WO2010058710A1 - プレス機械のダイクッション装置 - Google Patents

プレス機械のダイクッション装置 Download PDF

Info

Publication number
WO2010058710A1
WO2010058710A1 PCT/JP2009/069036 JP2009069036W WO2010058710A1 WO 2010058710 A1 WO2010058710 A1 WO 2010058710A1 JP 2009069036 W JP2009069036 W JP 2009069036W WO 2010058710 A1 WO2010058710 A1 WO 2010058710A1
Authority
WO
WIPO (PCT)
Prior art keywords
die cushion
pressure
slide
press machine
hydraulic cylinder
Prior art date
Application number
PCT/JP2009/069036
Other languages
English (en)
French (fr)
Inventor
泰幸 河野
Original Assignee
アイダエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイダエンジニアリング株式会社 filed Critical アイダエンジニアリング株式会社
Priority to CN200980146040.4A priority Critical patent/CN102215996B/zh
Priority to US13/129,688 priority patent/US8757056B2/en
Priority to EP09827491.3A priority patent/EP2377629B1/en
Priority to ES09827491.3T priority patent/ES2631508T3/es
Priority to JP2010539202A priority patent/JP5296806B2/ja
Publication of WO2010058710A1 publication Critical patent/WO2010058710A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • B21D24/02Die-cushions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • B21D24/10Devices controlling or operating blank holders independently, or in conjunction with dies
    • B21D24/14Devices controlling or operating blank holders independently, or in conjunction with dies pneumatically or hydraulically

Definitions

  • the present invention relates to a die cushion device for a press machine, and more particularly, to a die cushion device for a press machine that can cope with a higher speed of the press machine and can be reduced in size and cost.
  • This die cushion device generates a required die cushion pressure by providing a proportional valve on the lower chamber side of the hydraulic cylinder that supports the cushion pad, and controlling the degree of opening of the proportional valve to an appropriate degree of opening. is there.
  • the die cushion pressure can be controlled by using a proportional valve, etc., and can be transformed as necessary, and because it can be used at relatively high pressures, the diameter of the hydraulic cylinder can be reduced. Therefore, it is possible to promote downsizing of the apparatus such as pitless.
  • the discharge port of the hydraulic pump / motor is directly connected to the lower chamber of the hydraulic cylinder that supports the cushion pad, and the electric motor connected to the rotary shaft of the hydraulic pump / motor is torque controlled.
  • the pressure in the lower chamber of the hydraulic cylinder (die cushion pressure) can be arbitrarily controlled.
  • This die cushion device has the advantage that the energy required for the die cushion action received by the cushion pad during the die cushion action of the press machine is regenerated as electric energy via the hydraulic cylinder, the hydraulic pump / motor and the electric motor, and is energy efficient. There is. Further, even if the slide speed is low, the die cushion pressure can be controlled well, and there is an advantage that the pressure controllability is better than that of the hydraulic (servo) type die cushion device.
  • the disadvantage is that a large-capacity electric motor that can cover all the work required for the die cushion action at the same time as the die cushion action is required. If the capacity of the electric motor is increased, the size of the apparatus is increased and the power receiving equipment is also increased in capacity, which inevitably increases the complexity and cost of the system. Therefore, the electric servo die cushion device is inefficient in terms of capital investment even though it is energy efficient.
  • the present invention is to consolidate many advantages by overcoming and eliminating the disadvantages of the hydraulic servo-type die cushion device described in Patent Document 1 that controls throttle with a proportional valve and the electric servo-type disclosed in Patent Document 2. .
  • the object of the present invention is to improve the controllability of the die cushion pressure regardless of the slide speed without the action of surge pressure, and also to improve the energy efficiency with the energy regeneration function and to reduce the size of the apparatus.
  • Another object of the present invention is to provide a die cushion device for a press machine that can realize a reduction in price.
  • a die cushion device for a press machine includes a hydraulic cylinder that supports a cushion pad and generates a die cushion pressure when the slide of the press machine is lowered, and the liquid A proportional valve and a hydraulic pump / motor connected in parallel between the lower chamber of the pressure cylinder and the low pressure source, an electric motor connected to the rotary shaft of the hydraulic pump / motor, and a preset die A die cushion pressure commander that outputs a cushion pressure command, a pressure detector that detects a pressure in a lower chamber of the hydraulic cylinder, a die cushion based on the die cushion pressure command and the pressure detected by the pressure detector.
  • the invention according to claim 1 is provided with a hydraulic servo-type control function that performs throttle control with a proportional valve and an electric servo-type control function that uses a hydraulic pump / motor (+ electric motor).
  • a hydraulic servo-type control function that performs throttle control with a proportional valve and an electric servo-type control function that uses a hydraulic pump / motor (+ electric motor).
  • the die cushion pressure becomes a pressure corresponding to the die cushion pressure command.
  • the amount of liquid pushed away from the lower chamber of the hydraulic cylinder during the die cushion action can be discharged to the low pressure source side via the proportional valve and the hydraulic pump / motor.
  • the capacity of the electric motor can be reduced as compared with the case where the die cushion pressure is controlled alone, and as a result, the apparatus can be reduced in size and price.
  • the amount of liquid discharged from the proportional valve is the same installation space (equipment of the device) with respect to the liquid displacement of the hydraulic pump / motor (+ electric motor).
  • the size is also several times larger (3 to 10 times).
  • the energy required for the die cushion action received by the hydraulic cylinder during the die cushion action of the press machine is: It has the regeneration part which regenerates as electric energy via the hydraulic pump / motor and the electric motor.
  • energy efficiency can be improved as compared with a hydraulic servo type (proportional valve alone) in which all energy consumed for the die cushion action is converted into heat.
  • the hydraulic servo type device For high-speed press operation, the hydraulic servo type device is smaller and the price (initial cost) is lower. However, if the die cushion device is configured with only the hydraulic servo type, energy is lost due to the pressure loss of the proportional valve. Inefficiency, heat generation, and results in increased running costs. From this viewpoint of energy efficiency, an electric servo system using a hydraulic pump / motor (+ electric motor) is used in combination to regenerate the energy required for the die cushion action as electric energy, thereby improving energy efficiency. .
  • a die cushion device for a press machine according to the first or second aspect of the present invention, further comprising slide speed detecting means for detecting the speed of the slide, wherein the controller includes the controller Based on the speed detected by the slide speed detecting means, when the die cushion of the press machine operates, the proportional valve is controlled when the speed is greater than a certain value, and the pressure fluid that is pushed away from the hydraulic cylinder is controlled. The part is opened to the low pressure source through the proportional valve.
  • various means can be adopted as the slide speed detecting means.
  • a means for directly detecting the slide speed by a sensor can be adopted, or the angular speed of the crankshaft for moving the slide is detected by an angular speed detector and calculated based on the detected angular speed signal.
  • the die cushion device can be operated only by the electric servo system using a hydraulic pump / motor (+ electric motor) in accordance with the case where the slide speed is larger than a certain value during the die cushion action (very short high speed period). If configured, it will probably lead to an increase in price and an increase in equipment (excess specifications). Therefore, in addition to the hydraulic pump / motor (+ electric servo motor) that operates in the majority of molding, a die-cushion device is used in combination with a hydraulic servo type that controls the opening of the proportional valve according to an extremely short high-speed period. As a result, relatively high efficiency and high speed can be achieved with a small space and low price.
  • the controller includes the die cushion pressure command, a pressure detected by the pressure detector, Based on the speed detected by the slide speed detecting means, the opening degree of the proportional valve is controlled during the die cushion action of the press machine.
  • a slide speed detecting means for detecting the speed of the slide, and the hydraulic pump /
  • An angular velocity detector that detects an angular velocity of the motor or the electric motor
  • the controller includes the die cushion pressure command, the pressure detected by the pressure detector, and the velocity detected by the slide velocity detecting means. Based on the angular velocity detected by the angular velocity detector, controlling the torque of the electric motor so that the die cushion pressure becomes a pressure corresponding to the die cushion pressure command when the die cushion of the press machine operates. It is a feature.
  • the die cushion device in the die cushion device for a press machine according to any one of the first to fifth aspects of the present invention, includes a slide position detector that detects the position of the slide.
  • the pressure command device outputs a die cushion pressure command based on the slide position detected by the slide position detector.
  • a seventh aspect of the present invention is the die cushion device for a press machine according to any one of the first to sixth aspects of the present invention, comprising a die cushion position detector for detecting the position of the cushion pad,
  • the controller uses the die cushion position signal detected by the die cushion position detector as a position feedback signal when the hydraulic cylinder is moved up and down during a product knockout operation or independently for controlling the electric motor. It is a feature.
  • the position of the hydraulic cylinder (cushion pad) can be controlled and the ascending operation (product knockout operation) can be performed during a period other than the press working (during the die cushion operation).
  • the knockout operation refers to an operation of removing the product from the mold.
  • An eighth aspect of the present invention is the die cushion device for a press machine according to any one of the first to seventh aspects of the present invention, wherein a plurality of the hydraulic cylinders are arranged in parallel with respect to the cushion pad.
  • the proportional valve and the hydraulic pump / motor are connected to a lower chamber of each hydraulic cylinder via a common pipe.
  • the hydraulic pump / motor branches from a lower chamber of the hydraulic cylinder. It consists of a plurality of hydraulic pumps / motors to which pressure fluid is supplied via piping, and the electric motor is connected to the plurality of hydraulic pumps / motors, respectively, and consists of a plurality of electric motors that are torque controlled respectively. It is characterized by that. Thereby, even if it is a large sized press machine, a general purpose thing with comparatively small capacity can be used as one hydraulic pump / motor and an electric motor.
  • the proportional valve is connected to a lower chamber of the hydraulic cylinder via a branch pipe. It is characterized by comprising a plurality of proportional valves which are respectively supplied with pressurized liquid and whose opening degree is controlled.
  • An eleventh aspect of the present invention is the die cushion device for a press machine according to any one of the first to third, sixth, ninth and tenth aspects of the present invention, wherein the hydraulic cylinder, the proportional valve, the liquid A plurality of pressure pumps / motors, the electric motor, and the pressure detector are provided for one cushion pad.
  • a die cushion device can be configured by a plurality of parallel devices, and the capacity of each device (proportional valve, hydraulic motor, electric motor, etc.) can be reduced, or each system can be pressure controlled independently. You can do it.
  • a twelfth aspect of the present invention is the die cushion device for a press machine according to the eleventh aspect of the present invention, comprising a slide speed detecting means for detecting the speed of the slide, wherein the controller is configured to provide the die cushion pressure. Based on the command, the pressure detected by the pressure detector, and the speed detected by the slide speed detecting means, the opening degree of the proportional valve for each hydraulic cylinder is controlled during the die cushion action of the press machine. It is characterized by doing.
  • a slide speed detecting means for detecting the speed of the slide and the hydraulic pump / motor or
  • a plurality of angular velocity detectors for detecting respective angular velocities of the electric motor
  • the controller detects the die cushion pressure command, the velocity detected by the slide velocity detecting means, and the plurality of pressure detectors.
  • the die cushion pressures in the plurality of hydraulic cylinders are converted into the die cushion pressure command during the die cushion action of the press machine.
  • the torque of each of the plurality of electric motors is controlled so that the pressure corresponds to It is characterized by a door.
  • the die cushion position detector for detecting the position of the cushion pad is set to each hydraulic pressure.
  • a plurality of cylinders are provided corresponding to the cylinders, and the controller moves the hydraulic cylinders up and down individually during product knockout operation or individually for each die cushion position signal detected by the plurality of die cushion position detectors.
  • Each position feedback signal is used for controlling an electric motor that drives each corresponding hydraulic cylinder.
  • a plurality of hydraulic cylinders can be individually controlled, so that even when an eccentric load is applied to the cushion pad, a die cushion pressure corresponding to the eccentric load is generated.
  • the position of the cushion pad can be controlled in parallel regardless of the load at the time of product knockout or single lift.
  • a hydraulic servo proportional valve and an electric servo hydraulic pump / motor (+ electric motor) are provided between the lower chamber of the hydraulic cylinder that generates the die cushion pressure and the low pressure source.
  • the die cushion pressure becomes a pressure corresponding to the die cushion pressure command.
  • FIG. 1 is a block diagram showing a first embodiment of a die cushion device for a press machine according to the present invention.
  • FIG. 2 is an enlarged view of a hydraulic circuit surrounded by a one-dot chain line in FIG.
  • FIG. 3 is a schematic view of a die cushion device including a controller and a power regeneration unit.
  • FIG. 4 is a block diagram showing details of the controller of FIG.
  • FIG. 5 is a waveform diagram showing changes in each physical quantity associated with the die cushion pressure action when the slide of the press machine is subjected to one cycle as a basic action example of the present invention. The position, speed, and load (pressure) are shown in FIG. It is a waveform diagram.
  • FIG. 1 is a block diagram showing a first embodiment of a die cushion device for a press machine according to the present invention.
  • FIG. 2 is an enlarged view of a hydraulic circuit surrounded by a one-dot chain line in FIG.
  • FIG. 3 is a schematic view of a die cushion
  • FIG. 6 is a waveform diagram showing the change in the oil amount accompanying the die cushion pressure action when the slide of the press machine is subjected to one cycle as a basic action example of the present invention.
  • FIG. 7 is a block diagram showing a second embodiment of a die cushion device for a press machine according to the present invention.
  • FIG. 8 is an enlarged view of a hydraulic circuit surrounded by a one-dot chain line in FIG.
  • FIG. 9 is a block diagram showing a third embodiment of a die cushion device for a press machine according to the present invention.
  • FIG. 10 is a block diagram showing a fourth embodiment of a die cushion device for a press machine according to the present invention.
  • FIG. 11 is a block diagram showing a fifth embodiment of a die cushion device for a press machine according to the present invention.
  • FIG. 12 is a block diagram showing a controller of the die cushion device shown in FIG.
  • FIG. 13 is an enlarged view of a hydraulic circuit surrounded by a one-dot chain line in FIG.
  • FIG. 14 is an enlarged view of a hydraulic circuit surrounded by a one-dot chain line in FIG.
  • FIG. 15 is an enlarged view of a hydraulic circuit surrounded by a one-dot chain line in FIG.
  • FIG. 1 is a block diagram showing a first embodiment of a die cushion device for a press machine according to the present invention
  • FIG. 2 is an enlarged view of a hydraulic circuit 50 surrounded by a one-dot chain line in FIG.
  • the press machine shown in FIG. 1 includes a frame (column) 100, a slide 101, a bolster (bed) 102, and the like.
  • the slide 101 is guided by a guide portion provided on the frame 100 so as to be movable in the vertical direction. .
  • the slide 101 is moved up and down in FIG. 1 by a crank mechanism including a crankshaft 103 to which a rotational driving force is transmitted by a driving means (not shown).
  • a slide position detector 25 that detects the position of the slide 101 is provided on the bolster 102 side of the press machine, and an angular velocity detector 24 that detects an angular velocity of the crankshaft 103 is provided on the crankshaft 103.
  • the upper mold 201 is mounted on the slide 101, and the lower mold 202 is mounted on the bolster 102.
  • the molds (upper mold 201 and lower mold 202) in this example are for molding a hollow cup-shaped (drawer-shaped) product 301 closed on top.
  • the lower side is supported by the cushion pad 2 via a plurality of cushion pins 1, and the material is set (contacted) on the upper side.
  • the cushion pad 2 is supported by a hydraulic cylinder 3, and a die cushion position detector 23 for detecting the position of the cushion pad 2 is installed on the cushion pad 2 (or a portion interlocked with the hydraulic cylinder / piston).
  • the slide 101 descends in a state where the material (circular plate in this example) is set on the presser foot holding plate 203 supported by the cushion pin 1 and waiting at a predetermined initial position.
  • the material circular plate in this example
  • the product is pressed (drawing).
  • the material is plastically processed between the upper mold 201 and the lower mold 202 and, at the same time, cushioned with a necessary setting force in order to suppress wrinkles and cracks generated in the radial direction of a circular material that is likely to occur during drawing.
  • the material is supported while being pressed from below via the pin 1 and the hook pressing plate 203.
  • the force at this time is the die cushion pressure and always acts during the drawing process.
  • the die cushion device mainly includes a hydraulic cylinder 3 that supports the cushion pad 2, a cushion pressure generation side pressurizing chamber (hereinafter referred to as “lower chamber”) 3 c of the hydraulic cylinder 3, and a low pressure source 6.
  • the piston rod 3 a of the hydraulic cylinder 3 is connected to the cushion pad 2.
  • a pressure detector 21 a for detecting the pressure in the lower chamber 3 c is connected to the pipe connected to the lower chamber 3 c of the hydraulic cylinder 3, and via a forced open drive type check valve 8.
  • the proportional valve 10 and the hydraulic pump / motor 4 are connected.
  • a safety valve (relief valve) 7 is connected between the lower chamber 3c of the hydraulic cylinder 3 and the low pressure source 6.
  • the safety valve 7 is used for preventing damage to hydraulic equipment when abnormal pressure occurs (when the die cushion pressure control is impossible and suddenly abnormal pressure occurs).
  • the pressure accumulator used for the low pressure source 6 is set to a pressure of about 0.5 to 1 Mpa and plays the role of a tank.
  • the pressure of the low pressure source 6 is detected by a pressure detector 21c.
  • the pipe connected to the lowering pressure chamber (hereinafter referred to as “upper chamber”) 3 b of the hydraulic cylinder 3 is connected to the pressure accumulator 9.
  • the pressure of the pressure accumulator 9 is detected by the pressure detector 21b.
  • the pressure oil accumulated in the pressure accumulator 9 opens and closes the two-way valve 10a of the proportional valve 10 composed of the two-way valve 10a and the electromagnetic proportional flow control valve 10b via the electromagnetic proportional flow control valve 10b.
  • Control (drive) a forced open drive check valve 8 that is used as a pilot pressure to prevent the hydraulic cylinder 3 (cushion pad 2 interlocked with it) from dropping due to its own weight during non-control (non-drive) It is sometimes used as a pilot pressure for forcibly opening, and by further acting constantly on the upper chamber 3b (rod side volume) of the hydraulic cylinder 3, the vertical movement of the hydraulic cylinder 3 is facilitated (only torque operation of the electric motor 5) To be able to do that).
  • the proportional valve 10 is provided with a spool position detector 26 for detecting the opening degree of the proportional valve 10, and the angular velocity detector 22 for detecting the angular velocity of the electric motor 5 is provided on the motor shaft of the electric motor 5. Is arranged. Further, between the pressure accumulator 9 and the low pressure source 6, a relief valve 7 'and an electromagnetic direction switching valve (de-pressure valve) 14 are connected, respectively.
  • the die cushion pressure by the hydraulic cylinder 3 is controlled by controlling the pressure in the lower chamber 3c of the hydraulic cylinder 3, that is, the opening degree of the proportional valve 10 connected to the lower chamber 3c of the hydraulic cylinder 3, and the hydraulic pump. / Generated by controlling the torque of the motor 4.
  • the hydraulic pump / motor 4 While maintaining the die cushion pressure by the proportional valve 10, the oil amount is released (the opening degree is controlled), and at the same time, the hydraulic pump / motor 4 is operated by the hydraulic pump by the die cushion pressure, and is generated in the hydraulic pump / motor 4.
  • the rotation shaft torque resists the drive torque of the electric motor 5
  • the electric motor 5 is rotated (regenerative action), and the pressure rise is suppressed.
  • the die cushion pressure is determined according to the opening degree of the proportional valve 10 and the driving torque of the electric motor 5.
  • the die cushion pressure P in order to stably control the die cushion pressure value as set in advance, the die cushion pressure P, the motor angular speed ⁇ , and the cushion pad speed v (or press machine slide speed) generated by being pressed by the press. Is used for compensation for determining the opening degree of the proportional valve 10 and the torque of the electric motor 5. Further, the die cushion position is detected to control the product knockout operation, and the slide position is detected and used to obtain the die cushion action start timing.
  • FIG. 3 is a schematic diagram of a die cushion device including a controller 70 for controlling the opening degree of the proportional valve 10 and the torque of the electric motor 5 and a power regeneration unit 80
  • FIG. 4 is a block diagram showing details of the controller 70.
  • the controller 70 includes a die cushion pressure controller 72, a die cushion position controller 74, and a selector 76.
  • the die cushion pressure controller 72 is further proportional to the electric motor controller 72a.
  • a valve controller 72b is further proportional to the electric motor controller 72a.
  • the die cushion pressure command device 60 is preset with a die cushion pressure value corresponding to the position of the slide 101, and the die cushion pressure command device 60 is based on the slide position signal detected by the slide position detector 25.
  • the die cushion pressure command is output to the electric motor controller 72a and the proportional valve controller 72b.
  • a signal indicating the die cushion position (cushion pad position) is added to the die cushion position commander 62 from the die cushion position detector 23 for use in generating an initial value in position command value generation.
  • the cushion position commanding device 62 performs a product knockout operation after the slide 101 reaches the bottom dead center and completes the die cushion pressure control, and also waits the cushion pad 2 at the initial position, Die cushion position command to control position) is output.
  • a slide position signal and a motor angular velocity signal are added to the die cushion pressure controller 72 and the die cushion position controller 74 from the slide position detector 25 and the angular velocity detector 22, respectively, and detected by the angular velocity detector 24.
  • a slide speed signal of the slide 101 calculated from the angular speed signal of the crankshaft 103 is added.
  • an angular velocity signal indicating the angular velocity of the electric motor 5 is applied from the angular velocity detector 22 to the electric motor controller 72a, and the spool position (opening) of the proportional valve 10 is transmitted from the spool position detector 26 to the proportional valve controller 72b.
  • a proportional valve opening signal indicating the degree) is added.
  • the controller 70 outputs an opening degree command for controlling the opening degree of the proportional valve 10 to the proportional valve 10 based on the various input signals, and sends a torque command for controlling the torque of the electric motor 5 via the servo amplifier 82. And output to the electric motor 5 (see FIG. 3).
  • the power of the slide 101 is used to mold / cushion holding plate 203 / cushion pin 1 / cushion pad.
  • the pressure oil that is generated in the hydraulic cylinder 3 via 2 and pushed away from the hydraulic cylinder 3 on the other hand causes the hydraulic pump / motor 4 to act as a hydraulic motor to push away and rotate.
  • the electric motor controller 72a receives the input die cushion pressure command, the die cushion pressure signal detected by the pressure detector 21a, the slide speed signal detected and calculated by the angular velocity detector 24 of the crankshaft 103, and the electric motor controller 72a.
  • the torque of the electric motor 5 is applied to the pressurizing side to generate pressure (die cushion action), and at the same time, the rotating shaft generated in the hydraulic pump / motor 4.
  • the electric motor 5 is rotated (regenerative action).
  • the electric power generated by the electric motor 5 is regenerated to the AC power supply 30 via a servo amplifier 82 and a servo power supply 84 with a power regeneration function.
  • the pressure oil pushed away from the hydraulic cylinder 3 is opened to the low pressure source 6 (tank) via the proportional valve 10 on the other side.
  • the proportional valve controller 72b receives the input die cushion pressure command, the die cushion pressure signal detected by the pressure detector 21a, the slide speed signal detected and calculated by the crankshaft angular velocity detector 24, and the spool position detector.
  • the opening degree is controlled based on the proportional valve opening degree signal detected at 26, and the die cushion pressure is generated.
  • the period during which the die cushion pressure control by the torque control of the electric motor 5 by the electric motor controller 72a and the die cushion pressure control by the opening degree of the proportional valve 10 by the proportional valve controller 72b are performed simultaneously depends on both.
  • the electric motor controller 72a and the proportional valve controller 72b respectively adjust the torque of the electric motor 5 and the opening degree of the proportional valve 10 so that the die cushion pressure to be cooperatively controlled becomes the die cushion pressure indicated by the die cushion pressure command. Control.
  • the controller 70 is switched from the die cushion pressure control state to the die cushion position (holding) control state.
  • the die cushion position controller 74 of the controller 70 receives the die cushion position command input from the die cushion position commander 62, the die cushion position signal of the die cushion position detector 23, and the angular velocity detector.
  • the torque command value calculated using the angular velocity signal 22 is output to the electric motor 5 via the selector 76.
  • the die cushion position controller 74 stops the die cushion device for a certain period of time after the slide 101 starts to rise, and the slide 101, the product 301, and the die cushion device interfere with each other so that the product 301 is damaged.
  • the hydraulic cylinder 3 (cushion pad 2) is raised, the molded product that is in close contact with the lower mold 202 is knocked out, returned to the initial position (standby position), and prepared for the next cycle.
  • the proportional valve 10 is not used (opening fully closed state).
  • FIG. 5 and FIG. 6 are waveform diagrams showing changes in physical quantities associated with the die cushion pressure action when the slide of the press machine is subjected to one cycle as a basic action example of the present invention.
  • the die cushion (the heel pressing plate 203, the cushion pad 2) is in the initial position (FIG. A): Waiting at 200 mm).
  • the die cushion position controller 74 of the controller 70 uses a standby die cushion position command, a die cushion position signal of the die cushion position detector 23, a motor angular velocity signal of the angular velocity detector 22, and the like.
  • the position (holding) control is performed by outputting the calculated electric motor torque command to the electric motor 5.
  • the die cushion device changes from the die cushion position (holding) control state to the die cushion pressure control state.
  • the slide speed when the slide position reaches the initial position (150 mm) is about 850 mm / s (FIG. 5B), and the amount of oil pushed away from the hydraulic cylinder 3 Is larger than the displacement of the hydraulic pump / motor 4 + electric motor 5, and therefore, until the slide 101 further descends and the slide speed falls below 500 mm / s (up to about 2.15 s), a proportional valve is used as shown in FIG. 10 and the hydraulic pump / motor 4 are used in parallel, and as shown in FIG. 3, a part of the oil displaced by the hydraulic cylinder 3 is moved to the low pressure side while the die cushion pressure is secured (throttling) with the proportional valve 10. Open and part (remainder) with the electric motor 5 while securing the die cushion pressure (while causing the torque to act against the rotational direction) ), It opens displacement to the low pressure side through the hydraulic pump / motor 5.
  • the proportional valve 10 and the electric motor 5 are further configured based on the slide speed (or the speed of the hydraulic cylinder 3), the die cushion pressure command, and the die cushion pressure signal, respectively.
  • the electric motor 5 is further controlled based on the motor angular velocity signal.
  • the die cushion pressure is controlled while mutually compensating each other.
  • the pressure oil is throttled and opened by the proportional valve 10, it can handle an exceptionally large volume with a small size (compact appearance), compared to when it is pushed away by the hydraulic pump / motor 4 and the die cushion pressure control. Even if the slide speed at the start time greatly exceeds (850 mm / s) in this example, the die cushion pressure control can be performed without any problem.
  • FIG. 6A shows changes in one cycle of the amount of oil displaced by the hydraulic cylinder 3, the amount of oil passed (released) by the proportional valve 10 (A), and the amount of oil displaced by the hydraulic pump / motor 4 (B).
  • FIG. 6B is a waveform diagram, and FIG. 6B is an enlarged view of a main part of FIG.
  • the maximum displacement oil amount (l / min) of the hydraulic pump / motor 4 is about half of the maximum displacement oil amount (l / min) of the hydraulic cylinder 3,
  • the difference amount of oil passes through the proportional valve 10.
  • the proportional valve 10 is controlled to be opened in advance at the time of impact, and most of the oil amount pushed away from the hydraulic cylinder 3 at the time of impact is discharged from the proportional valve 10.
  • the hydraulic pump / motor 4 + electric motor 5 rotation of inertia
  • the electric motor 5 generates a die cushion pressure by the hydraulic motor action of the hydraulic pump / motor 4, so that torque is applied in the direction opposite to the rotation direction (power generation action). The energy of time is regenerated to the power source.
  • the die cushion pressure control is switched to the die cushion position (holding) control.
  • the die cushion position control outputs a torque command calculated using a die cushion position command, a die cushion position signal of the die cushion position detector 23, and the like to the electric motor 5 in the same way as in the initial position standby, and the product knockout and cushion pad 2 Position control for returning the position to the initial position (standby position) is performed (FIG. 5A).
  • FIG. 7 is a block diagram showing a second embodiment of a die cushion device for a press machine according to the present invention
  • FIG. 8 is an enlarged view of a hydraulic circuit 52 surrounded by a one-dot chain line in FIG. 7 and 8, the same reference numerals are given to the same parts as those in the first embodiment shown in FIGS. 1 and 2, and the detailed description thereof is omitted.
  • the die cushion device of the second embodiment shown in FIG. 7 and FIG. 8 mainly uses two hydraulic cylinders 3 and 3 ′ instead of the one hydraulic cylinder 3 of the first embodiment. Is different.
  • two hydraulic cylinders 3 and 3 ′ are arranged in parallel with respect to the cushion pad 2.
  • the lower chambers 3 c and 3 c ′ of the hydraulic cylinders 3 and 3 ′ are connected by a common pipe 54, and the upper chambers 3 b and 3 b ′ of the hydraulic cylinders 3 and 3 ′ are connected by a common pipe 56.
  • a proportional valve 10 ' is composed of a four-way valve 10a' and an electromagnetic proportional flow control valve 10b '.
  • the proportional valve only needs to be opened while reducing the pressure oil from the high pressure side to the low pressure side.
  • the two-way valve 10a shown in FIG. The (general) one is a four-way valve 10a ', and since it is produced in large numbers, the pressure oil ports are arranged in parallel (for example, as shown in FIG. P ⁇ B + A ⁇ T).
  • the die cushion device according to the second embodiment has different pressures acting on the upper chambers 3b and 3b '(rod side) of the hydraulic cylinders 3 and 3'.
  • the pressure accumulator 9 While the accumulated relatively high pressure is acting, the low pressure of the low pressure source 6 is acting in the second embodiment.
  • the press machine according to the second embodiment has a large mass interlocking with the cushion pad 2, so that the power for lowering the cushion pad 2 is covered by gravity. *
  • the motive power for lowering the cushion pad 2 is always applied during normal operation, eliminating the need to switch the valve to change the operation between lowering and rising. This is made possible by operating only the torque of the motor 4.
  • FIG. 9 is a block diagram showing a third embodiment of a die cushion device for a press machine according to the present invention.
  • FIG. 13 is an enlarged view of the hydraulic circuit 130 surrounded by a one-dot chain line in FIG.
  • symbol is attached
  • the die cushion device includes three hydraulic pumps / motors 4-1 via a branch pipe between the lower chamber 3c of the hydraulic cylinder 3 and the low pressure source 6. , 4-2, 4-3 are arranged in parallel, and the electric motors 5-1, 5-2, 5-3 is connected, and angular velocity detectors 22-1, 22-2, and 22-3 are disposed on the rotation shafts of the electric motors 5-1, 5-2, and 5-3, respectively.
  • the torque control of the electric motors 5-1, 5-2, and 5-3 is performed in the same manner as the torque control of the single electric motor 5 of the first embodiment.
  • the capacity of -2 and 5-3 can be reduced to one third of the capacity of the single electric motor 5.
  • FIG. 10 is a block diagram showing a fourth embodiment of a die cushion device for a press machine according to the present invention.
  • FIG. 14 is an enlarged view of the hydraulic circuit 140 surrounded by a one-dot chain line in FIG.
  • symbol is attached
  • a branch pipe is provided between the common pipe 54 connecting the lower chambers 3 c and 3 c ′ of the hydraulic cylinders 3 and 3 ′ and the low pressure source 6.
  • the second embodiment is different from the second embodiment in that two proportional valves 10-1 and 10-2 are arranged in parallel.
  • each proportional valve 10-1, 10-2 is performed in the same manner as the control of the opening degree of the single proportional valve 10 'of the second embodiment.
  • the amount of oil flowing through 10-2 is half that of a single proportional valve 10 '.
  • FIG. 11 is a block diagram showing a fifth embodiment of a die cushion device for a press machine according to the present invention.
  • FIG. 15 is an enlarged view of the hydraulic circuit 150 surrounded by a one-dot chain line in FIG.
  • symbol is attached
  • the die cushion device connects the lower chambers 3c and 3c ′ of the hydraulic cylinders 3 and 3 ′ disposed on the left and right with respect to the cushion pad 2 through a common pipe 54.
  • the opening degree of the proportional valve 10 'and the torque of the electric motor 5 are controlled.
  • the left and right hydraulic cylinders 3 and 3 ′ are individually controlled, and are different from the second embodiment of one system in that they are two systems of left and right die cushion devices.
  • a hydraulic pump / motor two hydraulic pumps / motors 4-1L and 4-2L in parallel
  • a proportional valve 10L are arranged in parallel between the lower chamber 3c of one hydraulic cylinder 3 and the low pressure source 6.
  • a hydraulic pump / motor two hydraulic pumps / motors 4-1R and 4-2R in parallel
  • a proportional valve 10R are provided between the lower chamber 3c ′ of the other hydraulic cylinder 3 ′ and the low pressure source 6. They are arranged in parallel.
  • Electric motors 5-1L, 5-2L, 5-1R, 5-2R are connected to the rotary shafts of the hydraulic pumps / motors 4-1L, 4-2L, 4-1R, 4-2R, Angular velocity detectors 22-1 L, 22-2 L, 22-1 R, and 22-2 R are disposed on the rotation shafts of the electric motors 5-1 L, 5-2 L, 5-1 R, and 5-2 R, respectively.
  • die cushion position detectors 23 and 23 ′ for detecting the left and right positions of the cushion pad 2 are installed corresponding to the left and right hydraulic cylinders 3 and 3 ′, and further below the left and right hydraulic cylinders 3 and 3 ′.
  • Pressure detectors 21a and 21a ′ for detecting the pressures in the chambers 3c and 3c ′ are provided.
  • the pressures of the left and right hydraulic cylinders 3, 3 ' are controlled by driving the electric motors 5-1L, 5-2L and 5-1R, 5-2R and the proportional valves 10L and 10R for the respective hydraulic cylinders.
  • FIG. 12 is a block diagram showing an embodiment of a controller of the die cushion device having the above configuration.
  • the controller 70 ′ includes a die cushion pressure controller 72 ′, a die cushion position controller 74 ′, and selectors 76-1L, 76-2L, 76-1R, and 76-2R.
  • the controller 72 ′ further includes an electric motor controller 72a ′ and a proportional valve controller 72b ′, and has the same configuration as the controller 70 shown in FIG.
  • the controller 70 shown in FIG. 4 inputs one motor angular velocity signal, die cushion pressure signal, proportional valve opening signal, and die cushion position signal, respectively, and one electric motor torque command and proportional valve opening command, respectively.
  • the controller 70 ′ shown in FIG. 12 has four motor angular velocity signals 1L, 1R, 2L, 2R, two die cushion pressure signals 1 (L), 2 (R). Input two proportional valve opening signals 1 (L) and 2 (R) and two die cushion position signals 1 (L) and 2 (R), and input four electric motors 5-1L and 5-2L.
  • Separate electric motor torque commands 1L, 2L1R, and 2R are generated and output for 5-1R and 5-2R, respectively, and individual proportional valve opening commands 1 (L for the two proportional valves 10L and 10R are output. ), 2 (R) is generated and output.
  • the die cushion device independently controls the left and right hydraulic cylinders 3 and 3 ′ disposed on the cushion pad 2, for example, even if the cushion pad is long to the left and right, it is parallel. (Moving up and down) can be performed.
  • individual devices hydroaulic pump / motor, electric motor, proportional valve, etc. in one system on the left and right can be configured with small devices.
  • the hydraulic cylinders disposed on the cushion pad are not limited to the above-described embodiment, and may be disposed at, for example, two places before and after the cushion pad, or four places before and after the right and left.
  • AC power supply 54, 56 ... Common piping, 60 ... Die cushion pressure commander, 62 ... Die cushion position commander , 70, 70 '... controller, 72, 72' ... die cushion pressure controller, 72a, 72a '... electric motor controller, 72b, 72b' ... proportional valve controller, 74, 74 '... die cushion position Controller, 76, 76-1L, 76-2L, 76-1R, 76-2R ... Selector, 80 ... Power regeneration unit, 82 ... Servo amplifier, 84 ... Servo power supply, 100 ... Frame (column), 101 ... Slide , 102 ... Bolster, 201 ... Upper mold, 202 ... Lower mold, 203 ... ⁇ holding plate, 301 ... Product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Presses And Accessory Devices Thereof (AREA)
  • Control Of Presses (AREA)

Abstract

 クッションパッド(2)を支持し、プレス機械のスライドの下降時にダイクッション圧力を発生させる液圧シリンダ(3)と、前記液圧シリンダ(3)の下室と低圧力源(6)の間にそれぞれ並列に接続された比例弁(10)及び液圧ポンプ/モータ(4)と、前記液圧ポンプ/モータ(4)の回転軸に接続された電動モータ(5)と、予め設定されたダイクッション圧力指令を出力するダイクッション圧力指令器(60)と、前記液圧シリンダ(3)の下室の圧力を検出する圧力検出器(21a)と、前記ダイクッション圧力指令と前記圧力検出器(21a)によって検出された圧力とに基づいてダイクッション圧力が前記ダイクッション圧力指令に対応する圧力になるように前記比例弁(10)の開度及び前記電動モータ(5)のトルクを制御する制御器(70)と、を備えたプレス機械のダイクッション装置。

Description

プレス機械のダイクッション装置
 本発明はプレス機械のダイクッション装置に係り、特にプレス機械の高速化に対応でき、装置の小型化及び低価格化が可能なプレス機械のダイクッション装置に関する。
 (a) 油圧(サーボ)式ダイクッション装置
 比例弁で絞り制御する油圧サーボ式のダイクッション装置としては、特許文献1に記載のものがある。
 このダイクッション装置は、クッションパッドを支持する油圧シリンダの下室側に比例弁を設け、この比例弁の開度を適切な開度に制御することにより、所要のダイクッション圧力を発生させるものである。
 この利点は、比例弁等を用いることにより、ダイクッション圧力を制御可能な点であり、必要に応じて変圧させることも可能な点や、比較的高圧で使用可能なため、油圧シリンダを小径化することが可能で、ピットレス化等、装置のコンパクト化を推進可能な点である。
 反面、欠点は、圧力発生が油流を絞ることによるものであるため、ダイクッション作用に費やされたエネルギは全て熱に変換され、また、装置の能力に比例した冷却機能(冷却装置)が必要になる。対環境性から見てエネルギの無駄とも考えられる。あらゆるタイプの油圧式のものがそうである。また、ダイクッション作用時にスライド速度が低い場合には、油圧シリンダ内の油を圧縮する作用が遅れ、昇圧応答性が低下する(昇圧時間が増大する)傾向が強くなる。
 (b) 電動(サーボ)式ダイクッション装置
 電動サーボ式ダイクッション装置としては、特許文献2に記載のものがある。
 このダイクッション装置は、クッションパッドを支持する油圧シリンダの下室に油圧ポンプ/モータの吐出口を直接接続し、この油圧ポンプ/モータの回転軸に接続された電動モータをトルク制御することにより、油圧シリンダの下室の圧力(ダイクッション圧)を任意に制御できるようにしている。
 このダイクッション装置は、プレス機械のダイクッション作用時にクッションパッドが受けるダイクッション作用に要したエネルギを油圧シリンダ、油圧ポンプ/モータ及び電動モータを介して電気エネルギとして回生し、エネルギ効率がよいという利点がある。また、スライド速度が低速であっても、ダイクッション圧を良好に制御することができ、油圧(サーボ)式ダイクッション装置に比べて、圧力制御性がよいという利点がある。
 反面、欠点はダイクッション作用時に、ダイクッション作用に要する仕事率を、全てダイクッション作用と同時に賄うことができる大容量の電動モータが必要になる。電動モータが大容量化すれば、装置が大型化するとともに受電設備も大容量化し、システムの複雑化及び高価格化は避けられない。従って、電動サーボ式ダイクッション装置は、エネルギ効率が良くても、設備投資面では非効率である。
 また、インパクト時には、油圧ポンプ/モータ(+電動モータ)を介して油圧シリンダの押し退け油量を低圧側に開放するため、モータ(慣性モーメント)を押し退け油量により急激に角加速する必要があり、その加速の反作用としてサージ圧を発生し易いという欠点がある。
特開2006-142312号公報 特開2006-315074号公報
 上記従来の特許文献1、2に記載のダイクッション装置は、それぞれ利点・欠点を有している。
 本発明は、特許文献1に記載の比例弁で絞り制御する油圧サーボ式と、特許文献2に記載の電動サーボ式のダイクッション装置の欠点を克服、排除して利点を多く集約するところにある。
 本発明の目的は、サージ圧が作用することなく、スライド速度によらずダイクッション圧力の制御性の向上を図ることができ、また、エネルギ回生機能に伴いエネルギ効率が良く、かつ装置の小型化及び低価格化を実現することができるプレス機械のダイクッション装置を提供することにある。
 前記目的を達成するために本発明の第1の態様に係るプレス機械のダイクッション装置は、クッションパッドを支持し、プレス機械のスライドの下降時にダイクッション圧力を発生させる液圧シリンダと、前記液圧シリンダの下室と低圧力源の間にそれぞれ並列に接続された比例弁及び液圧ポンプ/モータと、前記液圧ポンプ/モータの回転軸に接続された電動モータと、予め設定されたダイクッション圧力指令を出力するダイクッション圧力指令器と、前記液圧シリンダの下室の圧力を検出する圧力検出器と、前記ダイクッション圧力指令と前記圧力検出器によって検出された圧力とに基づいてダイクッション圧力が前記ダイクッション圧力指令に対応する圧力になるように前記比例弁の開度及び前記電動モータのトルクを制御する制御器と、を備えたことを特徴としている。
 請求項1に係る発明は、比例弁で絞り制御する液圧サーボ式の制御機能と、液圧ポンプ/モータ(+電動モータ)を使用する電動サーボ式の制御機能とを併設し、前記比例弁の開度と電動モータのトルクを制御することにより、ダイクッション圧力がダイクッション圧力指令に対応する圧力になるようにしている。特にダイクッション作用時に、液圧シリンダの下室から押し退けられる液量は、比例弁及び液圧ポンプ/モータを介して低圧源側に放出することができ、これにより、電動モータ(+液圧ポンプ/モータ)単独でダイクッション圧力を制御する場合に比べて、電動モータの小容量化が可能となり、その結果、装置の小型化及び低価格化が可能になる。
 尚、液圧ポンプ/モータ(+電動モータ)の押し退け液量に対して、比例弁の(弁差圧による)放出液量は、同一の価格基準に対しても、同一の設置スペース(装置の大きさ)に対しても、数倍(3~10倍)程度大きい。
 また、インパクト時に予め比例弁を開放する制御を行うことで、液圧ポンプ/モータから低圧源に開放する液量を低減することができ、これにより液圧ポンプ/モータ(+電動モータ)の慣性モーメントを角加速するために要す加速トルクの反作用として発生するサージ圧を抑制することができ、また、ダイクッション作用時にスライド速度が低速になっても、電動モータのトルクを制御することによりダイクッション圧力を応答性よく制御することができ、ダイクッション圧力の制御性の向上を図ることができる。
 本発明の第2の態様は、本発明の第1の態様に記載のプレス機械のダイクッション装置において、前記プレス機械のダイクッション作用時に前記液圧シリンダが受けるダイクッション作用に要したエネルギを、前記液圧ポンプ/モータ及び電動モータを介して電気エネルギとして回生する回生部を有することを特徴としている。これにより、ダイクッション作用に費やされたエネルギが全て熱に変換される、液圧サーボ式のもの(比例弁単独のもの)に比べて、エネルギ効率の向上を図ることができる。
 プレスの高速対応化には、液圧サーボ式の方が装置も小さくなり、価格(イニシャルコスト)も安くなるが、液圧サーボ式のみでダイクッション装置を構成すると、比例弁の圧力損失によりエネルギ効率が悪く、発熱を伴い、ランニングコストを増加する結果を招く。このエネルギ効率の観点から、液圧ポンプ/モータ(+電動モータ)を用いる電動サーボ式を併用し、ダイクッション作用に要したエネルギを電気エネルギとして回生することで、エネルギ効率の向上を図っている。
 本発明の第3の態様は、本発明の第1又は第2の態様に記載のプレス機械のダイクッション装置において、前記スライドの速度を検出するスライド速度検出手段を備え、前記制御器は、前記スライド速度検出手段により検出された速度に基づいて、前記プレス機械のダイクッション作用時に、前記速度がある一定値より大きい場合に前記比例弁を制御し、前記液圧シリンダから押し退けられる圧液の一部を、前記比例弁を介して低圧力源に開放することを特徴としている。ここで、スライド速度検出手段は、様々な手段を採用することが可能である。例えば、センサにより直接スライド速度を検出する手段を採用することもできるし、スライドを動かすためのクランク軸の角速度を角速度検出器で検出し、検出された角速度信号を基に演算することによってスライド速度を求める手段を採用しても良い。
 プレス機械の内、高速対応を担うものは、大半が機械式のものである。その代表的なものは、クランク機構式やエキセンギヤ機構式のものであり、それらの特色は、下死点に近づく程、スライド速度が低下し、下死点におけるスライド速度は0になる。つまり、ダイクッション機能を要す成形時において、成形開始(クッションパッドにインパクトする)時点の極短い時間は高速であるが、成形が進み下死点に近づくにつれて限りなく低速になる。
 このような背景において、ダイクッション作用時にスライド速度がある一定値より大きい場合(極短い高速期間)に合わせて、液圧ポンプ/モータ(+電動モータ)を用いる電動サーボ式のみでダイクッション装置を構成すると、多分に価格高や装置の増大化を招く(余剰スペックになる)。そこで、成形の大半において稼動する液圧ポンプ/モータ(+電動サーボモータ)に加えて、極短い高速期間に合わせて、比例弁の開度を制御する液圧サーボ式を併用し、ダイクッション装置としては、比較的に高効率に高速対応が、少スペース、低価格で実現できるようにしている。
 尚、スライド速度が一定値より小さくなる(低速になる)と、比例弁は使用せず(開度0=ブロック状態とし)、液圧ポンプ/モータ(+電動モータ)を用いる電動サーボ式のみを駆動するため、ダイクッション作用に要したエネルギの多くを電気エネルギとして回生することができるとともに、低速時におけるダイクッション圧力の制御性の向上を図ることができる。
 本発明の第4の態様は、本発明の第3の態様に記載のプレス機械のダイクッション装置において、前記制御器は、前記ダイクッション圧力指令と、前記圧力検出器によって検出された圧力と、前記スライド速度検出手段により検出された速度と、に基づいて、前記プレス機械のダイクッション作用時に、前記比例弁の開度を制御することを特徴としている。
 本発明の第5の態様は、本発明の第1から第4の態様のいずれかに記載のプレス機械のダイクッション装置において、前記スライドの速度を検出するスライド速度検出手段と、前記液圧ポンプ/モータあるいは前記電動モータの角速度を検出する角速度検出器とを備え、前記制御器は、前記ダイクッション圧力指令と前記圧力検出器によって検出された圧力と前記スライド速度検出手段により検出された速度と前記角速度検出器により検出された角速度とに基づいて、前記プレス機械のダイクッション作用時に、ダイクッション圧力が前記ダイクッション圧力指令に対応する圧力になるように前記電動モータのトルクを制御することを特徴としている。
 本発明の第6の態様は、本発明の第1から第5の態様のいずれかに記載のプレス機械のダイクッション装置において、前記スライドの位置を検出するスライド位置検出器を備え、前記ダイクッション圧力指令器は、前記スライド位置検出器によって検出されるスライド位置に基づいてダイクッション圧力指令を出力することを特徴としている。
 本発明の第7の態様は、本発明の第1から第6の態様のいずれかに記載のプレス機械のダイクッション装置において、前記クッションパッドの位置を検出するダイクッション位置検出器を備え、前記制御器は、前記ダイクッション位置検出器によって検出されるダイクッション位置信号を、製品ノックアウト動作時又は単独で前記液圧シリンダを上下動させる場合の位置フィードバック信号として前記電動モータの制御に用いることを特徴としている。これにより、プレス加工時(ダイクッション作用時)以外の期間に、液圧シリンダ(クッションパッド)の位置制御を可能とし、また、上昇動作(製品ノックアウト動作)を行うようにしている。ここでノックアウト動作とは、金型から製品を取り外す動作のことを言う。
 本発明の第8の態様は、本発明の第1から第7の態様のいずれかに記載のプレス機械のダイクッション装置において、前記液圧シリンダは、前記クッションパッドに対して複数本並列に配設され、前記比例弁と前記液圧ポンプ/モータは、各液圧シリンダの下室に共通配管を介して接続されることを特徴としている。
 本発明の第9の態様は、本発明の第1から第8の態様のいずれかに記載のプレス機械のダイクッション装置において、前記液圧ポンプ/モータは、前記液圧シリンダの下室から分岐配管を介して圧液がそれぞれ供給される複数の液圧ポンプ/モータからなり、前記電動モータは、前記複数の液圧ポンプ/モータにそれぞれ接続され、それぞれトルク制御される複数の電動モータからなることを特徴としている。これにより、大型のプレス機械であっても、1つの液圧ポンプ/モータ及び電動モータとして、比較的容量の小さな汎用のものを使用することができる。
 本発明の第10の態様は、本発明の第1から第9の態様のいずれかに記載のプレス機械のダイクッション装置において、前記比例弁は、前記液圧シリンダの下室から分岐配管を介して圧液がそれぞれ供給され、それぞれ開度が制御される複数の比例弁からなることを特徴としている。
 本発明の第11の態様は、本発明の第1~3、6、9、及び10の態様のいずれかに記載のプレス機械のダイクッション装置において、前記液圧シリンダ、前記比例弁、前記液圧ポンプ/モータ、前記電動モータ及び前記圧力検出器は、1つの前記クッションパッドに対して複数組設けられていることを特徴としている。これにより、並列の複数系統の装置によりダイクッション装置を構成することができ、個々の装置(比例弁、液圧モータ、電動モータ等)の容量を小さくしたり、各系統をそれぞれ独立に圧力制御したりすることができる。
 本発明の第12の態様は、本発明の第11の態様に記載のプレス機械のダイクッション装置において、前記スライドの速度を検出するスライド速度検出手段を備え、前記制御器は、前記ダイクッション圧力指令と前記圧力検出器によって検出された圧力と前記スライド速度検出手段により検出された速度とに基づいて、前記プレス機械のダイクッション作用時に、各液圧シリンダ毎の比例弁の開度をそれぞれ制御することを特徴としている。
 本発明の第13の態様は、本発明の第11又は第12の態様に記載のプレス機械のダイクッション装置において、前記スライドの速度を検出するスライド速度検出手段と、前記液圧ポンプ/モータあるいは前記電動モータのそれぞれの角速度を検出する複数の角速度検出器とを備え、前記制御器は、前記ダイクッション圧力指令と前記スライド速度検出手段により検出された速度と前記複数の圧力検出器によって検出されたそれぞれの圧力と前記複数の角速度検出器により検出されたそれぞれの角速度とに基づいて、前記プレス機械のダイクッション作用時に、前記複数の液圧シリンダにおけるそれぞれのダイクッション圧力が前記ダイクッション圧力指令に対応する圧力になるように前記複数の電動モータのそれぞれのトルクを制御することを特徴としている。
 本発明の第14の態様は、本発明の第11から第13の態様のいずれかに記載のプレス機械のダイクッション装置において、前記クッションパッドの位置を検出するダイクッション位置検出器を各液圧シリンダに対応して複数個備え、前記制御器は、前記複数のダイクッション位置検出器によって検出されるそれぞれのダイクッション位置信号を、製品ノックアウト動作時又は単独で各液圧シリンダを上下動させる場合のそれぞれの位置フィードバック信号として、相応するそれぞれの液圧シリンダを駆動する電動モータの制御に用いることを特徴としている。
 本発明の第11から第14の態様によれば、複数の液圧シリンダを個別に制御することができ、これによりクッションパッドに偏心加重が加わる場合でもその偏心加重に応じたダイクッション圧を発生させたり、製品ノックアウト時や単独昇降時に負荷によらず、クッションパッドを平行に位置制御することができる。
 本発明によれば、ダイクッション圧力を発生させる液圧シリンダの下室と低圧力源の間に、液圧サーボ式の比例弁と電動サーボ式の液圧ポンプ/モータ(+電動モータ)とを並列に接続し、前記比例弁の開度と電動モータのトルクを制御することにより、ダイクッション圧力がダイクッション圧力指令に対応する圧力になるようにしたため、サージ圧が作用することなく、スライド速度によらずダイクッション圧力の制御性の向上を図ることができ、また、エネルギ回生機能に伴いエネルギ効率が良く、かつ装置の小型化及び低価格化を実現することができる。
図1は本発明に係るプレス機械のダイクッション装置の第1の実施の形態を示す構成図である。 図2は図1中の一点鎖線で囲んだ油圧回路の拡大図である。 図3は制御器及び電力回生部を含むダイクッション装置の概略図である。 図4は図3の制御器の詳細を示すブロック図である。 図5は本発明の基本的な作用例としてプレス機械のスライドを1サイクルさせた場合のダイクッション圧力作用に伴う各物理量の変化を示した波形図であり、位置、速度、荷重(圧力)の波形図である。 図6は本発明の基本的な作用例としてプレス機械のスライドを1サイクルさせた場合のダイクッション圧力作用に伴う油量の変化を示した波形図である。 図7は本発明に係るプレス機械のダイクッション装置の第2の実施の形態を示す構成図である。 図8は図7中の一点鎖線で囲んだ油圧回路の拡大図である。 図9は本発明に係るプレス機械のダイクッション装置の第3の実施の形態を示す構成図である。 図10は本発明に係るプレス機械のダイクッション装置の第4の実施の形態を示す構成図である。 図11は本発明に係るプレス機械のダイクッション装置の第5の実施の形態を示す構成図である。 図12は図11に示したダイクッション装置の制御器を示すブロック図である。 図13は図9中の一点鎖線で囲んだ油圧回路の拡大図である。 図14は図10中の一点鎖線で囲んだ油圧回路の拡大図である。 図15は図11中の一点鎖線で囲んだ油圧回路の拡大図である。
 以下添付図面に従って本発明に係るプレス機械のダイクッション装置の好ましい実施の形態について詳説する。
 [ダイクッション装置の構成(第1の実施の形態)]
 <一般的な絞り加工に関して>
 図1は本発明に係るプレス機械のダイクッション装置の第1の実施の形態を示す構成図であり、図2は図1中の一点鎖線で囲んだ油圧回路50の拡大図である。
 図1に示すプレス機械は、フレーム(コラム)100、スライド101、ボルスタ(ベッド)102等により構成され、スライド101は、フレーム100に設けられたガイド部により鉛直方向に移動自在に案内されている。スライド101は、図示しない駆動手段によって回転駆動力が伝達されるクランク軸103を含むクランク機構によって図1上で上下方向に移動させられる。
 プレス機械のボルスタ102側には、スライド101の位置を検出するスライド位置検出器25が設けられ、クランク軸103には、クランク軸103の角速度を検出する角速度検出器24が設けられている。
 スライド101には上型201が装着され、ボルスタ102上には下型202が装着されている。本例における金型(上型201、下型202)は、上に閉じた中空カップ状(絞り形状)の製品301の成形用途のものである。
 上型201と下型202の間には皺押さえ板203があり、下側が複数のクッションピン1を介してクッションパッド2で支持され、上側には材料がセットされる(接触する)。このクッションパッド2は、油圧シリンダ3によって支持され、クッションパッド2(あるいは油圧シリンダ・ピストンに連動する部分)には、クッションパッド2の位置を検出するダイクッション位置検出器23が設置されている。
 所定の初期位置でクッションピン1に支持されて待機している皺押さえ板203に材料(本例では円状の板)がセットされている状態で、スライド101が下降する。上型201が製品に接触した時点で、製品のプレス加工(絞り加工)が開始される。材料は上型201と下型202の間で、塑性加工されると同時に、絞り加工の際に生じ易い円形材料の半径方向に発生する皺や亀裂を抑制するために、必要な設定力でクッションピン1、皺押さえ板203を介して材料を下方から押さえながら支持する。この時の力がダイクッション圧力であり、絞り加工中には常時作用する。
 <一般的なダイクッション機能に関しての補足>
 プレス加工が開始される時はスライド101が材料(及び皺押さえ板203)に衝突する(衝撃的に当たる)ために、クッションパッド2には衝撃力(油圧シリンダ3ではサージ圧)が発生し易く、衝撃力は所定のダイクッション圧力を上回るため、成形品を破断させたり、金型を破損させたり、機械自身の耐久寿命にも悪影響を及ぼす(ダイクッション装置自体が破損する事故が生じる場合もある。)。
 <本ダイクッション装置に関して>
 ダイクッション装置は、主として上記クッションパッド2を支持する油圧シリンダ3と、油圧シリンダ3のクッション圧発生側加圧室(以下「下室」と称す)3cと低圧力源6との間にそれぞれ並列に接続された比例弁10及び油圧ポンプ/モータ4と、油圧ポンプ/モータ4の回転軸に接続された電動(サーボ)モータ5と、ダイクッション圧力指令器60(図4参照)と、油圧シリンダ3の下室3cの圧力を検出する圧力検出器21aと、比例弁10の開度及び電動モータ5のトルクを制御する制御器70(図3、図4参照)とから構成されている。
 油圧シリンダ3のピストンロッド3aは、クッションパッド2に連結されている。
 図2に示すように、油圧シリンダ3の下室3cに接続された配管には、下室3cの圧力を検出する圧力検出器21aが接続されるとともに、強制開放駆動式逆止弁8を介して比例弁10及び油圧ポンプ/モータ4が接続されている。
 また、油圧シリンダ3の下室3cと低圧力源6との間には、安全弁(リリーフ弁)7が接続されている。この安全弁7は、異常圧力発生時(ダイクッション圧力制御が不能で、突発的に異常圧力が発生した場合)に、油圧機器破損防止用途に使用される。
 尚、低圧力源6に用いられる蓄圧装置は、0.5~1Mpa程度に圧力が設定されており、タンクの役割を果す。この低圧力源6の圧力は、圧力検出器21cにより検出される。
 一方、油圧シリンダ3の下降側加圧室(以下「上室」と称す)3bに接続された配管は、蓄圧装置9と接続されている。この蓄圧装置9の圧力は、圧力検出器21bにより検出される。
 前記蓄圧装置9には、電動モータ41で駆動される油圧ポンプ40から吐出される圧油が逆止弁13を介して蓄積される。蓄圧装置9の圧油の蓄積が充分な場合は、油圧ポンプ40から吐出される作動油は、アンロード操作弁15を介して低圧状態で作動油冷却器11を循環し、冷却される。
 尚、ダイクッション作用時において、前記比例弁10から圧油が開放される場合は、圧油の絞り作用により発熱するため、作動油の冷却を要す。また、12は、作動油冷却器11に冷却水を供給するための水用電磁弁であり、42はフィルタである。
 また、蓄圧装置9に蓄積された圧油は、2方弁10aと電磁比例流量制御弁10bとから構成される比例弁10の2方弁10aを、電磁比例流量制御弁10bを介して開閉させるためのパイロット圧として使用され、また非制御(非駆動)時に油圧シリンダ3(に連動するクッションパッド2)の自重による落下を防止するための強制開放駆動式逆止弁8を、制御(駆動)時に強制開放するためのパイロット圧として使用され、更に油圧シリンダ3の上室3b(ロッド側容積)に常時作用させることにより、油圧シリンダ3の上下動作を容易にする(電動モータ5のトルク操作のみで行えるようにする)ために使用される。
 尚、比例弁10には、比例弁10の開度を検出するためのスプール位置検出器26が配設され、電動モータ5のモータ軸には、電動モータ5の角速度を検出する角速度検出器22が配設されている。また、蓄圧装置9と低圧力源6との間には、それぞれリリーフ弁7’及び電磁方向切換弁(脱圧弁)14が接続されている。
 [ダイクッション圧力制御の原理]
 前述した油圧シリンダ3によるダイクッション圧力は、油圧シリンダ3の下室3cの圧力を制御することにより、即ち、油圧シリンダ3の下室3cにそれぞれ接続された比例弁10の開度、及び油圧ポンプ/モータ4のトルクを制御することにより発生する。
 以下、油圧シリンダ3によるダイクッション圧力制御の原理について説明する。
 いま、油圧シリンダ3のダイクッション圧力発生側断面積:A
 油圧シリンダ3のダイクッション圧力発生側体積:V
 ダイクッション圧力:P
 電動モータ5のトルク:T
 電動モータ5の慣性モーメント:I
 電動モータ5の粘性抵抗係数:DM
 電動モータ5の摩擦トルク:fM
 油圧ポンプ/モータ4の押し退け容積:Q
 スライド101から油圧シリンダ3のピストンロッド3aに加わる力:F
 プレスに押されて発生するクッションパッド速度:v
 油圧シリンダ3のピストンロッド+クッションパッドの慣性質量:M
 油圧シリンダ3の粘性抵抗係数:DS
 油圧シリンダ3の摩擦力:fS
 圧油に押されて回転するサーボモータ角速度:ω
 作動油の体積弾性係数:K
 比例定数:k1、k2
 比例弁による開放油量:q
 比例弁指令量:R
 比例弁流量係数:C
 とすると、静的な挙動は(1)及び(2)式で表すことができる。
 P=∫K((v・A-k1Q・ω-q)/V)dt……(1)
 q=R・C√P                ……(2)
 T=k2・PQ/(2π)            ……(3)
 また、動的な挙動は(1)、(2)式に加えて(4)、(5)式で表すことができる。
 PA-F=M・dv/dt+DS・v+fS ……(4)
 T-k2・PQ/(2π)=I・dω/dt+DM・ω+fM ……(5)
 上記(1)~(5)式が意味するもの、即ち、スライド101からクッションパッド2を介して油圧シリンダ3のピストンロッド3aに伝わった力は、油圧シリンダ3の下室3cを圧縮し、ダイクッション圧力を発生させる。
 比例弁10によりダイクッション圧力を保持しつつ油量を開放し(開度を制御し)、同時に、ダイクッション圧力によって油圧ポンプ/モータ4を油圧モータ作用させ、この油圧ポンプ/モータ4に発生する回転軸トルクが電動モータ5の駆動トルクに抗じたところで、電動モータ5を回転(回生作用)させ、圧力の上昇が抑制される。
 結局、ダイクッション圧力は、比例弁10の開度と電動モータ5の駆動トルクに応じて決定する。
 この時、ダイクッション圧力値を予め設定した設定値通り、かつ安定に制御するために、ダイクッション圧力Pやモータ角速度ωやプレスに押されて発生するクッションパッド速度v(またはプレス機械スライド速度)を検出して、比例弁10の開度及び電動モータ5のトルクを決定するための補償に用いる。また、製品ノックアウト動作を制御するためにダイクッション位置を検出し、ダイクッション作用開始タイミングを得るためにスライド位置を検出して用いる。
 <ダイクッション装置の制御器>
 図3は前記比例弁10の開度及び電動モータ5のトルクを制御する制御器70、及び電力回生部80を含むダイクッション装置の概略図であり、図4は制御器70の詳細を示すブロック図である。
 図4に示すように制御器70は、ダイクッション圧力制御器72と、ダイクッション位置制御器74と、選択器76とからなり、ダイクッション圧力制御器72は、更に電動モータ制御器72aと比例弁制御器72bとからなる。
 ダイクッション圧力指令器60には、スライド101の位置に応じたダイクッション圧力値が予め設定されており、ダイクッション圧力指令器60は、スライド位置検出器25によって検出されるスライド位置信号に基づいてダイクッション圧力指令を、電動モータ制御器72a及び比例弁制御器72bに出力する。
 一方、ダイクッション位置指令器62には、位置指令値生成における初期値生成用に使用するためにダイクッション位置検出器23からダイクッション位置(クッションパッド位置)を示す信号が加えられており、ダイクッション位置指令器62は、スライド101が下死点に到達し、ダイクッション圧力制御終了後に、製品ノックアウト動作を行うとともにクッションパッド2を初期位置に待機させるために、ダイクッション位置(クッションパッド2の位置)を制御するダイクッション位置指令を出力する。
 また、ダイクッション圧力制御器72及びダイクッション位置制御器74には、それぞれスライド位置検出器25及び角速度検出器22からスライド位置信号及びモータ角速度信号が加えられるとともに、角速度検出器24によって検出されるクランク軸103の角速度信号から演算されるスライド101のスライド速度信号が加えられている。更に、電動モータ制御器72aには、角速度検出器22から電動モータ5の角速度を示す角速度信号が加えられ、比例弁制御器72bには、スプール位置検出器26から比例弁10のスプール位置(開度)を示す比例弁開度信号が加えられている。
 制御器70は、上記各種の入力信号に基づいて比例弁10の開度を制御する開度指令を比例弁10に出力するとともに、電動モータ5をトルク制御するトルク指令を、サーボアンプ82を介して電動モータ5に出力する(図3参照)。
 先に記述したように、インパクト時(スライド101が、直接または間接的にクッションパッド2に接触する時)以降は、スライド101の動力によって、金型・皺押さえ板203・クッションピン1・クッションパッド2を介して、油圧シリンダ3に圧力が発生し、油圧シリンダ3から押し退けられる圧油は、一方で油圧ポンプ/モータ4を油圧モータ作用させて押し退けて回転させる。この時、電動モータ制御器72aは、入力するダイクッション圧力指令、圧力検出器21aで検出されるダイクッション圧力信号、クランク軸103の角速度検出器24で検出、演算されるスライド速度信号、及び電動モータ5の角速度検出器22から検出される角速度信号等に基づいて電動モータ5のトルクを加圧側に作用させ、(ダイクッション作用)圧力を発生させるとともに、油圧ポンプ/モータ4に発生する回転軸トルクが電動モータ5の駆動トルクに抗じたところで、電動モータ5を回転(回生作用)させる。図3に示すように、この電動モータ5によって発電された電力は、サーボアンプ82、及び電力回生機能付きサーボ電源84を介して交流電源30に回生される。
 油圧シリンダ3から押し退けられる圧油は、もう一方で比例弁10を介して低圧力源6(タンク)に開放される。この時、比例弁制御器72bは、入力するダイクッション圧力指令、圧力検出器21aで検出されるダイクッション圧力信号、クランク軸角速度検出器24で検出、演算されるスライド速度信号、スプール位置検出器26で検出される比例弁開度信号等に基づいて開度を制御し、ダイクッション圧力を発生させる。
 また、比例弁制御器72bは、例えばクランクやリンク機構式の機械式プレスにおいて、生産速度(サイクル数/時間)が速い場合であって、スライド位置が下死点から高くスライド速度が大きい場合に限り、比例弁10の開度を制御し、生産速度が遅い(サイクル全般的にスライド速度が遅い)場合や、生産速度が速くてもスライド位置が下死点に近づきスライド速度が小さい場合には、比例弁10の開度を制御しない(開度0=全閉)。
 尚、電動モータ制御器72aによる電動モータ5のトルク制御によるダイクッション圧力制御と、比例弁制御器72bによる比例弁10の開度によるダイクッション圧力制御とが同時に行われている期間は、両者によって協調制御されるダイクッション圧力が、ダイクッション圧力指令が示すダイクッション圧力になるように、電動モータ制御器72a及び比例弁制御器72bは、それぞれ電動モータ5のトルク及び比例弁10の開度を制御する。
 一方、スライド101が下死点に到達(プレス成形が終了)すると、制御器70は、ダイクッション圧力制御状態からダイクッション位置(保持)制御状態に切り替えられる。
 このダイクッション位置制御状態では、制御器70のダイクッション位置制御器74は、ダイクッション位置指令器62から入力するダイクッション位置指令、ダイクッション位置検出器23のダイクッション位置信号、及び角速度検出器22の角速度信号等を用いて演算したトルク指令値を、選択器76を介して電動モータ5に出力することにより行う。
 この時、ダイクッション位置制御器74は、スライド101が上昇を開始してから一定時間、ダイクッション装置を停止させ、スライド101と製品301とダイクッション装置が干渉して製品301を破損させる事故の無いようにし、その後、油圧シリンダ3(クッションパッド2)を上昇させ、下型202に密着した成形品をノックアウトし、初期位置(待機位置)に戻し、次サイクルに備える。このダイクッション位置(保持)制御状態時には、比例弁10は使用しない(開度全閉の状態)。
 <動作波形による工程説明>
 図5及び図6は、本発明の基本的な作用例としてプレス機械のスライドを1サイクルさせた場合のダイクッション圧力作用に伴う各物理量の変化を示した波形図である。
 図5(A)において、スライド101が上死点(図5(A):1100mm)から下降工程に至る過程で、ダイクッション(皺押さえ板203、クッションパッド2)は、初期位置(図5(A):200mm)で待機している。尚、前述したように、制御器70のダイクッション位置制御器74は、待機時のダイクッション位置指令、ダイクッション位置検出器23のダイクッション位置信号、角速度検出器22のモータ角速度信号等を用いて演算した電動モータトルク指令を電動モータ5に出力することにより、位置(保持)制御している。
 スライド101が降下して、スライド位置検出器25のスライド位置信号がダイクッション初期位置(近傍)に到達(インパクト)すると、ダイクッション装置は、ダイクッション位置(保持)制御状態からダイクッション圧力制御状態に切り替わる。
 ダイクッション圧力制御状態の初期において、スライド位置がダイククッション初期位置(150mm)に到達した時点におけるスライド速度は、約850mm/sであり(図5(B))、油圧シリンダ3から押し退けられる油量は、油圧ポンプ/モータ4+電動モータ5による押し退け容量を超えるため、更にスライド101が降下してスライド速度が500mm/sを下回るまで(2.15s付近まで)は、図6に示すように比例弁10と油圧ポンプ/モータ4を並列に使用し、図3に示すように油圧シリンダ3で押し退けられる油量の一部を比例弁10で、ダイクッション圧力を確保しつつ(絞りながら)低圧側に開放し、一部(残分)を電動モータ5で、ダイクッション圧力を確保しつつ(トルクを回転方向に逆らい作用させながら)、油圧ポンプ/モータ5を介して低圧側に押し退け開放する。
 図4に示したように、比例弁10及び電動モータ5は、それぞれスライド速度(あるいは油圧シリンダ3の速度でも可)、ダイクッション圧力指令、及びダイクッション圧力信号に基づいて、更に比例弁10は比例弁開度信号や(流量検出器が装着されている場合は比例弁10を通過する油(流)量信号)に基づいて、電動モータ5はモータ角速度信号に基づいて、更に両者の制御器間で相互に補償し合いながらダイクッション圧力を制御する。圧油を比例弁10で絞り開放する場合は、油圧ポンプ/モータ4で押し退け開放する場合に対して、小サイズ(外観がコンパクト)ながら破格に大容量を処理可能であり、ダイクッション圧力制御の開始時点のスライド速度が、本例の場合(850mm/s)を大幅に超えてもダイクッション圧力制御は問題無く可能になる。
 図6(A)は、油圧シリンダ3の押し退け油量、比例弁10の通過(放出)油量(A)、及び油圧ポンプ/モータ4の押し退け油量(B)の1サイクルの変化を示した波形図であり、図6(B)は図6(A)の要部拡大図である。
 図6(B)に示す例では、油圧シリンダ3の最大押し退け油量(l/min)に対し、油圧ポンプ/モータ4の最大押し退け油量(l/min)は約半分となっており、その差分の油量は、比例弁10を通過している。
 また、インパクト時に予め比例弁10を開放する制御を行っており、インパクト時に油圧シリンダ3から押し退けられる油量は、その大部分が比例弁10から放出されるようになっている。これにより、インパクト時に油圧シリンダ3から押し退けられる油量によって、油圧ポンプ/モータ4+電動モータ5(慣性モーメント)が急激に角加速されないため、サージ圧が発生しないようにすることができる。
 スライド101が降下して、スライド速度が500mm/sを下回ると、油圧シリンダ3から押し退けられる油量は、油圧ポンプ/モータ4+電動モータ5による押し退け容量内に収まるため、油圧ポンプ/モータ4のみで電動モータ5によりダイクッション圧力を確保しつつ、押し退け開放する。尚、スライド速度が500mm/sを下回ると、比例弁10は全閉の状態に維持される。
 電動モータ5は、図4に示すようにダイクッション圧力を油圧ポンプ/モータ4の油圧モータ作用によって発生させるため、回転方向と反対方向にトルクを作用しており(発電作用しており)、この時のエネルギは電源に回生される。
 以降、スライド101が下死点に至るまで成形(絞り加工)が行われる。
 スライド101が下死点に到達すると成形が終了するため、それに伴い、ダイクッション圧力も立ち下げる(脱力する)(図5(C) 2.5s付近)。
 ダイクッション圧力が降下完了すると同時に、ダイクッション圧力制御からダイクッション位置(保持)制御に切り替えられる。ダイクッション位置制御は、初期位置待機と同様、ダイクッション位置指令、ダイクッション位置検出器23のダイクッション位置信号等を用いて演算したトルク指令を電動モータ5に出力し、製品ノックアウト及びクッションパッド2を初期位置(待機位置)に戻すための位置制御を行う(図5(A))。
 [ダイクッション装置の構成(第2の実施の形態)]
 図7は本発明に係るプレス機械のダイクッション装置の第2の実施の形態を示す構成図であり、図8は図7中の一点鎖線で囲んだ油圧回路52の拡大図である。尚、図7及び図8において、図1及び図2に示した第1の実施の形態と共通する部分には同一の符号を付し、その詳細な説明は省略する。
 図7及び図8に示す第2の実施の形態のダイクッション装置は、主として第1の実施の形態の1つの油圧シリンダ3の代わりに、2つの油圧シリンダ3、3’を使用している点で相違する。
 即ち、第2の実施の形態のダイクッション装置は、クッションパッド2に対して2つの油圧シリンダ3、3’を並列に配設されている。また、これらの油圧シリンダ3、3’の下室3c、3c’は、共通配管54により接続され、油圧シリンダ3、3’の上室3b、3b’は、共通配管56により接続されている。
 また、図8に示すように、4方弁10a’と電磁比例流量制御弁10b’とから比例弁10’が構成されている。
 ここでの機能を考えれば、比例弁は、高圧側から低圧側へ圧油を絞りながら開放すれば良く、図2に示した2方弁10aで必要充分であるが、世間に広く浸透している(一般的な)ものは4方弁10a’であり、数多く生産されているため、比較的に価格が安く、流せる流量を確保するために、圧油ポートを並列(例えば、図8のようにP→B+A→T)に使用している。
 また、第2の実施の形態のダイクッション装置は、油圧シリンダ3、3’の上室3b、3b’(ロッド側)に作用する圧力が異なり、第1の実施の形態では、蓄圧装置9に蓄積されている比較的高い圧力が作用しているのに対し、第2の実施の形態では、低圧力源6の低圧が作用している。第2の実施の形態のプレス機械は、クッションパッド2に連動する質量が大きいため、クッションパッド2の下降用の動力は重力で賄うようにしている。   
 第1、第2の実施の形態とも、クッションパッド2を下降させるための動力は、通常動作時には常時作用するようにし、下降と上昇の動作変更に弁を切り替える操作等を不要にし、油圧ポンプ/モータ4のトルクのみの操作で可能にしている。
 [ダイクッション装置の構成(第3の実施の形態)]
 図9は本発明に係るプレス機械のダイクッション装置の第3の実施の形態を示す構成図である。図13は図9中の一点鎖線で囲んだ油圧回路130の拡大図である。尚、図1に示した第1の実施の形態と共通する部分には同一の符号を付し、その詳細な説明は省略する。
 図9、図13に示す第3の実施の形態のダイクッション装置は、油圧シリンダ3の下室3cと低圧力源6との間に分岐配管を介して3個の油圧ポンプ/モータ4-1、4-2、4-3がそれぞれ並列に配設されており、各油圧ポンプ/モータ4-1、4-2、4-3の回転軸にはそれぞれ電動モータ5-1、5-2、5-3が接続され、電動モータ5-1、5-2、5-3の回転軸にはそれぞれ角速度検出器22-1、22-2、22-3が配設されている。
 電動モータ5-1、5-2、5-3のトルク制御は、第1の実施の形態の単一の電動モータ5のトルク制御と同様に行われるが、これらの電動モータ5-1、5-2、5-3の容量は、単一の電動モータ5の容量の3分の1にすることができる。
 [ダイクッション装置の構成(第4の実施の形態)]
 図10は本発明に係るプレス機械のダイクッション装置の第4の実施の形態を示す構成図である。図14は図10中の一点鎖線で囲んだ油圧回路140の拡大図である。尚、図7に示した第2の実施の形態と共通する部分には同一の符号を付し、その詳細な説明は省略する。
 図10、図14に示す第4の実施の形態のダイクッション装置は、油圧シリンダ3、3’の下室3c、3c’を接続する共通配管54と低圧力源6との間に分岐配管を介して2個の比例弁10-1、10-2がそれぞれ並列に配設されている点で、第2の実施の形態と相違する。
 各比例弁10-1、10-2の開度の制御は、第2の実施の形態の単一の比例弁10’の開度の制御と同様に行われるが、各比例弁10-1、10-2を流れる油量は、単一の比例弁10’の場合の2分の1になる。
 [ダイクッション装置の構成(第5の実施の形態)]
 図11は本発明に係るプレス機械のダイクッション装置の第5の実施の形態を示す構成図である。図15は図11中の一点鎖線で囲んだ油圧回路150の拡大図である。尚、図7に示した第2の実施の形態と共通する部分には同一の符号を付し、その詳細な説明は省略する。
 図7に示した第2の実施の形態のダイクッション装置は、クッションパッド2に対して左右に配設された油圧シリンダ3、3’の下室3c、3c’を共通配管54により接続し、1つの油圧シリンダ3を制御する場合と同様に比例弁10’の開度及び電動モータ5のトルクを制御しているが、図11、図15に示す第5の実施の形態のダイクッション位置は、左右の油圧シリンダ3、3’を個別に制御するものであり、左右の2系統のダイクッション装置である点で、1系統の第2の実施の形態と相違する。
 即ち、一方の油圧シリンダ3の下室3cと低圧力源6との間に油圧ポンプ/モータ(並列に2つの油圧ポンプ/モータ4-1L,4-2L)と比例弁10Lとが並列に配設され、他方の油圧シリンダ3’の下室3c’と低圧力源6との間に油圧ポンプ/モータ(並列に2つの油圧ポンプ/モータ4-1R,4-2R)と比例弁10Rとが並列に配設されている。
 尚、各油圧ポンプ/モータ4-1L,4-2L,4-1R,4-2Rの回転軸には、それぞれ電動モータ5-1L,5-2L,5-1R,5-2Rが接続され、各電動モータ5-1L,5-2L,5-1R,5-2Rの回転軸にはそれぞれ角速度検出器22-1L,22-2L,22-1R,22-2Rが配設されている。
 また、左右の油圧シリンダ3、3’に対応して、クッションパッド2の左右の位置をそれぞれ検出するダイクッション位置検出器23、23’が設置され、更に左右の油圧シリンダ3、3’の下室3c、3c’の圧力をそれぞれ検出する圧力検出器21a、21a’が設けられている。
 そして、左右の油圧シリンダ3、3’の圧力をそれぞれ油圧シリンダ毎の電動モータ5-1L,5-2Lと5-1R,5-2R、及び比例弁10Lと10Rを駆動することによって制御する。
 図12は上記構成のダイクッション装置の制御器の実施の形態を示すブロック図である。
 この制御器70’は、ダイクッション圧力制御器72’と、ダイクッション位置制御器74’と、選択器76-1L,76-2L,76-1R,76-2Rとからなり、ダイクッション圧力制御器72’は、更に電動モータ制御器72a’と比例弁制御器72b’とからなり、図4に示した制御器70と同様な構成を有している。
 図4に示した制御器70では、それぞれ1つのモータ角速度信号、ダイクッション圧力信号、比例弁開度信号、及びダイクッション位置信号を入力し、それぞれ1つの電動モータトルク指令及び比例弁開度指令を生成して出力しているのに対し、図12に示す制御器70’は、4つのモータ角速度信号1L,1R,2L,2R、2つのダイクッション圧力信号1(L),2(R)、2つの比例弁開度信号1(L),2(R)、及び2つのダイクッション位置信号1(L),2(R)を入力し、4つの電動モータ5-1L,5-2Lと5-1R,5-2Rに対してそれぞれ個別の電動モータトルク指令1L,2L1R,2Rを生成して出力するとともに、2つの比例弁10L,10Rに対して個別の比例弁開度指令1(L),2(R)を生成して出力する点で相違する。
 この第5の実施の形態のダイクッション装置は、クッションパッド2に配設された左右の油圧シリンダ3、3’を独立して制御するため、例えば、左右に長いクッションパッドであっても、平行に(昇降)動作させることができる。また、左右の1系統内の個々の装置(油圧ポンプ/モータ、電動モータ、比例弁等)を小さなもので構成することができる。
 [変形例]
 この実施の形態では、ダイクッション装置の作動液として油を使用した場合について説明したが、これに限らず、水やその他の液体を使用してもよい。即ち、本願実施例においては、油圧シリンダ、油圧ポンプを使用した形態で説明したが、これらに限定されるものではなく、水やその他の液体を使用した液圧シリンダ、液圧ポンプを本願発明において使用できることは言うまでもない。また、本発明に係るダイクッション装置は、クランクプレスに限らず、機械式プレスを筆頭に、あらゆる種類のプレス機械に適用することができる。
 また、クッションパッドに配設される油圧シリンダは、上記の実施の形態に限らず、例えば、クッションパッドの前後の2箇所、あるいは前後左右の4箇所に配置してもよい。
 更に、本発明は、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいことは言うまでもない。
 1…クッションピン、2…クッションパッド、3、3’…油圧シリンダ、4、4’、4-1、4-2、4-3、4-1L、4-1R、4-2L、4-2R…油圧ポンプ/モータ、5、5’、5-1、5-2、5-35-1L、5-1R、5-2L、5-2R…電動モータ、6…低圧力源、9…蓄圧装置、10、10’、10-1、10-2、10L、10R…比例弁、21a、21a’…圧力検出器、22、22-1、22-2、22-3…角速度検出器、23、23’…ダイクッション位置検出器、25…スライド位置検出器、26…スプール位置検出器、30…交流電源、54、56…共通配管、60…ダイクッション圧力指令器、62…ダイクッション位置指令器、70、70’…制御器、72、72’…ダイクッション圧力制御器、72a、72a’…電動モータ制御器、72b、72b’…比例弁制御器、74、74’…ダイクッション位置制御器、76、76-1L、76-2L、76-1R、76-2R…選択器、80…電力回生部、82…サーボアンプ、84…サーボ電源、100…フレーム(コラム)、101…スライド、102…ボルスタ、201…上型、202…下型、203…皺押さえ板、301…製品

Claims (14)

  1.  クッションパッド(2)を支持し、プレス機械のスライドの下降時にダイクッション圧力を発生させる液圧シリンダ(3)と、
     前記液圧シリンダ(3)の下室と低圧力源(6)の間にそれぞれ並列に接続された比例弁(10)及び液圧ポンプ/モータ(4)と、
     前記液圧ポンプ/モータ(4)の回転軸に接続された電動モータ(5)と、
     予め設定されたダイクッション圧力指令を出力するダイクッション圧力指令器(60)と、
     前記液圧シリンダ(3)の下室の圧力を検出する圧力検出器(21a)と、
     前記ダイクッション圧力指令と前記圧力検出器(21a)によって検出された圧力とに基づいてダイクッション圧力が前記ダイクッション圧力指令に対応する圧力になるように前記比例弁(10)の開度及び前記電動モータ(5)のトルクを制御する制御器(70)と、
     を備えたことを特徴とするプレス機械のダイクッション装置。
  2.  前記プレス機械のダイクッション作用時に前記液圧シリンダ(3)が受けるダイクッション作用に要したエネルギを、前記液圧ポンプ/モータ(4)及び電動モータ(5)を介して電気エネルギとして回生する回生部(80)を有することを特徴とする請求項1に記載のプレス機械のダイクッション装置。
  3.  前記スライドの速度を検出するスライド速度検出手段を備え、
     前記制御器(70)は、前記スライド速度検出手段により検出された速度に基づいて、前記プレス機械のダイクッション作用時に、前記速度がある一定値より大きい場合に前記比例弁(10)を制御し、前記液圧シリンダ(3)から押し退けられる圧液の一部を、前記比例弁(10)を介して低圧力源(6)に開放することを特徴とする請求項1又は2に記載のプレス機械のダイクッション装置。
  4.  前記制御器(70)は、前記ダイクッション圧力指令と、前記圧力検出器(21a)によって検出された圧力と、前記スライド速度検出手段により検出された速度と、に基づいて、前記プレス機械のダイクッション作用時に、前記比例弁(10)の開度を制御することを特徴とする請求項3に記載のプレス機械のダイクッション装置。
  5.  前記スライドの速度を検出するスライド速度検出手段と、前記液圧ポンプ/モータ(4)あるいは前記電動モータ(5)の角速度を検出する角速度検出器とを備え、
     前記制御器(70)は、前記ダイクッション圧力指令と前記圧力検出器(21a)によって検出された圧力と前記スライド速度検出手段により検出された速度と前記角速度検出器により検出された角速度とに基づいて、前記プレス機械のダイクッション作用時に、ダイクッション圧力が前記ダイクッション圧力指令に対応する圧力になるように前記電動モータ(5)のトルクを制御することを特徴とする請求項1から4のいずれかに記載のプレス機械のダイクッション装置。
  6.  前記スライドの位置を検出するスライド位置検出器(25)を備え、
     前記ダイクッション圧力指令器(60)は、前記スライド位置検出器によって検出されるスライド位置に基づいてダイクッション圧力指令を出力することを特徴とする請求項1から5のいずれかに記載のプレス機械のダイクッション装置。
  7.  前記クッションパッド(2)の位置を検出するダイクッション位置検出器(23)を備え、
     前記制御器(70)は、前記ダイクッション位置検出器(23)によって検出されるダイクッション位置信号を、製品ノックアウト動作時又は単独で前記液圧シリンダ(3)を上下動させる場合の位置フィードバック信号として前記電動モータ(5)の制御に用いることを特徴とする請求項1から6のいずれかに記載のプレス機械のダイクッション装置。
  8.  前記液圧シリンダ(3)は、前記クッションパッド(2)に対して複数本並列に配設され、前記比例弁(10)と前記液圧ポンプ/モータ(4)は、各液圧シリンダ(3)の下室に共通配管を介して接続されることを特徴とする請求項1から7のいずれかに記載のプレス機械のダイクッション装置。
  9.  前記液圧ポンプ/モータ(4)は、前記液圧シリンダ(3)の下室から分岐配管を介して圧液がそれぞれ供給される複数の液圧ポンプ/モータ(4)からなり、
     前記電動モータ(5)は、前記複数の液圧ポンプ/モータ(4)にそれぞれ接続され、それぞれトルク制御される複数の電動モータ(5)からなることを特徴とする請求項1から8のいずれかに記載のプレス機械のダイクッション装置。
  10.  前記比例弁(10)は、前記液圧シリンダ(3)の下室から分岐配管を介して圧液がそれぞれ供給され、それぞれ開度が制御される複数の比例弁(10)からなることを特徴とする請求項1から9のいずれかに記載のプレス機械のダイクッション装置。
  11.  前記液圧シリンダ(3)、前記比例弁(10)、前記液圧ポンプ/モータ(4)、前記電動モータ(5)及び前記圧力検出器(21a)は、1つの前記クッションパッド(2)に対して複数組設けられていることを特徴とする請求項1、2、3、6、9、及び10のいずれかに記載のプレス機械のダイクッション装置。
  12.  前記スライドの速度を検出するスライド速度検出手段を備え、
     前記制御器(70)は、前記ダイクッション圧力指令と前記圧力検出器(21a)によって検出された圧力と前記スライド速度検出手段により検出された速度とに基づいて、前記プレス機械のダイクッション作用時に、各液圧シリンダ(3)毎の比例弁(10)の開度をそれぞれ制御することを特徴とする請求項11に記載のプレス機械のダイクッション装置。
  13.  前記スライドの速度を検出するスライド速度検出手段と、前記液圧ポンプ/モータ(4)あるいは前記電動モータ(5)のそれぞれの角速度を検出する複数の角速度検出器とを備え、
     前記制御器(70)は、前記ダイクッション圧力指令と前記スライド速度検出手段により検出された速度と前記複数の圧力検出器(21a)によって検出されたそれぞれの圧力と前記複数の角速度検出器により検出されたそれぞれの角速度とに基づいて、前記プレス機械のダイクッション作用時に、前記複数の液圧シリンダ(3)におけるそれぞれのダイクッション圧力が前記ダイクッション圧力指令に対応する圧力になるように前記複数の電動モータ(5)のそれぞれのトルクを制御することを特徴とする請求項11又は12に記載のプレス機械のダイクッション装置。
  14.  前記クッションパッド(2)の位置を検出するダイクッション位置検出器(23)を各液圧シリンダ(3)ごとに備え、
     前記制御器(70)は、前記複数のダイクッション位置検出器(23)によって検出されるそれぞれのダイクッション位置信号を、製品ノックアウト動作時又は単独で各液圧シリンダ(3)を上下動させる場合のそれぞれの位置フィードバック信号として、相応するそれぞれの液圧シリンダ(3)を駆動する電動モータ(5)の制御に用いることを特徴とする請求項11から13のいずれかに記載のプレス機械のダイクッション装置。
PCT/JP2009/069036 2008-11-18 2009-11-09 プレス機械のダイクッション装置 WO2010058710A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980146040.4A CN102215996B (zh) 2008-11-18 2009-11-09 用于压床的模具缓冲装置
US13/129,688 US8757056B2 (en) 2008-11-18 2009-11-09 Die cushion device for press machine
EP09827491.3A EP2377629B1 (en) 2008-11-18 2009-11-09 Die cushion device for press machine
ES09827491.3T ES2631508T3 (es) 2008-11-18 2009-11-09 Dispositivo de amortiguación de troquel para una máquina de prensa
JP2010539202A JP5296806B2 (ja) 2008-11-18 2009-11-09 プレス機械のダイクッション装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008294752 2008-11-18
JP2008-294752 2008-11-18

Publications (1)

Publication Number Publication Date
WO2010058710A1 true WO2010058710A1 (ja) 2010-05-27

Family

ID=42198150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069036 WO2010058710A1 (ja) 2008-11-18 2009-11-09 プレス機械のダイクッション装置

Country Status (6)

Country Link
US (1) US8757056B2 (ja)
EP (1) EP2377629B1 (ja)
JP (1) JP5296806B2 (ja)
CN (1) CN102215996B (ja)
ES (1) ES2631508T3 (ja)
WO (1) WO2010058710A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140090441A1 (en) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Die cushion drive and method for operating a die cushion drive
JP2014176863A (ja) * 2013-03-14 2014-09-25 Aida Engineering Ltd 絞り成形方法及びサーボプレスシステム
US20150185726A1 (en) * 2013-12-26 2015-07-02 Aida Engineering, Ltd. Die cushion force control method and die cushion device
EP3115119A1 (en) 2015-07-10 2017-01-11 Aida Engineering, Ltd. Die cushion-cum-slide cushion device and method of controlling the same
EP3315223A1 (en) 2016-10-31 2018-05-02 Aida Engineering, Ltd. Die cushion device of press machine
JP2018140405A (ja) * 2017-02-27 2018-09-13 アイダエンジニアリング株式会社 ダイクッション装置
EP3524419A1 (en) 2018-01-31 2019-08-14 Aida Engineering Ltd. Press system
WO2020137032A1 (ja) * 2018-12-26 2020-07-02 ダイキン工業株式会社 ダイクッション装置およびプレス機械
EP4019159A1 (en) 2020-12-25 2022-06-29 Aida Engineering Ltd. Die cushion device
DE102011084799B4 (de) 2010-10-19 2023-04-27 Aida Engineering, Ltd. Presslaststeuereinrichtung für eine mechanische Presse

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130227999A1 (en) * 2011-01-11 2013-09-05 Honda Motor Co., Ltd. Workpiece punch-molding method and workpiece punch-molding device
DE102011000473B4 (de) * 2011-02-02 2017-07-13 Langenstein & Schemann Gmbh Pressmaschine und Verfahren zum Pressen von Werkstücken
KR20130068686A (ko) * 2011-12-16 2013-06-26 삼성전자주식회사 프레스 금형
JP5680121B2 (ja) * 2013-01-24 2015-03-04 アイダエンジニアリング株式会社 プレス機械のダイクッション装置及びダイクッション制御方法
JP5824481B2 (ja) * 2013-06-14 2015-11-25 アイダエンジニアリング株式会社 ダイクッション力設定装置
JP5968385B2 (ja) * 2014-09-16 2016-08-10 アイダエンジニアリング株式会社 ダイクッション装置及びダイクッション装置の制御方法
JP6002284B1 (ja) * 2015-07-10 2016-10-05 アイダエンジニアリング株式会社 搬送装置兼用ダイクッション装置及びその制御方法
US11110506B2 (en) * 2016-10-18 2021-09-07 Barnes Group Inc. Variable pulsating, gap control, auto-learning press cushion device
EP3332954B1 (en) 2016-11-25 2023-12-27 Aida Engineering, Ltd. Sliding frictional force generation mechanism and die cushion for press machine
JP6397063B2 (ja) * 2017-01-27 2018-09-26 アイダエンジニアリング株式会社 液圧ノックアウト装置
DE102017117595A1 (de) * 2017-08-03 2019-02-07 Voith Patent Gmbh Verfahren zur regelung des ausgangsdrucks eines hydraulikantriebsystems, verwendung des verfahrens und hydraulikantriebsystem
JP6646637B2 (ja) * 2017-09-12 2020-02-14 アイダエンジニアリング株式会社 しわ発生検出装置、ダイクッション装置及び金型保護装置、並びにしわ発生検出方法、ダイクッション力自動設定方法及び金型保護方法
DE102017222629B4 (de) * 2017-12-13 2020-02-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Unterbau einer zur Umformung von plattenförmigen Bauteilen ausgebildeten Vorrichtung
JP6646697B2 (ja) * 2018-03-05 2020-02-14 アイダエンジニアリング株式会社 クッションピン均圧化装置、クッションピン均圧化機能付きダイクッション装置及びクッションピン均圧化方法
JP6702491B1 (ja) * 2018-08-31 2020-06-03 ダイキン工業株式会社 ダイクッション装置
EP3666410A1 (en) * 2018-12-13 2020-06-17 Lapmaster Wolters GmbH Fine blanking press and method for operating a fine blanking press
JP7140728B2 (ja) * 2019-09-02 2022-09-21 アイダエンジニアリング株式会社 プレス機械
DE102021006555A1 (de) 2021-05-19 2022-11-24 Robert Bosch Gesellschaft mit beschränkter Haftung Ziehkissen und Verfahren zum Steuern desselben
DE102021205065A1 (de) 2021-05-19 2022-11-24 Robert Bosch Gesellschaft mit beschränkter Haftung Ziehkissen und Verfahren zum Steuern desselben

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454919U (ja) * 1987-09-25 1989-04-05
JPH03133599A (ja) * 1989-10-18 1991-06-06 Aida Eng Ltd プレスのダイクッション装置
JPH06335947A (ja) * 1993-03-30 1994-12-06 Niigata Eng Co Ltd 射出成形機における高速低圧成形制御装置
JP2006315074A (ja) * 2005-05-16 2006-11-24 Aida Eng Ltd プレス機械のダイクッション装置
JP2007507349A (ja) * 2003-08-07 2007-03-29 ボッシュ レックスロート アクチエンゲゼルシャフト トランスファプレスにおける絞り成形過程を制御するための装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5065606A (en) * 1989-10-30 1991-11-19 Teledyne Industries, Inc. Press assembly with cushion assembly and auxiliary apparatus
WO1992007711A1 (fr) * 1990-11-02 1992-05-14 Kabushiki Kaisha Komatsu Seisakusho Dispositif de coussin de serre-flan d'une presse
US5435166A (en) * 1991-07-01 1995-07-25 Kabushiki Kaisha Komatsu Seisakusho Die cushion device for press
US5299444A (en) * 1991-09-04 1994-04-05 Toyota Jidosha Kabushiki Kaisha Hydraulic cushioning system for press, having hydraulic power supply including means for adjusting initial pressure to be applied to pressure-pin cylinders
JPH06335974A (ja) * 1993-05-27 1994-12-06 Sekisui Chem Co Ltd 中空引抜成形体の製造方法
DE19541693A1 (de) * 1995-11-09 1997-05-15 Erfurt Umformtechnik Gmbh Einrichtung zur Steuerung und Regelung des Druckes in hydraulischen Ziehkissen von Pressen
JP3837393B2 (ja) * 2003-03-28 2006-10-25 株式会社小松製作所 ダイクッション装置及びダイクッション装置のサージ圧低減方法
JP4756678B2 (ja) 2004-11-16 2011-08-24 アイダエンジニアリング株式会社 プレス機械のダイクッション装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454919U (ja) * 1987-09-25 1989-04-05
JPH03133599A (ja) * 1989-10-18 1991-06-06 Aida Eng Ltd プレスのダイクッション装置
JPH06335947A (ja) * 1993-03-30 1994-12-06 Niigata Eng Co Ltd 射出成形機における高速低圧成形制御装置
JP2007507349A (ja) * 2003-08-07 2007-03-29 ボッシュ レックスロート アクチエンゲゼルシャフト トランスファプレスにおける絞り成形過程を制御するための装置
JP2006315074A (ja) * 2005-05-16 2006-11-24 Aida Eng Ltd プレス機械のダイクッション装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011084799B4 (de) 2010-10-19 2023-04-27 Aida Engineering, Ltd. Presslaststeuereinrichtung für eine mechanische Presse
US20140090441A1 (en) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Die cushion drive and method for operating a die cushion drive
US9346095B2 (en) * 2012-09-28 2016-05-24 Siemens Aktiengesellschaft Die cushion drive and method for operating a die cushion drive
JP2014176863A (ja) * 2013-03-14 2014-09-25 Aida Engineering Ltd 絞り成形方法及びサーボプレスシステム
US20150185726A1 (en) * 2013-12-26 2015-07-02 Aida Engineering, Ltd. Die cushion force control method and die cushion device
US10286438B2 (en) 2015-07-10 2019-05-14 Aida Engineering, Ltd. Die cushion-cum-slide cushion device and method of controlling the same
EP3115119A1 (en) 2015-07-10 2017-01-11 Aida Engineering, Ltd. Die cushion-cum-slide cushion device and method of controlling the same
JP2018069297A (ja) * 2016-10-31 2018-05-10 アイダエンジニアリング株式会社 プレス機械のダイクッション装置
EP3315223A1 (en) 2016-10-31 2018-05-02 Aida Engineering, Ltd. Die cushion device of press machine
US11541444B2 (en) 2016-10-31 2023-01-03 Aida Engineering, Ltd. Die cushion device of press machine
JP2018140405A (ja) * 2017-02-27 2018-09-13 アイダエンジニアリング株式会社 ダイクッション装置
EP3524419A1 (en) 2018-01-31 2019-08-14 Aida Engineering Ltd. Press system
US11529664B2 (en) 2018-01-31 2022-12-20 Aida Engineering, Ltd. Press system
WO2020137032A1 (ja) * 2018-12-26 2020-07-02 ダイキン工業株式会社 ダイクッション装置およびプレス機械
JP2020104131A (ja) * 2018-12-26 2020-07-09 ダイキン工業株式会社 ダイクッション装置およびプレス機械
EP4019159A1 (en) 2020-12-25 2022-06-29 Aida Engineering Ltd. Die cushion device

Also Published As

Publication number Publication date
US20110226141A1 (en) 2011-09-22
JP5296806B2 (ja) 2013-09-25
CN102215996A (zh) 2011-10-12
US8757056B2 (en) 2014-06-24
EP2377629B1 (en) 2017-05-17
EP2377629A1 (en) 2011-10-19
JPWO2010058710A1 (ja) 2012-04-19
CN102215996B (zh) 2015-07-01
ES2631508T3 (es) 2017-08-31
EP2377629A4 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5296806B2 (ja) プレス機械のダイクッション装置
KR101247618B1 (ko) 프레스기계의 다이 쿠션장치
JP4942714B2 (ja) プレス機械のダイクッション装置
JP6002285B1 (ja) スライドクッション装置兼用ダイクッション装置及びその制御方法
CN110091534B (zh) 压力系统
CA2227728C (en) Slide driving device for presses
DK2670586T3 (en) Pressing machine for pressing items
CN101835601B (zh) 用于弯曲压力机的驱动装置
JP5528984B2 (ja) 機械プレスのプレス荷重制御装置
JP6153270B2 (ja) ダイクッション装置及びダイクッション装置の制御方法
JP5060423B2 (ja) プレス機械のダイクッション装置
JP2015514586A (ja) プレス機械
JP6356198B2 (ja) プレス機械のダイクッション装置
JP6899627B2 (ja) 流体回路および流体回路を有する機械
JP2015514586A5 (ja)
JP2019533784A (ja) 電気液圧式駆動ユニット
JP4558654B2 (ja) ジャッキ装置
JP7419224B2 (ja) ダイクッション装置
JP2022107534A (ja) プレス機用の液圧式の駆動ユニット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146040.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010539202

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13129688

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009827491

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009827491

Country of ref document: EP