WO2010064453A1 - 脱線予兆の検知方法および脱線再現装置 - Google Patents

脱線予兆の検知方法および脱線再現装置 Download PDF

Info

Publication number
WO2010064453A1
WO2010064453A1 PCT/JP2009/006651 JP2009006651W WO2010064453A1 WO 2010064453 A1 WO2010064453 A1 WO 2010064453A1 JP 2009006651 W JP2009006651 W JP 2009006651W WO 2010064453 A1 WO2010064453 A1 WO 2010064453A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular velocity
derailment
cart
vehicle
detected
Prior art date
Application number
PCT/JP2009/006651
Other languages
English (en)
French (fr)
Inventor
田仲文郎
山下高賢
森川真人
川鍋哲也
坂井孝
国見敬
須田義大
洪介仁
林世彬
王文軍
Original Assignee
西日本旅客鉄道株式会社
曙ブレーキ工業株式会社
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西日本旅客鉄道株式会社, 曙ブレーキ工業株式会社, 国立大学法人 東京大学 filed Critical 西日本旅客鉄道株式会社
Priority to EP09830223.5A priority Critical patent/EP2374686B1/en
Priority to JP2010541251A priority patent/JP5468016B2/ja
Publication of WO2010064453A1 publication Critical patent/WO2010064453A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles
    • G01M17/10Suspensions, axles or wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F9/00Rail vehicles characterised by means for preventing derailing, e.g. by use of guide wheels
    • B61F9/005Rail vehicles characterised by means for preventing derailing, e.g. by use of guide wheels by use of non-mechanical means, e.g. acoustic or electromagnetic devices

Definitions

  • the present invention relates to a derailment sign detection method and a derailment reproduction device that perform derailment prediction in advance before a railcar derails to prevent derailment in advance.
  • Patent Documents 1 to 4 have been proposed as methods for detecting derailment.
  • Japanese Patent Application Laid-Open No. 2004-133826 has a technique for double integrating an acceleration signal to obtain an amount of vertical displacement, detecting a vehicle traveling speed at the same time, and detecting derailment based on a vertical acceleration corresponding to the actual traveling speed. It is disclosed.
  • Patent Document 2 discloses a technique for constantly monitoring and recording the output of a vibration sensor during normal running, and detecting derailment by comparing the output of the vibration sensor during running with the record.
  • Patent Document 3 the traveling speed of the railway vehicle is detected simultaneously with the detection of the vibration acceleration, the vibration acceleration that changes with the traveling speed is measured, the maximum value is obtained as a limit value, and the acceleration exceeding this is detected.
  • Patent Document 4 discloses a technique for judging derailment by filtering the output of the vertical acceleration sensor to a predetermined range by a filter and comparing this value with a derailment detection reference value during low-speed traveling.
  • JP 09-039790 A Japanese Patent Laid-Open No. 10-278795 WO 2000/09379 Japanese Patent Laid-Open No. 2003-261027
  • Patent Documents 1 to 4 are all methods for detecting after derailment, and do not prevent derailment in advance.
  • the derailment sign detection method detects the pitch angular velocity and roll angular velocity of a traveling carriage by a sensor (acceleration sensor or angular velocity sensor) attached to the carriage frame. Derailment on condition that the trolley pitch angular velocity or the integrated value of the trolley pitch angular velocity is greater than a preset threshold value, and that the detected trolley roll angular velocity or the integrated value of the cart roll angular velocity is greater than a preset threshold value. Judgment was made as a sign.
  • the senor according to claim 1 is attached to the axle box and the bogie frame.
  • the maximum value detected by a plurality of sensors is adopted in anticipation of safety.
  • the threshold value of the cart pitch angular velocity and the integrated threshold value of the cart roll angular velocity can be changed using the traveling speed as a parameter.
  • the device for reproducing the derailment of the vehicle according to the present invention includes a movable unit that is movable in a direction orthogonal to the rail between a pair of rails on which the vehicle travels, and the movable unit extends along the traveling direction of the vehicle.
  • a plurality of connecting units, and each movable unit includes a guide surface that moves in a direction perpendicular to the rail in conjunction with the movement of the vehicle by contacting a part of the traveling vehicle; It was set as the structure which had the level
  • derailment can be prevented even when traveling at low speed, so that it is not necessary to damage the vehicle or repair the track. Also, in the driving control of the vehicle, since a dangerous state can be grasped in advance, an efficient driving can be performed.
  • the top view of the experimental vehicle to which the derailment sign detection method according to the present invention is applied Plan view of the experimental section causing derailment Side view of FIG.
  • Front view of the movable unit used in the experiment Plan view similar to FIG. 2 with the movable unit moving (A) is a graph showing the time change of the acceleration measured by the acceleration sensor attached to the left axle box of the first axle of the experimental vehicle, and (b) is the acceleration sensor attached to the left axle box of the third axle of the experimental vehicle.
  • the graph (c) showing the time change of the acceleration measured by the graph (d) shows the time change of the roll angular velocity measured by the angular velocity sensor attached to the front part of the first bogie frame of the experimental vehicle.
  • a graph (e) showing the time change of the roll angular velocity measured by the angular velocity sensor attached to the rear portion of the frame is a graph (f) showing the time change of the roll angular velocity measured by the angular velocity sensor attached to the front portion of the vehicle body of the experimental vehicle.
  • G) is a graph showing the time change of the pitch angle measured by the angular velocity sensor attached to the rear part of the second bogie frame of the experimental vehicle.
  • (H) is the time change of the pitch angle measured by the angular velocity sensor attached to the vehicle body of the experimental vehicle.
  • Graph showing Algorithm flow chart (A) is a graph showing the time change (peak check) of the pitch angular velocity at the front of the first bogie frame of the experimental vehicle.
  • (B) is a graph showing the time change of the roll angular velocity at the front of the first bogie frame of the experimental vehicle.
  • (B) is a graph (c) showing the integrated value (0.2 seconds) of the roll angular velocity at the front of the first bogie frame of the experimental vehicle.
  • the graph (c) is the integrated value of the roll angular velocity at the front of the first bogie frame of the experimental vehicle
  • Graph (d) showing 0.5 seconds) is a graph showing the integrated value (1.0 seconds) of the roll angular velocity at the front of the first bogie frame of the experimental vehicle.
  • a figure showing an example of entering the climbing trajectory A figure showing an example of entering the climbing trajectory
  • the graph which shows the relationship between the elapsed time after starting climbing at speed 10km / hr, and the pitch angular velocity and roll angular velocity integrated value The graph which shows the relationship between the elapsed time after starting climbing at speed 15km / hr, and the threshold value of pitch angular velocity
  • Flow diagram of a method for detecting derailment signs according to the present invention The figure which shows the example which performs the abnormal warning display to the train monitor
  • FIG. 1 is a plan view of an experimental vehicle to which a derailment sign detection method according to the present invention is applied
  • FIG. 2 is a plan view of an experimental section that causes derailment
  • FIG. 3 is a side view of the experimental section
  • FIG. 5 is a front view of the movable unit
  • FIG. 5 is a plan view similar to FIG. 2 in a state where the movable unit has moved.
  • the experimental vehicle uses a 1/10 size model, and in this experimental vehicle, the vehicle body 20 is supported by two front and rear carriages 1 and 11.
  • the front bogie 1 is provided with a first axle 3 and a second axle 4 on a first bogie frame 2
  • the rear bogie 11 is provided with a third axle 13 and a fourth axle 14 on a second bogie frame 12.
  • the acceleration sensor 5 is attached to the left side box portion of the first axle 3 and the left side portion of the third axle 13 on the side of the first axle 3 on the movable unit, which will be described later, and the angular velocity sensor 6 is connected to the front end portion of the first bogie frame 2 and the second end portion. It is attached to the rear end portion of the bogie frame 12 and the front end portion of the vehicle body 20.
  • the angular velocity sensor 6 has a roll and a pitch.
  • Approx. 9m straight line is used for the experimental section.
  • a plurality of movable units 31 are arranged between the rails 30 of the straight line.
  • the movable unit 31 has a block shape and is movably engaged with a linear slide 32 orthogonal to the rail 30.
  • a plurality of step surfaces are formed on the upper surface of the movable unit 31.
  • the step surface 31a is the lowest surface, and step surfaces 31b and 31c having the same height are formed on the step surface 31a so as to be separated from each other in the width direction of the line, and the highest step is formed on one step surface 31c.
  • a surface 31d is formed.
  • the boundary wall between the step surface 31a and the step surfaces 31b and 31c is formed obliquely along the traveling direction of the vehicle so as to gradually approach each other, and the step surface 31d is disposed along the traveling direction of the vehicle.
  • the step surface 31d is an inclined surface that gradually increases so as to gradually increase.
  • this experimental apparatus is provided with a traction device 40 for towing a vehicle.
  • the traction device 40 has small rollers 41 and 42 for moving the movable unit 31 along the linear slide 32, and for increasing rigidity.
  • a caster 43 is attached.
  • the vehicle is towed from the state of FIG. Then, the front small roller 41 attached to the traction device 40 comes into contact with the boundary wall between the step surface 31a and the step surface 31c of the first movable unit 31 (the rightmost side in the figure), and the movable unit 31 is moved to one rail 30. Move to the side. By this movement, the flange of the left wheel 3 a attached to the first axle 3 of the front carriage 1 rides on the step surface 31 d of the first movable unit 31.
  • the small roller 41 comes into contact with the boundary wall between the step surface 31a and the step surface 31c of the second movable unit 31, and moves the movable unit 31 to the one rail 30 side.
  • the flange of the left wheel 3 a attached to the first axle 3 rides on the step surface 31 d of the second movable unit 31.
  • one wheel attached to the axle rides on the obstacle (movable unit), and one wheel is lifted by running on the flange, the carriage tilts and eventually derails.
  • FIGS. 6A to 6H show the results of a specific example obtained by extracting 8CH data from 56CH data measured using the experimental vehicle.
  • the experimental condition was that the wheel to be derailed was the left wheel of the first axle, the lift amount of the wheel was 3 mm, the speed was 0.9 m, and the rotation speed of the wheel until the lift amount was 3 mm was 3 rotations.
  • FIG. 6A is a graph showing the time change of acceleration measured by the vertical acceleration sensor attached to the left axle box of the first axle of the experimental vehicle
  • FIG. 6B is the left axis of the third axle of the experimental vehicle.
  • the graph which shows the time change of the acceleration measured with the acceleration sensor of the up-down direction attached to the box (c) is the graph which shows the time change of the roll angular velocity measured by the angular velocity sensor attached to the front part of the 1st bogie frame of the experimental vehicle.
  • (D) is a graph showing the time change of the roll angular velocity measured by the angular velocity sensor attached to the rear part of the second bogie frame of the experimental vehicle, and (e) is measured by the angular velocity sensor attached to the front part of the vehicle body of the experimental vehicle.
  • a graph showing the time change of the roll angular velocity (f) shows the pitch measured by the angular velocity sensor attached to the front part of the first bogie frame of the experimental vehicle.
  • the graph which shows the time change of an angle (g) is the graph which shows the time change of the pitch angle measured by the angular velocity sensor attached to the rear part of the 2nd bogie frame of an experimental vehicle, (h) is the angular velocity attached to the vehicle body of the experimental vehicle. It is a graph which shows the time change of the pitch angle measured with the sensor. From FIG. 6A, it can be seen that the acceleration in the vertical direction greatly increases when the left wheel of the first axle of the front carriage derails. Also, as shown in (b), when the wheel on the left side of the third axle passes, the movable unit has already returned to its original position, so the acceleration in the vertical direction is small and the change in acceleration caused by the rail joint is detected. Is done.
  • the circled portions are accelerations and angular velocities detected when passing through the rail joints.
  • it is treated as noise and erroneously detected.
  • both the roll angle and the pitch angle are factors, it is possible to eliminate the influence of the cant when running on a curve.
  • the above derailment reproduction apparatus can reproduce various derailment conditions, and in the present invention, 24 experimental conditions were set by combining four parameters. The four parameters were the experimental running speed, the wheel to be derailed, the amount of wheel lift, and the number of wheel rotations up to the desired amount of lift.
  • ⁇ t (V), ⁇ CR (V), ⁇ CR (V) are input to the vehicle computer in advance, and the running speed (V), the cart pitch angular velocity ⁇ (t), the cart roll
  • the angular velocity ⁇ (t) is measured in real time, and the cart pitch angular velocity ⁇ (t) is larger than ⁇ CR (V), and the threshold ⁇ CR (V) accumulated in the accumulated time ⁇ t (V) is exceeded. Two conditions that the integrated value of the cart roll angular velocity ⁇ (t) is increased are satisfied.
  • the threshold value can be the minimum physical quantity after getting on, taking into account missing detections and false detections.
  • FIG. 8 shows the result of verifying the relationship between the threshold value determined in this way and derailment.
  • the experiment conditions were set such that the amount of wheel lift on the left side of the first axle was 10 mm, the vehicle speed was 0.9 m / s, and the wheel rotation until the wheel lift amount reached 10 mm was one rotation.
  • the vehicle model used for studying the effectiveness of the algorithm was a general commuter train, and a single vehicle model was used.
  • the vehicle model has the configuration shown in Table 1, and is constructed as a three-dimensional model.
  • the values shown in Table 2 are used for the mass and moment of inertia of each vehicle element.
  • the primary spring and the secondary spring that connect them are configured by linear springs and dampers that apply a restoring force in the axial directions of X (vehicle longitudinal direction), Y (vehicle lateral direction), and Z (vehicle vertical direction).
  • the physical quantity used for the sign detection algorithm was measured from the bogie frame which is the sensor mounting position.
  • the climbing trajectory shown in FIGS. 9 and 10 was input to the simulation software, and the wheel tread of the left first axis was lifted 40 mm.
  • the horizontal axis represents the rail position from the start point of the fourth axis
  • the vertical axis represents the vertical displacement of the rail through which only the left first axis wheel tread passes in the upper graph.
  • the simulation results of riding on a traveling speed of 10 (km / h) and a wheelset 3 (rev) (condition 1) are shown as representatives.
  • the horizontal axis indicates the time that has elapsed since the first left wheel started climbing
  • the vertical axis indicates the roll angular velocity, pitch angular velocity, and roll angular velocity of the front bogie frame in order from the top.
  • the integrated value is shown.
  • the integration time of the roll angular velocity is calculated as 0.2 (s).
  • the traveling speed 15 (km / h), the wheelset 3 (rev), where only the speed is improved with respect to the traveling speed 10 (km / h) and the wheelset 3 (rev) (condition 1). ) was also simulated. From the result of the simulation, the roll angular velocity and the pitch angular velocity of the bogie frame after getting on increased as the speed increased. In addition, it was confirmed that the values of the pitch angular velocity and roll angular velocity of the bogie frame due to the up-and-down deviation did not change much.
  • the threshold of the pitch angular velocity peak value and the roll angular velocity integrated value in this derailment sign detection system is false detection based on the result of the traveling speed traveling speed 10 (km / h) and the wheelset 3 (rev) (condition 1) (FIG. 11). Without being set, it is set to an appropriate range in which a sign can be detected.
  • Table 4 shows the threshold values set as a result. These values are adjusted according to vehicle conditions, travel conditions, and the like.
  • the derailment sign detection algorithm with the set threshold value was applied to the traveling speed 15 (km / h) and the wheel shaft 1 (rev) having the fastest traveling speed and the highest climbing speed among the conditions of the climbing traveling simulation.
  • the application results are shown in FIGS.
  • the sign detection is detected 0.05 seconds after the start of the ride (7.7% with respect to the total time) with respect to 0.65 seconds until the completion of the 30 mm ride. From this, it can be confirmed that even under severe conditions for sign detection, detection can be performed at a very early stage after completion of climbing (derailed simulation state).
  • Table 5 shows the 30 mm ride completion time, the detection time from the start of the ride, and the ratio of the detection time to the ride completion for all driving conditions. From this table, it was found that there were no false detections or omissions under all conditions, and it was possible to detect a sign of derailment with a ratio of detection time to completion of climbing of less than 10%.
  • the derailment sign is detected by constantly monitoring the acceleration / angular velocity, and when it is determined that the acceleration or angular velocity exceeds the threshold of the determination algorithm, the emergency brake is activated, and FIG. As shown, when an abnormality alarm is displayed on the train monitor and it is determined that the acceleration or angular velocity is below the threshold value of the determination algorithm, a sudden brake release process and a display to that effect are performed.

Abstract

【課題】 精度が高く且つ車両に適用しやすい脱線予兆の検知方法を提供する。 【解決手段】 走行中の台車のピッチ角速度およびロール角速度を、台車枠、または軸箱と台車枠に取り付けたセンサによって検出し、計測した台車ピッチ角速度または台車ピッチ角速度の積算値が予め設定した閾値よりも大きくなったこと、および計測した台車ロール角速度または台車ロール角速度の積算値が予め設定した閾値よりも大きくなったことを条件として脱線予兆と判断する。

Description

脱線予兆の検知方法および脱線再現装置
本発明は、鉄道車両が脱線する前に予め脱線予知を行い、未然に脱線を防止する脱線予兆の検知方法と脱線再現装置に関する。
 鉄道車両が脱線したことを検知せずにそのまま走行すると大きな事故につながる。そこで脱線したことを検知する方法として、特許文献1~4に開示される方法が提案されている。
 特許文献1には、加速度信号を二重積分して上下方向の変位量を求め、且つ車両の走行速度を同時に検出し、実走行速度に対応する鉛直方向加速度にもとづいて脱線を検出する技術が開示されている。
特許文献2には、正常走行時の振動センサの出力を常時監視記録し、走行中の振動センサの出力を該記録と比較することにより脱線を検知する技術が開示されている。
 特許文献3には、振動加速度の検出と同時に鉄道車両の走行速度を検出し、走行速度と共に変化する振動加速度を測定しその最大値を得て限界値とし、これを超える加速度を検出したとき脱線と判定する技術が開示されている。
特許文献4には、上下方向加速度センサの出力をフィルターによって所定の範囲に濾波し、この値と低速走行時の脱線検知基準値とを比較して、脱線を判定する技術が開示されている。
特開平09-039790号公報 特開平10-278795号公報 WO 2000/09379 特開2003-261027号公報
 特許文献1~4に開示される方法は、いずれも脱線した後にそれを検知する方法であり、脱線を未然に防ぐものではない。
 上記の課題を解決するため請求項1に係る脱線予兆の検知方法は、走行中の台車のピッチ角速度およびロール角速度を、台車枠に取り付けたセンサ(加速度センサまたは角速度センサ)によって検出し、検出した台車ピッチ角速度または台車ピッチ角速度の積算値が予め設定した閾値よりも大きくなったこと、および検出した台車ロール角速度または台車ロール角速度の積算値が予め設定した閾値よりも大きくなったことを条件として脱線予兆と判断するようにした。
 また請求項2に係る発明では、請求項1に係る発明のセンサを軸箱および台車枠に取り付けた構成とした。
 検知精度を高めるには、複数個のセンサを台車に取り付けることが好ましい.この場合には、安全を見越して複数個のセンサの検出値の最大値を採用する。また、前記台車ピッチ角速度の閾値及び台車ロール角速度の積算閾値を、走行速度をパラメータとして変化させることも可能である。
 更に本発明に係る車両の脱線を再現する装置は、車両が走行する一対のレール間に当該レールと直交する方向に移動可能とされた可動ユニットを備え、この可動ユニットは車両の走行方向に沿って複数個連接して設けられ、また各可動ユニットには走行する車両の一部と接触することで車両の動きに連動して前記レールと直交する方向に移動せしめるガイド面と、可動ユニットが前記レールに寄った状態で車輪のフランジ部が乗り上げる段差面を有した構成とした。
 本発明によれば、低速走行においても脱線を未然に防ぐことができるので、車両の破損や線路の修理を行わなくてすむ。また、車両の運転制御においても、予め危険な状態を把握できるので、効率のよい運転を行うことができる。
本発明に係る脱線予兆の検知方法を適用した実験車両の平面図 脱線を生じさせる実験区間の平面図 図2の側面図 実験に用いた可動ユニットの正面図 可動ユニットが移動した状態の図2と同様の平面図 (a)は実験車両の第1車軸の左側の軸箱に取り付けた加速度センサによって測定した加速度の時間変化をしめすグラフ(b)は実験車両の第3車軸の左側の軸箱に取り付けた加速度センサによって測定した加速度の時間変化をしめすグラフ(c)は実験車両の第1ボギーフレームの前部に取り付けた角速度センサによって測定したロール角速度の時間変化をしめすグラフ(d)は実験車両の第2ボギーフレームの後部に取り付けた角速度センサによって測定したロール角速度の時間変化をしめすグラフ(e)は実験車両の車体の前部に取り付けた角速度センサによって測定したロール角速度の時間変化をしめすグラフ(f)は実験車両の第1ボギーフレームの前部に取り付けた角速度センサによって測定したピッチ角の時間変化を示すグラフ(g)は実験車両の第2ボギーフレームの後部に取り付けた角速度センサによって測定したピッチ角の時間変化を示すグラフ(h)は実験車両の車体に取り付けた角速度センサによって測定したピッチ角の時間変化を示すグラフ アルゴリズムのフローチャート (a)は実験車両の第1ボギーフレームの前部のピッチ角速度の時間変化(ピークチェック)を示すグラフ(b)は実験車両の第1ボギーフレームの前部のロール角速度の時間変化を示すグラフ(b)は実験車両の第1ボギーフレームの前部のロール角速度の積算値(0.2秒)を示すグラフ(c)は実験車両の第1ボギーフレームの前部のロール角速度の積算値(0.5秒)を示すグラフ(d)は実験車両の第1ボギーフレームの前部のロール角速度の積算値(1.0秒)を示すグラフ 乗り上がり軌道の入力例を示す図 乗り上がり軌道の入力例を示す図 速度10km/hrでの乗り上がりを開始してからの経過時間と、ピッチ角速度およびロール角速度積算値との関係を示すグラフ 速度15km/hrでの乗り上がりを開始してからの経過時間と、ピッチ角速度の閾値との関係を示すグラフ 速度15km/hrでの乗り上がりを開始してからの経過時間と、ロール角速度積算値の閾値との関係を示すグラフ 本発明に係る脱線予兆の検知方法のフロー図 列車モニタへの異常警報表示を行う例を示す図 摩擦調整剤をレールと車輪の間に向けて散布する例を示す図 MPUを用いてアクティブ操舵を行う例を示す図
 以下に本発明を実施するための最良の形態を図面に基づいて詳細に説明する。図1は本発明に係る脱線予兆の検知方法を適用した実験車両の平面図、図2は脱線を生じさせる実験区間の平面図、図3は実験区間の側面図、図4は実験に用いた可動ユニットの正面図、図5は可動ユニットが移動した状態の図2と同様の平面図である。
 実験車両は1/10の大きさのモデルを使用し、この実験車両では前後2台の台車1、11で車体20を支持している。前側の台車1は第1ボギーフレーム2に第1車軸3と第2車軸4を設け、後側の台車11は第2ボギーフレーム12に第3車軸13と第4車軸14を設けている。
 そして、加速度センサ5は後述する可動ユニットに乗り上げる側の第1車軸3の左側の軸箱部分と第3車軸13の左側部分に取り付け、角速度センサ6は第1ボギーフレーム2の前端部と第2ボギーフレーム12の後端部と車体20の前端部に取り付けている。尚、角速度センサ6はロールとピッチを具備している。
 実験区間には約9mの直線線路を用いている。この直線線路のレール30、30間には、複数の可動ユニット31を配置している。可動ユニット31はブロック状をなしレール30と直交するリニアスライド32に移動可能に係合している。
 また、可動ユニット31の上面には図4にも示すように、複数の段差面が形成されている。段差面31aは最も低い面であり、この段差面31a上に同じ高さの段差面31b,31cが線路の幅方向に離間して形成され、一方の段差面31c上には最も高くなった段差面31dが形成されている。
 更に、前記段差面31aと段差面31b,31cとの境界壁は車両の進行方向に沿って、互いに徐々に接近するように斜めに形成され、また前記段差面31dは車両の進行方向に沿って徐々に連続して高くなるように、上流側(図において右側)の3個の可動ユニット31については段差面31dは徐々に高くなる傾斜面になっている。尚、段差面31dの傾斜面の角度は決定した車輪上昇量に至るまでの車輪回転数に応じて変更することができるように、複数種類の可動ユニット31を用意するのが好ましい。
 また、この実験装置では車両を牽引する牽引装置40を備えており、この牽引装置40に前記可動ユニット31をリニアスライド32に沿って移動させるための小ローラ41、42と、剛性を高めるためのキャスター43を取り付けている。
 以上において、図2の状態から牽引装置40によって車両を牽引する。すると、牽引装置40に取り付けられた前方の小ローラ41が最初の可動ユニット31(図において最も右側)の段差面31aと段差面31cとの境界壁に当接し、可動ユニット31を一方のレール30側に移動せしめる。この移動により前側の台車1の第1車軸3に取り付けた左側の車輪3aのフランジが最初の可動ユニット31の段差面31dに乗り上げる。
更に、車両が牽引されると、小ローラ41が2番目の可動ユニット31の段差面31aと段差面31cとの境界壁に当接し、当該可動ユニット31を一方のレール30側に移動せしめ、前記同様、第1車軸3に取り付けた左側の車輪3aのフランジが2番目の可動ユニット31の段差面31dに乗り上げる。
 一方、車輪3aのフランジが通過した段差面31dを有する可動ユニット31については、後続する小ローラ42が可動ユニット31の段差面31aと段差面31bとの境界壁に当接し、当該可動ユニット31を元の位置まで戻し、次の車輪の通過に備える。この状態を図5で示している。
 以上の如くして、車軸に取り付けた一方の車輪が障害物(可動ユニット)に乗り上げ、フランジ走行することで一方の車輪が持ち上がり、台車は傾斜して最終的には脱線に至る。
 上記の実験車両を用いて計測した56CHのデータから8CHのデータを抽出して行った具体例の結果を図6(a)~(h)に示す。実験条件は、脱線する車輪を第1車軸の左側車輪とし、当該車輪の上昇量を3mm、速度を0.9m、上昇量が3mmになるまでの車輪の回転数を3回転とした。
 図6(a)は実験車両の第1車軸の左側の軸箱に取り付けた上下方向の加速度センサによって測定した加速度の時間変化を示すグラフ、(b)は実験車両の第3車軸の左側の軸箱に取り付けた上下方向の加速度センサによって測定した加速度の時間変化を示すグラフ、(c)は実験車両の第1ボギーフレームの前部に取り付けた角速度センサによって測定したロール角速度の時間変化を示すグラフ、(d)は実験車両の第2ボギーフレームの後部に取り付けた角速度センサによって測定したロール角速度の時間変化を示すグラフ、(e)は実験車両の車体の前部に取り付けた角速度センサによって測定したロール角速度の時間変化を示すグラフ、(f)は実験車両の第1ボギーフレームの前部に取り付けた角速度センサによって測定したピッチ角の時間変化を示すグラフ、(g)は実験車両の第2ボギーフレームの後部に取り付けた角速度センサによって測定したピッチ角の時間変化を示すグラフ、(h)は実験車両の車体に取り付けた角速度センサによって測定したピッチ角の時間変化を示すグラフである。
 図6(a)からは、前側の台車の第1車軸の左側の車輪が脱線する時点で、垂直方向の加速度が大きく増加することが分かる。また(b)に示すように、第3車軸の左側の車輪が通過する際には既に可動ユニットは元の位置に戻っているので垂直方向の加速度は小さくレールの継ぎ目に起因する加速度変化が検出される。(c)からは、第1車軸の左側の車輪が脱線する時点で第1ボギーフレームのロール角速度が大きくなることが分かる。(d)からは、ロール角速度は大きくならず、レールの継ぎ目に起因する角速度変化が検出されることが分かる。また(e)に示すように乗り上がりとレールの継ぎ目の影響が車体では判定しにくくなることが分かる。(f)からは、第1車軸の左側の車輪が脱線する時点で第1ボギーフレームのピッチ角速度が大きくなることが分かる。(g)からは、ピッチ角速度は大きくならず、レールの継ぎ目に起因する角速度変化が検出されることが分かる。(h)からは、乗り上がりとレールの継ぎ目の影響が車体では判定しにくくなることが分かる。
 尚、図6(a)~(h)において、円で囲った部分はレールの継ぎ目を通過する際に検出された加速度及び角速度であり、アルゴリズムを構築する際にはノイズとして処理して誤検知を防止する。また本発明ではロール角とピッチ角の両方をファクターとしているので、カーブ走行時のカントの影響を排除できる。
上記の脱線再現装置はいろいろな脱線条件を再現することが可能であり、本発明にあっては4つのパラメータを組み合わせることで24の実験条件を設定した。4つのパラメータとしては、実験走行速度、脱線させる車輪、車輪の上昇量、目的とする上昇量までの車輪の回転数とした。そして実験走行速度としては0.9m/s(実際の車両では10km/hに相当)と1.3m/s(実際の車両では15km/hに相当)を選定し、脱線させる車輪は第1車軸と第3車軸の左側車輪うちどちらかとし、車輪の上昇量としては3mmと10mmとし、目的とする上昇量までの車輪の回転数として半回転、1回転および3回転とした。
 脱線に至る判定アルゴリズムは、上記の実験から得られた56CHのデータを分析した。走行速度(V)をパラメータにして積算時間△t(V)、台車ピッチ角速度の閾値θCR(V)、台車ロール角速度の積算時間△t(V)に積算した閾値φCR(V)を変化させる。 図7に示すように、予め、△t(V)、θCR(V)、φCR(V)を車両の計算機に入力し、走行速度(V)、台車ピッチ角速度θ(t)、台車ロール角速度φ(t)をリアルタイムで測定し、θCR(V)よりも台車ピッチ角速度θ(t)が大きくなったこと、および積算時間△t(V)に積算した閾値φCR(V)よりも台車ロール角速度φ(t)の積算値が大きくなったことの2つの条件が満たされるようにする。
 前記閾値は、検知漏れや誤検知を考慮して、乗り上がり後に、物理量の最低値できめる。このようにして決定した閾値と脱線の関係を検証した結果を図8に示す。ここで実験条件は第1車軸の左側の車輪の上昇量を10mm、車両速度を0.9m/s、車輪上昇量が10mmに至るまでの車輪の回転を1回転とした。
 図8(a)から、測定開始から7秒後にピッチ角速度が閾値を超え、7.3秒後に車輪上昇量が10mmになり、この時点で脱線することが想定され、積算時間が0.2秒、0.5秒、1.0秒を設定した場合、0.2秒では誤検知がなく、脱線予兆を早期に検知することができる。 
次に、シミュレーションソフトを用いた実車両の乗り上がり脱線シミュレーション結果について述べる。
アルゴリズムの有効性検討のために使用する車両モデルとしては一般的な通勤電車とし、一車両モデルにて検討を行った。車両モデルは表1に示される構成であり、3次元モデルとして構築されている。車両各要素の質量・慣性モーメントは表2に示す値を用いている。これらを繋ぐ一次ばね及び二次ばねは、X(車両前後方向)、Y(車両横方向)、Z(車両垂直方向)それぞれの軸方向に復元力を作用させる線形ばねとダンパによって構成されている。また、センサ取り付け位置である台車枠から予兆検知アルゴリズムに用いる物理量を計測した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 脱線模擬シミュレーションを行う際、シミュレーションソフトには図9、図10に示す乗り上がり軌道を入力し、左一軸目の車輪踏面を40mm乗り上がらせることとした。図9、図10では横軸に4軸目のスタート地点からのレールの位置をとり、縦軸には上部のグラフでは左一軸目の車輪踏面だけが通るレールの鉛直方向変位を取った。
 車両の脱線は車両の走行速度と乗り上がり速さに依存する。そこで車両乗り上がりシミュレーションのために以下の(表3)に示す2つの走行条件を設定した。
Figure JPOXMLDOC01-appb-T000003
表3の走行条件のうち走行速度10(km/h)、輪軸3(rev)(条件1)の乗り上がりシミュレーション結果を代表して示す。
図11のグラフでは、横軸に左一軸目の車輪が乗り上がりを開始してから経過した時間を示しており、縦軸には上から順に、前台車枠のロール角速度、ピッチ角速度、ロール角速度積算値を示している。ここで、ロール角速度の積算時間は0.2(s)として計算している。
 図11の条件は緩やかな脱線状態を模擬したものであるが、乗り上がり開始からそれぞれの物理量について影響が現われていることが確認できる。
 アルゴリズムの閾値設定を行うために、走行速度10(km/h)、輪軸3(rev)(条件1)に対して速度のみが向上している走行速度15(km/h)、輪軸3(rev)でのシミュレーションも行った。
シミュレーションの結果からは、速度が上がったことにより乗り上がり後の台車枠のロール角速度とピッチ角速度の値が増加していた。また、上下狂いの影響による台車枠のピッチ角速度とロール角速度の値はあまり変化していないことが確認できた。
 本脱線予兆検知システムにおけるピッチ角速度ピーク値とロール角速度積算値の閾値は走行速度走行速度10(km/h)、輪軸3(rev)(条件1)の結果(図11)を元に誤検知をせず且つ予兆検知可能な適切な範囲に設定する。
その結果設定された閾値を表4に示す。これらの値は、車両条件、走行条件などによって調整する。
Figure JPOXMLDOC01-appb-T000004
 設定された閾値による脱線予兆検知アルゴリズムを、乗り上がり走行シミュレーションの条件中最も走行速度が速くかつ乗り上がり速度が速い走行速度15(km/h)、輪軸1(rev)に適用した。その適用結果が図12と図13である。
これらの図を確認すると30mm乗り上がり完了までの0.65秒に対して、乗り上がり開始から0.05秒後(全体の時間に対して7.7%)で予兆検知している。このことから、予兆検知にシビアな条件でも、乗り上がり完了(脱線模擬状態)より非常に早い段階で検知できていることが確認できる。
 表5はすべての走行条件について30mm乗り上がり完了時間、乗り上がり開始からの検知時間、乗り上がり完了に対する検知時間の割合を示したものである。この表からすべての条件で誤検知や検知漏れがなく、乗り上がり完了に対する検知時間の割合が10%未満で脱線の予兆を検知することが可能であるという結果が得られた。
Figure JPOXMLDOC01-appb-T000005
 実スケール車両の脱線を模擬するシミュレーションを行った結果、走行速度及び脱線までの輪軸回転数を変化させた4つの条件をすべてにおいて脱線が起こるまでの10%未満の時間で脱線予兆検知することが可能であった。このことから実スケール車両に対しての脱線予兆検知システムの有効性が確認された。
 また脱線予兆の検知は、図14に示すように、加速度・角速度を常にモニタリングしておき、加速度または角速度が判定アルゴリズムの閾値を越えたと判断した場合には、緊急ブレーキを作動し、図15に示すごとく、列車モニタへの異常警報表示を行い、加速度または角速度が判定アルゴリズムの閾値を下回ったと判断した場合には、急ブレーキの解除処理とその旨の表示を行う。
 また、脱線予兆を早期に検知したならば、その後の処置として、前記した乗務員に警告して自動的にブレーキをかける他に、図16に示すように、摩擦調整剤をレールと車輪の間に向けて散布したり、図17に示すようにMPUを用いてアクティブ操舵を行うなどが考えられる。
 1,11…台車、2…第1ボギーフレーム、3…第1車軸、3a…車輪、4…第2車軸、12…第2ボギーフレーム、13…第3車軸、14…第4車軸、5…加速度センサ、6…角速度センサ、20…車体、30…レール、31…可動ユニット、31a,31b,31c,31d…段差面、32…リニアスライド、40…牽引装置、41,42…小ローラ、43…キャスター。

Claims (5)

  1. 走行中の台車のピッチ角速度およびロール角速度を、台車枠に取り付けたセンサによって検出し、検出した台車ピッチ角速度または台車ピッチ角速度の積算値が予め設定した閾値よりも大きくなったこと、および検出した台車ロール角速度または台車ロール角速度の積算値が予め設定した閾値よりも大きくなったことを条件として脱線予兆と判断することを特徴とする脱線予兆の検知方法。
  2. 走行中の台車のピッチ角速度およびロール角速度を、軸箱および台車枠に取り付けたセンサによって検出し、検出した台車ピッチ角速度または台車ピッチ角速度の積算値が予め設定した閾値よりも大きくなったこと、および検出した台車ロール角速度または台車ロール角速度の積算値が予め設定した閾値よりも大きくなったことを条件として脱線予兆と判断することを特徴とする脱線予兆の検知方法。
  3. 請求項1または請求項2に記載の脱線予兆の検知方法において、前記センサはそれぞれ複数個取り付けられ、これら複数個のセンサの検出値の最大値を採用することを特徴とする脱線予兆の検知方法。
  4. 請求項1乃至請求項3に記載の脱線予兆の検知方法において、前記台車ピッチ角速度の閾値及び台車ロール角速度の積算閾値を、走行速度をパラメータとして変化させることを特徴とする脱線予兆の検知方法。
  5. 車両の脱線を再現する装置であって、この装置は車両が走行する一対のレール間に当該レールと直交する方向に移動可能とされた可動ユニットを備え、この可動ユニットは車両の走行方向に沿って複数個連接して設けられ、また各可動ユニットには走行する車両の一部と接触することで車両の動きに連動して前記レールと直交する方向に移動せしめるガイド面と、可動ユニットが前記レールに寄った状態で車輪のフランジ部が乗り上げる段差面を有していることを特徴とする脱線再現装置。
PCT/JP2009/006651 2008-12-05 2009-12-04 脱線予兆の検知方法および脱線再現装置 WO2010064453A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09830223.5A EP2374686B1 (en) 2008-12-05 2009-12-04 Method of detecting warning sign of derailment
JP2010541251A JP5468016B2 (ja) 2008-12-05 2009-12-04 脱線予兆の検知方法および脱線再現装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-310706 2008-12-05
JP2008310706 2008-12-05

Publications (1)

Publication Number Publication Date
WO2010064453A1 true WO2010064453A1 (ja) 2010-06-10

Family

ID=42233111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006651 WO2010064453A1 (ja) 2008-12-05 2009-12-04 脱線予兆の検知方法および脱線再現装置

Country Status (3)

Country Link
EP (1) EP2374686B1 (ja)
JP (1) JP5468016B2 (ja)
WO (1) WO2010064453A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175698A (zh) * 2011-12-20 2013-06-26 南车青岛四方机车车辆股份有限公司 铁道车辆抗大风倾覆能力测试方法及其装置
JP2013200236A (ja) * 2012-03-26 2013-10-03 Nippon Steel & Sumitomo Metal 鉄道車両の脱線実験装置
WO2014192897A1 (ja) 2013-05-29 2014-12-04 曙ブレーキ工業株式会社 脱線予兆検知システム、制御装置、脱線予兆検知方法、及び脱線予兆検知プログラム
JP2016041556A (ja) * 2014-08-19 2016-03-31 日本車輌製造株式会社 脱線検知装置
JP2016132422A (ja) * 2015-01-22 2016-07-25 株式会社総合車両製作所 脱線検知装置及び脱線検知方法
WO2018221741A1 (ja) * 2017-06-02 2018-12-06 曙ブレーキ工業株式会社 脱線予兆検知システム、制御装置、脱線予兆検知方法、および脱線予兆検知プログラム
CN110662686A (zh) * 2017-05-23 2020-01-07 庞巴迪运输有限公司 一种用于识别轨道车辆的脱轨的方法
CN112945591A (zh) * 2021-02-19 2021-06-11 张润申 一种轨道交通车辆脱轨试验装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014108685A1 (de) * 2014-06-20 2015-12-24 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren und Vorrichtung zur Entgleisungserkennung
DE102016104722A1 (de) * 2016-03-15 2017-09-21 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren zum Erzeugen von Daten für die Validierung von Entgleisungsdetektionssystemen
AT520559B1 (de) * 2017-10-03 2019-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren zum Betreiben einer schienengeführten Oberbaumaschine sowie Oberbaumaschine
FR3116037A1 (fr) * 2020-11-10 2022-05-13 Alstom Transport Technologies Dispositif de détection de déraillement d’un véhicule ferroviaire

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0939790A (ja) 1995-07-27 1997-02-10 Tokyu Car Corp 鉄道車両の脱線検知方法及び装置
JPH10271604A (ja) * 1997-03-25 1998-10-09 West Japan Railway Co 事故検知装置
JPH10278795A (ja) 1997-04-04 1998-10-20 Omron Corp 脱線検出装置および走行状態監視装置
JP2000006807A (ja) * 1998-06-25 2000-01-11 Hitachi Ltd 鉄道車両及びその走行時の異常検知方法
WO2000009379A1 (fr) 1998-08-10 2000-02-24 Tokyu Car Corporation Procede et appareil servant a detecter un deraillement de wagon
JP2002211400A (ja) * 2001-01-15 2002-07-31 East Japan Railway Co 脱線検出装置
JP2003261027A (ja) 2002-03-06 2003-09-16 Toack Corp 鉄道車両の低速走行時の脱線検出装置
JP2004175156A (ja) * 2002-11-25 2004-06-24 Tokyu Car Corp 鉄道車両の異常振動検出装置
JP2006341659A (ja) * 2005-06-07 2006-12-21 Sumitomo Metal Ind Ltd 鉄道車両の異常検知方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921945A (en) * 1974-07-25 1975-11-25 Us Navy Train resonant car-body rocking detector system
US6681160B2 (en) * 1999-06-15 2004-01-20 Andian Technologies Ltd. Geometric track and track/vehicle analyzers and methods for controlling railroad systems

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0939790A (ja) 1995-07-27 1997-02-10 Tokyu Car Corp 鉄道車両の脱線検知方法及び装置
JPH10271604A (ja) * 1997-03-25 1998-10-09 West Japan Railway Co 事故検知装置
JPH10278795A (ja) 1997-04-04 1998-10-20 Omron Corp 脱線検出装置および走行状態監視装置
JP2000006807A (ja) * 1998-06-25 2000-01-11 Hitachi Ltd 鉄道車両及びその走行時の異常検知方法
WO2000009379A1 (fr) 1998-08-10 2000-02-24 Tokyu Car Corporation Procede et appareil servant a detecter un deraillement de wagon
JP2002211400A (ja) * 2001-01-15 2002-07-31 East Japan Railway Co 脱線検出装置
JP2003261027A (ja) 2002-03-06 2003-09-16 Toack Corp 鉄道車両の低速走行時の脱線検出装置
JP2004175156A (ja) * 2002-11-25 2004-06-24 Tokyu Car Corp 鉄道車両の異常振動検出装置
JP2006341659A (ja) * 2005-06-07 2006-12-21 Sumitomo Metal Ind Ltd 鉄道車両の異常検知方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2374686A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175698A (zh) * 2011-12-20 2013-06-26 南车青岛四方机车车辆股份有限公司 铁道车辆抗大风倾覆能力测试方法及其装置
JP2013200236A (ja) * 2012-03-26 2013-10-03 Nippon Steel & Sumitomo Metal 鉄道車両の脱線実験装置
WO2014192897A1 (ja) 2013-05-29 2014-12-04 曙ブレーキ工業株式会社 脱線予兆検知システム、制御装置、脱線予兆検知方法、及び脱線予兆検知プログラム
JP2014231308A (ja) * 2013-05-29 2014-12-11 曙ブレーキ工業株式会社 脱線予兆検知システム、制御装置、脱線予兆検知方法、及び脱線予兆検知プログラム
JP2016041556A (ja) * 2014-08-19 2016-03-31 日本車輌製造株式会社 脱線検知装置
JP2016132422A (ja) * 2015-01-22 2016-07-25 株式会社総合車両製作所 脱線検知装置及び脱線検知方法
CN110662686A (zh) * 2017-05-23 2020-01-07 庞巴迪运输有限公司 一种用于识别轨道车辆的脱轨的方法
CN110662686B (zh) * 2017-05-23 2021-08-03 庞巴迪运输有限公司 一种用于识别轨道车辆的脱轨的方法
WO2018221741A1 (ja) * 2017-06-02 2018-12-06 曙ブレーキ工業株式会社 脱線予兆検知システム、制御装置、脱線予兆検知方法、および脱線予兆検知プログラム
JP2018203024A (ja) * 2017-06-02 2018-12-27 曙ブレーキ工業株式会社 脱線予兆検知システム、制御装置、脱線予兆検知方法、および脱線予兆検知プログラム
CN112945591A (zh) * 2021-02-19 2021-06-11 张润申 一种轨道交通车辆脱轨试验装置
CN112945591B (zh) * 2021-02-19 2023-12-12 中铁二十一局集团路桥工程有限公司 一种轨道交通车辆脱轨试验装置

Also Published As

Publication number Publication date
EP2374686A1 (en) 2011-10-12
EP2374686A4 (en) 2014-01-22
EP2374686B1 (en) 2016-08-24
JPWO2010064453A1 (ja) 2012-05-10
JP5468016B2 (ja) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5468016B2 (ja) 脱線予兆の検知方法および脱線再現装置
CN107966307B (zh) 一种基于振动加速度的列车运行安全在线监测方法
JP4246919B2 (ja) 鉄道車両の脱線検知方法及び脱線検知装置
CN102639383B (zh) 监控有轨车辆的具有至少一个轮组的转向架的状态的方法
JP6128594B2 (ja) 脱線予兆検知システム、制御装置、脱線予兆検知方法、及び脱線予兆検知プログラム
WO2006010154A3 (en) Apparatus for detecting hunting and angle of attack of a rail vehicle wheelset
CN106383247B (zh) 一种地铁车辆轮对在线动态检测系统及车速检测方法
KR101256901B1 (ko) 차축에 작용하는 외력을 이용한 차륜의 탈선 예측방법
US20100324776A1 (en) Device for Measuring the Movement of a Self-Guided Vehicle
US20170212142A1 (en) Method And Device For Determining Absolute Speed Of A Rail Vehicle
Wu et al. The study of post-derailment dynamic behavior of railway vehicle based on running tests
Cho et al. Development of a new analytical model for a railway vehicle equipped with independently rotating wheels
JP2000006807A (ja) 鉄道車両及びその走行時の異常検知方法
CN113624521A (zh) 一种基于轴箱振动的列车蛇形失稳的监测方法和系统
US20210394805A1 (en) Method and Device for Detecting a Derailed State of a Rail Vehicle
Matsumoto et al. Safety measures against flange-climb derailment in sharp curve-considering friction coefficient between wheel and rail–
JP7312034B2 (ja) 列車保安システム、列車保安制御方法及び列車車上装置
JP3449976B2 (ja) 輪重偏在度取得方法および装置、鉄道車両、鉄道車両および軌道の保守方法
JP4935469B2 (ja) 鉄道車両の走行異常検知方法及び装置
WO2006125256A1 (en) Monitoring system for mechanically self-guided vehicle
JP6454251B2 (ja) 脱線状態検知装置及び脱線状態検知方法
JP2004090848A (ja) 鉄道車両の異常検知装置及び異常検知方法
RU2513338C1 (ru) Способ оценки состояния рельсового пути
DE102005056431B4 (de) Einrichtung und Verfahren zur automatischen Bestimmung von Reibungszahlen
CN111428312A (zh) 列车脱轨行为过程中车辆部件振动特征获取方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010541251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009830223

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009830223

Country of ref document: EP