WO2010061560A1 - 結晶成長装置及び結晶成長方法 - Google Patents

結晶成長装置及び結晶成長方法 Download PDF

Info

Publication number
WO2010061560A1
WO2010061560A1 PCT/JP2009/006257 JP2009006257W WO2010061560A1 WO 2010061560 A1 WO2010061560 A1 WO 2010061560A1 JP 2009006257 W JP2009006257 W JP 2009006257W WO 2010061560 A1 WO2010061560 A1 WO 2010061560A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
furnace
crystal
quartz crucible
crystal growth
Prior art date
Application number
PCT/JP2009/006257
Other languages
English (en)
French (fr)
Inventor
堀岡佑吉
Original Assignee
三菱マテリアルテクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアルテクノ株式会社 filed Critical 三菱マテリアルテクノ株式会社
Priority to US13/002,565 priority Critical patent/US20110174214A1/en
Priority to EP09828810.3A priority patent/EP2302109B1/en
Priority to CN2009801413583A priority patent/CN102187018A/zh
Priority to CA2739708A priority patent/CA2739708A1/en
Publication of WO2010061560A1 publication Critical patent/WO2010061560A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1092Shape defined by a solid member other than seed or product [e.g., Bridgman-Stockbarger]

Definitions

  • the present invention relates to a crystal growth apparatus and a crystal growth method for silicon used as a semiconductor material and a solar cell.
  • the Czochralski method (CZ method) and the unidirectional solidification method (VGF method) are widely used.
  • the CZ method or the unidirectional solidification method (VGF method) is excellent in growing large-diameter crystals, but has several problems from the viewpoint of resource saving and energy saving.
  • One such problem is that the quartz crucible needs to be frequently replaced for each batch. That is, in the CZ method or the unidirectional solidification method (VGF method), polycrystalline silicon filled in a quartz crucible is dissolved and a silicon crystal is produced from the melt, and the inner surface of the quartz crucible is a high-temperature silicon melt. Therefore, it is necessary to replace each time one or several silicon crystals are produced.
  • a method of reducing the replacement frequency of the quartz crucible has been devised, such as reducing deterioration of the quartz crucible or increasing the number of silicon crystals that can be produced from one quartz crucible.
  • a method for producing a silicon single crystal disclosed in Japanese Patent Application Laid-Open No. 2000-247788 (Patent Document 1) or disclosed in Japanese Patent Application Laid-Open No. 2004-338978 (Patent Document 2).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-247788
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-338978
  • Patent Document 1 by applying a magnetic field to the silicon melt in the quartz crucible, deterioration of the surface of the quartz crucible can be suppressed and the life of the quartz crucible can be extended. it can. And the time which manufactures a silicon crystal using a quartz crucible can be stabilized for a long time to 100 hours or more.
  • the pulling chamber is opened at every pulling end performed by the conventional recharging method, and one operation is not repeated.
  • the silicon crystal can be continuously pulled up while recharging from the quartz crucible.
  • the gate valve opening and closing operation and the pulling crystal take-out operation that are performed each time the crystal pulling is completed can be omitted as in the past. Contamination in the furnace is prevented, and a higher yield rate can be achieved.
  • Quartz is a hard mineral, so in terms of mechanical strength, it can theoretically be used for a longer period, and it can be said that it is a social requirement to enable a longer period of use.
  • the quartz crucible is used at the highest temperature range in the crystal manufacturing process as long as there is time to hold it at the melting temperature of silicon, so that it erodes at the interface with the silicon melt, especially at the contact portion of the melt surface. Therefore, even with the methods disclosed in Patent Document 1 and Patent Document 2, the replacement frequency of the quartz crucible cannot be sufficiently reduced.
  • the conventional method has a problem that operation efficiency is low in addition to a problem that the quartz crucible is frequently replaced.
  • VGF method that performs unidirectional solidification for solar cells
  • VGF method unidirectional solidification method
  • deformation or breakage of a large crucible may occur at the time of dissolution, and the insoluble material could not be removed.
  • an object of the present invention is to provide a crystal growth apparatus and a crystal growth method that enable longer-term use of a quartz crucible and can improve the operation efficiency.
  • VFG method unidirectional solidification method
  • the deformation and breakage of the large crucible were suppressed during melting, and the melt was made and supplied in advance, improving the safety and operating rate of the furnace and removing insoluble materials.
  • the purpose is to carry out post-crystal growth.
  • the crystal growth apparatus includes a crystal growth furnace provided with a quartz crucible, a raw material melting furnace, and supply means for repeatedly supplying a molten raw material from the raw material melting furnace to the quartz crucible.
  • the crystal growth furnace may have a supply port for supplying the molten raw material, and the supply port may be freely connected to and separated from the raw material melting furnace.
  • a plurality of the crystal growth furnaces may be arranged around the raw material melting furnace.
  • the raw material melting furnace may be provided with insoluble substance separation means.
  • a quartz crucible is filled with a molten raw material previously melted.
  • insoluble substances may be removed from the molten raw material before the filling.
  • the quartz crucible is not used for melting the raw material for producing the crystal, but only accepts the molten raw material previously melted, so that the inner surface is damaged. There is no. That is, it is not necessary to dissolve the polycrystalline raw material close to the softening point temperature of quartz, and there is little deformation of quartz.
  • the conventional recharge method involves a dead time for dissolving the solid raw material silicon, but it is possible to shift to the crystal growth work in a short time. Therefore, the quartz crucible can be used for a longer period of time and the operation efficiency is improved. Improvements can be made.
  • the insoluble material with impurities is removed from the molten crucible before filling the quartz crucible, the insoluble material is mixed into the molten material even when the raw material is reused. Crystal defects can be prevented. Therefore, it is possible to reduce the crystal quality degradation and crystal collapse due to the insoluble material in the raw material, to use a low-cost raw material, and to use the quartz crucible for a long time.
  • the crystal growth furnace and the raw material melting furnace supply the molten raw material to the quartz crucible if the crystal growth furnace has a supply port that can freely contact and separate from the raw material melting furnace. It can be coupled only when it is done, and otherwise it can remain separated. Therefore, the pressure management in the crystal growth furnace can be performed more accurately, and the quartz crucible can be used for a longer period.
  • a plurality of crystal growth furnaces having supply ports that can be freely connected to and separated from the raw material melting furnace are arranged around the raw material melting furnace, a plurality of crystal growth furnaces can be operated at a time, further improving the operating efficiency of the entire apparatus. Can be improved.
  • FIG. 1 is a side view of a crystal pulling furnace and a raw material melting furnace in a combined state showing a schematic configuration of a crystal growth apparatus according to the present invention. It is a top view which shows the arrangement
  • FIG. 1 and 2 show a schematic configuration of a main part of the crystal growth apparatus according to the present invention.
  • FIG. 1 is a side view showing a crystal pulling furnace and a raw material melting furnace in a combined state
  • FIG. 2 is a plan view showing an arrangement relationship between the crystal pulling furnace and the raw material melting furnace.
  • the size and shape of each part are appropriately adjusted in each figure, and may not be consistent between the figures.
  • This apparatus includes four crystal pulling furnaces 9 for pulling up crystals by the CZ method.
  • the crystal pulling furnace 9 is composed of a quartz crucible 1 and a vacuum chamber 2 that accommodates the quartz crucible 1.
  • the vacuum chamber 2 is provided with a main gate valve 5 and a sub gate valve 6 that are opened and closed when the pulled crystal 4 is taken out and the raw material is filled into the quartz crucible 1.
  • a pulling mechanism 7 for the crystal 4 is provided inside the vacuum chamber 2.
  • this apparatus includes a raw material melting furnace 10.
  • the raw material melting furnace 10 includes a melting crucible 11 and a vacuum chamber 12 that accommodates the melting crucible 11, and melts a crystal raw material in the melting crucible 11 in an atmosphere of an inert gas such as helium gas or argon gas. Can do.
  • a hopper 13 for supplying a solid raw material (polycrystalline silicon or the like) to the melting crucible 11 is provided above the melting crucible 11, and the solid raw material passes through a supply path 14 extending from the lower portion of the hopper 13. 11 is supplied.
  • the vacuum chamber 12 of the raw material melting furnace 10 is provided with a gate valve 15 for filling the solid raw material, and when the solid raw material in the hopper is reduced, the raw material is replenished through the gate valve 15. Yes.
  • the gate valve 15 has an air lock structure (not shown) so as not to deteriorate the furnace atmosphere when the raw material is replenished.
  • the crystal pulling furnace 9 is arranged at equal intervals around the raw material melting path 10 as shown in FIG. Between the crystal pulling furnace 9 and the raw material melting furnace 10, a supply device 20 for the molten raw material 3 is provided.
  • the supply device 20 includes a serpentine tube structure portion 21 that hermetically connects the crystal pulling furnace 9 and the raw material melting furnace 10, and a supply tube 22 that extends from the melting crucible 3 to the quartz crucible 1 in the serpentine tube structure portion 21.
  • the supply pipe 22 is formed by winding a heating coil around the outer periphery of a transparent quartz pipe and covering it with a heat insulating material, and can be moved in the vertical direction and the horizontal direction (in the direction of the arrow in FIG. 1) inside the raw material melting furnace 10 by a frame 23.
  • the raw material melting furnace 10 may be structured to be movable in the crystal growth furnace direction. Further, an illustration for insulating the crystal pulling furnace 9 and the raw material melting furnace 10 in the state where the supply pipe 22 is accommodated in the raw material melting furnace 10 at the end of the serpentine tube structure 21 on the crystal growth furnace 9 side is shown. It has a shut-off function (corresponding to the supply port of the present invention), for example, an edge cut valve.
  • the raw material melting furnace 10 is rotated by a certain angle, and the molten raw material 3 can be supplied to each of the four crystal pulling furnaces 9. Also in this case, connection and separation can be performed freely by using an air lock structure at the time of connection.
  • each of the crystal pulling furnace 9 and the raw material melting furnace 10 is provided with a pressure reducing valve (not shown) for adjusting the exhaust amount in the furnace.
  • a pressure reducing valve (not shown) for adjusting the exhaust amount in the furnace.
  • the crystal growth method using the crystal growth apparatus having the above configuration can be implemented by the following procedure.
  • the raw material is melted in the raw material melting furnace 10 to produce the molten raw material 3.
  • the gate valve 15 is opened, the solid raw material is filled in the hopper 13, and then the gate valve 15 is closed.
  • the melting raw material 3 can be manufactured by heating the melting crucible 11 in inert gas atmosphere.
  • the pressure of the raw material melting furnace 10 is set to be higher than that during normal crystal growth, for example, 25 to 650 Torr.
  • the heat transfer from the heater can be improved by setting the pressure condition for normal crystal growth to be high. It should be noted that heating at a high temperature so as to perform melting for a short time at 25 Torr or less is not preferable because it is likely to cause bumping.
  • the pressure is adjusted by the pressure reducing valve.
  • the quartz crucible 11 is subsequently supplied.
  • the raw material melting furnace 10 is connected to the crystal pulling furnace 9 that has been previously decompressed and in an inert gas atmosphere via the serpentine tube structure portion 21.
  • the pressure is adjusted so that the furnace pressure and the atmospheric conditions of the raw material melting furnace 10 and the crystal pulling furnace 9 are equal.
  • the edge-cutting valve is opened and the frame 23 is moved so that one end of the supply pipe 22 is immersed in the molten raw material 3 of the melting crucible 11 and the other end is disposed in the quartz crucible 1. Adjust to.
  • the melting crucible 11 is adjusted to be higher than the quartz crucible 1, and the molten raw material 3 is supplied from the melting crucible 11 to the quartz crucible 1 using the difference in height between the two crucibles 1, 11.
  • the transparent quartz tube of the supply tube 22 is preferably maintained at about 1000 ° C. to 1420 ° C.
  • the pressure in the crystal pulling furnace 9 is preferably adjusted to a reduced pressure level of 10 to 30 tor in order to achieve a reduced pressure state in which the generation of SiO that causes discontinuities in the crystal can be smoothly exhausted. Therefore, when the raw material melting furnace 10 and the crystal pulling furnace 9 are connected, the raw material melting furnace is set to the furnace pressure on the crystal pulling furnace 9 side so that no pressure difference is generated between the furnaces 9 and 10. 10 The pressure in the furnace is adjusted so that turbulent flow between furnaces does not occur when the edge-cutting valve is opened and closed due to the pressure difference between the furnaces. Therefore, after confirming that the pressures of both the furnaces 9 and 10 are the same, the edge cutting valve is opened and closed.
  • the crystal pulling furnace 9 may be a unidirectional solidification furnace (VGF furnace) that performs a unidirectional solidification method (VGF method). Also in this case, the crystal growth crucible can be prevented from being deformed or damaged, so that the melting time can be shortened and safe operation can be easily performed.
  • the crystal 4 is finally collected.
  • the crystal 4 can be taken out of the vacuum chamber 2 while the quartz crucible 1 is maintained in an inert gas atmosphere by closing the sub-gate valve 6 of the vacuum chamber 2.
  • the crystal 4 can be produced while the quartz crucible 1 is used for a long period of time.
  • the molten raw material 3 is usually obtained by melting a polycrystalline solid raw material, but since the molten raw material 3 is required to have extremely high purity, it is preferable that the solid raw material as a source thereof is as high as possible. However, there are situations where the purity of the solid raw material has to be lowered, for example, when the waste generated when the crystal 4 is processed is reused. In such a case, an insoluble substance containing impurities is removed from the melting crucible 11 and then supplied to the quartz crucible 1.
  • Fig. 3 shows the principle for removing insoluble substances. Since the insoluble substance floats on the surface of the molten raw material 3, the insoluble substance can be removed very easily by providing a guide 30 for allowing the insoluble substance to flow out from the surface of the melting crucible 11. At this time, it is preferable to provide the monitoring window 31 in order to confirm whether or not the insoluble substance is removed.
  • the quartz crucible 1 is not used for melting the raw material, and the melting of the raw material is performed in the melting crucible 11 separate from the quartz crucible 1, thereby removing impurities and using a raw material with low purity. Even in this case, the quartz crucible 1 can be used for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】石英坩堝のより長期的な使用を可能とし、しかも稼働効率の改善を図ることができる結晶成長装置及び結晶成長方法を提供する。 【解決手段】 本発明に係る結晶成長装置は、石英坩堝を備えた結晶成長炉と、原料溶融炉と、前記原料溶融炉から溶融原料を前記石英坩堝にに繰り返し供給する供給手段とを備える。前記結晶成長炉は前記溶融原料を供給する供給口を有し、前記供給口は、前記原料溶融炉に対し接離自在となっていてもよい。また、前記原料溶融炉の周囲に前記結晶成長炉の複数が配置されていてもよい。更に、前記原料溶融炉は不溶解物質分離手段を備えていてもよい。また、本発明に係る結晶成長方法では、石英坩堝に、予め溶かした溶融原料を充填する。本発明に係る結晶成長方法において、前記充填の前に、前記溶融原料から不溶解物質を除去してもよい。

Description

結晶成長装置及び結晶成長方法
 本発明は、半導体材料、太陽電池として用いるシリコンの結晶成長装置及び結晶成長方法に関する。
 半導体用のシリコン結晶成長方法として、チョクラルスキー法(CZ法)や一方向凝固法(VGF法)が広く使用されている。このCZ法または一方向凝固法(VGF法)は、大口径結晶の成長を行なう上で優れているが、省資源・省エネルギーという観点では、幾つかの問題点がある。そして、そのような問題点の一つとして、一バッチごとの石英坩堝の頻繁な交換を要することが挙げられる。すなわち、CZ法または一方向凝固法(VGF法)では、石英ルツボ内に充填した多結晶シリコンを溶解し、その融液からシリコン結晶を製造するが、石英ルツボの内表面は高温のシリコン融液に曝され劣化するため、シリコン結晶を一つ或いは数個作成する都度、交換する必要があった。
 そこで、石英坩堝の劣化を低減し、或いは一つの石英坩堝から生産できるシリコン結晶の数を増やすなど、石英坩堝の交換頻度を低減する方法が考案されている。そして、そのような方法として、例えば、特開2000-247788号公報(特許文献1)に開示されたシリコン単結晶の製造方法や、特開2004-338978号公報(特許文献2)に開示されたシリコン単結晶引上方法がある。
 上記特許文献1に開示された製造方法によれば、石英坩堝内のシリコン融液に対して磁場を印加することにより、石英坩堝内表面の劣化を抑制し、石英坩堝の寿命を長くすることができる。そして、石英坩堝を用いてシリコン結晶を製造する時間を100時間以上に長期安定化することができる。
 また、特許文献2に開示されたシリコン単結晶引上方法によれば、従来のリチャージ方法で行われていた引上終了毎に引上チャンバを開き、結晶を取出す操作を繰返すことなく、1個の石英坩堝から繰返しリチャージしながらシリコン結晶を連続的に引上げることができる。また、従来のように結晶引上終了毎に行われるゲートバルブの開閉操作と引上結晶の取出し操作が省略可能となり、従来に比して稼働率が向上し、かつ上記開閉及び取出し操作に起因する炉内の汚染が防止され、より良品率の高い引上が可能となる。
特開2000-247788号公報 特開2004-338978号公報
 石英は硬い鉱物であるため、機械強度的には、より長期的な使用も理論上は可能であり、より長期間の使用を可能とすることが社会的要請といえる。ところが、石英坩堝は、シリコンの溶解温度で保持する時間が存在する限り、結晶製造工程で最も高い温度域での使用となるため、シリコン融液との界面、特に融液表面の接触部における侵食が多くなり、上記特許文献1や特許文献2に開示された方法でも、石英坩堝の交換頻度を十分に低減することはできなかった。
 一方、従来の方法には、石英坩堝の交換頻度が多いという問題の他、稼動効率が悪いという問題もあった。例えば、太陽電池用の一方向凝固を行うVGF法では、結晶を製造するにあたりシリコンを溶融させる間は結晶を成長させることができず、この溶融時間が無駄になるという問題があった。また、一方向凝固法(VGF法)では、溶解時に大型るつぼの変形や破損が生じる可能性があり、不溶解物質の除去を行うことができなかった。
 そこで、本発明は、石英坩堝のより長期的な使用を可能とし、しかも稼働効率の改善を図ることができる結晶成長装置及び結晶成長方法を提供することを目的とする。また、一方向凝固法(VGF法)では、溶解時に大型るつぼの変形や破損を抑え、事前に溶融を作り、供給することで、炉の安全と稼働率向上、不溶解物質の除去を行った後結晶成長が行うことを目的とする。
 本発明に係る結晶成長装置は、石英坩堝を備えた結晶成長炉と、原料溶融炉と、前記原料溶融炉から溶融原料を前記石英坩堝に繰り返し供給する供給手段とを備える。
 前記結晶成長炉は前記溶融原料を供給する供給口を有し、前記供給口は、前記原料溶融炉に対し接離自在となっていてもよい。
 前記原料溶融炉の周囲に前記結晶成長炉の複数が配置されていてもよい。
 前記原料溶融炉は不溶解物質分離手段を備えていてもよい。
 本発明に係る結晶成長方法では、石英坩堝に、予め溶かした溶融原料を充填する。
 本発明に係る結晶成長方法において、前記充填の前に、前記溶融原料から不溶解物質を除去してもよい。
 本発明に係る結晶成長装置及び結晶製造方法によれば、石英坩堝は結晶を生成するための原料の溶融には使用されず、予め溶かした溶融原料を受け入れるのみであるため、内面が損傷することがない。すなわち、石英の軟化点温度に近づけて多結晶原料を溶解する必要がなく、石英の変形すらも少ない。また、従来のリチャージ方法では、固体原料シリコンを溶解する無駄時間が伴うが、短時間で結晶成長作業に移行することができる従って、石英坩堝のより長期的な使用を可能とし、しかも稼働効率の改善を図ることができる。
 また、溶融原料を石英坩堝へ充填する前に、そこから不純物を伴う不溶解物質を除去することとすれば、原料を再利用する場合にも、不溶解物質が溶融原料に混入することに起因する結晶不良を防止できる。従って、原料中の不溶解物質による結晶の品質低下、結晶崩れを低減し、低コスト原料の使用を可能とし、かつ石英坩堝の長期的な使用が可能となる。
 更に、本発明に係る結晶成長装置において、結晶成長炉が、原料溶融炉に対し接離自在の供給口を有していれば、結晶成長炉と原料溶融炉は、石英坩堝に溶融原料を供給するときにのみ結合させ、それ以外のときには分離した状態を維持することができる。従って、結晶成長炉における圧力管理をより正確に行うことが可能となり、石英坩堝のより長期的な使用が可能となる。
 更にまた、原料溶融炉に対し接離自在の供給口を有する結晶成長炉の複数を原料溶融炉の周囲に配置すれば、複数の結晶成長炉を一度に稼動でき、装置全体の稼動効率を更に改善することができる。
本発明に係る結晶成長装置の概略構成を示し結合された状態にある結晶引上炉と原料溶融炉の側面図である。 結晶引上炉と原料溶融炉の配置関係を示す平面図である。 本発明に係る結晶成長装置の他の実施例の概略構成を示し結合された状態にある結晶引上炉と原料溶融炉の側面図である。
1  石英坩堝
2、12  真空チャンバ
3  溶融原料
4  結晶
5  メインゲートバルブ
6  サブゲートバルブ
7  引き上げ機構
10 原料溶融炉
11 溶融坩堝
13 ホッパー
14 供給路
15 ゲートバルブ
20 供給装置
21 蛇管構造部
22 供給管
23 架台
30 ガイド
31 監視窓
 図1及び図2に本発明に係る結晶成長装置の要部の概略構成を示す。図1は結合された状態にある結晶引上炉と原料溶融炉を示す側面図、図2は結晶引上炉と原料溶融炉の配置関係を示す平面図である。なお、装置の概略を理解しやすく説明する便宜上、各部の大きさや形状は各図において適宜調整されており、各図間で一致しない場合がある。
 この装置は、CZ法による結晶の引き上げを行う4つの結晶引上炉9を備える。この結晶引上炉9は、石英坩堝1と、この石英坩堝1を収容する真空チャンバ2で構成され、ヘリウムガス、アルゴンガス等の不活性ガスの雰囲気で、溶融原料3の維持や、結晶4の引き上げ操作を行うことができるものとなっている。真空チャンバ2には、引き上げられた結晶4の取り出しと、石英坩堝1への原料充填を行う際に開閉するメインゲートバルブ5及びサブゲートバルブ6が設けられている。更に、真空チャンバ2の内部には、結晶4の引き上げ機構7が設けられている。
 また、この装置は、原料溶融炉10を備える。原料溶融炉10は、溶融坩堝11と、この溶融坩堝11を収容する真空チャンバ12で構成され、ヘリウムガス、アルゴンガス等の不活性ガスの雰囲気で、結晶の原料を、溶融坩堝11で溶かすことができる。また、溶融坩堝11の上方には、溶融坩堝11に固形原料(多結晶シリコンなど)を供給ためのホッパー13が設けられ、このホッパー13の下部から伸びる供給路14を経て、固形原料が溶融坩堝11に供給されている。一方、原料溶融炉10の真空チャンバ12は、固形原料を充填するためのゲートバルブ15が設けられ、ホッパー内の固形原料が少なくなると、このゲートバルブ15を介し、原料補充を行う構造となっている。なお、ゲートバルブ15は、原料補充の際に炉内雰囲気を悪化させないための、図示しないエアーロック構造を有する。
 前記結晶引上炉9は、図2に示すように、原料溶融路10を中心とし、その周囲に等間隔で配置されている。そして、結晶引上炉9と原料溶融炉10の間には、溶融原料3の供給装置20が設けられている。供給装置20は、結晶引上炉9と原料溶融炉10を気密に連結する蛇管構造部21と、蛇管構造部21内で溶融坩堝3から石英坩堝1に至る供給管22とで構成される。供給管22は、透明石英管の外周に加熱コイルを巻き断熱材で覆ったもので、架台23により、原料溶融炉10の内部で鉛直方向及び水平方向(図1の矢線方向)に移動自在に支持されている。この場合、原料溶融炉10が結晶成長炉方向に移動可能となる構造としても良い。また、蛇管構造部21の結晶成長炉9側の端部には、供給管22が原料溶融炉10内部に収容された状態において、結晶引上炉9と原料溶融炉10を絶縁するための図示しない遮断機能(本発明の供給口に相当)、例えば縁切バルブを有する。そして、原料溶融炉10を一定角度回転し、4つの結晶引上炉9の各々に溶融原料3を供給することができる構造となっている。この場合も、接続時にあたってエアーロック構造とすることで連結や分離が自在に行い得る。
 更に、結晶引上炉9と原料溶融炉10の各々には、炉内の排気量を調整するための図示しない減圧弁が設けられており、この減圧弁の開閉量を変化させることで、炉内圧力が調整できる構造となっている。
 上記構成からなる結晶成長装置を使用した結晶成長方法は、以下の手順で実施することができる。
 まず、結晶を成長させる工程に入る前に、原料溶融炉10において原料を溶かし、溶融原料3を製造する。この溶融原料3の製造工程では、ゲートバルブ15を開け固形原料をホッパー13に充填した後、ゲートバルブ15を閉める。そして、不活性ガス雰囲気で溶融坩堝11を加熱することにより、溶融原料3を製造することができる。なお、溶融原料の製造工程では、原料溶解炉10の圧力を通常結晶成長時に比較し高く設定し、例えば、25Torから650Torする。このように通常結晶成長の圧力条件を高めに設定することで、ヒータからの伝熱を改善することができる。なお、25Tor以下で短時間溶融を行うべく高温加熱すると突沸現象を生ずる可能性が高く好ましくない。圧力の調整は、前記減圧弁により行うことになる。
 溶融原料3を製造したら、続いて、石英坩堝11への供給を行う。この供給作業では、まず、予め減圧され不活性ガス雰囲気とされている結晶引上炉9に、蛇管構造部21を介し、原料溶融炉10を接続する。結晶引上炉9と原料溶融炉10を接続したら、原料溶融炉10と結晶引上炉9の炉内圧力や雰囲気条件が同等となるように圧力調整する。その上で、縁切バルブを開き、架台23を動かして、供給管22の一端が溶融坩堝11の溶融原料3に浸かった状態と、他端が石英坩堝1内に配置された状態となるように調整する。この際、溶融坩堝11は石英坩堝1よりも高い位置となるように調整し、両坩堝1、11の高低差を利用して、溶融坩堝11から石英坩堝1へ溶融原料3の供給を行う。供給管22の透明石英管はシリコンの場合、1000℃から1420℃程度に維持することが好ましい。供給が終了したら、再び架台23を動かして、供給管22の全体が蛇管機構部21に収容された状態とし、縁切りバルブを閉じる。そして、原料溶融炉10を回転させ、別の結晶引上炉9に対しても、同様の供給を行う。
 なお、結晶引上炉9の圧力は、結晶に不連続部が形成される原因となるSiOの生成の排気スムーズに行える減圧状態とするため、10Torから30Torの減圧レベルに調整することが好ましい。そのため、原料溶融炉10と結晶引上炉9とが連結された際、両炉9、10の間には圧力差が生じないように、結晶引上炉9側の炉内圧力に原料溶融炉10炉内圧力を合わせ、炉間圧力差による縁切りバルブの開閉時に炉間の乱流が、生じないようにする。従って、両炉9、10の圧力が同一になったことを確認の上、縁切りバルブの開閉を行う。
 石英坩堝1へ溶融原料3を供給したら、続いて、結晶4の生成を行う。この結晶生成工程では、真空チャンバ2の内部に設けられた引き上げ機構7を使用し、溶融原料3から結晶4の引き上げを行う。なお、その内容は公知のCZ法と同様であるため詳細な説明は省略する。また、結晶引上炉9は、一方向凝固法(VGF法)を行う一方向凝固炉(VGF炉)でも良い。この場合も結晶成長坩堝を変形や破損事故を低減し、溶解時間の短縮や安全操業を容易に行える。
 結晶4の生成が終了したら、最後に、結晶4の回収を行う。この回収工程では、真空チャンバ2のサブゲートバルブ6を閉めることで、石英坩堝1を不活性ガス雰囲気に保ったまま、結晶4を真空チャンバ2から取り出すことができる。
 以後、結晶生成工程と、供給工程を繰り返すことで、石英坩堝1を長期間使用しながら結晶4を製造できる。
 溶融原料3は、通常、多結晶の固体原料を溶かすことで得られるが、溶融原料3には極めて高い純度が求められるため、その元となる固体原料の純度もできるだけ高いものが好ましい。しかしながら、結晶4を加工した際に発生するくずなどを再利用する場合等、固体原料の純度が低くならざるを得ない状況もある。そのような場合は、溶融坩堝11から、不純物を含む不溶解物質を取り除いてから、石英坩堝1に供給すればよい。
 図3に不溶解物質を取り除くための原理を示す。不溶解物質は、溶融原料3の表面に浮いてくるため、溶融坩堝11の表面から不溶解物質を流出させるためのガイド30を設けることで、不溶解物質を極めて容易に取り除くことができる。この際、不溶解物質が除去されているかどうかを確認するために、監視窓31を設けておくことが好ましい。
 このように、石英坩堝1を原料の溶融に使用せず、原料の溶融は石英坩堝1と別体の溶融坩堝11で行うことにより、不純物を取り除くことが可能となり、純度の低い原料を使用した場合でも石英坩堝1の長期的な使用が可能となる。

Claims (6)

  1.  石英坩堝を備えた結晶成長炉と、原料溶融炉と、前記原料溶融炉から溶融原料を前記石英坩堝に繰り返し供給する供給手段とを備えることを特徴とする結晶成長装置。
  2.  前記結晶成長炉は前記溶融原料を供給する供給口を有し、前記供給口は、前記原料溶融炉に対し接離自在となっている請求項1に記載の結晶成長装置。
  3.  前記原料溶融炉の周囲に前記結晶成長炉の複数が配置されている請求項2に記載の結晶成長装置。
  4.  前記原料溶融炉は不溶解物質分離手段を備える請求項1、2又は3に記載の結晶成長装置。
  5.  石英坩堝に、予め溶かした溶融原料を供給することを特徴とする結晶成長方法。
  6.  前記充填の前に、前記溶融原料から不溶解物質を除去する請求項5に記載の結晶成長方法。
     
PCT/JP2009/006257 2008-11-25 2009-11-20 結晶成長装置及び結晶成長方法 WO2010061560A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/002,565 US20110174214A1 (en) 2008-11-25 2009-11-20 Crystal growing apparatus and crystal growing method
EP09828810.3A EP2302109B1 (en) 2008-11-25 2009-11-20 Crystal growing method
CN2009801413583A CN102187018A (zh) 2008-11-25 2009-11-20 晶体生长装置及晶体生长方法
CA2739708A CA2739708A1 (en) 2008-11-25 2009-11-20 Crystal growing apparatus and crystal growing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-300253 2008-11-25
JP2008300253A JP4307516B1 (ja) 2008-11-25 2008-11-25 結晶成長装置及び結晶成長方法

Publications (1)

Publication Number Publication Date
WO2010061560A1 true WO2010061560A1 (ja) 2010-06-03

Family

ID=41036659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006257 WO2010061560A1 (ja) 2008-11-25 2009-11-20 結晶成長装置及び結晶成長方法

Country Status (8)

Country Link
US (1) US20110174214A1 (ja)
EP (1) EP2302109B1 (ja)
JP (1) JP4307516B1 (ja)
KR (1) KR101153907B1 (ja)
CN (1) CN102187018A (ja)
CA (1) CA2739708A1 (ja)
TW (1) TWI422716B (ja)
WO (1) WO2010061560A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597526B2 (ja) 2016-09-06 2019-10-30 株式会社Sumco 融液導入管及びこれを用いたシリコン単結晶の製造装置
CN108301039A (zh) * 2017-01-12 2018-07-20 新疆知信科技有限公司 一种生长单晶硅的拉制装置和拉制方法
CN107761164B (zh) * 2017-09-20 2020-09-15 内蒙古中环光伏材料有限公司 一种单晶炉拉晶生产工艺及单晶炉极限真空值获得方法
JP6607652B1 (ja) 2018-03-29 2019-11-20 株式会社クリスタルシステム 単結晶製造装置
WO2019186870A1 (ja) * 2018-03-29 2019-10-03 株式会社クリスタルシステム 単結晶製造装置および単結晶製造方法
CN112981528B (zh) * 2021-03-17 2023-01-17 大连欣和重工有限公司 一种相互补料的单晶炉及其使用方法
CN113510235B (zh) * 2021-06-18 2022-08-09 西安交通大学 一种金属的定向凝固装置及凝固方法
CN113699584B (zh) * 2021-08-27 2022-05-06 昆明理工大学 一种直拉单晶硅微波快速补料连续生产系统及其生产方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258080A (en) * 1975-11-06 1977-05-13 Siltec Corp Continuous semiconductor crystal growth apparatus
JPS5692193A (en) * 1979-12-27 1981-07-25 Toshiba Corp Crystal pulling up device
JPH01286987A (ja) * 1988-05-13 1989-11-17 Nkk Corp 単結晶の製造方法及び装置
JPH07277871A (ja) * 1994-04-14 1995-10-24 Komatsu Electron Metals Co Ltd 連続チャージ引上げ法の原料供給装置
JP2000247788A (ja) 1999-02-26 2000-09-12 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法
JP2000264773A (ja) * 1999-03-16 2000-09-26 Super Silicon Kenkyusho:Kk 単結晶原料供給装置
JP2004338978A (ja) 2003-05-13 2004-12-02 Toshiba Ceramics Co Ltd シリコン単結晶引上装置、シリコン単結晶引上方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658119A (en) * 1968-04-03 1972-04-25 Airco Inc Apparatus for processing molten metal in a vacuum
US4200621A (en) * 1978-07-18 1980-04-29 Motorola, Inc. Sequential purification and crystal growth
US4396824A (en) * 1979-10-09 1983-08-02 Siltec Corporation Conduit for high temperature transfer of molten semiconductor crystalline material
US4454096A (en) * 1981-06-15 1984-06-12 Siltec Corporation Crystal growth furnace recharge
US5993540A (en) * 1995-06-16 1999-11-30 Optoscint, Inc. Continuous crystal plate growth process and apparatus
JP3594155B2 (ja) * 1996-03-21 2004-11-24 信越半導体株式会社 シリコン単結晶引上げ装置における粒状原料の供給方法及び供給装置
US6749683B2 (en) * 2000-02-14 2004-06-15 Memc Electronic Materials, Inc. Process for producing a silicon melt
US7635414B2 (en) * 2003-11-03 2009-12-22 Solaicx, Inc. System for continuous growing of monocrystalline silicon
FR2869028B1 (fr) * 2004-04-20 2006-07-07 Efd Induction Sa Sa Procede et installation de fabrication de blocs d'un materiau semiconducteur
US7344594B2 (en) * 2004-06-18 2008-03-18 Memc Electronic Materials, Inc. Melter assembly and method for charging a crystal forming apparatus with molten source material
WO2007013148A1 (ja) * 2005-07-27 2007-02-01 Sumco Corporation シリコン単結晶引上装置及びその方法
US8795432B2 (en) * 2007-05-30 2014-08-05 Sumco Corporation Apparatus for pulling silicon single crystal
EP2248932A4 (en) * 2008-02-18 2011-05-11 Sumco Corp METHOD FOR GROWING SILICON MONOCRYSTALS

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258080A (en) * 1975-11-06 1977-05-13 Siltec Corp Continuous semiconductor crystal growth apparatus
JPS5692193A (en) * 1979-12-27 1981-07-25 Toshiba Corp Crystal pulling up device
JPH01286987A (ja) * 1988-05-13 1989-11-17 Nkk Corp 単結晶の製造方法及び装置
JPH07277871A (ja) * 1994-04-14 1995-10-24 Komatsu Electron Metals Co Ltd 連続チャージ引上げ法の原料供給装置
JP2000247788A (ja) 1999-02-26 2000-09-12 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法
JP2000264773A (ja) * 1999-03-16 2000-09-26 Super Silicon Kenkyusho:Kk 単結晶原料供給装置
JP2004338978A (ja) 2003-05-13 2004-12-02 Toshiba Ceramics Co Ltd シリコン単結晶引上装置、シリコン単結晶引上方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2302109A4 *

Also Published As

Publication number Publication date
TWI422716B (zh) 2014-01-11
JP4307516B1 (ja) 2009-08-05
KR20100059691A (ko) 2010-06-04
TW201026912A (en) 2010-07-16
KR101153907B1 (ko) 2012-06-18
EP2302109A1 (en) 2011-03-30
EP2302109B1 (en) 2014-04-16
JP2010126377A (ja) 2010-06-10
CA2739708A1 (en) 2010-06-03
CN102187018A (zh) 2011-09-14
EP2302109A4 (en) 2011-12-14
US20110174214A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP4307516B1 (ja) 結晶成長装置及び結晶成長方法
KR102038925B1 (ko) 실리콘 단결정 제조 방법
WO2016078321A1 (zh) 大尺寸Yb-YAG激光晶体泡生法制备方法
WO2009118993A1 (ja) 単結晶製造装置及び単結晶の製造方法
JP2012106870A (ja) 結晶成長方法
WO2014129414A1 (ja) サファイア単結晶コアおよびその製造方法
CN102534771A (zh) 一种磷化镓单晶的生长方法
WO2012140816A1 (ja) 石英ガラスルツボ及びその製造方法、並びにシリコン単結晶の製造方法
KR101703691B1 (ko) 석영 유리 도가니 및 그 제조 방법, 및 실리콘 단결정의 제조 방법
CN102758253A (zh) 直拉多或单晶硅制备工艺
JP4498457B1 (ja) 結晶成長方法
CN111074337B (zh) 一种导模法生长高浓度掺钛蓝宝石晶体的方法和装置
KR20190027289A (ko) 잉곳성장용 도가니 내의 잔존 불순물 실리콘용융액 제거방법
JP4549111B2 (ja) GaAs多結晶の製造炉
JP3624633B2 (ja) 単結晶引上げ装置
JP2005200279A (ja) シリコンインゴットの製造方法、太陽電池
CN116219531A (zh) 一种低氧含量12吋硅棒的生产方法及其应用
CN115233305A (zh) Vb法制备超高纯多晶锗的方法
JP2012126601A (ja) シリコン原料の再利用方法
KR101323346B1 (ko) 사파이어 결정성장방법 및 사파이어 결정성장기
JP2021098622A (ja) 単結晶シリコンインゴットの製造方法
CN117071051A (zh) 一种温度梯度凝固制备化合物晶体的均衡凝固方法
JP2015051884A (ja) サファイア単結晶の製造方法
KR20170011428A (ko) 저기포밀도형 고품위 석영도가니 제조방법
JP2014162698A (ja) サファイア単結晶の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141358.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009828810

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13002565

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2739708

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE