013-03-07 2018-02-15 株式会社半導体エネルギー研究所 表示装置及び電子機器
EP3306668A1 (en) * 2016-10-06 2018-04-11 Samsung Display Co., Ltd. Display device
WO2019071813A1 (zh) * 2017-10-12 2019-04-18 惠科股份有限公司 阵列基板及其应用的显示装置
EP3499572A1 (en) * 2017-12-18 2019-06-19 Palo Alto Research Center Incorporated Bendable tft backplane with addressing contacts at opposite ends
WO2019181568A1 (ja) 2018-03-19 2019-09-26 富士フイルム株式会社 放射線検出器及び放射線画像撮影装置
KR20200050650A (ko) * 2018-11-02 2020-05-12 엘지디스플레이 주식회사 터치표시장치 및 그 구동방법
CN111919140A (zh) * 2018-03-26 2020-11-10 富士胶片株式会社 放射线图像摄影装置
CN111954830A (zh) * 2018-03-26 2020-11-17 富士胶片株式会社 放射线图像摄影装置
CN113646664A (zh) * 2019-03-29 2021-11-12 富士胶片株式会社 放射线图像摄影装置
TWI802655B (zh) * 2018-03-26 2023-05-21 日商富士軟片股份有限公司 放射線圖像攝影裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274420A (ja) * 2000-03-28 2001-10-05 Sharp Corp 光電変換装置
JP2002050754A (ja) * 2000-05-08 2002-02-15 Canon Inc 半導体装置とその製造方法、放射線検出装置とそれを用いた放射線検出システム
JP2002297066A (ja) * 2001-03-30 2002-10-09 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置およびその製造方法
JP2004254046A (ja) * 2003-02-19 2004-09-09 Sharp Corp 画像読取装置
JP2005085976A (ja) * 2003-09-09 2005-03-31 Fuji Photo Film Co Ltd 撮像モジュールおよびその作成方法
JP2005210409A (ja) * 2004-01-22 2005-08-04 Hitachi Maxell Ltd カメラモジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274420A (ja) * 2000-03-28 2001-10-05 Sharp Corp 光電変換装置
JP2002050754A (ja) * 2000-05-08 2002-02-15 Canon Inc 半導体装置とその製造方法、放射線検出装置とそれを用いた放射線検出システム
JP2002297066A (ja) * 2001-03-30 2002-10-09 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置およびその製造方法
JP2004254046A (ja) * 2003-02-19 2004-09-09 Sharp Corp 画像読取装置
JP2005085976A (ja) * 2003-09-09 2005-03-31 Fuji Photo Film Co Ltd 撮像モジュールおよびその作成方法
JP2005210409A (ja) * 2004-01-22 2005-08-04 Hitachi Maxell Ltd カメラモジュール

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476280B2 (en) 2009-07-07 2022-10-18 Semiconductor Energy Laboratory Co., Ltd. Display device
US10692891B2 (en) 2009-07-07 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Display device
US10411038B2 (en) 2009-07-07 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Display device
US10361221B2 (en) 2009-07-07 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Display device
US10985186B1 (en) 2009-07-07 2021-04-20 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2017049591A (ja) * 2009-07-07 2017-03-09 株式会社半導体エネルギー研究所 表示装置及び電子機器
US11018159B2 (en) 2009-07-07 2021-05-25 Semiconductor Energy Laboratory Co., Ltd. Display device
US11824060B2 (en) 2009-07-07 2023-11-21 Semiconductor Energy Laboratory Co., Ltd. Display device
US9735178B2 (en) 2009-07-07 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Display device
US9748275B2 (en) 2009-07-07 2017-08-29 Semiconductor Energy Laboratory Co., Ltd. Display device
US10147742B2 (en) 2009-07-07 2018-12-04 Semiconductor Energy Laboratory Co., Ltd. Display device
US10069092B2 (en) 2010-12-13 2018-09-04 Joled Inc. Display apparatus and electronic apparatus
US10276814B2 (en) 2010-12-13 2019-04-30 Joled Inc. Display apparatus and electronic apparatus
CN102568377A (zh) * 2010-12-13 2012-07-11 索尼公司 显示装置和电子装置
US11239436B2 (en) 2010-12-13 2022-02-01 Joled Inc. Display apparatus and electronic apparatus
JP2012128006A (ja) * 2010-12-13 2012-07-05 Sony Corp 表示装置及び電子機器
US10516122B2 (en) 2010-12-13 2019-12-24 Joled Inc. Display apparatus and electronic apparatus
US10784453B2 (en) 2010-12-13 2020-09-22 Joled Inc. Display apparatus and electronic apparatus
US9608215B2 (en) 2010-12-13 2017-03-28 Joled Inc. Display apparatus and electronic apparatus
US9755168B2 (en) 2010-12-13 2017-09-05 Joled Inc. Display apparatus and electronic apparatus
KR101913862B1 (ko) 2011-03-30 2018-10-31 지이 메디컬 시스템즈 글로발 테크놀러지 캄파니 엘엘씨 X선 검출기에서 사용하기 위한 평판 패널 이미저 및 x선 검출기용 평판 패널 이미저 상에 데이터 모듈 및 스캔 모듈을 배열하는 방법
JP2012211898A (ja) * 2011-03-30 2012-11-01 Ge Medical Systems Global Technology Co Llc X線検出器用のフラット・パネル・イメージャ、及びモジュールを配置する方法
US20130082984A1 (en) * 2011-10-04 2013-04-04 Paul S. Drzaic Display and multi-layer printed circuit board with shared flexible substrate
US10219386B2 (en) 2011-10-04 2019-02-26 Apple Inc. Display and multi-layer printed circuit board with shared flexible substrate
US9756733B2 (en) * 2011-10-04 2017-09-05 Apple Inc. Display and multi-layer printed circuit board with shared flexible substrate
US10096669B2 (en) 2013-03-07 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Display device
US11950474B2 (en) 2013-03-07 2024-04-02 Semiconductor Energy Laboratory Co., Ltd. Display device
US11271070B2 (en) 2013-03-07 2022-03-08 Semiconductor Energy Laboratory Co., Ltd. Display device
US10263063B2 (en) 2013-03-07 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Display device
US11678538B2 (en) 2013-03-07 2023-06-13 Semiconductor Energy Laboratory Co., Ltd. Display device
US10680055B2 (en) 2013-03-07 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2018025807A (ja) * 2013-03-07 2018-02-15 株式会社半導体エネルギー研究所 表示装置及び電子機器
US11304294B2 (en) 2013-07-30 2022-04-12 Lg Display Co., Ltd. Display device
US10869388B2 (en) 2013-07-30 2020-12-15 Lg Display Co., Ltd. Display device
US10555414B2 (en) 2013-07-30 2020-02-04 Lg Display Co., Ltd. Display device including bending part
DE102014110728B4 (de) * 2013-07-30 2017-02-02 Lg Display Co., Ltd. Anzeigevorrichtung und verfahren zu deren herstellung
US9769919B2 (en) 2013-07-30 2017-09-19 Lg Display Co., Ltd. Display device with a reduced bezel width
US10342120B2 (en) 2013-07-30 2019-07-02 Lg Display Co., Ltd. Method of manufacturing display device
EP3306668A1 (en) * 2016-10-06 2018-04-11 Samsung Display Co., Ltd. Display device
CN107919376A (zh) * 2016-10-06 2018-04-17 三星显示有限公司 显示装置
CN107919376B (zh) * 2016-10-06 2023-08-11 三星显示有限公司 显示装置
US11678531B2 (en) 2016-10-06 2023-06-13 Samsung Display Co., Ltd. Display device
CN106782088A (zh) * 2016-11-22 2017-05-31 上海天马微电子有限公司 柔性显示面板及柔性显示装置
WO2019071813A1 (zh) * 2017-10-12 2019-04-18 惠科股份有限公司 阵列基板及其应用的显示装置
US10734414B2 (en) 2017-10-12 2020-08-04 HKC Corporation Limited Array substrate and display apparatus using same
CN109935598A (zh) * 2017-12-18 2019-06-25 帕洛阿尔托研究中心公司 在相对端部处具有寻址触点的可弯曲tft背板
EP3499572A1 (en) * 2017-12-18 2019-06-19 Palo Alto Research Center Incorporated Bendable tft backplane with addressing contacts at opposite ends
US11624716B2 (en) 2018-03-19 2023-04-11 Fujifilm Corporation Radiation detector and radiographic imaging device
WO2019181568A1 (ja) 2018-03-19 2019-09-26 富士フイルム株式会社 放射線検出器及び放射線画像撮影装置
US11520057B2 (en) 2018-03-26 2022-12-06 Fujifilm Corporation Radiation image capturing apparatus
TWI830720B (zh) * 2018-03-26 2024-02-01 日商富士軟片股份有限公司 放射線圖像攝影裝置
TWI802655B (zh) * 2018-03-26 2023-05-21 日商富士軟片股份有限公司 放射線圖像攝影裝置
CN111919140B (zh) * 2018-03-26 2024-04-16 富士胶片株式会社 放射线图像摄影装置
US11415715B2 (en) 2018-03-26 2022-08-16 Fujifilm Corporation Radiation image capturing apparatus
CN111919140A (zh) * 2018-03-26 2020-11-10 富士胶片株式会社 放射线图像摄影装置
CN111954830B (zh) * 2018-03-26 2024-03-19 富士胶片株式会社 放射线图像摄影装置
TWI794424B (zh) * 2018-03-26 2023-03-01 日商富士軟片股份有限公司 放射線圖像攝影裝置
CN111954830A (zh) * 2018-03-26 2020-11-17 富士胶片株式会社 放射线图像摄影装置
KR102595456B1 (ko) * 2018-11-02 2023-10-27 엘지디스플레이 주식회사 터치표시장치 및 그 구동방법
KR20200050650A (ko) * 2018-11-02 2020-05-12 엘지디스플레이 주식회사 터치표시장치 및 그 구동방법
CN113646664B (zh) * 2019-03-29 2024-03-15 富士胶片株式会社 放射线图像摄影装置
US11735622B2 (en) 2019-03-29 2023-08-22 Fujifilm Corporation Radiographic imaging apparatus
CN113646664A (zh) * 2019-03-29 2021-11-12 富士胶片株式会社 放射线图像摄影装置

Similar Documents

Publication Publication Date Title
WO2010070735A1 (ja) 光マトリックスデバイス
US8440977B2 (en) Manufacturing method of radiation detecting apparatus, and radiation detecting apparatus and radiation imaging system
EP1911094B1 (en) Radiation detecting apparatus and radiation detecting system
US6518557B1 (en) Two-dimensional image detector, active-matrix substrate, and display device
US6995373B2 (en) Semiconductor device, radiation detection device, and radiation detection system
US7985954B2 (en) X-ray detection panel and X-ray detector
US7547890B2 (en) Image pick-up apparatus and manufacturing method thereof, radiation image pick-up apparatus, and radiation image pick-up system
KR101094288B1 (ko) 엑스레이 검출 장치
JP5032276B2 (ja) 放射線検出装置
US8106364B2 (en) X-ray detecting panel, X-ray detector and method of driving the X-ray detector
US10338234B2 (en) Radiographic image capturing device
JP2009087960A (ja) センサパネル及び画像検出装置
JP5710904B2 (ja) X線検出器
CN100511693C (zh) 辐射检测设备、辐射成像设备和辐射成像系统
JP2007184407A (ja) 電磁波検出装置及び放射線撮像システム
JP2011075327A (ja) 放射線撮影装置
JP2006258550A (ja) 放射線検出装置
KR20130104965A (ko) 엑스선 검출장치 및 이를 이용하는 엑스선 촬영장치
JP5197468B2 (ja) 放射線検出装置
JP3467027B2 (ja) 半導体装置及び放射線検出装置並びに放射線撮像システム
JP4693224B2 (ja) Tabテープ及び放射線撮像装置
JP2006186031A (ja) 光電変換装置及び放射線撮像装置
JP2011091175A (ja) 放射線画像撮影装置
JP2002124655A (ja) 電磁波電気信号変換システム及びイメージセンサ
JP2010245079A (ja) 光電変換装置、エックス線撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP