EP2501936B1 - Procede et dispositif de pompage a consommation d'energie reduite - Google Patents

Procede et dispositif de pompage a consommation d'energie reduite Download PDF

Info

Publication number
EP2501936B1
EP2501936B1 EP10790462.5A EP10790462A EP2501936B1 EP 2501936 B1 EP2501936 B1 EP 2501936B1 EP 10790462 A EP10790462 A EP 10790462A EP 2501936 B1 EP2501936 B1 EP 2501936B1
Authority
EP
European Patent Office
Prior art keywords
vacuum pump
primary vacuum
ejector
dry primary
pumping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10790462.5A
Other languages
German (de)
English (en)
Other versions
EP2501936A2 (fr
Inventor
Thierry Neel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum SAS
Original Assignee
Pfeiffer Vacuum SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum SAS filed Critical Pfeiffer Vacuum SAS
Publication of EP2501936A2 publication Critical patent/EP2501936A2/fr
Application granted granted Critical
Publication of EP2501936B1 publication Critical patent/EP2501936B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0245Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the pump
    • F04D15/0254Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the pump the condition being speed or load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0281Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/20Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/02Power

Definitions

  • the present invention relates to a pumping method for reducing the electrical energy consumption of a dry primary vacuum pump, and the pumping device for its implementation. It relates in particular to the rotary lobe dry type vacuum pumps, such as a "Roots” type lobe pump, a "Claw” type nozzle pump, and a “Scroll” type scroll pump. , a screw pump, a piston pump, etc., in single-stage or multistage versions.
  • These dry vacuum pumps are intended in particular for pumping "load lock chamber” type enclosures, transfer chambers or vacuum deposition chambers PVD (for "Physical Vapor Deposition” in English). ) in manufacturing units for semiconductor components, flat screens or photovoltaic substrates.
  • the processing steps of the semiconductor substrates are carried out under a very low pressure (vacuum) atmosphere in a process chamber, wherein the atmosphere must be controlled to avoid the presence of any impurity.
  • the substrates are packaged and fed one by one by robotic means into a loading / unloading chamber which communicates with a transfer chamber, which precedes the process chamber.
  • the loading / unloading chamber and the transfer chamber are then placed under a reduced pressure of the order of a primary vacuum (approximately 10 -1 mbar), similar to that prevailing in the process chamber, in order to allow the transfer of the substrate.
  • a gas pumping system comprising a primary vacuum pump connected by a pumping circuit to the chamber to be emptied, which can be the loading / unloading chamber or the transfer chamber, in order to pump the gases up to to reach the pressure allowing the transfer of the substrate into the chamber, which is about 10 -1 mbar.
  • the pumping system To reduce the pressure in the chamber, from the atmospheric pressure up to a transfer pressure of the order of 10 -1 mbar, the pumping system must pump a relatively large flow of gas at the beginning of the pumping. Pressure in the chamber is carried out in two stages, the first step corresponding to the passage of the atmospheric pressure to the transfer pressure (10 -1 mbar) .When the transfer pressure is reached, the pumping system continues to operate with a zero gas flow. The cycles of descent and rise in pressure succeed each other at a high frequency and consume a large amount of energy due in particular to the rise to atmospheric pressure. Reducing the energy consumed by these pumping systems would have a significant impact on the overall electrical energy savings of a semiconductor manufacturing unit.
  • dry primary vacuum pumps represent about 50% of the vacuum pump fleet of a semiconductor manufacturing unit, and about 40% of the unit's overall power consumption.
  • the electrical energy consumption of these pumping systems must be reduced.
  • Many efforts have been made to reduce the expenditure of electrical energy by acting on the components of the vacuum pump. The actions carried out focused in particular on the friction losses, the dimensioning of the compression stages, the use of frequency converter on the motorization, the IPUP TM concept (for "Integrated Point-of-Use Pump" applied). to dry primary vacuum pumps, optimization of pumping cycles.
  • the electrical power required for gas compression is an important parameter in the energy consumption of dry primary vacuum pumps.
  • This compression power is mainly used in the last two stages of compression in the case of a multi-stage pump of "Roots" or "Claw” type, and in the last steps in the case of a screw pump.
  • This electric power, consumed in the last compression stages is proportional to the compression ratio (pressure difference between the inlet and the outlet of the compression stage), to the volume generated per compression cycle (generated cyclic volume) and at the mass flow rate of pumped gas.
  • generated cyclic volume means the flow rate of a pump relative to the volume of its components, since the flow rate varies with the size of the volume transferred per revolution (geometric dimension of the elements) and with the speed of rotation. To increase the volumetric flow rate of a pump, it is necessary to increase the cyclic volume generated by the pump or its speed of rotation, all dimensions being equal.
  • the reduction of the electric power consumed of a multi-stage dry pump can be obtained by undersizing the last compression stage of the pump, however this power reduction is limited.
  • the gas undergoes several successive compressions in the various stages of the pump from the suction pressure at the inlet of the first stage to the atmospheric pressure at the outlet of the last stage. From a certain size of the last discharge stage, the dry primary pump will no longer have the capacity to pump large gas flows during the first pumping step of the process chamber. Also this size optimization does not achieve the energy consumption reduction sought here, which is of the order of 50%.
  • Arrangements are also known, as described in the application US2004 / 0173312 , to reduce the overall energy consumption of the pumping device by using a main dry primary vacuum pump and a dry auxiliary vacuum pump connected to the discharge of the main pump.
  • the recommended auxiliary pumps are either diaphragm pumps, piston pumps or "Scroll" type pumps.
  • the main dry vacuum pump for example of "Roots” type, comprises a first compression stage connected to a process chamber by a suction orifice and a last compression stage whose discharge orifice is connected to a pipe having a check valve.
  • the suction port of the auxiliary pump is connected to the terminal stage of the main vacuum pump of the device and can be mounted parallel to the non-return valve.
  • the auxiliary pump is a "Gede”, “Scroll”, piston or diaphragm type vacuum pump.
  • the auxiliary pump consumes an electrical energy which is not negligible, which limits the interest of this proposal.
  • the volume of gas pumped by the main vacuum pump is large, the total power consumption is higher than in the absence of auxiliary pump.
  • Vacuum systems comprising a dry vacuum pump directly connected to a permanent gas ejector are described in the documents EP 1 609 990 A1 and EP 1 234 982 A1 .
  • the aim of the present invention is to propose a method of pumping a vacuum chamber enabling a substantial reduction (of the order of 50%) and in a very short period of time (a few seconds) of the electrical consumption of a dry primary vacuum pump.
  • the invention also aims to provide a pumping device comprising a dry primary vacuum pump whose power consumption is reduced.
  • Another object of the invention is to propose a control device for the pumping method that allows a significant reduction in the electrical consumption of a dry primary vacuum pump.
  • the set value of the gas pressure in the duct at the outlet of the dry primary vacuum pump is at most equal to 200 mbar.
  • the set value of the electrical power consumed by the dry primary vacuum pump is at least equal to the minimum electrical power consumed increased by 200%.
  • the dry primary vacuum pump is started from the beginning of the process to evacuate the enclosure to which it is connected. The pumping continues until reaching the operating limit pressure of the primary vacuum pump which is about 10 -1 mbar. As soon as this pressure is reached, the ejector is activated for a very short period of time while the primary vacuum pump continues to operate.
  • the invention resides in the fact that the coupling-assisted operation of the dry primary vacuum pump and the ejector will only require a few seconds of operation of the ejector, for a running time in low-consumption mode of the pump.
  • dry primary vacuum can be maintained indefinitely as the pumping line is not refilled with a new gas influx.
  • the depression of the dry vacuum pump by the ejector does not require electrical energy, the ejector using a compressed fluid.
  • the ratio of the fluid consumed by the ejector / gain in electrical energy on the dry primary vacuum pump can thus vary according to the use of the vacuum pump from 1/10 to more than 1/1000.
  • the pipe connected to the suction orifice of the ejector comprises a suction check valve.
  • the ejector is integrated in a cartridge which can be placed in the cover of the primary vacuum pump.
  • the dry primary vacuum pump may be selected from a single stage dry primary vacuum pump and a multistage dry primary vacuum pump.
  • the present invention therefore proposes to reduce the electrical energy consumption of a dry primary vacuum pump by lowering the pressure in the final compression stage by means of an ejector that does not consume electrical energy.
  • the invention proposes to use a multi-stage ejector, usually used in the field of handling which differs from vacuum pumps used in the field of semiconductor.
  • An ejector is a static device that operates from the principle of the venturi effect: phenomenon of the dynamics of fluids where gaseous or liquid particles are accelerated due to a narrowing of their circulation zone, aspiration occurring at the level of the strangulation. As the compressed gas passes through the nozzles, aspiration takes place through each stage.
  • An ejector makes it possible to obtain a suction without using moving parts, thus causing no wear or maintenance, which is not the case, for example, with a diaphragm or piston pump.
  • An ejector makes it possible to create the vacuum from a compressed fluid, such as a gas such as nitrogen or compressed air for example, so without consuming electrical energy.
  • this ejector is very small: its size is slightly larger than a match, which is not the case of a diaphragm pump or piston. Thus it can easily be integrated into the cover of a vacuum pump, which allows appreciable volume gain.
  • the ejector is integrated into a cartridge that can be placed inside the hood of the dry primary vacuum pump.
  • the gas outlet port of the dry primary vacuum pump opens on a conduit provided with a check valve, the check valve being disposed between the dry primary vacuum pump and the ejector.
  • This pumping device makes it possible to lower the pressure at the outlet of the primary vacuum pump thus reducing the heating of the last compression stage of the primary vacuum pump.
  • a pumping device 1 comprises a dry primary vacuum pump 2 , for example a multi-stage "Roots" vacuum pump, the suction port of which is connected via a pipe 3 to an enclosure 4 to be emptied, such that a loading chamber, a transfer chamber or a process chamber.
  • the gas outlet port of the vacuum pump 2 is connected to a duct 5.
  • a discharge check valve 6 is preferably placed on the duct 5, in order to allow the isolation of a volume 7 included between the gas outlet port of the primary vacuum pump 2 and the check valve 6.
  • the primary vacuum pump 2 draws the gases from the chamber 4 at its inlet, and compresses them to discharge at its outlet in the conduit 5 to 6.
  • the non-return valve 6 closes in order to prevent any increase of pressure, from the atmosphere to the outlet of the exhaust gases. the vacuum pump 2 primary.
  • the pumping device 1 also comprises an ejector 8 arranged in parallel with the discharge check valve 6, and the suction orifice and the discharge orifice are respectively connected to the conduit 5 by first 9 and second 10 pipes mounted in derivation of the conduit 5 .
  • the ejector 8 can then be triggered as a function of the combination of a set value Wc of the electrical power consumed by the primary vacuum pump 2 and a setpoint value Pc the pressure measured in the volume 7 between the gas outlet orifice of the primary vacuum pump 2 and the non-return valve 6.
  • the ejector 8 needs a pressurized working fluid.
  • the driving fluid which may be for example nitrogen or compressed air, is sent for a time for example less than 3 seconds to the inlet of the ejector 8, resulting in a depression at the valve antiretour suction 11 which opens and allows emptying the volume 7 of 2 cm 3 .
  • the pressure Pm measured in the volume 7 decreases from the value of the atmospheric pressure of 1013 mbar to a value measured Pm less than a set value Pc, which is for example of the order of 200 mbar.
  • the ejector 8 stopped.
  • the valve 11 closes, thus isolating a volume 7 of 2 cm 3 at a pressure Pm value lower than the set value Pc.
  • This value Pm of the pressure can be maintained for 24 hours during a vacuum holding phase, without it being necessary to reactivate the ejector 8. If an increase in pressure brings the value Pm above the value of Pc setpoint is detected, the ejector 8 can be activated again.
  • the volume 7 between the gas outlet orifice of the primary vacuum pump 2 and the discharge check valve 6 is minimized by design, in order to reduce the size of the ejector 8 and to shorten the duration necessary for the emptying 7. Nevertheless, the ejector 8 can be either integrated into the body of the primary vacuum pump 2 , in order to minimize the total volume to be pumped, or installed on the conduit 5 connected to the outlet orifice of the gas of the vacuum pump 2 and having a discharge check valve 6 .
  • the average time required to empty the chamber 4 by means of the primary vacuum pump 2 is between 4 and 18 seconds, for example when using a vacuum pump having a flow rate of the order of 100 m 3 / h. .
  • the average time is around 4 seconds for an average volume of 6 liters.
  • the ejector 20 is preferably of multi-stage type and composed of at least three stages in order to reach a pressure Pm lower than the reference value Pc (for example of the order of 200 mbar) with no pumped flow in the the shortest possible delay, in order to minimize the consumption of compressed fluid (nitrogen or air for example) necessary for the operation of the ejector 20.
  • Pc for example of the order of 200 mbar
  • the ejector could equally well consist of one or two floors following the pressure value Pm to obtain.
  • the ejector 20 comprises a plurality of nozzles 21 connected in series forming the suction stages.
  • Each nozzle 21 comprises communication orifices 22 with the external space and valves 23 which make it possible to close the communication orifices 22.
  • the primary vacuum pump 2 When vacuum chamber 30 is in phase vacuum holding, the primary vacuum pump 2 is operated at low rotational speed, for example 50 Hz, said "stand-by mode", and the consumed electric power Wm is moderate, of the order of 200W for example for a multi-stage "Roots" vacuum pump.
  • This electric power Wm consumed is at a minimum value Wb which can be maintained for a duration which can exceed 20 hours.
  • the vacuum pump 2 accelerates its speed of rotation, from 50 to 100 Hz, to reach its target speed.
  • This phase 31 of speed increase is very power consuming because it is to overcome all the forces of inertia of moving parts in the vacuum pump 2 dry primary.
  • the electric power Wm required for the primary vacuum pump 2 increases rapidly until it reaches a maximum electrical power Ws .
  • the electrical power Wm consumed by the primary vacuum pump 2 is continuously measured so as to detect the precise moment Tc in which the consumed electric power Wm reaches the rising edge and exceeds the value of the predetermined electrical power Wc previously fixed.
  • this reference electric power Wc is chosen so as to be as far as possible from the minimum electrical power Wb of the phase 30, for example Wb + 200%.
  • the detection of the set value Wc of the electrical power is performed by detecting an intensity threshold on the speed selector controlling the motor of the vacuum pump 2 primary, for example.
  • the detection of the set value Wc of the consumed electrical power triggers a delay 32 of ⁇ (tc - Td) differing from the moment Td of the triggering of the ejector 8.
  • the delay function makes it possible to turn on the ejector 8 in the optimum zone of the pumping sequence, that is to say at the end of the first phase 31 of the high-speed pumping, and not all along the pumping cycle. Indeed the ejector 8 does not provide significant savings on the consumption of the vacuum pump 2 outside this optimal area.
  • This delay function makes it possible to take into account a range of volume of the enclosure 4 to empty ranging from 3 liters to 25 liters.
  • the delay 32 is between 0.1 and 10 seconds and can cover most scenarios.
  • the start of the ejector 8 creates a vacuum in the volume 7 of the duct 5 connected to the gas outlet port of the primary vacuum pump 2. This decreases the pressure difference between the last stage of the pump with primary vacuum 2 and the duct 5, proportionally reducing the electric power Wm consumed by the primary vacuum pump 2.
  • the ejector 8 is switched on and relieves the primary vacuum pump 2 earlier , thus offsetting the additional electrical power required to compress the gases against the atmospheric pressure of 1013mbar, which simultaneously results in the decrease of the pressure Pm in the volume 7.
  • the electric power Wm again crosses the setpoint value Wc on the falling edge. Then, after a certain operating time 34, the stop 35 of the ejector 8 is triggered at the moment Ta determined from the measurement of the pressure Pm in the volume 7 between the outlet port of the pump gases primary vacuum 2 and the discharge check valve 6 . Once the pressure Pm in the volume 7 at the outlet of the vacuum pump 2 has decreased until reaching the setpoint value Pc and the electric power Wm consumed by the primary vacuum pump 2 is already below the setpoint value. Wc, the suction check valve 11 is closed to isolate the duct 9 connected to the suction of the ejector 8 and maintain the volume 7 at a pressure Pm lower than the set value Pc. Consecutively the motor fluid supply of the ejector 8 is stopped in order to optimize the fluid consumption.
  • a device for controlling the ejector comprises a contact 50 for the detection of the set point value of the pressure Pc in the volume 7 and a contact 51 for the detection of the set value of the electric power Wc.
  • a valve 52 coupled to a relay 53 controls the supply of motor fluid to the ejector 8.
  • a contact 55 activates the speed selector 56 to adjust the rotational speed of the primary vacuum pump 2 in the 50-100Hz range.
  • the contact 50 and the contact 51 are represented normally open (ie no passers) which corresponds to the case where the pressure Pm is lower than the reference value Pc, of the order of 200 mbar, and where the electric power Wm consumed is less than a set value Wc which can be equal to Wb + 200%.
  • the valve 52 which controls the driving fluid of the ejector 8, can not be actuated in this case.
  • the pressure Pm increases until the atmospheric pressure is reached in the volume 7 between the gas outlet orifice of the primary vacuum pump 2 and the non-return valve 6.
  • the electric power Wm consumed by the dry primary vacuum pump 2 also increases.
  • a first step the contact 50 responsive to the detection of the set value of the pressure Pc switches and becomes on.
  • a second step the information of the rising edge crossing of the set value of the electric power Wc is received, and the time delay adjusted to a value of between 0.1 and 10 seconds is triggered. At the end of the delay period, there occurs the closing of the contact 51 which becomes in turn.
  • valve 52 which controls the driving fluid of the ejector 8 is then activated for the start of the ejector 8, allowing the depression of the volume 7 located at the outlet of the dry primary vacuum pump 2 .
  • the supply of the valve 52 is in conjunction with the supply of the relays 53 and 54 to which the valve 52 is coupled.
  • the function of the relays 53 and 54 is to ensure the self-supply of the valve 52 once the electrical power Wm consumed by the primary vacuum pump 2 has become less than its setpoint value Wc crossed on a falling edge.
  • the operation of the ejector causes a decrease in the power Wm consumed until the set value Wc is exceeded, triggering the opening of the contact 51.
  • the contact 50 is always closed, the supply of the valve 52 is carried out via the relays 53 and 54. Then the pressure Pm measured in the volume 7 having decreased until reaching a value lower than its reference value Pc, the opening of the contact 40 acting on the valve 52 causes the suspension of the arrival of the driving fluid in the ejector 8.
  • the speed of the pump can be reduced from 100 Hz to 50 Hz. ("stand-by" mode) to ensure additional gain in power consumption.
  • the contact 55 by closing allows to drive directly this passage in "stand-by” mode on the speed selector 56 of the motor of the vacuum pump 2 primary. This contact 55 is itself dependent on the relay 53 controlled parallel to the valve 52.
  • the two primary vacuum pump control device enables mode transfer "stand-by" of the two primary vacuum pump as soon as the set value Pc of the pressure is achieved by trailing edge.
  • the "stand-by” mode consists in automatically reducing the rotation speed of the primary vacuum pump 2 from 100 Hz to 50 Hz. In this "stand-by" mode, the speed reduction advantageously generates an additional gain on the electrical power consumed by the primary vacuum pump. Conditioning the passage in "stand-by" mode at a set pressure Pc at the outlet of the primary vacuum pump 2 makes it possible to minimize any risk of a significant change in the pressure at the inlet of the vacuum pump 2 primary.
  • curve 36 corresponds to operation without starting the ejector and without using the "stand-by" mode, and the curve 37 would be obtained without the use of "stand-by" mode.
  • the control device of the ejector 8 allows the start of the ejector 8 according to the combination of criteria relating to the electrical power Wm consumed by the primary vacuum pump 2 and the pressure Pm measured in the volume 7 , and allows the stop of the ejector 8 according to the combination of criteria relating to the electric power Wm consumed by the primary vacuum pump 2 and the pressure Pm measured in the volume 7.
  • the control device would unexpectedly trigger the start-up of the ejector 8. If the rising edge of the set electrical power Wc was used alone, to control the ejector 8, it is sufficient that a mechanical seizure of the primary vacuum pump 2 occurs to generate an increase in the electric power Wm, causing the start of the ejector 8.
  • the detection of the crossing of the value setpoint Wc of the electric power via the speed selector 56 of the motor of the vacuum pump 2 primary makes it possible to obtain a rising edge information.
  • the value of the set electrical power Wc must be as far as possible from the initial value Wb of the electrical power in order to to delay the start of the ejector 8 as much as possible.
  • the contact 50 for the detection of the setpoint value the pressure Pc pressure, the contact 50 for the detection of the pressure setpoint value Pc and the contact 51 for the detection of the set value of the electrical power Wc are connected in series.
  • the set value Wc of the electrical power is again exceeded in the downward direction after reaching a maximum threshold Ws of electrical power, but the electric power Wm consumed remains far from the initial value Wb of electrical power.
  • the measurement of the electric power Wm based on a value of electrical power of setpoint Wc is therefore not usable alone to control the ejector 8.
  • the dry primary vacuum pump 2 equipped with a speed selector 56 slows down when it has to suck up a large gas load. This slowing down corresponds to an additional electric power Wm consumed by the pump during the opening of the communication with the enclosure 4.
  • This additional electric power is all the more important that the initial value of the rotational speed of the vacuum pump 2 is high at the moment of the opening of the communication with the enclosure 4. Having previously slowed the pump of 100 Hz at 50 Hz, the peak of maximum electrical power Ws will be much lower, optimizing a little more the overall consumption of the primary vacuum pump 2 on a pumping cycle.

Description

  • La présente invention se rapporte à un procédé de pompage permettant de réduire la consommation d'énergie électrique d'une pompe à vide primaire sèche, et le dispositif de pompage pour sa mise en oeuvre. Elle concerne en particulier les pompes à vide primaire de type "sèche à lobes rotatifs", telle qu'une pompe à lobes de type "Roots", une pompe à becs de type "Claw", une pompe à spirale de type "Scroll", une pompe à vis, une pompe à piston, etc..., en version monoétagées ou multiétagées.
  • Ces pompes à vide sèches sont notamment destinées au pompage des enceintes de type "sas de chargement / déchargement" ("load lock chamber" en anglais), chambre de transfert ou chambre de dépôt sous vide PVD (pour "Physical Vapor Déposition" en anglais) dans les unités de fabrication de composants semiconducteurs, d'écrans plats ou de substrats photovoltaïques. Les étapes de traitement des substrats semiconducteurs sont réalisées sous atmosphère à très basse pression (sous vide) dans une chambre de procédé, dans laquelle l'atmosphère doit être contrôlée pour éviter la présence de toute impureté.
  • Afin d'éviter la pollution, les substrats sont conditionnés et amenés un par un à l'aide de moyens robotisés dans un sas de chargement / déchargement qui communique avec une chambre de transfert, laquelle précède la chambre de procédé. Le sas de chargement / déchargement et la chambre de transfert sont alors mis sous une pression réduite de l'ordre d'un vide primaire (10-1 mbar environ), similaire à celle régnant dans la chambre de procédé, afin d'autoriser le transfert du substrat. On utilise pour cela un système de pompage des gaz comprenant une pompe à vide primaire raccordée par un circuit de pompage à l'enceinte à vider, qui peut être le sas de chargement/déchargement ou la chambre de transfert, afin de pomper les gaz jusqu'à atteindre la pression permettant le transfert du substrat dans l'enceinte, qui est d'environ 10-1 mbar.
  • Pour diminuer la pression dans l'enceinte, depuis la pression atmosphérique jusqu"à une pression de transfert de l'ordre de 10-1 mbar, le système de pompage doit pomper un flux de gaz relativement important au début du pompage. La descente en pression dans l'enceinte est réalisée en deux étapes, la première étape correspondant au passage de la pression atmosphérique à la pression de transfert (10-1 mbar). Lorsque la pression de transfert est atteinte, le système de pompage continue de fonctionner avec un flux de gaz nul. Les cycles de descente et remontée en pression se succèdent à fréquence élevée et consomment une quantité d'énergie importante due en particulier à la remontée à la pression atmosphérique. La réduction de l'énergie consommée par ces systèmes de pompage aurait un impact significatif dans l'économie d'énergie électrique globale d'une unité de fabrication de semiconducteurs.
  • Dans l'industrie des semiconducteurs, les pompes à vide primaire sèches représentent environ 50% du parc de pompes à vide d'une unité fabrication de semiconducteurs, et environ 40% de la consommation électrique globale de l'unité. Dans un souci d'optimisation des coûts de l'énergie dans l'industrie du semiconducteur, la consommation d'énergie électrique de ces systèmes de pompage doit être diminuée. De nombreux efforts ont été réalisés pour réduire la dépense d'énergie électrique en agissant sur les composants de la pompe à vide. Les actions menées ont porté en particulier sur les pertes par frottement, le dimensionnement des étages de compression, l'utilisation de convertisseur de fréquence sur la motorisation, le concept IPUP™ (pour "Integrated Point-of-Use Pump" en anglais) appliqué aux pompes à vide primaires sèches, l'optimisation des cycles de pompage.
  • La puissance électrique nécessaire à la compression des gaz est un des paramètres important dans la consommation énergétique des pompes à vide primaires sèches. Cette puissance de compression est utilisée principalement dans les deux derniers étages de compression dans le cas d'une pompe multiétagée de type "Roots" ou "Claw", et dans les derniers pas dans le cas d'une pompe à vis. Cette puissance électrique, consommée dans les derniers étages de compression, est proportionnelle au taux de compression (différence de pression entre l'entrée et la sortie de l'étage de compression), au volume engendré par cycle de compression (volume cyclique engendré) et au débit massique de gaz pompé. Ces paramètres doivent donc être réduits pour diminuer la consommation énergétique.
  • On entend par "volume cyclique engendré", le débit d'une pompe par rapport au volume de ses composants, car le débit varie avec la dimension du volume transféré par tour (dimension géométrique des éléments) et avec la vitesse de rotation. Pour augmenter le débit volumétrique d'une pompe, il faut augmenter le volume cyclique engendré de la pompe ou sa vitesse de rotation, toutes dimensions étant égales par ailleurs.
  • La réduction de la puissance électrique consommée d'une pompe sèche multiétagée peut être obtenue en sous-dimensionnant le dernier étage de compression de la pompe cependant cette réduction de puissance est limitée. En effet, dans une pompe sèche multiétagée, le gaz subit plusieurs compressions successives dans les différents étages de la pompe depuis la pression d'aspiration à l'entrée du premier étage jusqu'à la pression atmosphérique en sortie du dernier étage. A partir d'une certaine dimension du dernier étage de refoulement, la pompe primaire sèche n'aura plus la capacité de pomper des flux de gaz importants lors de la première étape de pompage de la chambre de procédé. Aussi cette optimisation de dimensionnent ne permet pas d'obtenir la réduction de consommation d'énergie ici recherchée, qui est de l'ordre de 50%.
  • La réduction du débit dans le dernier étage de compression se heurte à des limites imposées par le volume cyclique engendré, la vitesse de pompage, le rapport longueur/diamètre du profil des lobes des pompes "Roots" ou "Claw". L'augmentation de la vitesse de pompage, qui impose un dernier étage d'aspiration de la pompe à vide de grande dimension, est en contradiction avec le souci de réduire l'énergie électrique consommée qui impose au contraire un dimensionnement réduit du dernier étage de compression. Par ailleurs la réalisation d'étages de faibles dimensions impose des technologies d'assemblages ou d'usinages qui peuvent s'avérer complexes et onéreuses.
  • En outre, malgré tous les efforts de réduction, une consommation résiduelle demeure notamment lorsque la pompe à vide a pour charge de maintenir le vide atteint après la phase de descente en pression, dans un sas de chargement par exemple.
  • On connaît également des arrangements, comme décrit dans la demande US2004/0173312 , permettant de réduire la consommation d'énergie globale du dispositif de pompage en utilisant une pompe à vide primaire sèche principale et une pompe à vide auxiliaire sèche connectée au refoulement de la pompe principale. Les pompes auxiliaires préconisées sont soient des pompes à membrane, des pompes à piston ou des pompes de type "Scroll".
  • Dans le but de réduire la consommation électrique d'un dispositif de vide, on propose d'ajouter une pompe auxiliaire à la pompe à vide sèche multiétagée principale du dispositif. La pompe à vide sèche principale, par exemple de type "Roots", comporte un premier étage de compression reliée à une chambre de procédé par un orifice d'aspiration et un dernier étage de compression dont l'orifice de refoulement est relié à une conduite comportant un clapet antiretour. L'orifice d'aspiration de la pompe auxiliaire est connecté à l'étage terminal de la pompe à vide principale du dispositif et peut être montée parallèlement au clapet antiretour. La pompe auxiliaire est une pompe à vide primaire du type "Gede", "Scroll", à piston ou à membrane.
  • Néanmoins la pompe auxiliaire consomme une énergie électrique qui n'est pas négligeable, ce qui limite l'intérêt de cette proposition. En particulier lorsque le volume de gaz pompé par la pompe à vide principale est important, la consommation électrique totale est plus élevée qu'en l'absence de pompe auxiliaire. Pour parvenir cependant à réaliser une diminution de la consommation électrique, il est nécessaire d'optimiser plusieurs paramètres de fonctionnement, tels que la vitesse de pompage de la pompe auxiliaire et la pression d'admission dans la pompe à vide principale.
  • Toutefois en début de pompage, cette économie d'énergie n'est pas atteinte. On propose alors de démarrer le vidage de la chambre de procédé au moyen de la pompe à vide auxiliaire seule jusqu'à un certain seuil de pression, puis de mettre en route la pompe à vide principale. Lorsque la pression souhaitée est atteinte, le vide est entretenu au moyen de la seule pompe à vide auxiliaire.
  • Par ailleurs on a déjà proposé antérieurement des concepts intégrant une pompe à vide auxiliaire, de type "Roots", "Claw" , "Hook" , péristaltique, à membrane ou à vis, qui peut être placée en sortie de la pompe à vide primaire sèche principale. Néanmoins la consommation électrique des pompes auxiliaires, induite par un fonctionnement permanent, ne permet pas de réaliser les gains énergétiques substantiels recherchés.
  • Des systèmes de vide comprenant une pompe à vide sèche directement reliée à un éjecteur à gaz à fonctionnement permanent sont décrits dans les documents EP 1 609 990 A1 et EP 1 234 982 A1 .
  • La présente invention a pour but de proposer un procédé de pompage d'une enceinte à vide permettant de réduire de façon substantielle (de l'ordre de 50%) et dans un laps de temps très court (quelques secondes), la consommation électrique d'une pompe à vide primaire sèche.
  • L'invention a aussi pour but de proposer un dispositif de pompage comportant une pompe à vide primaire sèche dont la consommation électrique est diminuée.
  • L'invention a encore pour but de proposer un dispositif de pilotage du procédé de pompage permettant une diminution sensible de la consommation électrique d'une pompe à vide primaire sèche.
  • L'objet de la présente invention est un procédé de pompage au moyen d'un dispositif de pompage comportant une pompe à vide primaire sèche munie d'un orifice d'entrée de gaz relié à une enceinte à vide et d'un orifice de sortie de gaz débouchant dans un conduit. Le procédé comprend les étapes suivantes :
    • on pompe les gaz contenus dans l'enceinte à vide au moyen de la pompe à vide primaire sèche par l'orifice d'entrée de gaz,
    • on relie l'orifice de sortie de gaz de la pompe à vide primaire sèche à un éjecteur,
    • on mesure la puissance électrique consommée par la pompe à vide primaire sèche et la pression des gaz dans le conduit à la sortie de la pompe à vide primaire sèche,
    • on met en route l'éjecteur, après une temporisation, lorsque la pression des gaz à la sortie de la pompe à vide primaire sèche franchit une valeur de consigne en front montant et que la puissance électrique consommée par la pompe à vide primaire sèche franchit une valeur de consigne en front montant,
    • on arrête l'éjecteur lorsque la puissance électrique consommée par la pompe à vide primaire sèche franchit une valeur de consigne en front descendant et que la pression des gaz dans le conduit à la sortie de la pompe à vide primaire sèche franchit une valeur de consigne en front descendant.
  • Selon un premier aspect de l'invention, la valeur de consigne de la pression des gaz dans le conduit à la sortie de la pompe à vide primaire sèche est au plus égale à 200 mbar.
  • Selon un second aspect de l'invention, la valeur de consigne de la puissance électrique consommée par la pompe à vide primaire sèche est au moins égale à la puissance électrique minimale consommée augmentée de 200%.
  • La pompe à vide primaire sèche est mise en route dès le début du procédé pour faire le vide dans l'enceinte à laquelle elle est raccordée. Le pompage se poursuit jusqu'à atteindre la pression limite de fonctionnement de la pompe à vide primaire qui est d'environ 10-1 mbar. Dès que cette pression est atteinte, l'éjecteur est activé durant un laps de temps très court alors que la pompe à vide primaire continue de fonctionner.
  • L'invention réside dans le fait que le fonctionnement assisté par couplage de la pompe à vide primaire sèche et de l'éjecteur ne va nécessiter que quelques secondes de fonctionnement de l'éjecteur, pour un temps de fonctionnement en mode basse consommation de la pompe à vide primaire sèche pouvant se maintenir indéfiniment tant que la ligne de pompage n'est pas réalimentée avec un nouvel afflux gazeux. La mise en dépression de la pompe à vide primaire sèche par l'éjecteur ne nécessite pas d'énergie électrique, l'éjecteur utilisant un fluide comprimée. Le ratio du fluide consommé par l'éjecteur / gain en énergie électrique sur la pompe à vide primaire sèche peut ainsi varier selon les cas d'utilisation de la pompe à vide de 1/10 à plus de 1/1 000.
  • La présente invention a aussi pour objet un dispositif de pompage comportant une pompe à vide primaire sèche munie d'un orifice d'entrée de gaz relié à une enceinte à vide et d'un orifice de sortie de gaz débouchant dans un conduit. Le dispositif comporte en outre :
    • un clapet antiretour de refoulement placé dans le conduit à la sortie de la pompe à vide primaire sèche,
    • un éjecteur monté en parallèle par rapport au clapet antiretour de refoulement, l'orifice d'aspiration de l'éjecteur étant relié au conduit par une première canalisation et l'orifice de refoulement de l'éjecteur étant relié au conduit par une deuxième canalisation.
  • Selon une variante, la canalisation reliée à l'orifice d'aspiration de l'éjecteur comporte un clapet antiretour d'aspiration.
  • Selon une autre variante, l'éjecteur est intégré dans une cartouche qui peut être placé dans le capot de la pompe à vide primaire.
  • La pompe à vide primaire sèche peut être choisie parmi une pompe à vide primaire sèche monoétagée et une pompe à vide primaire sèche multiétagée.
  • Afin de s'affranchir des inconvénients de l'art antérieur, la présente invention propose donc de réduire la consommation d'énergie électrique d'une pompe à vide primaire sèche en abaissant la pression dans l'étage final de compression à l'aide d' un éjecteur qui ne consomme pas d'énergie électrique. Pour cela l'invention propose d'utiliser un éjecteur multiétagé, habituellement utilisé dans le domaine de la manutention qui se distingue des pompes à vide utilisées dans le domaine du semiconducteur. Un éjecteur est un appareil statique qui fonctionne à partir du principe de l'effet venturi : phénomène de la dynamique des fluides où les particules gazeuses ou liquides se retrouvent accélérées à cause d'un rétrécissement de leur zone de circulation, l'aspiration se produisant au niveau de l'étranglement. Lorsque le gaz comprimé passe au travers des buses, une aspiration a lieu au travers de chaque étage. Un éjecteur permet l'obtention d'une aspiration sans utiliser des pièces mobiles, donc n'occasionnant ni usure ni entretien, ce qui n'est pas le cas par exemple d'une pompe à membrane ou à piston. Un éjecteur permet de créer le vide à partir d'un fluide comprimé, tel qu'un gaz comme l'azote ou l'air comprimé par exemple, donc sans consommer d'énergie électrique.
  • De plus, cet éjecteur est très petit : sa taille étant légèrement plus volumineuse qu'une allumette, ce qui n'est pas le cas d'une pompe à membrane ou à piston. Ainsi il peut aisément être intégré dans le capot d'une pompe à vide, ce qui permet un gain volumique appréciable.
  • Selon une variante, l'éjecteur est intégré dans une cartouche qui peut être placé à l'intérieur du capot de la pompe à vide primaire sèche.
  • Selon un mode de réalisation, l'orifice de sortie de gaz de la pompe à vide primaire sèche débouche sur un conduit muni d'un clapet antiretour, le clapet antiretour étant disposé entre la pompe à vide primaire sèche et l'éjecteur.
  • Ce dispositif de pompage selon l'invention permet d'abaisser la pression en sortie de la pompe à vide primaire réduisant ainsi l'échauffement du dernier étage de compression de la pompe à vide primaire.
  • La présente invention a aussi pour objet un dispositif de pilotage du procédé de pompage précédemment décrit, comportant :
    • des moyens de mesure de la pression dans le conduit à la sortie de la pompe à vide primaire sèche,
    • des moyens de mesure de la puissance électrique consommée par la pompe à vide primaire sèche,
    • des moyens de pilotage de l'alimentation en fluide moteur de l'éjecteur,
    • des moyens de sélection de la vitesse de rotation de la pompe à vide primaire sèche.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description suivante d'un mode de réalisation, donné bien entendu à titre illustratif et non limitatif, et dans le dessin annexé sur lequel
    • la figure 1 représente un mode de réalisation d'un dispositif de vide selon l'invention,
    • la figure 2 montre schématiquement le fonctionnement d'un éjecteur,
    • la figure 3 illustre le procédé de pompage selon l'invention,
    • la figure 4 montre l'évolution de la puissance électrique W consommée par la pompe à vide primaire sèche en watts, qui est représentée en ordonnée, en fonction du temps écoulé T en secondes représenté en abscisse,
    • la figure 5 représente un mode de réalisation d'un dispositif de pilotage du procédé de pompage selon l'invention.
  • Dans le mode de réalisation de l'invention illustré sur la figure 1, un dispositif de pompage 1 comporte une pompe à vide 2 primaire sèche, par exemple une pompe à vide de type "Roots" multiétagée, dont l'orifice d'aspiration est relié par un conduit 3 à une enceinte 4 à vider, telle qu'un sas de chargement, une chambre de transfert ou une chambre de procédé. L'orifice de sortie des gaz de la pompe à vide 2 est relié à un conduit 5. Un clapet antiretour de refoulement 6 est de préférence placé sur le conduit 5, afin de permettre l'isolation d'un volume 7 compris entre l'orifice de sortie des gaz de la pompe à vide primaire 2 et le clapet antiretour 6. La pompe à vide 2 primaire aspire les gaz de l'enceinte 4 à son entrée, et les comprime pour les refouler à sa sortie dans le conduit 5 à travers le clapet antiretour de refoulement 6. Lorsque la pression limite de fonctionnement de la pompe primaire 2 est atteinte, le clapet antiretour 6 se ferme afin d'éviter toute remontée de pression, de l'atmosphère vers l'orifice de sortie des gaz de la pompe à vide 2 primaire.
  • Le dispositif de pompage 1 comporte aussi un éjecteur 8 disposé en parallèle au clapet antiretour de refoulement 6, et dont l'orifice d'aspiration et l'orifice de refoulement sont respectivement relié au conduit 5 par des première 9 et deuxième 10 canalisations montées en dérivation du conduit 5. Un clapet antiretour d'aspiration 11 placé dans le conduit 9, relié à l'aspiration de l'éjecteur 8, isole l'éjecteur 8 de la pompe à vide 2 primaire sèche. Lorsque le clapet antiretour de refoulement 6 se ferme, l'éjecteur 8 peut alors être déclenché en fonction de la combinaison d'une valeur de consigne Wc de la puissance électrique consommée par la pompe à vide 2 primaire et d'une valeur de consigne Pc de la pression mesurée dans le volume 7 compris entre l'orifice de sortie des gaz de la pompe à vide primaire 2 et le clapet antiretour 6.
  • Pour fonctionner, l'éjecteur 8 a besoin d'un fluide moteur sous pression. Le fluide moteur, qui peut être par exemple de l'azote ou de l'air comprimé, est envoyé pendant un temps par exemple inférieur à 3 secondes à l'entrée de l'éjecteur 8, ce qui entraîne une dépression au niveau du clapet antiretour d'aspiration 11 qui s'ouvre et permet ainsi le vidage du volume 7 de 2 cm3. La pression Pm mesurée dans le volume 7 diminue depuis la valeur de la pression atmosphérique de 1013 mbar jusqu'à une valeur mesurée Pm inférieure à une valeur de consigne Pc, qui est par exemple de l'ordre de 200 mbar. Dès que la mesure de la puissance électrique Wm consommée par la pompe à vide 2 primaire passe en dessous de la valeur de consigne Wc et que la pression Pm mesurée dans le volume 7 tombe en dessous de la valeur de consigne Pc, l'éjecteur 8 est arrêté. La vanne 11 se referme, isolant ainsi un volume 7 de 2 cm3 à une pression de valeur Pm inférieure à la valeur de consigne Pc. Cette valeur Pm de la pression peut être maintenue durant 24 heures durant une phase de maintien sous vide, sans qu'il soit nécessaire de réactiver l'éjecteur 8. Si une augmentation de la pression amenant la valeur Pm au-dessus de la valeur de consigne Pc est détectée, l'éjecteur 8 peut être à nouveau activé.
  • Le volume 7 compris entre l'orifice de sortie des gaz de la pompe à vide primaire 2 et le clapet antiretour 6 de refoulement est minimisé par conception, ceci afin de diminuer la taille de l'éjecteur 8 et de raccourcir la durée nécessaire au vidage de ce volume 7. Néanmoins l'éjecteur 8 peut être au choix intégrée dans le corps de la pompe à vide 2 primaire, afin de minimiser le volume total à pomper, ou bien installée sur le conduit 5 relié à l'orifice de sortie des gaz de la pompe à vide 2 et comportant un clapet antiretour 6 de refoulement.
  • La durée moyenne nécessaire pour vider l'enceinte 4 au moyen de la pompe à vide 2 primaire se situe entre 4 et 18 secondes, par exemple lorsqu'on utilise une pompe à vide ayant un débit de l'ordre de 100 m3/h. Le temps moyen se situe autour de 4 secondes pour un volume moyen d'enceinte de 6 litres.
  • Comme représenté sur la figure 2, l'éjecteur 20 est préférentiellement de type multiétagé et composé d'au moins de trois étages afin d'atteindre une pression Pm inférieure à la valeur de consigne Pc (par exemple de l'ordre de 200 mbar) à flux pompé nul dans le délai le plus court possible, ceci afin de réduire au maximum la consommation en fluide comprimé (azote ou air par exemple) nécessaire au fonctionnement de l'éjecteur 20. Néanmoins l'éjecteur pourrait aussi bien être constitué de d'un ou de deux étages suivant la valeur de pression Pm à obtenir.
  • L'éjecteur 20 comprend plusieurs buses 21 assemblées en série formant les étages d'aspiration. Chaque buse 21 comprend des orifices de communication 22 avec l'espace extérieur et des clapets 23 qui permettent d'obturer les orifices de communication 22.
  • On considérera maintenant les figures 3 et 4 qui illustrent le procédé de pompage selon un mode de réalisation de l'invention.
  • Lorsqu'une enceinte à vide est en phase 30 de maintien sous vide, la pompe à vide 2 primaire fonctionne à faible vitesse de rotation, par exemple 50 Hz, dit "mode stand-by", et la puissance électrique Wm consommée est modérée, de l'ordre de 200W par exemple pour une pompe à vide de type "Roots" multiétagée. Cette puissance électrique Wm consommée est à une valeur minimale Wb qui peut être maintenue pendant une durée qui peut dépasser 20 heures.
  • Si l'enceinte sous vide 4 reçoit un apport de gaz, la pompe à vide 2 accélère sa vitesse de rotation, passant de 50 à 100 Hz, pour atteindre sa vitesse de consigne. Cette phase 31 de montée en vitesse est très consommatrice de puissance électrique car il s'agit de vaincre toute les forces d'inertie des pièces en mouvement dans la pompe à vide 2 primaire sèche. La puissance électrique Wm nécessaire à la pompe à vide 2 primaire augmente rapidement jusqu'à atteindre une puissance électrique Ws maximale.
  • On mesure en continue la puissance électrique Wm consommée par la pompe à vide 2 primaire de manière à détecter le moment précis Tc où la puissance électrique Wm consommée atteint en front montant et dépasse la valeur de la puissance électrique de consigne Wc préalablement fixée. Dans le cas présent cette puissance électrique de consigne Wc est choisie de manière à être la plus éloignée possible de la puissance électrique minimale Wb de la phase 30, soit par exemple Wb + 200%. La détection de la valeur de consigne Wc de la puissance électrique s'effectue par la détection d'un seuil d'intensité sur le sélectionneur de vitesse pilotant le moteur de la pompe à vide 2 primaire, par exemple. La détection de la valeur de consigne Wc de la puissance électrique consommée enclenche une temporisation 32 de Δ(tc - Td) différant le moment Td du déclenchement de l'éjecteur 8. La fonction de temporisation permet de mettre en marche l'éjecteur 8 dans la zone optimale de la séquence de pompage, c'est-à-dire à la fin de la première phase 31 du pompage à grande vitesse, et non pas tout le long du cycle de pompage. En effet l'éjecteur 8 n'apporte pas d'économie notable sur la consommation de la pompe à vide 2 en dehors de cette zone optimale. Cette fonction de temporisation permet de prendre en compte une gamme de volume de l'enceinte 4 à vider s'étalant de 3 litres à 25 litres. La temporisation 32 est comprise entre 0,1 et 10 secondes et permet de couvrir la plupart des cas de figures.
  • Dans le même temps, la pression Pm mesurée dans le volume 7 jusqu'à atteindre et dépasser en front montant sa valeur de consigne Pc. Le pilotage de la mise en route de l'éjecteur 8 est donc basé sur l'observation conjointe que la pression Pm mesurée dans le volume 7 a dépassé sa valeur de consigne Pc et que la puissance électrique Wm mesurée a aussi dépassé sa valeur de consigne Wc. La combinaison de ces deux critères permet une optimisation de la consommation de fluide moteur dans l'éjecteur 8.
  • La mise en route de l'éjecteur 8 crée une dépression dans le volume 7 du conduit 5 relié à l'orifice de sortie des gaz de la pompe à vide primaire 2. Ceci diminue l'écart de pression entre le dernier étage de la pompe à vide primaire 2 et le conduit 5, réduisant proportionnellement la puissance électrique Wm consommée par la pompe à vide primaire 2. Lors de la phase 33 de pompage assisté, l'éjecteur 8 est enclenché et soulage plus tôt la pompe à vide primaire 2, compensant de ce fait le surcroît de puissance électrique nécessaire pour comprimer les gaz contre la pression atmosphérique de 1013mbar, ce qui entraîne simultanément la diminution de la pression Pm dans le volume 7.
  • A la fin de la phase 33 de pompage assisté, la puissance électrique Wm franchit de nouveau la valeur de consigne Wc en front descendant. Puis, après un certain temps de fonctionnement 34, l'arrêt 35 de l'éjecteur 8 est déclenché au moment Ta déterminé à partir de la mesure de la pression Pm dans le volume 7 compris entre l'orifice de sortie des gaz de la pompe à vide primaire 2 et le clapet antiretour 6 de refoulement. Une fois la pression Pm dans le volume 7 situé en sortie de la pompe à vide 2 ayant diminué jusqu'à atteindre la valeur de consigne Pc et la puissance électrique Wm consommée par la pompe à vide 2 primaire étant déjà inférieure à la valeur de consigne Wc, le clapet antiretour 11 d'aspiration est fermé pour isoler le conduit 9 relié à l'aspiration de l'éjecteur 8 et maintenir le volume 7 à une pression Pm inférieure à la valeur de consigne Pc. Consécutivement l'alimentation en fluide moteur de l'éjecteur 8 est stoppée afin d'optimiser la consommation en fluide.
  • Sur la figure 5, on a représenté un dispositif de pilotage de l'éjecteur. Ce dispositif comprend un contact 50 pour la détection de la valeur de consigne de la pression Pc dans le volume 7 et un contact 51 pour la détection de la valeur de consigne de la puissance électrique Wc. Une vanne 52 couplée à un relais 53 contrôle l'alimentation en fluide moteur de l'éjecteur 8. Un contact 55 permet d'activer le sélectionneur de vitesse 56 afin d'ajuster la vitesse de rotation de la pompe à vide primaire 2 dans la plage 50-100Hz.
  • Le contact 50 et le contact 51 sont représentés normalement ouverts (i.e. non passants) ce qui correspond au cas où la pression Pm est inférieure à la valeur de consigne Pc, de l'ordre de 200 mbar, et où la puissance électrique Wm consommée est inférieure à une valeur de consigne Wc qui peut être égale à Wb + 200%. La vanne 52, qui commande le fluide moteur de l'éjecteur 8, ne peut donc pas être actionnée dans ce cas.
  • Pendant la phase de pompage 31 à grande vitesse, la pression Pm augmente jusqu'à atteindre la pression atmosphérique dans le volume 7 compris entre l'orifice de sortie des gaz de la pompe à vide primaire 2 et le clapet antiretour 6. La puissance électrique Wm consommée par la pompe à vide 2 primaire sèche augmente aussi.
  • Dans un premier temps, le contact 50 réagissant à la détection de la valeur de consigne de la pression Pc bascule et devient passant. Dans un second temps, l'information du franchissement en front montant de la valeur de consigne de la puissance électrique Wc est reçue, et la temporisation ajustée à une valeur comprise entre 0,1 et 10 secondes est déclenchée. A l'issue de la période de temporisation, se produit la fermeture du contact 51 qui devient passant à son tour.
  • La vanne 52 qui commande le fluide moteur de l'éjecteur 8 est alors activée pour la mise en route de l'éjecteur 8, permettant la mise en dépression du volume 7 situé à la sortie de la pompe à vide 2 primaire sèche.
  • L'alimentation de la vanne 52 se fait conjointement à l'alimentation des relais 53 et 54 auquel la vanne 52 est couplée. Les relais 53 et 54 ont pour fonction d'assurer l'auto-alimentation de la vanne 52 une fois la puissance électrique Wm consommée par la pompe à vide 2 primaire devenue inférieure à sa valeur de consigne Wc franchie en front descendant. Le fonctionnement de l'éjecteur entraîne une diminution de la puissance Wm consommée jusqu'au franchissement de la valeur de consigne Wc, déclenchant l'ouverture du contact 51. Le contact 50 étant toujours fermé, l'alimentation de la vanne 52 s'effectue via les relais 53 et 54. Puis la pression Pm mesurée dans le volume 7 ayant diminué jusqu'à atteindre une valeur inférieure à sa valeur de consigne Pc, l'ouverture du contact 40 agissant sur la vanne 52 provoque la suspension de l'arrivée du fluide moteur dans l'éjecteur 8.
  • La pression Pm dans le volume 7 étant inférieure à la valeur de consigne Pc et la puissance électrique Wm consommée par la pompe à vide 2 étant inférieure à la valeur de consigne Wc, la vitesse de la pompe peut être réduite de 100 Hz à 50 Hz (mode "stand-by") afin d'assurer un gain complémentaire en puissance consommée. Le contact 55 en se fermant permet de piloter directement ce passage en mode "stand-by" sur le sélectionneur de vitesse 56 du moteur de la pompe à vide 2 primaire. Ce contact 55 est lui-même dépendant du relai 53 pilotée parallèlement à la vanne 52 .
  • Le passage de la pompe à vide primaire 2 à une vitesse de rotation élevée, c'est-à-dire de 50 Hz à 100 Hz, s'effectue automatiquement lorsque le contact 55 s'ouvre.
  • Le dispositif de pilotage de la pompe à vide 2 primaire permet le passage en mode "stand-by" de la pompe à vide 2 primaire dès que la valeur de consigne Pc de la pression est atteinte en front descendant. Le mode "stand- by" consiste en une réduction automatique de la vitesse de rotation de la pompe à vide 2 primaire de 100 Hz à 50 Hz. Dans ce mode "stand-by", la réduction de vitesse engendre avantageusement un gain supplémentaire sur la puissance électrique consommée par la pompe à vide primaire. Le fait de conditionner le passage en mode "stand-by" à une pression de consigne Pc à la sortie de la pompe à vide 2 primaire permet de minimiser tout risque de changement significatif de la pression à l'entrée de la pompe à vide 2 primaire.
  • Sur la figure 3, la courbe 36 correspond à un fonctionnement sans mise en route de l'éjecteur et sans utilisation du mode "stand-by", et la courbe 37 serait obtenue sans l'utilisation du mode "stand-by".
  • Le dispositif de pilotage de l'éjecteur 8 permet la mise en route de l'éjecteur 8 en fonction de la combinaison de critères relatifs à la puissance électrique Wm consommée par la pompe à vide 2 primaire et à la pression Pm mesurée dans le volume 7, et permet l'arrêt de l'éjecteur 8 en fonction de la combinaison de critères relatifs à la puissance électrique Wm consommée par la pompe à vide 2 primaire et à la pression Pm mesurée dans le volume 7.
  • Si le franchissement en front montant de la pression de consigne Pc était seule prise en compte, le dispositif de pilotage déclencherait inopinément la mise en route de l'éjecteur 8. Si le franchissement en front montant de la puissance électrique de consigne Wc était utilisée seule pour piloter l'éjecteur 8, il suffirait qu'un grippage mécanique de la pompe à vide 2 primaire survienne pour générer une augmentation de la puissance électrique Wm, provoquant la mise en route de l'éjecteur 8. La détection du franchissement de la valeur de consigne Wc de la puissance électrique via le sélectionneur de vitesse 56 du moteur de la pompe à vide 2 primaire permet de d'obtenir une information en front montant. La valeur de la puissance électrique de consigne Wc doit être la plus éloignée possible de la valeur initiale Wb de la puissance électrique afin de retarder au maximum le démarrage de l'éjecteur 8. Afin d'être certain que la mise en route de l'éjecteur 8 se produise uniquement lorsque la pompe à vide primaire 2 fonctionne, le contact 50 pour la détection de la valeur de consigne de la pression Pc de pression, le contact 50 pour la détection de la valeur de consigne de la pression Pc et le contact 51 pour la détection de la valeur de consigne de la puissance électrique Wc sont montés en série.
  • Lors de la phase 36 de pompage assisté, la valeur de consigne Wc de la puissance électrique est de nouveau dépassée dans le sens descendant après l'atteinte d'une seuil maximum Ws de puissance électrique, mais la puissance électrique Wm consommée reste éloignée de la valeur initiale Wb de puissance électrique. La mesure de la puissance électrique Wm basée sur une valeur de puissance électrique de consigne Wc n'est donc pas utilisable seule pour piloter l'éjecteur 8.
  • Au cours d'un cycle de pompage, la pompe à vide 2 primaire sèche équipée d'un sélectionneur de vitesse 56 ralentit lorsqu'elle doit aspirer une charge de gaz importante. Ce ralentissement correspond à un surcroit de puissance électrique Wm consommée par la pompe lors de l'ouverture de la communication avec l'enceinte 4. Ceci témoigne d'une relation existant entre la pression mesurée à l'entrée de la pompe à vide 2 primaire sèche et la puissance électrique Wm consommée. Ce surcroît de puissance électrique est d'autant plus important que la valeur initiale de la vitesse de rotation de la pompe à vide 2 est élevée au moment de l'ouverture de la communication avec l'enceinte 4. En ayant préalablement ralenti la pompe de 100 Hz à 50 Hz, le pic de puissance électrique maximale Ws sera beaucoup moins élevée, optimisant un peu plus la consommation globale de la pompe à vide 2 primaire sur un cycle de pompage.

Claims (8)

  1. Procédé de pompage au moyen d'un dispositif de pompage (1) comportant une pompe à vide primaire sèche (2) munie d'un orifice d'entrée de gaz relié à une enceinte à vide (4) et d'un orifice de sortie de gaz débouchant dans un conduit (5), comprenant les étapes suivantes :
    - on pompe les gaz contenus dans l'enceinte à vide (4) au moyen de la pompe à vide primaire sèche (2) par l'orifice d'entrée de gaz,
    - on relie l'orifice de sortie de gaz de la pompe à vide primaire sèche (2) à un éjecteur (8),
    - on mesure la puissance électrique consommée par la pompe à vide primaire sèche (2) et la pression des gaz dans le conduit à la sortie de la pompe à vide primaire sèche,
    - on met en route l'éjecteur (8), après une temporisation, lorsque la pression des gaz à la sortie de la pompe à vide primaire sèche franchit (2) une valeur de consigne en front montant et que la puissance électrique consommée par la pompe à vide primaire sèche franchit une valeur de consigne en front montant,
    - on arrête l'éjecteur (8) lorsque la puissance électrique consommée par la pompe à vide primaire sèche franchit une valeur de consigne en front descendant et que la pression des gaz dans le conduit à la sortie de la pompe à vide primaire sèche franchit une valeur de consigne en front descendant.
  2. Procédé de pompage selon la revendication 1, dans lequel la valeur de consigne de la pression des gaz dans le conduit à la sortie de la pompe à vide primaire sèche est au plus égale à 200 mbar.
  3. Procédé de pompage selon l'une des revendications 1 et 2, dans lequel la valeur de consigne de la puissance électrique consommée par la pompe à vide primaire sèche est au moins égale à la puissance électrique minimale consommée augmentée de 200%.
  4. Dispositif de pompage pour la mise en oeuvre du procédé de pompage selon l'une des revendications précédentes, comportant une pompe à vide primaire sèche (2) munie d'un orifice d'entrée de gaz relié à une enceinte à vide (4) et d'un orifice de sortie de gaz débouchant dans un conduit (5), comprenant en outre
    - un clapet antiretour de refoulement (6) placé dans le conduit (5) à la sortie de la pompe à vide primaire sèche (2),
    - un éjecteur (8) monté en parallèle par rapport au clapet antiretour (6) de refoulement, l'orifice d'aspiration de l'éjecteur (8) étant relié au conduit (5) par une première canalisation (9) et l'orifice de refoulement de l'éjecteur (8) étant relié au conduit (5) par une deuxième canalisation (10).
  5. Dispositif de pompage selon la revendication 4, dans lequel la canalisation reliée à l'orifice d'aspiration de l'éjecteur comporte un clapet antiretour d'aspiration.
  6. Dispositif de pompage selon l'une des revendications 4 et 5, dans lequel l'éjecteur est intégré dans une cartouche qui peut être placé à l'intérieur du capot de la pompe à vide primaire sèche.
  7. Dispositif de pompage selon l'une des revendications 4 à 6, dans lequel la pompe à vide primaire sèche est choisie parmi une pompe à vide primaire sèche monoétagée et une pompe à vide primaire sèche multiétagée.
  8. Dispositif de pilotage du procédé de pompage selon l'une des revendications 1 à 3, comportant
    - des moyens de mesure de la pression dans le conduit à la sortie de la pompe à vide primaire sèche (2),
    - des moyens de mesure de la puissance électrique consommée par la pompe à vide primaire sèche (2),
    - des moyens de pilotage de l'alimentation en fluide moteur de l'éjecteur (8),
    - des moyens de sélection de la vitesse de rotation de la pompe à vide primaire sèche (2).
EP10790462.5A 2009-11-18 2010-10-27 Procede et dispositif de pompage a consommation d'energie reduite Active EP2501936B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0958138A FR2952683B1 (fr) 2009-11-18 2009-11-18 Procede et dispositif de pompage a consommation d'energie reduite
PCT/FR2010/052305 WO2011061429A2 (fr) 2009-11-18 2010-10-27 Procede et dispositif de pompage a consommation d'energie reduite

Publications (2)

Publication Number Publication Date
EP2501936A2 EP2501936A2 (fr) 2012-09-26
EP2501936B1 true EP2501936B1 (fr) 2016-07-27

Family

ID=42342727

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10790462.5A Active EP2501936B1 (fr) 2009-11-18 2010-10-27 Procede et dispositif de pompage a consommation d'energie reduite

Country Status (8)

Country Link
US (1) US9175688B2 (fr)
EP (1) EP2501936B1 (fr)
JP (1) JP5769722B2 (fr)
KR (1) KR101778318B1 (fr)
CN (1) CN102713299B (fr)
FR (1) FR2952683B1 (fr)
TW (1) TWI507604B (fr)
WO (1) WO2011061429A2 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9987757B2 (en) * 2012-02-13 2018-06-05 J. Schmalz Gmbh Method for operating a vacuum generator and a vacuum generator
KR101995358B1 (ko) 2012-06-28 2019-07-02 스털링 인더스트리 컨설트 게엠베하 챔버를 배기시키기 위한 방법 및 펌프 장치
FR2992927B1 (fr) * 2012-07-03 2014-08-08 Peugeot Citroen Automobiles Sa Circuit de vide avec pompe a vide pour systeme d'assistance pneumatique au freinage dans un vehicule automobile couple avec un circuit de suralimentation
KR102007839B1 (ko) * 2012-07-12 2019-08-06 엘지전자 주식회사 진공 청소기
FR2993614B1 (fr) * 2012-07-19 2018-06-15 Pfeiffer Vacuum Procede et dispositif de pompage d'une chambre de procedes
DE102012220442A1 (de) * 2012-11-09 2014-05-15 Oerlikon Leybold Vacuum Gmbh Vakuumpumpensystem zur Evakuierung einer Kammer sowie Verfahren zur Steuerung eines Vakuumpumpensystems
FR3008145B1 (fr) 2013-07-04 2015-08-07 Pfeiffer Vacuum Sas Pompe a vide primaire seche
FR3022319B1 (fr) * 2014-06-16 2016-11-18 Coval Cartouche pour circuit pneumatique et dispositif de prehension a ventouse comportant une telle cartouche
WO2015039898A1 (fr) * 2013-09-23 2015-03-26 Coval Cartouche pour circuit pneumatique et dispositif de prehension a ventouse comportant une telle cartouche
FR3010928B1 (fr) * 2013-09-23 2016-04-01 Coval Cartouche pour circuit pneumatique et dispositif de prehension a ventouse comportant une telle cartouche
RU2660698C2 (ru) 2014-03-24 2018-07-09 Ателье Буш Са Способ откачки в системе вакуумных насосов и система вакуумных насосов
KR101424959B1 (ko) * 2014-04-08 2014-08-01 한국뉴매틱(주) 진공펌프
DK3137771T3 (da) * 2014-05-01 2020-06-08 Ateliers Busch S A Fremgangsmåde til pumpning i et pumpesystem og et system af vakuumpumper
PL3161318T3 (pl) * 2014-06-27 2020-08-10 Ateliers Busch S.A. Sposób pompowania w układzie pomp próżniowych oraz układ pomp próżniowych
KR20210102478A (ko) * 2014-09-26 2021-08-19 아뜰리에 부쉬 에스.아. 진공-발생 펌핑 시스템 및 이 펌핑 시스템을 사용한 펌핑 방법
DE202014007963U1 (de) 2014-10-01 2016-01-05 Oerlikon Leybold Vacuum Gmbh Vakuumpumpsystem
US10808730B2 (en) * 2014-10-02 2020-10-20 Ateliers Busch Sa Pumping system for generating a vacuum and method for pumping by means of this pumping system
US9982666B2 (en) 2015-05-29 2018-05-29 Agilient Technologies, Inc. Vacuum pump system including scroll pump and secondary pumping mechanism
EP3153708B1 (fr) 2015-10-06 2019-07-17 Pfeiffer Vacuum Gmbh Pompe a spirales et procede destine au fonctionnement d'une pompe a spirales
FR3054005B1 (fr) * 2016-07-13 2018-08-24 Pfeiffer Vacuum Procede de descente en pression dans un sas de chargement et de dechargement et groupe de pompage associe
CN106762641A (zh) * 2016-11-28 2017-05-31 陈琼 一种真空联合机组
DE202016007609U1 (de) 2016-12-15 2018-03-26 Leybold Gmbh Vakuumpumpsystem
US11123687B2 (en) 2018-03-19 2021-09-21 Hamilton Sundstrand Corporation Vacuum assisted air separation module operation
FR3098869B1 (fr) * 2019-07-17 2021-07-16 Pfeiffer Vacuum Groupe de pompage
WO2021110257A1 (fr) * 2019-12-04 2021-06-10 Ateliers Busch Sa Système de pompage redondant et procédé de pompage à l'aide de ce système de pompage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040173312A1 (en) * 2001-09-06 2004-09-09 Kouji Shibayama Vacuum exhaust apparatus and drive method of vacuum apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3064878A (en) * 1958-01-03 1962-11-20 Nash Engineering Co Method and apparatus for high performance evacuation system
US3239131A (en) * 1963-03-18 1966-03-08 Nash Engineering Co High vacuum ejector pump with automatic cut-in valve
FR1600217A (fr) * 1968-03-15 1970-07-20
US4699570A (en) * 1986-03-07 1987-10-13 Itt Industries, Inc Vacuum pump system
JPS6385292A (ja) * 1986-09-29 1988-04-15 Hitachi Ltd 真空ポンプ
FR2640697B1 (fr) * 1988-12-16 1993-01-08 Cit Alcatel Ensemble de pompage pour l'obtention de vides eleves
DE10033212C1 (de) * 2000-07-07 2002-01-24 Festo Ag & Co Vakuumerzeugervorrichtung
DE60101368T2 (de) * 2001-02-22 2004-10-14 Varian S.P.A., Leini Vakuumpumpe
FR2822200B1 (fr) * 2001-03-19 2003-09-26 Cit Alcatel Systeme de pompage pour gaz a faible conductivite thermique
US6589023B2 (en) * 2001-10-09 2003-07-08 Applied Materials, Inc. Device and method for reducing vacuum pump energy consumption
JP4365059B2 (ja) * 2001-10-31 2009-11-18 株式会社アルバック 真空排気装置の運転方法
JP2004263635A (ja) * 2003-03-03 2004-09-24 Tadahiro Omi 真空装置および真空ポンプ
GB0326613D0 (en) 2003-11-14 2003-12-17 Boc Group Plc Vacuum pump
JP2006037868A (ja) 2004-07-28 2006-02-09 Hitachi Ltd 負圧供給装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040173312A1 (en) * 2001-09-06 2004-09-09 Kouji Shibayama Vacuum exhaust apparatus and drive method of vacuum apparatus

Also Published As

Publication number Publication date
EP2501936A2 (fr) 2012-09-26
TW201139850A (en) 2011-11-16
KR101778318B1 (ko) 2017-09-13
FR2952683B1 (fr) 2011-11-04
US20120219443A1 (en) 2012-08-30
WO2011061429A2 (fr) 2011-05-26
KR20120101000A (ko) 2012-09-12
CN102713299A (zh) 2012-10-03
CN102713299B (zh) 2016-04-27
TWI507604B (zh) 2015-11-11
FR2952683A1 (fr) 2011-05-20
WO2011061429A3 (fr) 2012-07-12
JP2013511644A (ja) 2013-04-04
JP5769722B2 (ja) 2015-08-26
US9175688B2 (en) 2015-11-03

Similar Documents

Publication Publication Date Title
EP2501936B1 (fr) Procede et dispositif de pompage a consommation d'energie reduite
EP3201469B1 (fr) Systeme de pompage pour generer un vide et procede de pompage au moyen de ce systeme de pompage
EP3485168B1 (fr) Procédé de descente en pression dans un sas de chargement et de déchargement et groupe de pompage associé
EP3161318B1 (fr) Méthode de pompage dans un système de pompes à vide et système de pompes à vide
EP3676589B1 (fr) Détecteur de fuites et procédé de détection de fuites pour le contrôle de l'étanchéité d'objets à tester
EP3198148B1 (fr) Système de pompage pour générer un vide et procédé de pompage au moyen de ce système de pompage
WO2020201218A1 (fr) Pompe à vide de type sèche et installation de pompage
EP3137771B1 (fr) Méthode de pompage dans un système de pompage et système de pompes à vide
FR2968730A1 (fr) Dispositif de pompage a consommation d'energie reduite
EP3123030B1 (fr) Méthode de pompage dans un système de pompes à vide et système de pompes à vide
EP0058610B1 (fr) Procédé et installation pour la réalisation d'un vide profond mettant en oeuvre une pompe à anneau liquide simple étage
EP2034256B1 (fr) Procede et dispositif d'equilibrage d'huile entre compresseurs
FR3017425A1 (fr) Systeme de pompage et procede de descente en pression dans un sas de chargement et de dechargement
FR3112578A3 (fr) Pompe à vide à palettes, détecteur et installation de lyophilisation
FR2971018A1 (fr) Pompe a vide primaire, installation pour le traitement de substrats et procede de pompage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120521

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131108

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PFEIFFER VACUUM

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160411

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 816051

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010035079

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160727

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 816051

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161027

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161127

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161028

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161128

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010035079

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161027

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161027

26N No opposition filed

Effective date: 20170502

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161027

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161027

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161027

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101027

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231024

Year of fee payment: 14

Ref country code: DE

Payment date: 20231030

Year of fee payment: 14