WO2020201218A1 - Pompe à vide de type sèche et installation de pompage - Google Patents

Pompe à vide de type sèche et installation de pompage Download PDF

Info

Publication number
WO2020201218A1
WO2020201218A1 PCT/EP2020/058968 EP2020058968W WO2020201218A1 WO 2020201218 A1 WO2020201218 A1 WO 2020201218A1 EP 2020058968 W EP2020058968 W EP 2020058968W WO 2020201218 A1 WO2020201218 A1 WO 2020201218A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum pump
annex
stator
pumping
rotor
Prior art date
Application number
PCT/EP2020/058968
Other languages
English (en)
Inventor
Yannick GRENIER
Original Assignee
Pfeiffer Vacuum
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum filed Critical Pfeiffer Vacuum
Priority to KR1020217032804A priority Critical patent/KR20210138676A/ko
Priority to JP2021559147A priority patent/JP7396561B2/ja
Priority to DE112020001762.1T priority patent/DE112020001762T5/de
Priority to CN202080021803.9A priority patent/CN113574277B/zh
Publication of WO2020201218A1 publication Critical patent/WO2020201218A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/123Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/18Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running

Definitions

  • the present invention relates to a dry type vacuum pump, such as a primary vacuum pump, for example of the "Roots” type, a "Claw” type nozzle pump or a screw pump.
  • the invention also relates to a pumping installation comprising an airlock (or "loadlock" in English) connected to a vacuum pump.
  • the electrical power required for gas compression is one of the important parameters in the energy consumption of vacuum pumps. This compression power is used mainly in the last two compression stages in the case of a multi-stage primary vacuum pump of the "Roots" or "Claw" type.
  • Airlock pumping applications in particular are relatively energy intensive.
  • the airlock is used to lower the pressure around a substrate before it is discharged into a processing chamber maintained at low pressure to prevent the presence of any impurities in the chamber.
  • Each loading of substrates thus necessitates alternately lowering and then raising the pressure in the airlock enclosure. After each pressure drop, the pressure is kept lowered in the airlock until the substrate is transferred to the treatment chamber.
  • These low pressure idles can be relatively long and are energy intensive.
  • a known solution consists in lowering the pressure in the last compression stage using an external pumping device, for example during these phases of waiting for the airlock. .
  • This external pumping device is for example an ejector, a diaphragm pump or a vane pump.
  • a drawback to this is the need to use two separate pumping devices, which can lead to a bulky pumping system, complicated to implement, expensive or consumer of electrical energy or gas.
  • One of the aims of the present invention is to provide a dry-type vacuum pump making it possible to at least partially resolve one of the drawbacks of the state of the art.
  • the invention relates to a dry type vacuum pump
  • the vacuum pump further comprises:
  • suction pipe fitted with a controllable inlet valve, connecting an inlet of the annex stator to a pumping stage communicating with the discharge of the vacuum pump, and
  • annex rotor carried by said shaft, said annex rotor being configured so that its rotation in the annex stator causes a gas to be pumped between the inlet and an outlet of the annex stator in order to lower the pressure in the pumping stage when the controllable inlet valve is controlled in opening, the at least one annex rotor and the annex stator being fluidly isolated from the pumping stage communicating with the discharge when the controllable inlet valve is controlled in closing.
  • the rotation of the shafts driving the rotors of the vacuum pump is thus used to also rotate the at least one annex rotor in order to lower the pressure of the discharge pumping stage of the vacuum pump when the Controllable inlet valve is controlled in opening.
  • the electrical consumption of the vacuum pump can then be reduced without requiring a pumping device external to the vacuum pump.
  • the pilotable inlet valve is closed, the auxiliary rotor turns on itself in the stator annex without interfering with the operation of the vacuum pump.
  • the annex pumping stage is thus short-circuited and no longer participates in the pumping of the gases.
  • Controlling the opening of the controllable inlet valve also allows the pressure of the discharge pumping stage to be lowered at specific times and for selected times.
  • the use of a controllable inlet valve therefore provides great flexibility of action.
  • the vacuum pump is therefore compact, easy to install and to control.
  • the vacuum pump is, for example, a primary vacuum pump configured to deliver the gases at atmospheric pressure.
  • the rotors are for example of the “Roots” or “Claw” type.
  • the output of the annex stator can be placed in communication with the discharge of the vacuum pump via an annex discharge pipe provided with a controllable outlet valve.
  • a controllable outlet valve With a controllable outlet valve, it is possible to keep the at least one annex rotor under vacuum when not in use to lower the pressure in the discharge stage.
  • the at least one annex rotor rotates on itself without new gas entry, consuming little or no energy and without disturbing the pumping in the at least one pumping stage of the vacuum pump.
  • the vacuum pump may include a control unit configured to control the opening of the controllable inlet valve and / or the controllable outlet valve, according to a measurement of the suction pressure of the vacuum pump and / or the power consumed by the vacuum pump.
  • an enclosure such as an airlock, connected to the vacuum pump comprises a means of controlling the controllable inlet valve and / or the controllable outlet valve.
  • This means controls the opening of the controllable inlet valve and / or the controllable outlet valve, for example when the airlock is in the waiting phase, for example over predefined times at the start and end of the waiting phase.
  • the controllable valves can also be ordered to close, for example as soon as the power has dropped below a power threshold.
  • the annex stator is crossed by the two shafts, the vacuum pump comprising two annex rotors arranged in the annex stator carried by a respective shaft, the annex rotors being configured to rotate synchronously in reverse.
  • the auxiliary rotors are for example of the Roots, screw or Claw type.
  • the auxiliary stator is similar to an additional dry pumping stage.
  • the annex stator is formed in an oil sump of the vacuum pump, the vacuum pump comprising two annex rotors formed by a respective toothed wheel of a synchronization gear of the pump empty, the synchronization gear forming a gear pump with the auxiliary stator, the synchronization gear being further configured to synchronize the rotation of the shafts.
  • the synchronization gear already present for the synchronization of the shafts is used as an additional pumping means when it is necessary to lower the pressure in the discharge stage.
  • the annex rotor is a vane pump rotor forming a vane pump with the annex stator received in a chamber of an oil sump of the vacuum pump.
  • the vacuum pump with integrated vane pump allows the pressure in the discharge stage to be lowered with a very good compression ratio.
  • the subject of the invention is also a pumping installation comprising an airlock characterized in that it comprises a dry type vacuum pump as described above, connected to the airlock in order to descend and rise alternately in pressure in the airlock.
  • FIG. 1 is a schematic view of a pumping installation.
  • FIG. 2 represents a schematic view of a dry primary vacuum pump of the installation of FIG. 1 according to a first exemplary embodiment.
  • FIG. 3 shows a schematic view of a dry primary vacuum pump according to a second exemplary embodiment.
  • FIG. 4 shows a schematic sectional view A-A of the vacuum pump of Figure 3 at an oil sump.
  • FIG. 5 is a schematic view of a dry primary vacuum pump according to a third exemplary embodiment.
  • FIG. 6 shows a schematic sectional view A-A of the vacuum pump of Figure 5 at an oil pan.
  • Primary vacuum pump is defined as a positive-displacement vacuum pump which, using two rotors sucks, transfers and then discharges the gas to be pumped, at atmospheric pressure.
  • Figure 1 shows a pumping installation 100 comprising an airlock 101 and a vacuum pump 1 of the dry type connected to the airlock 101 to alternately descend and rise in pressure in the airlock 101.
  • the airlock 101 is used to lower the pressure around a substrate before unloading it into a treatment chamber maintained at low pressure in order to avoid the presence of any impurity in the treatment chamber.
  • the substrate is for example a flat panel display ("or fiat panel display” in English) or a photovoltaic substrate or a semiconductor wafer (or "wafer” in English) or a semiconductor manufacturing photomask.
  • the vacuum pump 1 is a primary vacuum pump configured to deliver the gases at atmospheric pressure.
  • the vacuum pump 1 comprises at least one pumping stage 3a-3f and two rotating shafts 4.
  • the shafts 4 respectively carry at least one rotor 5 extending into the at least one pumping stage 3a-3f.
  • the vacuum pump 1 comprises several pumping stages 3a, 3b, 3c, 3d, 3e, 3f such as six, mounted in series between a suction 7 and a discharge 8 of the vacuum pump 1 and in which a gas to be pumped can circulate.
  • Each pumping stage 3a-3f is formed by a compression chamber receiving the rotors 5, the chambers comprising a respective inlet and outlet.
  • the successive pumping stages 3a-3f are connected in series one after the other by respective inter-stage channels connecting the outlet of the preceding pumping stage to the inlet of the following stage.
  • the first pumping stage 3a the inlet of which communicates with the suction 7 of the vacuum pump 1 is also called “suction stage”.
  • the last pumping stage 3f the outlet of which communicates with the discharge 8 of the vacuum pump 1, is also called the “discharge stage", the discharge pressure being generally of the order of ambient (or atmospheric) pressure.
  • the rotors 5 rotate in a synchronized manner in the opposite direction in each stage to drive a gas to be pumped between the suction 7 and the discharge 8.
  • the gas sucked from the inlet is trapped in the volume generated by the rotors 5 and the stator 9 of the vacuum pump 1, then is driven by the rotors 5 to the next stage (the direction of circulation of the pumped gases is illustrated by the arrows in Figures 1 and 2) .
  • the rotors 5 have for example lobes of identical profiles, for example of the "Roots” type, for example of "eight” or “bean” shaped section, or of the "Claw” type or are of the type with screw or other similar principle of positive displacement vacuum pump.
  • the shafts 4 carrying the rotors 5 are driven by a motor M of the vacuum pump 1. They are supported by bearings lubricated by a lubricant contained in at least one oil pan 10 of the vacuum pump 1 and they are synchronized by means of a synchronization gear 6 also lubricated. A way seal through which the shafts 4 are still able to rotate, isolates the oil sump 10 from the dry pumping part.
  • the vacuum pump 1 comprises a main delivery pipe 11, connecting the outlet of the last pumping stage 3f to the delivery 8.
  • a non-return valve 12 can be arranged in the main delivery pipe 11 for prevent the pumped gases from returning to the vacuum pump 1.
  • the vacuum pump 1 further comprises an annex stator 13, a suction pipe 14 provided with a controllable inlet valve 15 and at least one annex rotor 16 arranged in the annex stator 13.
  • the annex stator 13 has an inlet 17 and an outlet 18. It is crossed at least by one of the shafts 4.
  • the suction line 14 connects the inlet 17 of the annex stator 13 to the pumping stage 3f communicating with the discharge 8 of the vacuum pump 1, for example at the inlet of the stage of pumping 3f.
  • This stage is the last stage in the direction of flow of the pumped gases in the case of a multistage vacuum pump 1 or is formed by the last threads in the direction of flow of the pumped gases in the case of a single-stage screw vacuum pump.
  • the at least one annex rotor 16 is carried by the shaft 4 passing through the annex stator 13. It is configured so that its rotation in the annex stator 13 causes a gas to be pumped between the inlet 17 and the outlet 18 of the annex stator 13 to lower the pressure in the pumping stage 3f communicating with the discharge 8 when the controllable inlet valve 15 is commanded to open.
  • the at least one annex rotor 16 and the annex stator 13 are fluidly isolated from the pumping stage 3f communicating with the discharge 8 when the controllable inlet valve 15 is closed.
  • the rotation of the shafts 4 is thus used driving the rotors 5 of the vacuum pump 1 to also rotate the at least one annex rotor 16 in order to lower the pressure of the pumping stage 3f of the discharge of the vacuum pump 1 when the controllable inlet valve 15 is commanded to open.
  • the power consumption of vacuum pump 1 can then be reduced without require a pumping device external to the vacuum pump 1.
  • the controllable inlet valve 15 is commanded to close, the annex rotor turns on itself in the annex stator without interfering with the operation of the vacuum pump.
  • the annex pumping stage is thus short-circuited and no longer participates in the pumping of the gases.
  • the vacuum pump 1 is compact, easy to install and to control.
  • the controllable inlet valve 15 is for example a pneumatic valve or a solenoid valve such as electromagnetic or piezoelectric, in particular controllable on all or nothing: it is either open or closed.
  • the vacuum pump 1 may include a control unit 19 comprising one or more controllers or microcontrollers or processors and a memory.
  • the control unit 19 is for example configured to control the opening of the controllable inlet valve 15 as a function of a measurement of the suction pressure of the vacuum pump 1 and / or of the power. consumed by vacuum pump 1.
  • the control unit 19 monitors a pressure threshold crossing and / or power, for example when the suction pressure of the vacuum pump 1 crosses a low pressure threshold and / or when the power (or current) of the motor M exceeds a power threshold for a predetermined period.
  • This situation generally corresponds to a waiting phase of the lock 101 at low pressure, the vacuum pump 1 being in a situation of pumping at ultimate vacuum (without gas injection) or in a situation of pumping at low pressure with a low flow of gas. purge.
  • the airlock 101 comprises a control means 102 of the controllable inlet valve 15, which can directly control the controllable inlet valve 15 or can be connected to the control unit 19 of the pump vacuum 1 to control the controllable inlet valve 15.
  • the control means 102 controls the opening of the controllable inlet valve 15 for example when the airlock 101 is in the waiting phase.
  • the means of control 102 may be a signal, for example from an electrical switch, or may be a digital code.
  • the opening control of the controllable inlet valve 15 can be limited in time, that is to say for a predefined period, for example less than five minutes.
  • the opening command of the controllable inlet valve 15 can be triggered at the start and at the end of the waiting phase.
  • the controllable inlet valve 15 can also be ordered to close, for example as soon as the power has dropped below the power threshold.
  • Controlling the opening of the controllable inlet valve 15 allows the pressure of the delivery pumping stage 3f to be lowered at specific times and for selected times.
  • the use of a controllable inlet valve 15 therefore provides great flexibility of action.
  • the outlet 18 of the annex stator 13 is placed in communication with the discharge 8 of the vacuum pump 1 by an annex discharge pipe 20 provided with a controllable outlet valve 21.
  • the outlet of the annex discharge line 20 is for example connected to the discharge 8 of the vacuum pump 1 downstream of the non-return valve 12 of the main discharge line 11 in the direction of flow of the pumped gases.
  • the outlets of the main delivery pipes 11 and annex 20 are independent.
  • control of the controllable outlet valve 21 is linked to the control of the controllable inlet valve 15: the two valves 15, 21 are controlled in opening and closing at the same time, by the same means, possibly with a small offset making it possible to close the outlet valve 21 just after the inlet valve 15 or to open the outlet valve 21 just before the inlet valve 15 in order to evacuate the volume of the annex stator 13 before isolating it.
  • the opening of the controllable outlet valve 21 can thus be controlled by the control unit 19 for example according to a measurement of the suction pressure of the vacuum pump 1 and / or of the power. consumed by the vacuum pump 1 or by the control means 102 of the airlock 101, for example when the airlock 101 is in the standby phase.
  • the at least one annex rotor 16 turns on itself without new gas entry, consuming little or no energy and without disturbing the pumping in the pumping stages 3a-3f of the vacuum pump 1.
  • the vacuum pump 1 comprises two annex rotors 16 arranged in the annex stator 13.
  • the annex rotors 16 are carried by a respective shaft 4, the two shafts 4 of the vacuum pump 1 passing through the annex stator 13.
  • the annex rotors 16 are configured to rotate in a synchronized manner in the opposite direction to drive a gas to be pumped between the inlet 17 and the outlet 18 of the annex stator 13.
  • the auxiliary rotors 16 are for example of the Roots, screw or Claw type.
  • the annex stator 13 has, for example, dimensions similar to or smaller than the dimensions of the stator 9 of the pumping stage 3f for the discharge of the vacuum pump 1. It is for example thinner than the stator 9 of the stage discharge or shafts 4 may have a larger diameter in the annex stator 13.
  • the annex stator 13 is for example arranged at the end of the pumping stages 3a-3f, for example next to the delivery pumping stage 3f, being for example interposed between the oil sump 10 and the pumping stage 3f.
  • the annex stator 13 may also be interposed between two successive pumping stages 3a-3f, for example between the last and penultimate pumping stage 3e, 3f.
  • the annex stator 13 is similar to an additional dry pumping stage, only used occasionally, when it is necessary to lower the pressure in the discharge stage.
  • the vacuum pump 1 comprises two attached rotors 16 arranged in the attached stator 22 which are formed by a respective toothed wheel 31 of the synchronization gear 6.
  • the toothed wheels 31 of the synchronization gear 6 are carried by a respective shaft 4, the two shafts 4 of the vacuum pump 1 passing through the annex stator 22 which is formed in the oil sump 10.
  • the toothed wheels 31 are configured to synchronize the rotation of the shafts 4 and to drive a gas to be pumped between the inlet 17 and the outlet 18 of the annex stator 22.
  • the toothed wheels 31 of the synchronization gear 6 thus form a gear pump with the annex stator 22.
  • Gear pumps use the combined profile of the two toothed wheels 31 to drive the gas to be pumped.
  • the gas to be pumped is housed between the teeth of each of the toothed wheels 31 and the annex stator 22.
  • the rotation of the toothed wheels 31 in the opposite direction drives the gas around the toothed wheels 31 from the outside.
  • the synchronization gear 6 already present for the synchronization of the shafts 4 is used as an additional pumping means when it is necessary to lower the pressure in the discharge stage.
  • the annex rotor 23 is a vane pump rotor (or "rotary vane pump” in English).
  • the annex rotor 23 forms a vane pump with the annex stator 24 received in a chamber 25 of the oil sump 10 of the vacuum pump 1.
  • the vane pump rotor comprises two vanes 26 sliding in a slot and interconnected by a spring which pushes them back. one from the other.
  • the vane pump rotor rotates eccentrically in a cylinder of the annex stator 24.
  • the annex stator 24 is received in a liquid lubricant 27, such as oil, contained in the chamber 25 of the oil pan 10.
  • a liquid lubricant 27 such as oil
  • the inlet 17 of the annex stator 24 opens out of the chamber 25 being isolated from the liquid lubricant 27.
  • the outlet 18 of the annex stator 24 is fitted with a valve 29 (or non-return valve) bathed in the liquid lubricant 27.
  • the vane pump rotor is carried and driven in rotation by a shaft 4 of the vacuum pump 1 passing through the annex stator 24.
  • the volume defined by the annex rotor 23 and the annex stator 24 begins by increasing to suck the gases at the inlet 17.
  • the suction volume is maximum when the vanes 26 are in a vertical position. This volume then decreases with the rotation of the vanes 26, thus increasing the pressure of the trapped gas.
  • This gas is then evacuated to outlet 18. The gas escapes through valve 29 and rises through liquid lubricant 27 to an outlet 30 of chamber 25 connected to the annex discharge line 20.
  • the vacuum pump 1 with integrated vane pump allows the pressure in the discharge stage to be lowered with a very good compression ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

La présente invention concerne une pompe à vide (1) de type sèche comportant un stator annexe (13) traversé au moins par un des arbres (4), - une canalisation d'aspiration (14) munie d'une vanne d'entrée pilotable (15), reliant une entrée (17) du stator annexe (13) à un étage de pompage (3f) communiquant avec le refoulement (8) de la pompe à vide (1), et - au moins un rotor annexe (16) porté par ledit arbre (4), ledit rotor annexe (16) étant configuré pour que sa rotation dans le stator annexe (13) entraine un gaz à pomper entre l'entrée (17) et une sortie (18) du stator annexe (13) pour abaisser la pression dans l'étage de pompage (3f) lorsque la vanne d'entrée pilotable (15) est commandée en ouverture. L'invention se rapporte également à une installation de pompage comportant un sas relié à une pompe à vide (1).

Description

Description
Titre de l'invention : Pompe à vide de type sèche et installation de pompage
[0001 ] [La présente invention se rapporte à une pompe à vide de type sèche, telle qu’une pompe à vide primaire par exemple de type "Roots", une pompe à becs de type "Claw" ou une pompe à vis. L’invention se rapporte également à une installation de pompage comportant un sas (ou « loadlock » en anglais) relié à une pompe à vide.
[0002] La puissance électrique nécessaire à la compression des gaz est l’un des paramètres important dans la consommation énergétique des pompes à vide. Cette puissance de compression est utilisée principalement dans les deux derniers étages de compression dans le cas d’une pompe à vide primaire multiétagée de type "Roots" ou "Claw".
[0003] Les applications de pompage de sas en particulier sont relativement consommatrices d’énergie. Le sas est utilisé pour abaisser la pression autour d’un substrat avant son déchargement dans une chambre de traitement maintenue à basse pression afin d’éviter la présence de toute impureté dans la chambre. Chaque chargement de substrats nécessite ainsi de descendre puis de remonter alternativement la pression dans l’enceinte du sas. Après chaque descente en pression, la pression est maintenue abaissée dans le sas jusqu’au transfert du substrat dans la chambre de traitement. Ces phases d’attente (« Idle » en anglais) à basse pression peuvent être relativement longues et sont coûteuses en énergie.
[0004] Pour réduire la consommation d’énergie électrique, une solution connue consiste à abaisser la pression dans le dernier étage de compression à l’aide d’un dispositif de pompage externe, par exemple au cours de ces phases d’attente du sas.
[0005] Ce dispositif de pompage externe est par exemple un éjecteur, une pompe à membranes ou une pompe à palettes. [0006] Un inconvénient à cela est la nécessité d’utiliser deux dispositifs de pompage distincts, ce qui peut conduire à un système de pompage encombrant, compliqué à mettre en œuvre, coûteux ou consommateur d’énergie électrique ou de gaz.
[0007] Un des buts de la présente invention est de proposer une pompe à vide de type sèche permettant de résoudre au moins partiellement un des inconvénients de l’état de la technique.
[0008] A cet effet, l’invention a pour objet une pompe à vide de type sèche
comportant :
- au moins un étage de pompage,
- deux arbres rotatifs portant respectivement au moins un rotor s’étendant dans le au moins un étage de pompage, les rotors étant configurés pour tourner de façon synchronisée en sens inverse pour entraîner un gaz à pomper entre une aspiration et un refoulement de la pompe à vide, caractérisée en ce que la pompe à vide comporte en outre :
- un stator annexe traversé au moins par un des arbres,
- une canalisation d’aspiration munie d’une vanne d’entrée pilotable, reliant une entrée du stator annexe à un étage de pompage communiquant avec le refoulement de la pompe à vide, et
- au moins un rotor annexe porté par ledit arbre, ledit rotor annexe étant configuré pour que sa rotation dans le stator annexe entraîne un gaz à pomper entre l’entrée et une sortie du stator annexe pour abaisser la pression dans l’étage de pompage lorsque la vanne d’entrée pilotable est commandée en ouverture, le au moins un rotor annexe et le stator annexe étant fluidiquement isolés de l’étage de pompage communiquant avec le refoulement lorsque la vanne d’entrée pilotable est commandée en fermeture.
[0009] On utilise ainsi la rotation des arbres entraînant les rotors de la pompe à vide pour également entraîner en rotation le au moins un rotor annexe afin d’abaisser la pression de l’étage de pompage de refoulement de la pompe à vide lorsque la vanne d’entrée pilotable est commandée en ouverture. La consommation électrique de la pompe à vide peut alors être réduite sans nécessiter de dispositif de pompage externe à la pompe à vide. Lorsque la vanne d’entrée pilotable est commandée en fermeture, le rotor annexe tourne sur lui-même dans le stator annexe sans gêner le fonctionnement de la pompe à vide. L’étage pompage annexe est ainsi court-circuité et ne participe plus au pompage des gaz.
[0010] Contrôler l’ouverture de la vanne d’entrée pilotable permet en outre d’abaisser la pression de l’étage de pompage de refoulement à des moments bien précis et pour des durées choisies. L’utilisation d’une vanne d’entrée pilotable procure donc une grande souplesse d’action.
[0011 ] La pompe à vide est donc compacte, simple à installer et à contrôler.
[0012] La pompe à vide est par exemple une pompe à vide primaire configurée pour refouler les gaz à pression atmosphérique. Les rotors sont par exemple de type « Roots » ou « Claw ».
[0013] La sortie du stator annexe peut être mise en communication avec le refoulement de la pompe à vide par une canalisation de refoulement annexe munie d’une vanne de sortie pilotable. Avec une vanne de sortie pilotable, il est possible de conserver le au moins un rotor annexe sous vide lorsqu’il n’est pas utilisé pour abaisser la pression dans l’étage de refoulement. Le au moins un rotor annexe tourne sur lui-même sans nouvelle entrée de gaz, en ne consommant pas ou très peu d’énergie et sans perturbation du pompage dans le au moins un étage de pompage de la pompe à vide.
[0014] La pompe à vide peut comporter une unité de pilotage configurée pour contrôler l’ouverture de la vanne d’entrée pilotable et/ou de la vanne de sortie pilotable, en fonction d’une mesure de la pression d’aspiration de la pompe à vide et/ou de la puissance consommée par la pompe à vide.
[0015] Selon un autre exemple, une enceinte, tel qu’un sas, reliée à la pompe à vide comporte un moyen de contrôle de la vanne d’entrée pilotable et/ou de la vanne de sortie pilotable. Ce moyen contrôle l’ouverture de la vanne d’entrée pilotable et/ou de la vanne de sortie pilotable par exemple lorsque le sas est en phase d’attente, par exemple sur des durées prédéfinies en début et en fin de phase d’attente. Les vannes pilotables peuvent aussi être commandées en fermeture par exemple dès que la puissance est descendue en dessous d’un seuil de puissance. [0016] Selon un premier exemple de réalisation, le stator annexe est traversé par les deux arbres, la pompe à vide comportant deux rotors annexes agencés dans le stator annexe portés par un arbre respectif, les rotors annexes étant configurés pour tourner de façon synchronisée en sens inverse. Les rotors annexes sont par exemple de type Roots, à vis ou Claw. Dans ce mode de réalisation, le stator annexe est similaire à un étage de pompage sec supplémentaire.
[0017] Selon un deuxième exemple de réalisation, le stator annexe est formé dans un carter d’huile de la pompe à vide, la pompe à vide comportant deux rotors annexes formés par une roue dentée respective d’un engrenage de synchronisation de la pompe à vide, l’engrenage de synchronisation formant une pompe à engrenages avec le stator annexe, l’engrenage de synchronisation étant en outre configuré pour synchroniser la rotation des arbres. Dans ce mode de réalisation, on utilise l’engrenage de synchronisation déjà présent pour la synchronisation des arbres comme moyen de pompage supplémentaire lorsqu’il est nécessaire d’abaisser la pression dans l’étage de refoulement.
[0018] Selon un troisième exemple de réalisation, le rotor annexe est un rotor de pompe à palettes formant une pompe à palettes avec le stator annexe reçu dans une chambre d’un carter d’huile de la pompe à vide. Dans ce mode de réalisation, la pompe à vide à pompe à palettes intégrée permet d’abaisser la pression dans l’étage de refoulement avec un très bon taux de compression.
[0019] L’invention a aussi pour objet une installation de pompage comportant un sas caractérisée en ce qu’elle comporte une pompe à vide de type sèche telle que décrite précédemment, reliée au sas pour descendre et monter alternativement en pression dans le sas.
[0020] Présentation des dessins
[0021 ] D'autres avantages et caractéristiques apparaîtront à la lecture de la description d’un exemple illustratif mais non limitatif de la présente invention, ainsi que des dessins annexés sur lesquels :
[0022] [Fig. 1 ] représente une vue schématique d’une installation de pompage.
[0023] [Fig. 2] représente une vue schématique d’une pompe à vide primaire sèche de l’installation de la Figure 1 selon un premier exemple de réalisation. [0024] [Fig. 3] représente une vue schématique d’une pompe à vide primaire sèche selon un deuxième exemple de réalisation.
[0025] [Fig. 4] montre une vue schématique en coupe A-A de la pompe à vide de la Figure 3 au niveau d’un carter d’huile.
[0026] [Fig. 5] représente une vue schématique d’une pompe à vide primaire sèche selon un troisième exemple de réalisation.
[0027] [Fig. 6] montre une vue schématique en coupe A-A de la pompe à vide de la Figure 5 au niveau d’un carter d’huile.
[0028] Les réalisations suivantes sont des exemples. Bien que la description se réfère à un ou plusieurs modes de réalisation, ceci ne signifie pas nécessairement que chaque référence concerne le même mode de réalisation ou que les caractéristiques s'appliquent seulement à un seul mode de réalisation. De simples caractéristiques de différents modes de réalisation peuvent également être combinées ou interchangées pour fournir d'autres réalisations.
[0029] On définit par pompe à vide primaire, une pompe à vide volumétrique, qui, à l’aide de deux rotors aspire, transfère puis refoule le gaz à pomper, à pression atmosphérique.
[0030] La Figure 1 montre une installation de pompage 100 comportant un sas 101 et une pompe à vide 1 de type sèche reliée au sas 101 pour descendre et monter alternativement en pression dans le sas 101. Le sas 101 est utilisé pour abaisser la pression autour d’un substrat avant son déchargement dans une chambre de traitement maintenue à basse pression afin d’éviter la présence de toute impureté dans la chambre de traitement. Le substrat est par exemple un écran plat d’affichage (« ou fiat panel display » en anglais) ou un substrat photovoltaïque ou une plaquette de semi-conducteurs (ou « wafer » en anglais) ou un photomasque de fabrication de semi-conducteurs.
[0031 ] La pompe à vide 1 est une pompe à vide primaire configurée pour refouler les gaz à pression atmosphérique.
[0032] Comme on peut le voir sur la Figure 2, la pompe à vide 1 comporte au moins un étage de pompage 3a-3f et deux arbres 4 rotatifs. [0033] Les arbres 4 portent respectivement au moins un rotor 5 s’étendant dans le au moins un étage de pompage 3a-3f.
[0034] Dans l’exemple illustratif, la pompe à vide 1 comporte plusieurs étages de pompage 3a, 3b, 3c, 3d, 3e, 3f tels que six, montés en série entre une aspiration 7 et un refoulement 8 de la pompe à vide 1 et dans lesquels un gaz à pomper peut circuler.
[0035] Chaque étage de pompage 3a-3f est formé par une chambre de compression recevant les rotors 5, les chambres comprenant une entrée et une sortie respectives. Les étages de pompage successifs 3a-3f sont raccordés en série les uns à la suite des autres par des canaux inter-étages respectifs raccordant la sortie de l'étage de pompage qui précède à l'entrée de l'étage qui suit.
[0036] Dans une telle pompe multiétagée, le premier étage de pompage 3a dont l’entrée communique avec l’aspiration 7 de la pompe à vide 1 est aussi nommé « étage d’aspiration ». Le dernier étage de pompage 3f dont la sortie communique avec le refoulement 8 de la pompe à vide 1 est aussi nommé « étage de refoulement », la pression de refoulement étant généralement de l’ordre de la pression ambiante (ou atmosphérique).
[0037] En fonctionnement, les rotors 5 tournent de façon synchronisée en sens inverse dans chaque étage pour entraîner un gaz à pomper entre l’aspiration 7 et le refoulement 8. Lors de la rotation, le gaz aspiré depuis l’entrée est emprisonné dans le volume engendré par les rotors 5 et le stator 9 de la pompe à vide 1 , puis est entraîné par les rotors 5 vers l’étage suivant (le sens de circulation des gaz pompés est illustré par les flèches sur les Figures 1 et 2).
[0038] Les rotors 5 présentent par exemple des lobes de profils identiques, par exemple de type « Roots », par exemple de section en forme de « huit » ou de « haricot », ou de type « Claw » ou sont de type à vis ou d’un autre principe similaire de pompe à vide volumétrique.
[0039] Les arbres 4 portant les rotors 5 sont entraînés par un moteur M de la pompe à vide 1. Ils sont supportés par des roulements lubrifiés par un lubrifiant contenu dans au moins un carter d’huile 10 de la pompe à vide 1 et ils sont synchronisés au moyen d’un engrenage de synchronisation 6 également lubrifié. Un moyen d’étanchéité au travers duquel les arbres 4 sont toujours susceptibles de tourner, isole le carter d’huile 10 de la partie de pompage sec.
[0040] Selon un exemple de réalisation, la pompe à vide 1 comporte une canalisation de refoulement principale 11 , raccordant la sortie du dernier étage de pompage 3f au refoulement 8. Un clapet antiretour 12 peut être agencé dans la canalisation de refoulement principale 11 pour empêcher le retour des gaz pompés dans la pompe à vide 1.
[0041 ] La pompe à vide 1 comporte en outre un stator annexe 13, une canalisation d’aspiration 14 munie d’une vanne d’entrée pilotable 15 et au moins un rotor annexe 16 agencé dans le stator annexe 13.
[0042] Le stator annexe 13 comporte une entrée 17 et une sortie 18. Il est traversé au moins par un des arbres 4.
[0043] La canalisation d’aspiration 14 relie l’entrée 17 du stator annexe 13 à l’étage de pompage 3f communiquant avec le refoulement 8 de la pompe à vide 1 , par exemple au niveau de l’entrée de l’étage de pompage 3f. Cet étage est le dernier étage dans le sens d’écoulement des gaz pompés dans le cas d’une pompe à vide 1 multiétagée ou est formé par les derniers pas de vis dans le sens d’écoulement des gaz pompés dans le cas d’une pompe à vide monoétagée à vis.
[0044] Le au moins un rotor annexe 16 est porté par l’arbre 4 traversant le stator annexe 13. Il est configuré pour que sa rotation dans le stator annexe 13 entraîne un gaz à pomper entre l’entrée 17 et la sortie 18 du stator annexe 13 pour abaisser la pression dans l’étage de pompage 3f communiquant avec le refoulement 8 lorsque la vanne d’entrée pilotable 15 est commandée en ouverture. Le au moins un rotor annexe 16 et le stator annexe 13 sont fluidiquement isolés de l’étage de pompage 3f communiquant avec le refoulement 8 lorsque la vanne d’entrée pilotable 15 est commandée en fermeture.
[0045] On utilise ainsi la rotation des arbres 4 entraînant les rotors 5 de la pompe à vide 1 pour également entraîner en rotation le au moins un rotor annexe 16 afin d’abaisser la pression de l’étage de pompage 3f de refoulement de la pompe à vide 1 lorsque la vanne d’entrée pilotable 15 est commandée en ouverture. La consommation électrique de la pompe à vide 1 peut alors être réduite sans nécessiter de dispositif de pompage externe à la pompe à vide 1. Lorsque la vanne d’entrée pilotable 15 est commandée en fermeture, le rotor annexe tourne sur lui-même dans le stator annexe sans gêner le fonctionnement de la pompe à vide. L’étage pompage annexe est ainsi court-circuité et ne participe plus au pompage des gaz.
[0046] La pompe à vide 1 est compacte, simple à installer et à contrôler.
[0047] La vanne d’entrée pilotable 15 est par exemple une vanne pneumatique ou une électrovanne telle qu’électromagnétique ou piézoélectrique, notamment pilotable en tout ou rien : elle est soit ouverte, soit fermée.
[0048] Pour commander la vanne d’entrée pilotable 15, la pompe à vide 1 peut comporter une unité de pilotage 19 comprenant un ou plusieurs contrôleurs ou microcontrôleurs ou processeurs et une mémoire.
[0049] L’unité de pilotage 19 est par exemple configurée pour contrôler l’ouverture de la vanne d’entrée pilotable 15 en fonction d’une mesure de la pression d’aspiration de la pompe à vide 1 et/ou de la puissance consommée par la pompe à vide 1.
[0050] Pour cela, l’unité de pilotage 19 surveille un franchissement de seuil de pression et/ou de puissance, par exemple lorsque la pression d’aspiration de la pompe à vide 1 franchit un seuil bas de pression et/ou lorsque la puissance (ou courant) du moteur M dépasse un seuil de puissance pendant une durée prédéterminée. Cette situation correspond généralement à une phase d’attente du sas 101 à basse pression, la pompe à vide 1 étant en situation de pompage en vide limite (sans injection de gaz) ou en situation de pompage à basse pression d’un faible flux de purge.
[0051 ] Selon un autre exemple, le sas 101 comporte un moyen de contrôle 102 de la vanne d’entrée pilotable 15, pouvant contrôler directement la vanne d’entrée pilotable 15 ou pouvant être relié à l’unité de contrôle 19 de la pompe à vide 1 pour contrôler la vanne d’entrée pilotable 15.
[0052] Le moyen de contrôle 102 contrôle l’ouverture de la vanne d’entrée pilotable 15 par exemple lorsque le sas 101 est en phase d’attente. Le moyen de contrôle 102 peut être un signal, par exemple issu d’un commutateur électrique, ou peut être un code numérique.
[0053] La commande en ouverture de la vanne d’entrée pilotable 15 peut être limitée dans le temps, c’est-à-dire pour une durée prédéfinie, par exemple inférieure à cinq minutes. La commande en ouverture de la vanne d’entrée pilotable 15 peut être déclenchée en début et en fin de phase d’attente. La vanne d’entrée pilotable 15 peut aussi être commandée en fermeture par exemple dès que la puissance est descendue en dessous du seuil de puissance.
[0054] Contrôler l’ouverture de la vanne d’entrée pilotable 15 permet d’abaisser la pression de l’étage de pompage 3f de refoulement à des moments bien précis et pour des durées choisies. L’utilisation d’une vanne d’entrée pilotable 15 procure donc une grande souplesse d’action.
[0055] Selon un exemple de réalisation, la sortie 18 du stator annexe 13 est mise en communication avec le refoulement 8 de la pompe à vide 1 par une canalisation de refoulement annexe 20 munie d’une vanne de sortie pilotable 21.
[0056] La sortie de la canalisation de refoulement annexe 20 est par exemple reliée au refoulement 8 de la pompe à vide 1 en aval du clapet antiretour 12 de la canalisation de refoulement principale 11 dans le sens d’écoulement des gaz pompés. Les sorties des canalisations de refoulement principale 11 et annexe 20 sont indépendantes.
[0057] Le pilotage de la vanne de sortie pilotable 21 est lié au pilotage de la vanne d’entrée pilotable 15 : les deux vannes 15, 21 sont pilotées en ouverture et fermeture en même temps, par les mêmes moyens, avec éventuellement un petit décalage permettant de fermer la vanne de sortie 21 juste après la vanne d’entrée 15 ou d’ouvrir la vanne de sortie 21 juste avant la vanne d’entrée 15 afin d’évacuer le volume du stator annexe 13 avant de l’isoler.
[0058] L’ouverture de la vanne de sortie pilotable 21 peut ainsi être contrôlée par l’unité de pilotage 19 par exemple en fonction d’une mesure de la pression d’aspiration de la pompe à vide 1 et/ou de la puissance consommée par la pompe à vide 1 ou par le moyen de contrôle 102 du sas 101 par exemple lorsque le sas 101 est en phase d’attente. [0059] On peut ainsi conserver le au moins un rotor annexe 16 sous vide lorsqu’il n’est pas utilisé pour abaisser la pression dans l’étage de refoulement. Le au moins un rotor annexe 16 tourne sur lui-même sans nouvelle entrée de gaz, en ne consommant pas ou très peu d’énergie et sans perturbation du pompage dans les étages de pompage 3a-3f de la pompe à vide 1.
[0060] Selon un premier exemple de réalisation représenté sur la Figure 2, la pompe à vide 1 comporte deux rotors annexes 16 agencés dans le stator annexe 13. Les rotors annexes 16 sont portés par un arbre 4 respectif, les deux arbres 4 de la pompe à vide 1 traversant le stator annexe 13. Les rotors annexes 16 sont configurés pour tourner de façon synchronisée en sens inverse pour entraîner un gaz à pomper entre l’entrée 17 et la sortie 18 du stator annexe 13.
[0061 ] Les rotors annexes 16 sont par exemple de type Roots, à vis ou Claw.
[0062] Le stator annexe 13 présente par exemple des dimensions similaires ou inférieures aux dimensions du stator 9 de l’étage de pompage 3f de refoulement de la pompe à vide 1. Il est par exemple moins épais que le stator 9 de l’étage de refoulement ou les arbres 4 peuvent présenter un diamètre plus important dans le stator annexe 13.
[0063] Le stator annexe 13 est par exemple agencé à l’extrémité des étages de pompage 3a-3f, par exemple à côté de l’étage de pompage 3f de refoulement, en étant par exemple interposé entre le carter d’huile 10 et l’étage de pompage 3f. Le stator annexe 13 peut aussi être interposé entre deux étages de pompage 3a- 3f successifs, par exemple entre le dernier et l’avant dernier étage de pompage 3e, 3f.
[0064] Dans ce mode de réalisation, le stator annexe 13 est similaire à un étage de pompage sec supplémentaire, uniquement utilisé de façon ponctuelle, lorsqu’il est nécessaire d’abaisser la pression dans l’étage de refoulement.
[0065] Selon un deuxième exemple de réalisation représenté sur les Figures 3 et 4, la pompe à vide 1 comporte deux rotors annexes 16 agencés dans le stator annexe 22 qui sont formés par une roue dentée 31 respective de l’engrenage de synchronisation 6. [0066] Les roues dentées 31 de l’engrenage de synchronisation 6 sont portées par un arbre 4 respectif, les deux arbres 4 de la pompe à vide 1 traversant le stator annexe 22 qui est formé dans le carter d’huile 10.
[0067] Les roues dentées 31 sont configurées pour synchroniser la rotation des arbres 4 et pour entraîner un gaz à pomper entre l’entrée 17 et la sortie 18 du stator annexe 22. Les roues dentées 31 de l’engrenage de synchronisation 6 forment ainsi une pompe à engrenages avec le stator annexe 22.
[0068] Les pompes à engrenages utilisent le profil combiné des deux roues dentées 31 pour entraîner le gaz à pomper. En fonctionnement, le gaz à pomper se loge entre les dents de chacune des roues dentées 31 et le stator annexe 22. La rotation des roues dentées 31 en sens inverse entraîne le gaz autour des roues dentées 31 par l’extérieur.
[0069] Dans ce mode de réalisation, on utilise l’engrenage de synchronisation 6 déjà présent pour la synchronisation des arbres 4 comme moyen de pompage supplémentaire lorsqu’il est nécessaire d’abaisser la pression dans l’étage de refoulement.
[0070] Il est possible d’ajouter un piège à huile entre l’entrée 17 du stator annexe 22 et la vanne d’entrée pilotable 15 pour éviter la migration du lubrifiant dans la partie de pompage sec.
[0071 ] Selon un troisième exemple de réalisation représenté sur les Figures 5 et 6, le rotor annexe 23 est un rotor de pompe à palettes (ou « rotary vane pump » en anglais).
[0072] Le rotor annexe 23 forme une pompe à palettes avec le stator annexe 24 reçu dans une chambre 25 du carter d’huile 10 de la pompe à vide 1.
[0073] De manière connue en soi, et comme on peut le voir sur l’exemple de la Figure 6, le rotor de pompe à palettes comporte deux palettes 26 coulissant dans une fente et reliées entre elles par un ressort qui les repousse l’une de l’autre. Le rotor de pompe à palettes tourne de manière excentrique dans un cylindre du stator annexe 24. Le stator annexe 24 est reçu dans un lubrifiant liquide 27, tel que de l’huile, contenu dans la chambre 25 du carter d’huile 10. L’entrée 17 du stator annexe 24 débouche de la chambre 25 en étant isolée du lubrifiant liquide 27. La sortie 18 du stator annexe 24 est munie d’une soupape 29 (ou clapet anti retour) baignant dans le lubrifiant liquide 27.
[0074] Ici, le rotor de pompe à palettes est porté et entraîné en rotation par un arbre 4 de la pompe à vide 1 traversant le stator annexe 24.
[0075] En fonctionnement, le volume défini par le rotor annexe 23 et le stator annexe 24 commence par augmenter pour aspirer les gaz à l’entrée 17. Le volume d’aspiration est maximum lorsque les palettes 26 sont en position verticale. Ce volume diminue ensuite avec la rotation des palettes 26, augmentant ainsi la pression du gaz emprisonné. Ce gaz est ensuite évacué vers la sortie 18. Le gaz s’échappe via la soupape 29 et remonte à travers le lubrifiant liquide 27 jusqu’à une sortie 30 de la chambre 25 reliée à la canalisation de refoulement annexe 20.
[0076] La pompe à vide 1 à pompe à palettes intégrée permet d’abaisser la pression dans l’étage de refoulement avec un très bon taux de compression.
[0077] Il est possible d’ajouter un piège à huile entre l’entrée 17 du stator annexe 24 et la vanne d’entrée pilotable 15 pour éviter la migration du lubrifiant dans la partie de pompage sec. ]

Claims

Revendications
[Revendication 1 ] [Pompe à vide (1 ) de type sèche comportant :
- au moins un étage de pompage (3a, 3b, 3c, 3d, 3e, 3f),
- deux arbres (4) rotatifs portant respectivement au moins un rotor (5) s’étendant dans le au moins un étage de pompage (3a, 3b, 3c, 3d, 3e, 3f), les rotors (5) étant configurés pour tourner de façon synchronisée en sens inverse pour entraîner un gaz à pomper entre une aspiration (7) et un refoulement (8) de la pompe à vide (1 ), caractérisée en ce que la pompe à vide (1 ) comporte en outre :
- un stator annexe (13 ; 22 ; 24) traversé au moins par un des arbres (4),
- une canalisation d’aspiration (14) munie d’une vanne d’entrée pilotable (15), reliant une entrée (17) du stator annexe (13 ; 22 ; 24) à un étage de pompage (3f) communiquant avec le refoulement (8) de la pompe à vide (1 ), et
- au moins un rotor annexe (16 ; 23) porté par ledit arbre (4), ledit rotor annexe (16 ; 23) étant configuré pour que sa rotation dans le stator annexe (13 ; 22 ; 24) entraîne un gaz à pomper entre l’entrée (17) et une sortie (18) du stator annexe (13 ; 22 ; 24) pour abaisser la pression dans l’étage de pompage (3f) lorsque la vanne d’entrée pilotable (15) est commandée en ouverture, le au moins un rotor annexe (16 ; 23) et le stator annexe (13 ; 22 ; 24) étant fluidiquement isolés de l’étage de pompage (3f) communiquant avec le refoulement (8) lorsque la vanne d’entrée pilotable (15) est commandée en fermeture.
[Revendication 2] Pompe à vide (1 ) selon la revendication 1 , caractérisée en ce que le stator annexe (13) est traversé par les deux arbres (4), la pompe à vide (1 ) comportant deux rotors annexes (16) agencés dans le stator annexe (13) portés par un arbre (4) respectif, les rotors annexes (16) étant configurés pour tourner de façon synchronisée en sens inverse.
[Revendication s] Pompe à vide (1 ) selon la revendication 2, caractérisée en ce que les rotors annexes (16) sont de type Roots.
[Revendication 4] Pompe à vide (1 ) selon la revendication 1 , caractérisée en ce que le stator annexe (22) est formé dans un carter d’huile (10) de la pompe à vide (1 ), la pompe à vide (1 ) comportant deux rotors annexes formés par une roue dentée (31 ) respective d’un engrenage de synchronisation (6) de la pompe à vide (1 ), l’engrenage de synchronisation (6) formant une pompe à engrenages avec le stator annexe (22), l’engrenage de synchronisation (6) étant en outre configuré pour synchroniser la rotation des arbres (4).
[Revendication s] Pompe à vide (1 ) selon la revendication 1 , caractérisée en ce que le rotor annexe (23) est un rotor de pompe à palettes formant une pompe à palettes avec le stator annexe (24) reçu dans une chambre (25) d’un carter d’huile (10) de la pompe à vide (1 ).
[Revendication 6] Pompe à vide (1 ) selon l’une des revendications précédentes, caractérisée en ce que la sortie (18) du stator annexe (13 ; 22 ; 24) est mise en communication avec le refoulement (8) de la pompe à vide (1 ) par une canalisation de refoulement annexe (20) munie d’une vanne de sortie pilotable (21 ).
[Revendication 7] Pompe à vide (1 ) selon l’une des revendications précédentes, caractérisée en ce que c’est une pompe à vide (1 ) primaire configurée pour refouler les gaz à pression atmosphérique.
[Revendication s] Pompe à vide (1 ) selon l’une des revendications précédentes, caractérisée en ce qu’elle comporte une unité de pilotage (19) configurée pour contrôler l’ouverture de la vanne d’entrée pilotable (15) en fonction d’une mesure de la pression d’aspiration de la pompe à vide (1 ) et/ou de la puissance consommée par la pompe à vide (1 ).
[Revendication 9] Pompe à vide (1 ) selon l’une des revendications précédentes, caractérisée en ce que les rotors (5) sont de type « Roots » ou « Claw ».
[Revendication 10] Installation de pompage (100) comportant un sas (101 ) caractérisée en ce qu’elle comporte une pompe à vide (1 ) de type sèche selon l’une des revendications précédentes reliée au sas (101 ) pour descendre et monter alternativement en pression dans le sas (101 ).
[Revendication 11 ] Installation de pompage (100) selon la revendication précédente, caractérisée en ce que le sas (101 ) comporte un moyen de contrôle (102) de la vanne d’entrée pilotable (15) pour contrôler l’ouverture de la vanne d’entrée pilotable (15) lorsque le sas (101 ) est en phase d’attente. ]
PCT/EP2020/058968 2019-04-05 2020-03-30 Pompe à vide de type sèche et installation de pompage WO2020201218A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217032804A KR20210138676A (ko) 2019-04-05 2020-03-30 건식 진공 펌프 및 펌핑 설비
JP2021559147A JP7396561B2 (ja) 2019-04-05 2020-03-30 ドライ真空ポンプおよびポンプ設備
DE112020001762.1T DE112020001762T5 (de) 2019-04-05 2020-03-30 Trockenvakuumpumpe und Pumpanlage
CN202080021803.9A CN113574277B (zh) 2019-04-05 2020-03-30 干式真空泵和泵送设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1903682A FR3094762B1 (fr) 2019-04-05 2019-04-05 Pompe à vide de type sèche et installation de pompage
FRFR1903682 2019-04-05

Publications (1)

Publication Number Publication Date
WO2020201218A1 true WO2020201218A1 (fr) 2020-10-08

Family

ID=67185490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/058968 WO2020201218A1 (fr) 2019-04-05 2020-03-30 Pompe à vide de type sèche et installation de pompage

Country Status (7)

Country Link
JP (1) JP7396561B2 (fr)
KR (1) KR20210138676A (fr)
CN (1) CN113574277B (fr)
DE (1) DE112020001762T5 (fr)
FR (1) FR3094762B1 (fr)
TW (1) TWI826664B (fr)
WO (1) WO2020201218A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114593055A (zh) * 2020-12-07 2022-06-07 中国科学院沈阳科学仪器股份有限公司 多级干式真空泵
WO2023223031A1 (fr) * 2022-05-18 2023-11-23 Edwards Limited Pompe à vide à étages multiples

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2175956A (en) * 1985-05-30 1986-12-10 Boc Group Plc Dealing with leakage between pump stages
US4770609A (en) * 1986-04-14 1988-09-13 Hitachi, Ltd. Two-stage vacuum pump apparatus and method of operating the same
EP1710440A2 (fr) * 2005-04-05 2006-10-11 Alcatel Pompage à vide avec limitation d'énergie

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003343469A (ja) 2002-03-20 2003-12-03 Toyota Industries Corp 真空ポンプ
GB0515905D0 (en) * 2005-08-02 2005-09-07 Boc Group Plc Vacuum pump
EP2379889B1 (fr) * 2008-12-19 2015-09-30 Stobbe Tech A/s Pompe a membrane a commande electronique
JP2014029115A (ja) * 2010-11-17 2014-02-13 Ulvac Japan Ltd 真空排気装置の接続構造及び真空排気システム
GB2487376A (en) * 2011-01-19 2012-07-25 Edwards Ltd Two material pump stator for corrosion resistance and thermal conductivity
FR2993614B1 (fr) 2012-07-19 2018-06-15 Pfeiffer Vacuum Procede et dispositif de pompage d'une chambre de procedes
US20170045051A1 (en) * 2014-05-01 2017-02-16 Ateliers Busch Sa Pumping method in a system for pumping and system of vacuum pumps
DE202014005279U1 (de) 2014-06-26 2015-10-05 Oerlikon Leybold Vacuum Gmbh Vakuumpumpen-System
BR112017005927B1 (pt) 2014-09-26 2022-07-12 Ateliers Busch S.A Sistema de bombeamento para gerar um vácuo e método de bombeamento

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2175956A (en) * 1985-05-30 1986-12-10 Boc Group Plc Dealing with leakage between pump stages
US4770609A (en) * 1986-04-14 1988-09-13 Hitachi, Ltd. Two-stage vacuum pump apparatus and method of operating the same
EP1710440A2 (fr) * 2005-04-05 2006-10-11 Alcatel Pompage à vide avec limitation d'énergie

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114593055A (zh) * 2020-12-07 2022-06-07 中国科学院沈阳科学仪器股份有限公司 多级干式真空泵
WO2023223031A1 (fr) * 2022-05-18 2023-11-23 Edwards Limited Pompe à vide à étages multiples

Also Published As

Publication number Publication date
CN113574277A (zh) 2021-10-29
JP2022526413A (ja) 2022-05-24
FR3094762B1 (fr) 2021-04-09
FR3094762A1 (fr) 2020-10-09
DE112020001762T5 (de) 2022-01-05
KR20210138676A (ko) 2021-11-19
JP7396561B2 (ja) 2023-12-12
CN113574277B (zh) 2023-06-30
TWI826664B (zh) 2023-12-21
TW202041784A (zh) 2020-11-16

Similar Documents

Publication Publication Date Title
EP2501936B1 (fr) Procede et dispositif de pompage a consommation d'energie reduite
EP3485168B1 (fr) Procédé de descente en pression dans un sas de chargement et de déchargement et groupe de pompage associé
WO2020201218A1 (fr) Pompe à vide de type sèche et installation de pompage
EP3607204B1 (fr) Groupe de pompage et utilisation
FR2993614A1 (fr) Procede et dispositif de pompage d'une chambre de procedes
FR2883934A1 (fr) Pompage rapide d'enceinte avec limitation d'energie
EP3737864A1 (fr) Pompe à vide de type sèche et procédé de commande d'un moteur synchrone de pompe à vide
FR2681106A1 (fr) Compresseur a vis, systeme de refrigeration, procede de reglage de la capacite d'un tel compresseur et procede de commande d'un systeme de refrigeration.
EP3201469B1 (fr) Systeme de pompage pour generer un vide et procede de pompage au moyen de ce systeme de pompage
FR2689185A1 (fr) Ensemble à pompe à huile pour moteur.
EP3676589B1 (fr) Détecteur de fuites et procédé de détection de fuites pour le contrôle de l'étanchéité d'objets à tester
EP1589227A1 (fr) Pompe à vide multi-étagée et installation de pompage comprenant une telle pompe
EP2549112A2 (fr) Pompe à vide multi-étagée de type sèche
FR2860841A3 (fr) Perfectionnements apportes a l'efficacite d'un systeme de pompage
FR2968730A1 (fr) Dispositif de pompage a consommation d'energie reduite
WO2021008834A1 (fr) Groupe de pompage
EP3105455B1 (fr) Système de pompage et procédé de descente en pression dans un sas de chargement et de déchargement
CA2943315C (fr) Methode de pompage dans un systeme de pompes a vide et systeme de pompes a vide
WO2020254043A1 (fr) Pompe à vide primaire de type sèche et procédé de contrôle de l'injection d'un gaz de purge
EP2823182B1 (fr) Installation de pompage amelioree et le procede de controle d'une telle installation de pompage
WO2013087822A1 (fr) Dispositif de pompe a vide multi-etage
FR2971018A1 (fr) Pompe a vide primaire, installation pour le traitement de substrats et procede de pompage
WO2024088630A1 (fr) Groupe de pompage
FR3128747A1 (fr) Pompe à vide multi-étagée

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20713671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021559147

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217032804

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20713671

Country of ref document: EP

Kind code of ref document: A1