WO2010070240A1 - Procede de descente en pression dans un sas de chargement et de dechargement et equipement associe - Google Patents

Procede de descente en pression dans un sas de chargement et de dechargement et equipement associe Download PDF

Info

Publication number
WO2010070240A1
WO2010070240A1 PCT/FR2009/052607 FR2009052607W WO2010070240A1 WO 2010070240 A1 WO2010070240 A1 WO 2010070240A1 FR 2009052607 W FR2009052607 W FR 2009052607W WO 2010070240 A1 WO2010070240 A1 WO 2010070240A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pumping
primary
pump
isolation valve
Prior art date
Application number
PCT/FR2009/052607
Other languages
English (en)
Inventor
Julien Bounouar
Jean-Marie Foray
Original Assignee
Alcatel Lucent
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent filed Critical Alcatel Lucent
Priority to CN2009801546617A priority Critical patent/CN102282663A/zh
Priority to JP2011541570A priority patent/JP2012513111A/ja
Priority to EP09805742A priority patent/EP2377151A1/fr
Priority to US13/140,189 priority patent/US20120024394A1/en
Publication of WO2010070240A1 publication Critical patent/WO2010070240A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0396Involving pressure control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/86171With pump bypass

Definitions

  • the present invention relates to a method of descent pressure in a lock of loading and unloading a substrate (or "load-lock" in English) from an atmospheric pressure to a low pressure for the loading and unloading of the substrate in a treatment chamber maintained at low pressure.
  • the invention also relates to equipment comprising a loading and unloading lock, adapted for the implementation of the method, for example a semiconductor component manufacturing equipment.
  • an important step is to treat a substrate under controlled atmosphere at very low pressure in a process chamber of equipment.
  • the atmosphere surrounding the substrate is first lowered at low pressure by a loading lock and unloading communicating with the process chamber.
  • the loading and unloading chamber comprises a sealed enclosure, the first door of which communicates the interior of the enclosure with an atmospheric pressure zone, such as a clean room or a mini-equipment environment, for loading at least one substrate.
  • the chamber of the chamber is connected to a gas pumping system, allowing the pressure in the chamber to be lowered to a suitable low pressure similar to that in the process chamber so that the substrate can be transferred to the chamber. process chamber.
  • the airlock further includes a second door for discharging the substrate into the process chamber or into the transfer chamber after being evacuated.
  • the loading and unloading chamber is placed in communication with a transfer chamber maintained at low pressure, which then distributes the substrate in the various process chambers.
  • the loading and unloading chamber thus makes it possible to reduce the time required to go from atmospheric pressure to low transfer pressure. It also reduces pollution in the process or transfer chamber.
  • the descent pressure in the airlock is generally carried out gradually by two successive steps.
  • a slow primary pumping is carried out since the pressure atmospheric up to a first characteristic threshold.
  • Slow pumping is essential to prevent the solidification of certain gaseous species present in the gaseous atmosphere of the airlock surrounding the substrate, for example to prevent the appearance of water crystals.
  • the gaseous atmosphere is brought to the appropriate low transfer pressure by faster primary pumping.
  • the partial pressure of water vapor present in the residual gaseous mixture at the transfer pressure is not very well evacuated by the primary pumping system.
  • Water vapor can be relatively detrimental to the substrates, and can thus reduce the production yield, in particular by corrosion of the metal layers of the substrate in semiconductor manufacturing processes.
  • it necessarily occurs a degassing of the substrate, and it is important that degassing is sufficient before the substrate is introduced into the chamber. processes. In the absence of this, the degassing continues in the process chamber and the gases from this subsequent degassing constitute an additional source of pollution during the treatment.
  • a gas pumping system comprising a primary pump connected by a pumping circuit to the loading and unloading lock for pumping the gases to a suitable transfer pressure.
  • a turbomolecular pump is interposed in the pumping circuit between the primary pump and the loading and unloading chamber.
  • Gas control means are provided to adapt the speed of the primary pump to prevent any condensation or solidification of the gases in the loading chamber and unloading.
  • the turbomolecular pump is the only pumping element connected to the loading and unloading chamber.
  • the pumping through the turbomolecular pump from the atmospheric pressure can cause problems of reliability of the turbomolecular pump and makes the pumping relatively noisy.
  • the drive means of the primary pump for adjusting the speed of the pump are complicated to implement.
  • the invention therefore aims to solve the problems of the state of the art by proposing a method of descent pressure in a lock of loading and unloading equipment, simple, inexpensive to implement, compact, to prevent the solidification of certain gaseous species at high pressure and making it possible to reduce the amount of residual water vapor so as to prevent its propagation in the process or low-pressure transfer chamber, without delaying the transfer of the substrate into the chamber of processes.
  • the method also aims to improve the degassing of the substrates at the transfer pressure.
  • the invention also provides equipment for implementing the method.
  • the subject of the invention is a method of descent in pressure in an airlock for loading and unloading equipment from an atmospheric pressure to a sub-atmospheric transfer pressure, said airlock comprising an enclosure in which the at least one atmospheric pressure substrate, and a gas pumping system comprising a primary pump and a turbomolecular pump whose suction is connected to the enclosure via a first isolation valve and whose discharge is connected upstream of said pump primary by a primary pumping circuit, said gas pumping system further comprising a branch circuit of said turbomolecular pump placed in communication on the one hand with said enclosure upstream of said first isolation valve and on the other hand with said primary pumping circuit, said branch circuit comprising a second isolation valve comprising means for limiting the flow of acti and said primary pumping circuit having a third isolation valve disposed between the delivery of the turbomolecular pump and the bypass circuit, said method comprising: a first step in which the first and third isolation valves are closed and opens said second isolation valve for which the flow limitation means are activated, to perform
  • turbomolecular pump is constantly maintained at full throttle and at low pressure, which increases its service life and allows immediate pumping inside the enclosure as soon as the isolation valves are opened.
  • the method comprises a fourth step following said third step, in which said first isolation valve is closed and said second isolation valve is opened for which the means of flow limitation are disabled, to restore primary pumping by isolating the turbomolecular pumping when a third characteristic threshold is reached, injecting a neutral gas during said fourth step, - said first and / or said second and / or said third characteristic threshold are predetermined durations, said first and / or second and / or said third characteristic threshold are predetermined pressure values, said second primary pumping is restored when said lock receives a substrate unloading request signal.
  • the invention also relates to equipment for carrying out the pressure descent method as described above, comprising a loading and unloading chamber comprising an enclosure for the descent into pressure of the environment of at least one substrate from atmospheric pressure to a sub-atmospheric transfer pressure and at least one treatment chamber in communication with said loading and unloading lock for transfer of the substrate into the transfer pressure treatment chamber, said airlock comprising a gas pumping system comprising a primary pump and a turbomolecular pump whose suction is connected to the chamber via a first isolation valve and whose discharge is connected upstream of said primary pump by a primary pumping circuit said gas pumping system further comprising a bypass circuit of said turbomolecular pump in communication with each other; one part with said enclosure upstream of said first isolation valve and secondly with said primary pumping circuit, said bypass circuit comprising a second isolation valve comprising activatable flow limitation means and said pumping circuit primary circuit comprising a third isolation valve disposed between the discharge of the turbomolecular pump and the bypass circuit, said gas pumping system further comprising means for controlling
  • the second isolation valve comprises a first main valve having a first conductance and a second restriction valve bypassing said main valve and having a second conductance lower than said first conductance
  • the equipment comprises a processing unit for controlling said first valves as a function of at least one output signal of a sensor of a characteristic parameter of the gases of said enclosure
  • said third valve is integrated in a peripheral envelope of said turbomolecular pump to cooperate with a delivery port of said turbomolecular pump .
  • FIG. 1 is a schematic view of a loading and unloading chamber and a treatment chamber
  • Figure 2 is a schematic side view of a semiconductor component manufacturing equipment
  • Figure 3 is a schematic view of a pressure descent process in a loading and unloading chamber.
  • FIG. 4 is a graph showing a pressure descent curve in a loading and unloading lock as a function of time.
  • low primary vacuum pressure is defined a pressure that is lower than a pressure of the order of 0.1 Pascal, obtained by primary pumping.
  • secondary vacuum pressure is defined a pressure of less than 0.1 Pascal, obtained by secondary turbomolecular pumping.
  • FIG. 1 represents an equipment item 1 comprising a loading and unloading chamber 2 comprising an enclosure 3 for lowering the pressure of the environment of at least one substrate 4 from atmospheric pressure to a subatmospheric transfer pressure.
  • the sub-atmospheric transfer pressure is for example a low primary vacuum pressure, of the order of 0.01 Pascal.
  • the equipment 1 furthermore comprises at least one treatment chamber 5 in communication with the loading and unloading chamber 2 via a first airlock door 6, for the transfer of the substrate 4 into the treatment chamber 5 at the transfer pressure. , according to arrow 7.
  • the lock 2 and the treatment chamber 5 comprise a substrate holder 8 and handling robots (not shown) for including the maintenance and transfer of the substrate 4.
  • the enclosure 3, sealed, comprises a second airlock door 9 communicating the interior of the chamber 3 with an atmospheric pressure zone, such as a clean room or a mini-equipment environment (or "Equipment”).
  • an atmospheric pressure zone such as a clean room or a mini-equipment environment (or "Equipment”).
  • Front End Module (English)), for loading at least one substrate 4 according to the arrow 10.
  • the lock 2 also comprises means for restoring the atmospheric pressure (not shown) to replace the inside of the chamber 3 at atmospheric pressure, either while waiting for the loading of a new substrate or after having loaded a substrate that has been treated by the treatment chamber 2.
  • the loading and unloading lock 2 thus makes it possible to reduce the time required to pass from the atmospheric pressure to the sub-atmospheric transfer pressure and makes it possible to reduce the pollution in the process or transfer chamber.
  • the equipment 1 is for example a semiconductor component manufacturing equipment.
  • the treatment chamber 5 is then a process chamber or a transfer chamber.
  • the processing chamber 5 is a process chamber in which for example a deposit or etching of layers of the substrate 4 of semiconductors under an atmosphere is carried out. controlled at a secondary vacuum pressure, for example of the order of 10 3 Pascal.
  • the equipment may include one or more process chambers.
  • the treatment chamber 5 is then a transfer chamber.
  • the transfer chamber is maintained at a transfer pressure of the order of that of the process chamber, for example of the order of 10 2 Pascal.
  • the atmosphere of the transfer chamber is maintained by a primary pump or a secondary pump under a controlled atmosphere of neutral gas, such as nitrogen.
  • the transfer chamber receives the substrate 4 from the loading and unloading chamber 2 at the transfer pressure and distributes it into the appropriate process chamber.
  • FIG. 2 illustrates an example of a multiple equipment for manufacturing semiconductor components comprising a mini-equipment environment 11, a loading and unloading lock 2, a transfer chamber 5 and a process chamber 12.
  • the airlock 2 comprises a gas pumping system 13 (FIG. 1) in communication with the enclosure 3 for the descent of pressure inside the enclosure.
  • the gas pumping system 13 comprises a primary pump 14 and a turbomolecular pump 15 upstream of the primary pump 14 in the direction of circulation of the pumped gases, represented by the arrow 16.
  • the primary pump 14 may be a pump dedicated to the airlock 2 or may also be the primary pump of another chamber of the equipment 1, such as the transfer chamber 5.
  • the suction 17 of the turbomolecular pump 15 is connected to the chamber 3 via a first isolation valve 18.
  • the discharge 19 of the turbomolecular pump 15 is connected upstream of the suction of the primary pump 14 by a circuit of primary pumping 20.
  • the gas pumping system 13 further comprises a bypass circuit 21 of the turbomolecular pump 15 placed in communication on the one hand with the enclosure 3, upstream of the first isolation valve 18 and on the other hand with the primary pumping circuit 20.
  • the branch circuit 21 comprises a second isolation valve 22 comprising activatable flow limitation means. When they are activated, the flow limiting means make it possible to limit the pumping speed of the primary pump 14 mechanically.
  • the second isolation valve 22 comprises a first main valve having a first conductance and a second bypass restriction of the main valve and having a second conductance lower than the first conductance.
  • the primary pumping circuit 20 further comprises a third isolation valve 23 disposed between the delivery 19 of the turbomolecular pump 15 and the bypass circuit 21. It can also be provided that the third valve 23 is integrated in a peripheral envelope of the turbomolecular pump 15 so that the shutter of the third valve 23 cooperates directly with the discharge port of the turbomolecular pump.
  • a small turbomolecular pump ATH30 sold by Alcatel Lucent is used.
  • Such a pump has the advantage of being compact so that it can be easily disposed near the enclosure 3.
  • the gas pumping system 13 further comprises means for controlling, in opening and closing, the isolation valves 18, 22, 23, as a function of characteristic thresholds.
  • the equipment 1 comprises a processing unit 24.
  • the processing unit 24 controls the opening and / or closing of the valves 18, 22, 23, depending on the flow of predetermined times.
  • the processing unit 24 controls the valves 18, 22, 23 as a function of at least one output signal 26 of a sensor 25 connected to the enclosure 3 for the measurement of a parameter characteristic of the gas from the enclosure 3 of the airlock 2.
  • the output signal 26 of the sensor 25 is connected to the processing unit 24 for controlling the valves 18, 22, 23 as a function of the characteristic threshold values provided by the output signal 26.
  • the senor 25 is a pressure sensor for indicating the pressure in the chamber 3. It can also be envisaged that the sensor 25 can provide an indication of the partial pressure of the gases inside the chamber. For example, the sensor 25 makes it possible to give an indication of the partial pressure of water vapor inside the enclosure 3.
  • the senor 25 comprises a derived excitation cell and an electromagnetic excitation antenna powered by a power generator, arranged around the cell so as to form a plasma inside thereof.
  • the light radiation emitted by the plasma is then captured and transmitted to an optical spectrometer.
  • the transmission can be provided by an optical fiber, or a suitable connector.
  • the optical spectrometer generates an output signal 26 of the detected optical spectrum, which is transmitted to the processing unit 24.
  • the sensor 25 is a mass spectrometer.
  • the pressure drop in the loading and unloading chamber 2 of equipment 1 from the atmospheric pressure to a low transfer pressure is progressively achieved by at least three consecutive steps (see the method 100 shown in FIG.
  • the first and second isolation valves 18, 22 are closed. It is also possible to close the third isolation valve 23.
  • the primary 14 and turbomolecular pumps 15 are in operation.
  • a first primary pumping is performed from the atmospheric pressure to a first characteristic threshold.
  • the pumping is performed through the bypass circuit 21 of the primary pump 14, the pumping rate is limited.
  • the suction 17 of the turbomolecular pump 15 in operation is isolated from the chamber 3 and the discharge 19 of the turbomolecular pump 15 is isolated from the primary pump 14.
  • first and third isolation valves 18, 23 and opens the second isolation valve 22 whose flow limitation means are activated, for example by having a second lower conductance, until crossing a first threshold feature.
  • the turbomolecular pump 15 is completely isolated from the gases of the enclosure 3 and the bypass circuit 21, the pressure between the atmospheric pressure and a first sub-atmospheric primary pressure could damage the turbomolecular pump 15.
  • This first step 101 makes it possible to carry out a slow primary pumping from the atmospheric pressure to the first characteristic threshold, for which the risk of pollution by too rapid primary pumping no longer exists. Slow pumping prevents the solidification of certain gaseous species present in the gaseous atmosphere surrounding the substrate 4.
  • a second primary pumping is performed, which is faster than in the first step 101, up to a second characteristic threshold, while maintaining the isolation of the turbomolecular pumping.
  • first and third isolation valves 18, 23 are kept closed.
  • the second isolation valve 22 is kept open and the flow limiting means are deactivated, for example with an isolation valve 22 presenting a first conductance greater than the second conductance, until a second characteristic threshold is crossed.
  • the pumping rate of the primary pump 14 is no longer limited.
  • the second characteristic threshold corresponds to the threshold for which the suction pressure 17 of the turbomolecular pump 15 is sufficiently low so as not to affect its operation.
  • the turbomolecular pump 15 remains isolated to the suction 17 and discharge 19, which limits the power consumption of the turbomolecular pump 15 and extend its life.
  • secondary pumping is performed through the turbomolecular pumping upstream of the primary pumping and the enclosure 3 is isolated from the primary pumping.
  • the first and third isolation valves 18, 23 are opened and the second isolation valve 22 is closed.
  • This third step 103 makes it possible to reduce the partial pressure of water vapor present in the residual gaseous mixture and to accelerate the degassing of the substrates, which makes it possible to increase the yield of production.
  • the turbomolecular pump 15 when the pressure inside the chamber 3 is sufficiently low, the turbomolecular pump 15, whose operation at full speed has been preserved, can immediately lower the pressure inside. of the enclosure 3.
  • the method 100 may comprise a fourth step 104 consecutive to the third step
  • a primary pumping is restored by isolating the turbomolecular pumping when a third characteristic threshold is reached.
  • primary pumping is restored when the lock 2 receives a request signal for discharging the substrate 4, which can be generated by the treatment chamber 5.
  • the first isolation valve 18 is closed and the second isolation valve 22 is opened for which the flow limiting means are deactivated, for example with the first higher conductance when a third characteristic threshold has been crossed. during the third step 103. It is also possible to close the third isolation valve 23 just before opening the second isolation valve 22, to ensure that the discharge 19 of the turbomolecular pump 15 is isolated. a low pressure of primary vacuum.
  • the fourth step 104 makes it possible to bring the gaseous atmosphere of the substrate 4 to the appropriate transfer pressure.
  • the process steps of the treatment chamber 5 do not have to be modified to allow the entry of the substrate 4, because the same transfer pressure is maintained.
  • Said first and / or said second and / or said third characteristic threshold may be predetermined durations.
  • said first and / or said second and / or said third characteristic threshold are predetermined pressure values.
  • Figure 4 is a graph of a pressure drop curve dans in a loading and unloading lock 2 as a function of time.
  • the atmosphere of the substrate 4 is at atmospheric pressure Pa.
  • the pressure of the environment of the substrate 4 is lowered by slow pumping at a sub-atmospheric pressure P1, through the primary pump
  • the pressure P1 for example of the order of fifty Pascal, corresponds to the first characteristic threshold from which it is estimated that there is no longer a risk of pollution by too rapid primary pumping.
  • the pressure of the environment of the substrate 4 is lowered by a rapid pumping at a sub-atmospheric pressure P2, lower than the pressure P1, through the primary pump 14 whose pumping rate n ' is more limited. There is thus a slope break in the pressure drop curve at time t1 for which the fast primary pumping is started.
  • the pressure P2 for example of the order of 0.1 Pascal, corresponds to the second characteristic threshold from which the turbomolecular pump can operate fully without risk of deterioration.
  • the pressure of the environment of the substrate 4 decreases to a sub-atmospheric pressure P3, of the order of 10 4 Pascal, through the secondary pump 15.
  • P3 sub-atmospheric pressure
  • the pressure of the environment of the substrate 4 rises to a transfer pressure P4, corresponding to a low pressure of primary vacuum of the order of 10 2 Pascal.
  • the pressure P4 is obtained by the primary pumping with an injection of neutral gas.
  • the third characteristic threshold corresponds for example to the completion of a duration D, of the order of a few seconds, after the pressure of the chamber 3 has reached the sub-atmospheric pressure P3.
  • turbomolecular pump 15 is constantly maintained at full operating speed and is only stressed for low primary vacuum pressures, which increases its service life and makes it possible to avoid any loss of time or efficiency. when placed in communication with the enclosure 3. In addition, it is possible to use a standard turbomolecular pump 15.
  • the pressure-lowering method is therefore simple, inexpensive to implement, and makes it possible to descend rapidly to a low pressure that is lower than the transfer pressure in order to improve the conditioning of the substrate, while meeting the industrial constraints of reliability enabling ensure the high rates of the pump cycles of the loading and unloading chambers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

L'invention concerne un procédé de descente en pression dans un sas de chargement et de déchargement d'équipement depuis une pression atmosphérique vers une pression de transfert subatmosphérique, ledit sas comportant une enceinte dans laquelle on dispose au moins un substrat à pression atmosphérique, ledit procédé comportant : une première étape (101) dans laquelle on réalise un premier pompage primaire depuis la pression atmosphérique jusqu'à un premier seuil caractéristique, à travers une pompe primaire dont le débit de pompage est limité, tout en isolant un pompage turbomoléculaire de ladite enceinte, - une deuxième étape (102) consécutive à ladite première étape (101) dans laquelle on réalise un second pompage primaire, plus rapide que dans ladite première étape, jusqu'à un deuxième seuil caractéristique, en maintenant l'isolement du pompage turbomoléculaire et, une troisième étape (103) consécutive à ladite deuxième étape (102), dans laquelle on réalise un pompage secondaire à travers ledit pompage turbomoléculaire en amont du pompage primaire et on isole l'enceinte du pompage primaire. L'invention concerne également un équipement pour la mise en œuvre du procédé.

Description

Procédé de descente en pression dans un sas de chargement et de déchargement et équipement associé
La présente invention concerne un procédé de descente en pression dans un sas de chargement et de déchargement d'un substrat (ou « load-lock » en anglais) depuis une pression atmosphérique vers une basse pression pour le chargement et le déchargement du substrat dans une chambre de traitement maintenue à basse pression. L'invention concerne également un équipement comportant un sas de chargement et de déchargement, adapté pour la mise en œuvre du procédé, par exemple un équipement de fabrication de composants semi-conducteurs.
Dans certains procédés de fabrication, une étape importante consiste à traiter un substrat sous atmosphère contrôlée à très basse pression dans une chambre de procédés d'un équipement.
Par exemple, dans les procédés de fabrication de composants semi-conducteurs, on souhaite maintenir le substrat de semi-conducteur à très basse pression pour réaliser un dépôt ou une gravure par plasma.
Pour maintenir une cadence acceptable et pour éviter la présence de toute impureté et de toute pollution, l'atmosphère environnant le substrat est d'abord descendu à basse pression par un sas de chargement et de déchargement communiquant avec la chambre de procédés.
Pour cela, le sas de chargement et de déchargement comporte une enceinte étanche dont une première porte met en communication l'intérieur de l'enceinte avec une zone sous pression atmosphérique, telle qu'une salle blanche ou un mini-environnement d'équipement, pour le chargement d'au moins un substrat. L'enceinte du sas est reliée à un système de pompage des gaz, permettant de descendre la pression dans l'enceinte jusqu'à atteindre une basse pression appropriée similaire à celle régnant dans la chambre de procédés de manière à pouvoir transférer le substrat vers la chambre de procédés. Le sas comporte en outre une deuxième porte pour le déchargement du substrat dans la chambre de procédés ou dans la chambre de transfert après avoir été mis sous vide.
Dans le cas d'équipements comprenant plusieurs chambres de procédés, le sas de chargement et de déchargement est mis en communication avec une chambre de transfert maintenue à basse pression, qui distribue ensuite le substrat dans les différentes chambres de procédés. Le sas de chargement et de déchargement permet ainsi de réduire le temps nécessaire pour passer de la pression atmosphérique à la basse pression de transfert. Il permet également de réduire la pollution dans la chambre de procédé ou de transfert.
La descente en pression dans le sas est généralement réalisée progressivement par deux étapes successives. Dans la première étape, on réalise un pompage primaire lent depuis la pression atmosphérique jusqu'à un premier seuil caractéristique. Le pompage lent est indispensable pour prévenir la solidification de certaines espèces gazeuses présentes dans l'atmosphère gazeuse du sas entourant le substrat, par exemple pour prévenir l'apparition de cristaux d'eau.
Puis, dans la deuxième étape, l'atmosphère gazeuse est amenée à la basse pression appropriée de transfert par un pompage primaire plus rapide. On observe toutefois que la pression partielle de vapeur d'eau présente dans le mélange gazeux résiduel à la pression de transfert n'est pas très bien évacuée par le système de pompage primaire. La vapeur d'eau peut être relativement néfaste pour les substrats, et peut ainsi réduire le rendement de production, notamment par corrosion des couches de métal du substrat en procédés de fabrication semi-conducteurs. En outre, lors de la descente en pression de l'atmosphère dans le sas de chargement et de déchargement, il se produit nécessairement un dégazage du substrat, et il est important que ce dégazage soit suffisant avant que le substrat soit introduit dans la chambre de procédés. A défaut de cela, le dégazage se poursuit dans la chambre de procédés et les gaz provenant de ce dégazage postérieur constituent une source supplémentaire de pollution pendant le traitement. On connait d'après le document WO 01/81651, un système de pompage des gaz comprenant une pompe primaire raccordée par un circuit de pompage au sas de chargement et de déchargement pour pomper les gaz jusqu'à une pression appropriée de transfert. Une pompe turbomoléculaire est interposée dans le circuit de pompage entre la pompe primaire et le sas de chargement et de déchargement. Des moyens de contrôle de gaz sont prévus pour adapter la vitesse de la pompe primaire afin d'éviter toute condensation ou solidification des gaz dans le sas de chargement et de déchargement. La pompe turbomoléculaire constitue le seul élément de pompage raccordé au sas de chargement et de déchargement. On constate cependant que le pompage à travers la pompe turbomoléculaire depuis la pression atmosphérique peut induire des problèmes de fiabilité de la pompe turbomoléculaire et rend le pompage relativement bruyant. En outre, les moyens d'entraînement de la pompe primaire permettant d'adapter la vitesse de la pompe sont compliqués à mettre en œuvre.
L'invention vise donc à résoudre les problèmes de l'état de la technique en proposant un procédé de descente en pression dans un sas de chargement et de déchargement d'équipement, simple, peu coûteux à mettre en œuvre, compact, permettant de prévenir la solidification de certaines espèces gazeuses à haute pression et permettant de réduire la quantité de vapeur d'eau résiduelle de manière à éviter sa propagation dans la chambre de procédé ou de transfert à basse pression, sans pour autant retarder le transfert du substrat dans la chambre de procédés. Le procédé vise aussi à améliorer le dégazage des substrats à la pression de transfert. L'invention propose également un équipement pour la mise en œuvre du procédé. A cet effet, l'invention a pour objet un procédé de descente en pression dans un sas de chargement et de déchargement d'équipement depuis une pression atmosphérique vers une pression de transfert sub-atmosphérique, ledit sas comportant une enceinte dans laquelle on dispose au moins un substrat à pression atmosphérique, et un système de pompage des gaz comprenant une pompe primaire et une pompe turbomoléculaire dont l'aspiration est reliée à l'enceinte via une première vanne d'isolation et dont le refoulement est relié en amont de ladite pompe primaire par un circuit de pompage primaire, ledit système de pompage des gaz comportant en outre un circuit de dérivation de ladite pompe turbomoléculaire mis en communication d'une part avec ladite enceinte en amont de ladite première vanne d'isolation et d'autre part avec ledit circuit de pompage primaire, ledit circuit de dérivation comportant une deuxième vanne d'isolation comprenant des moyens de limitation de débit activables et ledit circuit de pompage primaire comportant une troisième vanne d'isolation disposée entre le refoulement de la pompe turbomoléculaire et le circuit de dérivation, ledit procédé comportant : une première étape dans laquelle on ferme la première et la troisième vannes d'isolation et on ouvre ladite deuxième vanne d'isolation pour laquelle les moyens de limitation de débit sont activés, pour réaliser un premier pompage primaire depuis la pression atmosphérique jusqu'à un premier seuil caractéristique à travers ledit circuit de dérivation de ladite pompe primaire dont le débit de pompage est limité, en isolant ladite aspiration de ladite pompe turbomoléculaire en fonctionnement, de ladite enceinte et en isolant ledit refoulement de ladite pompe turbomoléculaire, de la pompe primaire, une deuxième étape consécutive à ladite première étape dans laquelle on désactive les moyens de limitation de débit de ladite deuxième vanne d'isolation pour réaliser un second pompage primaire, plus rapide que dans ladite première étape, jusqu'à un deuxième seuil caractéristique, en maintenant l'isolement du pompage turbomoléculaire et, une troisième étape consécutive à ladite deuxième étape, dans laquelle on ouvre ladite première et ladite troisième vanne d'isolation et on ferme ladite deuxième vanne d'isolation pour réaliser un pompage secondaire à travers ledit pompage turbomoléculaire en amont du pompage primaire en isolant l'enceinte de ladite pompe primaire.
On obtient ainsi une diminution rapide de la pression totale dans l'enceinte du sas et donc de la pression partielle de vapeur d'eau. Par ailleurs, la pompe turbomoléculaire est constamment maintenue en fonctionnement à plein régime et à basse pression, ce qui augmente sa durée de vie et permet le pompage immédiat à l'intérieur de l'enceinte dès l'ouverture des vannes d'isolement. Selon une ou plusieurs caractéristiques du procédé, prise seule ou en combinaison, le procédé comporte une quatrième étape consécutive à ladite troisième étape, dans laquelle on ferme ladite première vanne d'isolation et on ouvre ladite deuxième vanne d'isolation pour laquelle les moyens de limitation de débit sont désactivés, pour rétablir un pompage primaire en isolant le pompage turbomoléculaire lorsqu'un troisième seuil caractéristique est atteint, on injecte un gaz neutre au cours de ladite quatrième étape, - ledit premier et/ou ledit deuxième et/ou ledit troisième seuil caractéristique sont des durées prédéterminées, ledit premier et/ou ledit deuxième et/ou ledit troisième seuil caractéristique sont des valeurs prédéterminées de pression, on rétablit ledit second pompage primaire lorsque ledit sas reçoit un signal de demande de déchargement du substrat.
L'invention a aussi pour objet un équipement pour la mise en œuvre du procédé de descente en pression tel que décrit précédemment, comportant un sas de chargement et de déchargement comprenant une enceinte pour la descente en pression de l'environnement d'au moins un substrat depuis la pression atmosphérique jusqu'à une pression de transfert sub-atmosphérique et au moins une chambre de traitement en communication avec ledit sas de chargement et de déchargement pour le transfert du substrat dans la chambre de traitement à la pression de transfert, ledit sas comportant un système de pompage des gaz comprenant une pompe primaire et une pompe turbomoléculaire dont l'aspiration est reliée à l'enceinte via une première vanne d'isolation et dont le refoulement est relié en amont de ladite pompe primaire par un circuit de pompage primaire, ledit système de pompage des gaz comportant en outre un circuit de dérivation de ladite pompe turbomoléculaire mis en communication d'une part avec ladite enceinte en amont de ladite première vanne d'isolation et d'autre part avec ledit circuit de pompage primaire, ledit circuit de dérivation comportant une deuxième vanne d'isolation comprenant des moyens de limitation de débit activables et ledit circuit de pompage primaire comportant une troisième vanne d'isolation disposée entre le refoulement de la pompe turbomoléculaire et le circuit de dérivation, ledit système de pompage des gaz comportant en outre des moyens pour piloter lesdites vannes d'isolation.
Selon une ou plusieurs caractéristiques de l'équipement, prise seule ou en combinaison, la deuxième vanne d'isolation comporte une première vanne principale présentant une première conductance et une deuxième vanne de restriction en dérivation de ladite vanne principale et présentant une deuxième conductance inférieure à ladite première conductance, - l'équipement comporte une unité de traitement pour piloter lesdites vannes en fonction d'au moins un signal de sortie d'un capteur d'un paramètre caractéristique des gaz de ladite enceinte, ladite troisième vanne est intégrée dans une enveloppe périphérique de ladite pompe turbomoléculaire pour coopérer avec un orifice de refoulement de ladite pompe turbomoléculaire.
D'autres avantages et caractéristiques apparaîtront à la lecture de la description de l'invention, ainsi que des dessins annexés sur lesquels : la figure 1 est une vue schématique d'un sas de chargement et de déchargement et d'une chambre de traitement d'un équipement, - la figure 2 est une vue schématique de côté d'un équipement de fabrication de composants semi-conducteurs, la figure 3 est une vue schématique d'un procédé de descente en pression dans un sas de chargement et de déchargement et, la figure 4 est un graphique représentant une courbe de descente en pression dans un sas de chargement et de déchargement en fonction du temps.
Sur ces figures, les éléments identiques portent les mêmes numéros de référence. Par soucis de clarté, les éléments se référant au procédé sont numérotés à partir de 100.
On définit par « basse pression de vide primaire », une pression inférieure à une pression de l'ordre de 0,1 Pascal, obtenue par un pompage primaire. On définit par « pression de vide secondaire », une pression inférieure à 0,1 Pascal, obtenue par un pompage secondaire de type turbomoléculaire.
La figure 1 représente un équipement 1 comportant un sas de chargement et de déchargement 2 comprenant une enceinte 3 pour la descente en pression de l'environnement d'au moins un substrat 4 depuis la pression atmosphérique, jusqu'à une pression de transfert subatmosphérique. La pression de transfert sub-atmosphérique est par exemple une basse pression de vide primaire, de l'ordre de 0,01 Pascal.
L'équipement 1 comporte en outre au moins une chambre de traitement 5 en communication avec le sas de chargement et de déchargement 2 via une première porte de sas 6, pour le transfert du substrat 4 dans la chambre de traitement 5 à la pression de transfert, selon la flèche 7.
Le sas 2 et la chambre de traitement 5 comportent un porte-substrat 8 et des robots de manipulation (non représentés) pour notamment le maintien et le transfert du substrat 4.
L'enceinte 3, étanche, comprend une deuxième porte de sas 9 mettant en communication l'intérieur de l'enceinte 3 avec une zone sous pression atmosphérique, telle qu'une salle blanche ou un mini-environnement d'équipement (ou « Equipment Front End Module » en anglais), pour le chargement d'au moins un substrat 4 selon la flèche 10.
Le sas 2 comporte également des moyens de remise à la pression atmosphérique (non représentés) pour replacer l'intérieur de l'enceinte 3 à la pression atmosphérique, soit dans l'attente du chargement d'un nouveau substrat, soit après avoir chargé un substrat qui a été traité par la chambre de traitement 2.
Le sas de chargement et de déchargement 2 permet ainsi de réduire le temps nécessaire pour passer de la pression atmosphérique à la pression sub-atmosphérique de transfert et permet de réduire la pollution dans la chambre de procédé ou de transfert. L'équipement 1 est par exemple un équipement de fabrication de composants semiconducteurs. La chambre de traitement 5 est alors une chambre de procédés ou une chambre de transfert.
Dans le cas d'un équipement simple (ou « stand alone » en anglais), la chambre de traitement 5 est une chambre de procédés dans laquelle on réalise par exemple un dépôt ou une gravure de couches du substrat 4 de semi-conducteurs sous atmosphère contrôlée à une pression de vide secondaire, par exemple de l'ordre de 103 Pascal.
Dans le cas d'un équipement multiple (ou « cluster » en anglais), l'équipement peut comporter une ou plusieurs chambres de procédé. La chambre de traitement 5 est alors une chambre de transfert. En fonctionnement, la chambre de transfert est maintenue à une pression de transfert de l'ordre de celle de la chambre de procédé, par exemple de l'ordre de 102 Pascal. L'atmosphère de la chambre de transfert est entretenue par une pompe primaire ou une pompe secondaire sous une atmosphère contrôlée de gaz neutre, tel que de l'azote. La chambre de transfert reçoit le substrat 4 du sas de chargement et de déchargement 2 à la pression de transfert et le distribue dans la chambre de procédés appropriée. La figure 2 illustre un exemple d'équipement multiple de fabrication de composants semiconducteurs comportant un mini-environnement d'équipement 11, un sas de chargement et de déchargement 2, une chambre de transfert 5 et une chambre de procédés 12.
Le sas 2 comporte un système de pompage des gaz 13 (figure 1) en communication avec l'enceinte 3 pour la descente de pression à l'intérieur de l'enceinte.
Le système de pompage des gaz 13 comprend une pompe primaire 14 et une pompe turbomoléculaire 15 en amont de la pompe primaire 14 dans le sens de circulation des gaz pompés, représenté par la flèche 16. La pompe primaire 14 peut être une pompe dédiée au sas 2 ou peut être également la pompe primaire d'une autre chambre de l'équipement 1, telle que la chambre de transfert 5.
L'aspiration 17 de la pompe turbomoléculaire 15 est reliée à l'enceinte 3 via une première vanne d'isolation 18. Le refoulement 19 de la pompe turbomoléculaire 15 est relié en amont de l'aspiration de la pompe primaire 14 par un circuit de pompage primaire 20.
Le système de pompage des gaz 13 comporte en outre un circuit de dérivation 21 de la pompe turbomoléculaire 15 mis en communication d'une part avec l'enceinte 3, en amont de la première vanne d'isolation 18 et d'autre part avec le circuit de pompage primaire 20.
Le circuit de dérivation 21 comporte une deuxième vanne d'isolation 22 comprenant des moyens de limitation de débit activables. Lorsqu'ils sont activés, les moyens de limitation de débit permettent de limiter mécaniquement la vitesse de pompage de la pompe primaire 14. Par exemple, la deuxième vanne d'isolation 22 comporte une première vanne principale présentant une première conductance et une deuxième vanne de restriction en dérivation de la vanne principale et présentant une deuxième conductance inférieure à la première conductance.
Le circuit de pompage primaire 20 comporte en outre une troisième vanne d'isolation 23 disposée entre le refoulement 19 de la pompe turbomoléculaire 15 et le circuit de dérivation 21. On peut également prévoir que la troisième vanne 23 soit intégrée dans une enveloppe périphérique de la pompe turbomoléculaire 15 de manière que l'obturateur de la troisième vanne 23 coopère directement avec l'orifice de refoulement de la pompe turbomoléculaire.
On utilise par exemple une petite pompe turbomoléculaire ATH30 vendue par la société Alcatel Lucent. Une telle pompe présente l'avantage d'être compacte de sorte qu'elle peut être facilement disposée à proximité de l'enceinte 3.
Il est alors possible en fermant la première et la troisième vanne 18, 23, d'isoler totalement la pompe turbomoléculaire 15 en fonctionnement, à l'aspiration 17 et au refoulement 19, ce qui permet notamment, de garantir une basse pression de vide primaire au refoulement 19 de la pompe turbomoléculaire 15. Cette basse pression au refoulement 19 permet que la pompe turbomoléculaire 15 fonctionne à plein régime, sans surconsommation de puissance et sans risque de défaillance.
Le système de pompage des gaz 13 comporte en outre des moyens pour piloter en ouverture et en fermeture les vannes d'isolation 18, 22, 23, en fonction de seuils caractéristiques. Pour cela, l'équipement 1 comporte une unité de traitement 24. Par exemple, l'unité de traitement 24 pilote l'ouverture et/ou la fermeture des vannes 18, 22, 23, en fonction de l'écoulement de durées prédéterminées.
Selon un autre exemple, l'unité de traitement 24 pilote les vannes 18, 22, 23 en fonction d'au moins un signal de sortie 26 d'un capteur 25 relié à l'enceinte 3 pour la mesure d'un paramètre caractéristique des gaz de l'enceinte 3 du sas 2. Le signal de sortie 26 du capteur 25 est relié à l'unité de traitement 24 pour le pilotage des vannes 18, 22, 23 en fonction des valeurs de seuils caractéristiques fournis par le signal de sortie 26.
Par exemple, le capteur 25 est un capteur de pression permettant d'indiquer la pression régnant dans l'enceinte 3. On peut également envisager que le capteur 25 permette de fournir une indication de la pression partielle des gaz à l'intérieur de l'enceinte 3. Par exemple, le capteur 25 permet de donner une indication de la pression partielle de vapeur d'eau à l'intérieur de l'enceinte 3.
Selon une réalisation particulière, le capteur 25 comporte une cellule d'excitation dérivée et une antenne d'excitation électromagnétique alimentée par un générateur de puissance, disposée autour de la cellule de manière à former un plasma à l'intérieur de celle-ci. La radiation lumineuse émise par le plasma est ensuite captée et transmise jusqu'à un spectromètre optique. La transmission peut être assurée par une fibre optique, ou par un connecteur adapté. Le spectromètre optique génère un signal de sortie 26 du spectre optique détecté, qui est transmis à l'unité de traitement 24. Selon une autre réalisation, le capteur 25 est un spectromètre de masse.
La descente en pression dans le sas de chargement et de déchargement 2 d'équipement 1 depuis la pression atmosphérique jusqu'à une basse pression de transfert est réalisée progressivement par au moins trois étapes consécutives (voir le procédé 100 représenté sur la figure
3). On commence par disposer au moins un substrat 4 à pression atmosphérique dans l'enceinte
3. La première et la deuxième vanne d'isolation 18, 22 sont fermées. On peut également fermer la troisième vanne d'isolation 23. Les pompes primaires 14 et turbomoléculaires 15 sont en fonctionnement. Au cours d'une première étape 101, on réalise un premier pompage primaire depuis la pression atmosphérique jusqu'à un premier seuil caractéristique. Le pompage est réalisé à travers le circuit de dérivation 21 de la pompe primaire 14 dont le débit de pompage est limité. L'aspiration 17 de la pompe turbomoléculaire 15 en fonctionnement est isolée de l'enceinte 3 et le refoulement 19 de la pompe turbomoléculaire 15 est isolé de la pompe primaire 14. Pour cela, dans l'exemple considéré en figure 1, on ferme la première et la troisième vannes d'isolation 18, 23 et on ouvre la deuxième vanne d'isolation 22 dont les moyens de limitation de débit sont activés, par exemple en présentant une deuxième conductance plus faible, jusqu'au franchissement d'un premier seuil caractéristique. Ainsi, au cours de la première étape 101, la pompe turbomoléculaire 15 est complètement isolée des gaz de l'enceinte 3 et du circuit de dérivation 21, dont la pression comprise entre la pression atmosphérique et une première pression primaire sub-atmosphérique pourrait endommager la pompe turbomoléculaire 15.
Cette première étape 101 permet de réaliser un pompage primaire lent depuis la pression atmosphérique jusqu'au premier seuil caractéristique, pour lequel le risque de pollution par un pompage primaire trop rapide n'existe plus. Le pompage lent permet de prévenir la solidification de certaines espèces gazeuses présentes dans l'atmosphère gazeuse entourant le substrat 4.
Ensuite, dans une deuxième étape 102 consécutive à la première étape 101, on réalise un second pompage primaire, plus rapide que dans la première étape 101, jusqu'à un deuxième seuil caractéristique, en maintenant l'isolement du pompage turbomoléculaire.
Pour cela, on maintient fermées les première et troisième vannes d'isolation 18, 23. On maintient la deuxième vanne d'isolation 22 ouverte et on désactive les moyens de limitation de débit, par exemple avec une vanne d'isolation 22 présentant une première conductance supérieure à la deuxième conductance, jusqu'au franchissement d'un deuxième seuil caractéristique. Le débit de pompage de la pompe primaire 14 n'est plus limité.
Le deuxième seuil caractéristique correspond au seuil pour lequel la pression à l'aspiration 17 de la pompe turbomoléculaire 15 est suffisamment basse pour de ne pas impacter son fonctionnement.
Ainsi, au cours de la deuxième étape 102, lorsque la pression à l'intérieur de l'enceinte 3 est comprise entre la première pression sub-atmosphérique et une deuxième pression primaire basse de vide primaire, la pompe turbomoléculaire 15 reste isolée à l'aspiration 17 et au refoulement 19, ce qui permet de limiter la consommation de puissance de la pompe turbomoléculaire 15 et d'allonger sa durée de vie. Puis, dans une troisième étape 103 consécutive à la deuxième étape 102, on réalise un pompage secondaire à travers le pompage turbomoléculaire en amont du pompage primaire et on isole l'enceinte 3 du pompage primaire. Pour cela, on ouvre la première et la troisième vanne d'isolation 18, 23 et on ferme la deuxième vanne d'isolation 22. Cette troisième étape 103 permet de diminuer la pression partielle de vapeur d'eau présente dans le mélange gazeux résiduel et d'accélérer le dégazage des substrats, ce qui permet d'augmenter le rendement de production.
Ainsi, au cours de la troisième étape 103, lorsque la pression à l'intérieur de l'enceinte 3 est suffisamment basse, la pompe turbomoléculaire 15, dont le fonctionnement à plein régime a été préservé, peut descendre immédiatement la pression à l'intérieur de l'enceinte 3.
Le procédé 100 peut comporter une quatrième étape 104 consécutive à la troisième étape
103 dans laquelle on rétablit un pompage primaire en isolant le pompage turbomoléculaire lorsqu'un troisième seuil caractéristique est atteint. Par exemple, on rétablit un pompage primaire lorsque le sas 2 reçoit un signal de demande de déchargement du substrat 4, pouvant être généré par la chambre de traitement 5.
Pour cela, on ferme la première vanne d'isolation 18 et on ouvre la deuxième vanne d'isolation 22 pour laquelle les moyens de limitation de débit sont désactivés, par exemple avec la première conductance plus élevée lorsqu'un troisième seuil caractéristique a été franchi au cours de la troisième étape 103. On peut également prévoir de fermer la troisième vanne d'isolation 23 juste avant d'ouvrir la deuxième vanne d'isolation 22, pour s'assurer d'isoler le refoulement 19 de la pompe turbomoléculaire 15 à une pression basse de vide primaire.
La quatrième étape 104 permet d'amener l'atmosphère gazeuse du substrat 4 à la pression appropriée de transfert. Ainsi, les étapes du procédé de la chambre de traitement 5 n'ont pas à être modifiées pour autoriser l'entrée du substrat 4, car la même pression de transfert est conservée. On peut également injecter un gaz neutre au cours de la quatrième étape 104, tel que de l'azote, pour assurer le sens d'écoulement des gaz vers le pompage primaire.
Ledit premier et/ou ledit deuxième et/ou ledit troisième seuil caractéristique peuvent être des durées prédéterminées. Alternativement ou en complément, ledit premier et/ou ledit deuxième et/ou ledit troisième seuil caractéristique sont des valeurs prédéterminées de pression. La figure 4 représente un graphique d'une courbe Ç de descente en pression dans un sas de chargement et de déchargement 2 en fonction du temps.
Au temps initial tO du graphique, l'atmosphère du substrat 4 est à la pression atmosphérique Pa. Au cours de la première étape 101, la pression de l'environnement du substrat 4 est descendue par un pompage lent à une pression sub-atmosphérique Pl , à travers la pompe primaire
14 dont le débit de pompage est limité. La pression Pl, par exemple de l'ordre de cinquante Pascal, correspond au premier seuil caractéristique à partir de duquel on estime qu'il n'y a plus de risque de pollution par un pompage primaire trop rapide.
Ensuite, dans la deuxième étape 102, la pression de l'environnement du substrat 4 est descendue par un pompage rapide à une pression sub-atmosphérique P2, inférieure à la pression Pl, à travers la pompe primaire 14 dont le débit de pompage n'est plus limité. On observe ainsi une rupture de pente dans la courbe de descente en pression au temps tl pour lequel le pompage primaire rapide est mis en route. La pression P2, par exemple de l'ordre de 0,1 Pascal, correspond au deuxième seuil caractéristique à partir duquel la pompe turbomoléculaire peut fonctionner pleinement sans risque de détérioration.
Puis, dans la troisième étape 103, la pression de l'environnement du substrat 4 diminue jusqu'à une pression sub-atmosphérique P3, de l'ordre de 104 Pascal, à travers la pompe secondaire 15. On observe également une deuxième rupture de pente dans la courbe de descente en pression au temps t2 pour lequel on réalise le pompage à travers la pompe turbomoléculaire 15.
Au cours de la quatrième étape 104, au temps t3 lorsqu'un troisième seuil caractéristique a été franchi, la pression de l'environnement du substrat 4 remonte à une pression de transfert P4, correspondant à une pression basse de vide primaire de l'ordre de 102 Pascal. La pression P4 est obtenue par le pompage primaire avec une injection de gaz neutre. Le troisième seuil caractéristique correspond par exemple à l'achèvement d'une durée D, de l'ordre de quelques secondes, après que la pression de l'enceinte 3 ait atteint la pression sub-atmosphérique P3.
On obtient ainsi, rapidement et en temps masqué une baisse de la pression totale dans l'enceinte 3 et donc de la pression partielle de vapeur d'eau. Par ailleurs, la pompe turbomoléculaire 15 est constamment maintenue en plein régime de fonctionnement et n'est sollicitée que pour des basses pressions de vide primaire, ce qui augmente sa durée de vie et permet de ne pas observer de perte de temps ou d'efficacité lors de sa mise en communication avec l'enceinte 3. En outre, il est possible d'utiliser une pompe turbomoléculaire 15 standard.
Le procédé de descente en pression est donc simple, peu coûteux à mettre en œuvre, et permet de descendre rapidement à une pression basse inférieure à la pression de transfert pour améliorer le conditionnement du substrat, tout en répondant aux contraintes industrielles de fiabilité permettant d'assurer les cadences élevées des cycles de pompage des sas de chargement et de déchargement.

Claims

REVENDICATIONS
1. Procédé de descente en pression dans un sas de chargement et de déchargement d'équipement depuis une pression atmosphérique vers une pression de transfert sub- atmosphérique, ledit sas (2) comportant une enceinte (3) dans laquelle on dispose au moins un substrat (4) à pression atmosphérique, et un système de pompage des gaz (13) comprenant une pompe primaire (14) et une pompe turbomoléculaire (15) dont l'aspiration (17) est reliée à l'enceinte (3) via une première vanne d'isolation (18) et dont le refoulement (19) est relié en amont de ladite pompe primaire (14) par un circuit de pompage primaire (20), ledit système de pompage des gaz (13) comportant en outre un circuit de dérivation (21) de ladite pompe turbomoléculaire
(15) mis en communication d'une part avec ladite enceinte (3) en amont de ladite première vanne d'isolation (18) et d'autre part avec ledit circuit de pompage primaire (20), ledit circuit de dérivation
(21) comportant une deuxième vanne d'isolation (22) comprenant des moyens de limitation de débit activables et ledit circuit de pompage primaire (20) comportant une troisième vanne d'isolation (23) disposée entre le refoulement (19) de la pompe turbomoléculaire (15) et le circuit de dérivation (21), ledit procédé comportant : une première étape (101) dans laquelle on ferme ladite première et ladite troisième vannes d'isolation (18, 23) et on ouvre ladite deuxième vanne d'isolation (22) pour laquelle les moyens de limitation de débit sont activés, pour réaliser un premier pompage primaire depuis la pression atmosphérique jusqu'à un premier seuil caractéristique à travers ledit circuit de dérivation (21) de ladite pompe primaire (14) dont le débit de pompage est limité, en isolant ladite aspiration (17) de ladite pompe turbomoléculaire (15) en fonctionnement, de ladite enceinte (3) et en isolant ledit refoulement (19) de ladite pompe turbomoléculaire (15), de la pompe primaire (14), - une deuxième étape (102) consécutive à ladite première étape (101) dans laquelle on désactive les moyens de limitation de débit de ladite deuxième vanne d'isolation (22) pour réaliser un second pompage primaire, plus rapide que dans ladite première étape, jusqu'à un deuxième seuil caractéristique, en maintenant l'isolement du pompage turbomoléculaire et, - une troisième étape (103) consécutive à ladite deuxième étape (102), dans laquelle on ouvre ladite première et ladite troisième vanne d'isolation (18, 23) et on ferme ladite deuxième vanne d'isolation (22) pour réaliser un pompage secondaire à travers ledit pompage turbomoléculaire en amont du pompage primaire en isolant l'enceinte (3) de ladite pompe primaire (14).
2. Procédé de descente en pression selon la revendication 1, comportant une quatrième étape (104) consécutive à ladite troisième étape (103), dans laquelle on ferme ladite première vanne d'isolation (18) et on ouvre ladite deuxième vanne d'isolation (22) pour laquelle les moyens de limitation de débit sont désactivés, pour rétablir un pompage primaire en isolant le pompage turbomoléculaire lorsqu'un troisième seuil caractéristique est atteint.
3. Procédé de descente en pression selon la revendication 2, dans lequel on injecte un gaz neutre au cours de ladite quatrième étape (104).
4. Procédé de descente en pression selon l'une quelconque des revendications précédentes, dans lequel ledit premier et/ou ledit deuxième et/ou ledit troisième seuil caractéristique sont des durées prédéterminées.
5. Procédé de descente en pression selon l'une quelconque des revendications précédentes, dans lequel ledit premier et/ou ledit deuxième et/ou ledit troisième seuil caractéristique sont des valeurs prédéterminées de pression.
6. Procédé de descente en pression selon l'une quelconque des revendications précédentes, prise ensemble avec la revendication 2, caractérisé en ce qu'on rétablit ledit second pompage primaire lorsque ledit sas (2) reçoit un signal de demande de déchargement du substrat
(4).
7. Equipement pour la mise en œuvre du procédé de descente en pression selon l'une quelconque des revendications précédentes, comportant un sas de chargement et de déchargement (2) comprenant une enceinte (3) pour la descente en pression de l'environnement d'au moins un substrat (4) depuis la pression atmosphérique jusqu'à une pression de transfert sub-atmosphérique et au moins une chambre de traitement (5) en communication avec ledit sas de chargement et de déchargement (3) pour le transfert du substrat (4) dans la chambre de traitement (5) à la pression de transfert, ledit sas (2) comportant un système de pompage des gaz (13) comprenant une pompe primaire (14) et une pompe turbomoléculaire (15) dont l'aspiration (17) est reliée à l'enceinte (3) via une première vanne d'isolation (18) et dont le refoulement (19) est relié en amont de ladite pompe primaire (14) par un circuit de pompage primaire (20), ledit système de pompage des gaz (13) comportant en outre un circuit de dérivation (21) de ladite pompe turbomoléculaire (15) mis en communication d'une part avec ladite enceinte (3) en amont de ladite première vanne d'isolation (18) et d'autre part avec ledit circuit de pompage primaire (20), ledit circuit de dérivation (21) comportant une deuxième vanne d'isolation (22) comprenant des moyens de limitation de débit activables et ledit circuit de pompage primaire (20) comportant une troisième vanne d'isolation (23) disposée entre le refoulement (19) de la pompe turbomoléculaire (15) et le circuit de dérivation (21), ledit système de pompage des gaz (13) comportant en outre des moyens pour piloter lesdites vannes d'isolation (18, 22, 23). δ.Equipement selon la revendication 7, dans lequel la deuxième vanne d'isolation (22) comporte une première vanne principale présentant une première conductance et une deuxième vanne de restriction en dérivation de ladite vanne principale et présentant une deuxième conductance inférieure à ladite première conductance.
9. Equipement selon l'une quelconque des revendications 7 ou 8, comportant une unité de traitement (24) pour piloter lesdites vannes (18, 22, 23) en fonction d'au moins un signal de sortie (26) d'un capteur (25) d'un paramètre caractéristique des gaz de ladite enceinte (3). 10. Equipement selon l'une quelconque des revendications 7 à 9, caractérisé en ce que ladite troisième vanne (23) est intégrée dans une enveloppe périphérique de ladite pompe turbomoléculaire (15) pour coopérer avec un orifice de refoulement de ladite pompe turbomoléculaire (15).
PCT/FR2009/052607 2008-12-19 2009-12-18 Procede de descente en pression dans un sas de chargement et de dechargement et equipement associe WO2010070240A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801546617A CN102282663A (zh) 2008-12-19 2009-12-18 用于降低装载锁中的压力的方法和相关设备
JP2011541570A JP2012513111A (ja) 2008-12-19 2009-12-18 チャージ−ディスチャージロック内の圧力を下げるための方法および関連装置
EP09805742A EP2377151A1 (fr) 2008-12-19 2009-12-18 Procede de descente en pression dans un sas de chargement et de dechargement et equipement associe
US13/140,189 US20120024394A1 (en) 2008-12-19 2009-12-18 Method for lowering the pressure in a load lock and associated equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0807191 2008-12-19
FR0807191A FR2940322B1 (fr) 2008-12-19 2008-12-19 Procede de descente en pression dans un sas de chargement et de dechargement et equipement associe

Publications (1)

Publication Number Publication Date
WO2010070240A1 true WO2010070240A1 (fr) 2010-06-24

Family

ID=40886212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/052607 WO2010070240A1 (fr) 2008-12-19 2009-12-18 Procede de descente en pression dans un sas de chargement et de dechargement et equipement associe

Country Status (7)

Country Link
US (1) US20120024394A1 (fr)
EP (1) EP2377151A1 (fr)
JP (1) JP2012513111A (fr)
KR (1) KR20110099041A (fr)
CN (1) CN102282663A (fr)
FR (1) FR2940322B1 (fr)
WO (1) WO2010070240A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497957A (en) * 2011-12-23 2013-07-03 Edwards Ltd A method and apparatus for evacuating a vacuum process chamber

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3054005B1 (fr) * 2016-07-13 2018-08-24 Pfeiffer Vacuum Procede de descente en pression dans un sas de chargement et de dechargement et groupe de pompage associe
JP6738485B2 (ja) * 2016-08-26 2020-08-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 低圧リフトピンキャビティハードウェア
JP6535649B2 (ja) * 2016-12-12 2019-06-26 株式会社荏原製作所 基板処理装置、排出方法およびプログラム
US10224224B2 (en) * 2017-03-10 2019-03-05 Micromaterials, LLC High pressure wafer processing systems and related methods
US20190145538A1 (en) * 2017-11-14 2019-05-16 Sur-Flo Meters & Controls Ltd Valve with Expandable Sleeve Fitted Over Perforated Walls of Inlet and Outlet Channels to Control Flow Therebetween

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081651A1 (fr) 2000-04-20 2001-11-01 Alcatel Procede et systeme de pompage des chambres de transfert d'equipement de semi-conducteur
US20020022283A1 (en) * 2000-04-20 2002-02-21 Alcatel Apparatus for conditioning the atmosphere in a chamber
US20040261712A1 (en) * 2003-04-25 2004-12-30 Daisuke Hayashi Plasma processing apparatus
FR2860841A3 (fr) * 2003-10-14 2005-04-15 Boc Group Plc Perfectionnements apportes a l'efficacite d'un systeme de pompage
US20060009044A1 (en) * 2002-09-19 2006-01-12 Masanobu Igeta Method for forming insulating film on substrate, method for manufacturing semiconductor device and substrate-processing apparatus
WO2007135347A1 (fr) * 2006-05-24 2007-11-29 Alcatel Lucent Procede et dispositif de depollution d'environnement confine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536418A (en) * 1969-02-13 1970-10-27 Onezime P Breaux Cryogenic turbo-molecular vacuum pump
JPH04326943A (ja) * 1991-04-25 1992-11-16 Hitachi Ltd 真空排気システム及び排気方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081651A1 (fr) 2000-04-20 2001-11-01 Alcatel Procede et systeme de pompage des chambres de transfert d'equipement de semi-conducteur
US20020022283A1 (en) * 2000-04-20 2002-02-21 Alcatel Apparatus for conditioning the atmosphere in a chamber
US20060009044A1 (en) * 2002-09-19 2006-01-12 Masanobu Igeta Method for forming insulating film on substrate, method for manufacturing semiconductor device and substrate-processing apparatus
US20040261712A1 (en) * 2003-04-25 2004-12-30 Daisuke Hayashi Plasma processing apparatus
FR2860841A3 (fr) * 2003-10-14 2005-04-15 Boc Group Plc Perfectionnements apportes a l'efficacite d'un systeme de pompage
WO2007135347A1 (fr) * 2006-05-24 2007-11-29 Alcatel Lucent Procede et dispositif de depollution d'environnement confine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497957A (en) * 2011-12-23 2013-07-03 Edwards Ltd A method and apparatus for evacuating a vacuum process chamber
US9726176B2 (en) 2011-12-23 2017-08-08 Edwards Limited Vacuum pumping
GB2497957B (en) * 2011-12-23 2018-06-27 Edwards Ltd Vacuum pumping

Also Published As

Publication number Publication date
US20120024394A1 (en) 2012-02-02
KR20110099041A (ko) 2011-09-05
FR2940322A1 (fr) 2010-06-25
EP2377151A1 (fr) 2011-10-19
JP2012513111A (ja) 2012-06-07
CN102282663A (zh) 2011-12-14
FR2940322B1 (fr) 2011-02-11

Similar Documents

Publication Publication Date Title
EP2875240B1 (fr) Procede et dispositif de pompage d'une chambre de procedes
WO2010070240A1 (fr) Procede de descente en pression dans un sas de chargement et de dechargement et equipement associe
EP3485168B1 (fr) Procédé de descente en pression dans un sas de chargement et de déchargement et groupe de pompage associé
EP2501936B1 (fr) Procede et dispositif de pompage a consommation d'energie reduite
FR2920046A1 (fr) Procede de post-traitement d'un support de transport pour le convoyage et le stockage atmospherique de substrats semi-conducteurs, et station de post-traitement pour la mise en oeuvre d'un tel procede
FR2668301A1 (fr) Procede et installation de transfert sans contamination.
FR2761776A1 (fr) Detecteur de fuite a gaz traceur
EP3628870A1 (fr) Pompe à vide primaire de type sèche et procédé de contrôle de l'injection d'un gaz de purge
EP2767717A1 (fr) Pompe à vide multi-étagée de type sèche
FR2802335A1 (fr) Systeme et procede de controle de minienvironnement
WO2019042868A1 (fr) Détecteur de fuites et procédé de détection de fuites pour le contrôle de l'étanchéité d'objets à tester
WO2020201218A1 (fr) Pompe à vide de type sèche et installation de pompage
EP1475535A1 (fr) Contrôle de pression dans la chambre de procédés par variation de vitesse de pompes, vanne de régulation et injection de gaz neutre
EP1529305A2 (fr) Procede et dispositif pour la gravure de substrat par plasma inducatif a tres forte puissance
CA2886284A1 (fr) Dispositif d'alimentation et de purge pour injecteur
EP3535780B1 (fr) Dispositif et procédé de contrôle de l'étanchéité d'une enceinte de transport pour le convoyage et le stockage atmosphérique de substrats semi-conducteurs
FR2968730A1 (fr) Dispositif de pompage a consommation d'energie reduite
FR2967219A1 (fr) Installation de pompage pour l'obtention d'un vide pousse et procede de pompage mettant en oeuvre une telle installation
WO2001081651A1 (fr) Procede et systeme de pompage des chambres de transfert d'equipement de semi-conducteur
FR2860917A1 (fr) Systeme de tube hyperfrequence et tube hyperfrequence
WO2015165544A1 (fr) Méthode de pompage dans un système de pompage et système de pompes à vide
WO2020254043A1 (fr) Pompe à vide primaire de type sèche et procédé de contrôle de l'injection d'un gaz de purge
EP2958639B1 (fr) Installation de lutte contre les incendies, incluant un réseau de sprinklers sous vide, susceptibles d'être déclenchés par un actuateur comprenant un piston et étant piloté par un actionneur maître
FR3105313A1 (fr) Pompe à vide et procédé d’injection d’un gaz de purge
FR3128747A1 (fr) Pompe à vide multi-étagée

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154661.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09805742

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541570

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009805742

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117016652

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13140189

Country of ref document: US