WO2010058460A1 - 二次電池システム - Google Patents

二次電池システム Download PDF

Info

Publication number
WO2010058460A1
WO2010058460A1 PCT/JP2008/071040 JP2008071040W WO2010058460A1 WO 2010058460 A1 WO2010058460 A1 WO 2010058460A1 JP 2008071040 W JP2008071040 W JP 2008071040W WO 2010058460 A1 WO2010058460 A1 WO 2010058460A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power conversion
secondary battery
battery system
stopped
Prior art date
Application number
PCT/JP2008/071040
Other languages
English (en)
French (fr)
Inventor
誠 安富
松夫 坂東
玉越 富夫
Original Assignee
東芝三菱電機産業システム株式会社
日本風力開発株式会社
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社, 日本風力開発株式会社, 日本碍子株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to MYPI2011002231A priority Critical patent/MY160070A/en
Priority to EP08878257.8A priority patent/EP2352215A4/en
Priority to CA2743994A priority patent/CA2743994C/en
Priority to AU2008364377A priority patent/AU2008364377B2/en
Priority to PCT/JP2008/071040 priority patent/WO2010058460A1/ja
Priority to KR1020117011428A priority patent/KR101493124B1/ko
Priority to JP2010539071A priority patent/JP5501248B2/ja
Priority to CN200880132071.XA priority patent/CN102217162B/zh
Publication of WO2010058460A1 publication Critical patent/WO2010058460A1/ja
Priority to US13/109,766 priority patent/US9214814B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery system using a secondary battery.
  • a secondary battery system that supplies power using a secondary battery is known.
  • Such a secondary battery system is used, for example, to supplement power at a power receiving point (for example, “Monthly Energy January issue”, Nihon Kogyo Shimbun, released on December 28, 2004, p.82-84).
  • the secondary battery system may not be operated efficiently due to the remaining amount of each secondary battery.
  • An object of the present invention is to provide a secondary battery system that can be efficiently operated in a secondary battery system using a plurality of secondary batteries.
  • a secondary battery system is provided corresponding to each of two or more secondary batteries and the two or more secondary batteries, and converts electric power supplied from the corresponding secondary battery.
  • the detection means for detecting that the storage battery remaining amount of the secondary battery is equal to or less than a predetermined ratio, and the operation of the power conversion means to be detected by the detection means are stopped and stopped It is the structure provided with the operation switching means which starts the driving
  • FIG. 1 is a configuration diagram showing the configuration of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 2A is a graph showing the transition of the remaining storage battery capacity of the first secondary battery of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 2B is a graph showing the transition of the output power of the first power converter of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 2C is a graph showing the transition of the remaining storage battery capacity of the second secondary battery of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 2D is a graph showing a transition of output power of the second power conversion device of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 2E is a graph showing the transition of the remaining battery level of the third secondary battery of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 2F is a graph showing a transition of output power of the third power converter of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 2G is a graph showing the transition of the output power of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 3 is a configuration diagram showing the configuration of the secondary battery system according to the second embodiment of the present invention.
  • FIG. 4A is a graph showing a transition of output power of the first power conversion device of the secondary battery system according to the second embodiment of the present invention.
  • FIG. 4B is a graph showing the transition of the output power of the second power conversion device of the secondary battery system according to the second embodiment of the present invention.
  • FIG. 4C is a graph showing the transition of the output power of the third power converter of the secondary battery system according to the second embodiment of the present invention.
  • FIG. 4D is a graph showing transition of output power of the secondary battery system according to the second embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing the configuration of the secondary battery system according to the first embodiment of the present invention.
  • symbol is attached
  • the secondary battery system includes secondary batteries B1, B2, and B3, power converters INV1, INV2, and INV3 connected to the secondary batteries B1, B2, and B3, and outputs of the power converters INV1, INV2, and INV3, respectively. So that the transformers TR1, TR2, TR3 connected to the respective sides, the circuit breakers K1, K2, K3 connected to the transformers TR1, TR2, TR3, respectively, and the output sides of the circuit breakers K1, K2, K3 are short-circuited. And a control device 1 that controls the three power converters INV1, INV2, and INV3.
  • the circuit breaker KD is provided between the connection point and the load side that supplies power.
  • Secondary batteries B1, B2, B3 are, for example, sodium-sulfur batteries (NAS batteries).
  • the secondary batteries B1, B2, B3 supply the electric power charged to the respective power converters INV1, INV2, INV3 connected thereto as DC power.
  • the power converters INV1, INV2, and INV3 convert the DC power supplied from the secondary batteries B1, B2, and B3, respectively, into AC power based on a command from the control device 1.
  • the power converters INV1, INV2, and INV3 output the converted AC power to the transformers TR1, TR2, and TR3 connected to each of them.
  • the transformer TR1 supplies the AC power supplied from the power converter INV1 to the load-side power system through the circuit breaker K1 and the circuit breaker KD sequentially.
  • the transformer TR2 supplies the AC power supplied from the power converter INV2 to the load-side power system through the circuit breaker K2 and the circuit breaker KD sequentially.
  • the transformer TR3 supplies the AC power supplied from the power converter INV3 to the load-side power system through the circuit breaker K3 and the circuit breaker KD sequentially.
  • the circuit breakers K1, K2, K3 are opened to stop the supply of AC power output from the power converters INV1, INV2, INV3 to the load side, respectively.
  • the circuit breaker KD stops the power supply from the secondary battery system by opening.
  • the control device 1 controls the power conversion devices INV1, INV2, and INV3 based on the respective remaining battery levels of the secondary batteries B1, B2, and B3.
  • set values for switching the operation of the power conversion devices INV1, INV2, and INV3 are set.
  • the control device 1 switches the operation of the power conversion devices INV1, INV2, and INV3 based on the set values and the remaining battery levels of the secondary batteries B1, B2, and B3.
  • control of the control device 1 will be described with reference to FIGS. 2A, 2B, 2C, 2D, 2E, 2F, and 2G.
  • FIG. 2A, FIG. 2B, FIG. 2C, FIG. 2D, FIG. 2E, FIG. 2F, and FIG. 2G are power converters INV1, INV2 controlled by the control device 1 of the secondary battery system according to the first embodiment of the present invention.
  • INV3 is a graph showing the transition of the output power of the secondary battery B1, B2, B3 remaining battery.
  • FIG. 2A is a graph showing the transition of the remaining battery level of the secondary battery B1.
  • FIG. 2B is a graph showing the transition of the output power of the power converter INV1.
  • FIG. 2C is a graph showing the transition of the remaining battery level of the secondary battery B2.
  • FIG. 2D is a graph showing the transition of the output power of the power converter INV2.
  • FIG. 2E is a graph showing the transition of the remaining battery level of the secondary battery B3.
  • FIG. 2F is a graph showing the transition of the output power of the power converter INV3.
  • FIG. 2G is a graph showing the transition of the output power of the secondary battery system.
  • the secondary battery system needs to supply a power amount of 400 kW to the power system on the load side. It is assumed that the power converters INV1, INV2, and INV3 have a maximum generated power of 200 kW. It is assumed that the set value for switching the operation of the power converters INV1, INV2, and INV3 set in the control device 1 is 70%.
  • control device 1 starts control from time T0.
  • the supply power required for the power system on the load side of the secondary battery system is 400 kW, and the maximum generated power of each of the power converters INV1, INV2, and INV3 is 200 kW. Can be supplied. Therefore, the control device 1 supplies power with the two power conversion devices and stops the remaining one power conversion device.
  • Remaining battery remaining amounts of the secondary batteries B1, B2, B3 at time T0 are as follows.
  • the storage battery remaining amount of the secondary battery B1 is 90%.
  • the remaining capacity of the secondary battery B2 is 100%.
  • the storage battery remaining amount of the secondary battery B1 is 70%.
  • control device 1 operates the power conversion devices INV1 and INV2 connected to the two secondary batteries B1 and B2 from the one with the larger remaining battery capacity.
  • the power converter INV3 connected to the secondary battery B3 with the smallest remaining amount of storage battery is stopped.
  • Control device 1 operates power converters INV1 and INV2 from time T0 to time T1.
  • the remaining battery level of the power converter INV1 is about 49%.
  • This 49% is a value corresponding to 70%, which is a set value of the control device 1, with respect to 70% of the storage battery remaining amount of the stopped power conversion device INV3.
  • control device 1 stops the power conversion device INV1 and operates the power conversion device INV3.
  • the storage battery remaining amount of the power conversion device being stopped is A%
  • the set value of the control device 1 is B%
  • the remaining storage battery remaining amount of the operating power conversion device is C%. Then, the control apparatus 1 switches a power converter device, when the following inequality is materialized.
  • control device 1 stops the operation of the power conversion device with the least remaining battery capacity, and starts the operation of the power conversion device that has been stopped.
  • the power conversion device with the least remaining battery capacity is the power conversion device INV1. Further, the power conversion device that has been stopped is the power conversion device INV3. Therefore, the control device 1 stops the operation of the power conversion device INV1, and starts the operation of the power conversion device INV3.
  • the control device 1 operates the power conversion devices INV1, INV2, and INV3 while repeating the above-described procedure.
  • the secondary battery system always supplies one power conversion device when the supply power necessary for the power system on the load side can be supplied even if one power conversion device is stopped. By stopping, the loss of one power conversion device can be reduced as a whole facility.
  • the secondary battery system can supply power to the load-side power system by operating the power converter so that the storage battery remaining amount of all the secondary batteries B1, B2, and B3 is uniform.
  • the operation and maintenance of the equipment in the secondary battery system can be facilitated by keeping the storage battery remaining amount uniform.
  • FIG. 3 is a configuration diagram showing the configuration of the secondary battery system according to the second embodiment of the present invention.
  • the secondary battery system according to the present embodiment is the same as that of the secondary battery system according to the first embodiment shown in FIG. 1 except that the control device 1 is replaced with the control device 1A.
  • the configuration is the same as that of the secondary battery system.
  • Control device 1A controls power conversion devices INV1, INV2, and INV3.
  • set values for switching the operation of the power conversion devices INV1, INV2, and INV3 are set.
  • the control device 1A switches the operation of the power conversion devices INV1, INV2, and INV3 based on this set value.
  • control of the control device 1A will be described with reference to FIGS. 4A, 4B, 4C, and 4D.
  • FIG. 4A, 4B, 4C, and 4D show transitions of output power of the power conversion devices INV1, INV2, and INV3 under the control of the control device 1A of the secondary battery system according to the second embodiment of the present invention.
  • FIG. 4A, 4B, 4C, and 4D show transitions of output power of the power conversion devices INV1, INV2, and INV3 under the control of the control device 1A of the secondary battery system according to the second embodiment of the present invention.
  • FIG. 4A is a graph showing the transition of the output power of the power converter INV1.
  • FIG. 4B is a graph showing the transition of the output power of the power converter INV2.
  • FIG. 4C is a graph showing the transition of the output power of the power converter INV3.
  • FIG. 4D is a graph showing the transition of the output power of the secondary battery system.
  • the secondary battery system needs to supply a power amount of 400 kW to the power system on the load side.
  • the power converters INV1, INV2, and INV3 have a maximum generated power of 200 kW.
  • the storage battery remaining amounts of the secondary batteries B1, B2, and B3 corresponding to the power conversion devices INV1, INV2, and INV3 are substantially uniform.
  • the set value for switching the operation of the power converters INV1, INV2, and INV3 set in the control device 1A is time T.
  • control device 1A starts control from time T0.
  • the supply power required for the power system on the load side of the secondary battery system is 400 kW, and the maximum generated power of each of the power converters INV1, INV2, and INV3 is 200 kW. Can be supplied. Therefore, the control device 1A supplies power with the two power conversion devices and stops the remaining one power conversion device.
  • Control device 1A starts operation of the two power conversion devices INV1 and INV3.
  • control device 1A stops the operation of power conversion device INV3 and starts the operation of power conversion device INV2. To do. Thereby, 1 A of control apparatuses switch the power converter device to drive from power converter device INV3 to power converter device INV2.
  • control device 1A stops the operation of the power conversion device INV1 and starts the operation of the power conversion device INV3. Thereby, 1 A of control apparatuses switch the power converter to drive from power converter INV1 to power converter INV3.
  • the control device 1A switches the power converters INV1, INV2, and INV3 to be operated.
  • the control device 1A operates the power conversion devices INV1, INV2, and INV3 while repeating this switching.
  • the power converters INV1, INV2, and INV3 are operated continuously for a time T, which is a set value, and repeatedly stop under the control of the control device 1A.
  • the secondary battery system always supplies one power conversion device when the supply power necessary for the power system on the load side can be supplied even if one power conversion device is stopped. By stopping, the loss of one power conversion device can be reduced as a whole facility.
  • the number of power converters to be stopped is one, it may be two or more as long as necessary power can be supplied to the load-side power system.
  • the power conversion device corresponding to the secondary battery with the largest remaining amount of storage battery is selected. It is good as well. Thereby, the storage battery residual amount of all the secondary batteries can be consumed equally.
  • a NAS battery is used as the secondary battery, but another battery may be used.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Secondary Cells (AREA)

Abstract

 二次電池(B1~B3)から供給された直流電力を電力変換装置(INV1~INV3)により交流電力に変換し、負荷側の電力系統に供給する二次電池システムにおいて、運転している電力変換装置に対応する二次電池の蓄電池残量が、停止している電力変換装置に対応する二次電池の蓄電池残量の所定の割合以下になった場合、この運転している電力変換装置を停止し、停止している電力変換手段の運転を開始する制御装置(1)を備えた二次電池システム。

Description

二次電池システム
 本発明は、二次電池を用いた二次電池システムに関する。
 従来、二次電池を利用して、電力を供給する二次電池システムが知られている。このような二次電池システムは、例えば、受電点における電力の補完を行うためなどに用いられている(例えば、“月刊エネルギー 1月号”,日本工業新聞社,2004年12月28日発売,p.82-84参照)。
 しかしながら、複数の二次電池を利用して、電力供給を行う場合、個々の二次電池の残量により、二次電池システムの運用を制限しなければならない場合がある。
 このため、個々の二次電池の残量に起因して、二次電池システムを効率良く運転できなくなることがある。
 本発明の目的は、複数の二次電池を用いた二次電池システムにおいて、効率よく運転することのできる二次電池システムを提供することにある。
 本発明の観点に従った二次電池システムは、2以上の二次電池と、前記2以上の二次電池のそれぞれに対応して設けられ、対応する前記二次電池から供給された電力を変換する2以上の電力変換手段と、運転している前記電力変換手段のうちいずれか1の前記電力変換手段に対応する前記二次電池の蓄電池残量が、停止している前記電力変換手段に対応する前記二次電池の蓄電池残量の所定の割合以下になったことを検出する検出手段と、前記検出手段による検出の対象とされた前記電力変換手段の運転を停止し、停止している前記電力変換手段の運転を開始する運転切替手段とを備えた構成である。
図1は、本発明の第1の実施形態に係る二次電池システムの構成を示す構成図である。 図2Aは、本発明の第1の実施形態に係る二次電池システムの第1の二次電池の蓄電池残量の推移を示すグラフ図である。 図2Bは、本発明の第1の実施形態に係る二次電池システムの第1の電力変換装置の出力電力の推移を示すグラフ図である。 図2Cは、本発明の第1の実施形態に係る二次電池システムの第2の二次電池の蓄電池残量の推移を示すグラフ図である。 図2Dは、本発明の第1の実施形態に係る二次電池システムの第2の電力変換装置の出力電力の推移を示すグラフ図である。 図2Eは、本発明の第1の実施形態に係る二次電池システムの第3の二次電池の蓄電池残量の推移を示すグラフ図である。 図2Fは、本発明の第1の実施形態に係る二次電池システムの第3の電力変換装置の出力電力の推移を示すグラフ図である。 図2Gは、本発明の第1の実施形態に係る二次電池システムの出力電力の推移を示すグラフ図である。 図3は、本発明の第2の実施形態に係る二次電池システムの構成を示す構成図である。 図4Aは、本発明の第2の実施形態に係る二次電池システムの第1の電力変換装置の出力電力の推移を示すグラフ図である。 図4Bは、本発明の第2の実施形態に係る二次電池システムの第2の電力変換装置の出力電力の推移を示すグラフ図である。 図4Cは、本発明の第2の実施形態に係る二次電池システムの第3の電力変換装置の出力電力の推移を示すグラフ図である。 図4Dは、本発明の第2の実施形態に係る二次電池システムの出力電力の推移を示すグラフ図である。
 以下、図面を参照して、本発明の実施形態を説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る二次電池システムの構成を示す構成図である。なお、以降の図における同一部分には同一符号を付してその詳しい説明を省略し、異なる部分について主に述べる。以降の実施形態も同様にして重複した説明を省略する。
 二次電池システムは、二次電池B1,B2,B3と、二次電池B1,B2,B3のそれぞれに接続された電力変換装置INV1,INV2,INV3と、電力変換装置INV1,INV2,INV3の出力側にそれぞれ接続された変圧器TR1,TR2,TR3と、変圧器TR1,TR2,TR3のそれぞれ接続された遮断器K1,K2,K3と、遮断器K1,K2,K3の出力側を短絡するように接続し、この接続点と電力を供給する負荷側との間に設けられた遮断器KDと、3つの電力変換装置INV1,INV2,INV3を制御する制御装置1を備えている。
 二次電池B1,B2,B3は、例えば、ナトリウム-硫黄電池(NAS電池)である。二次電池B1,B2,B3は、それぞれに充電されている電力を、それぞれに接続されている電力変換装置INV1,INV2,INV3に、直流電力として供給する。
 電力変換装置INV1,INV2,INV3は、それぞれ二次電池B1,B2,B3から供給される直流電力を、制御装置1からの指令に基づいて、交流電力に変換する。電力変換装置INV1,INV2,INV3は、変換した交流電力をそれぞれに接続されている変圧器TR1,TR2,TR3に出力する。
 変圧器TR1は、電力変換装置INV1から供給された交流電力を、遮断器K1及び遮断器KDを順次に介して、負荷側の電力系統に供給する。
 変圧器TR2は、電力変換装置INV2から供給された交流電力を、遮断器K2及び遮断器KDを順次に介して、負荷側の電力系統に供給する。
 変圧器TR3は、電力変換装置INV3から供給された交流電力を、遮断器K3及び遮断器KDを順次に介して、負荷側の電力系統に供給する。
 遮断器K1,K2,K3は、それぞれを開放することで、それぞれ電力変換装置INV1,INV2,INV3から出力される交流電力の負荷側への供給を停止する。
 遮断器KDは、開放することで、本二次電池システムからの電力供給を停止する。
 制御装置1は、二次電池B1,B2,B3のそれぞれの蓄電池残量に基づいて、電力変換装置INV1,INV2,INV3の制御を行う。制御装置1は、電力変換装置INV1,INV2,INV3の運転を切り替えるための設定値が設定されている。制御装置1は、この設定値及び二次電池B1,B2,B3の蓄電池残量に基づいて、電力変換装置INV1,INV2,INV3の運転の切り替えをする。
 次に、図2A、図2B、図2C、図2D、図2E、図2F、及び図2Gを参照して、制御装置1の制御について説明する。
 図2A、図2B、図2C、図2D、図2E、図2F、及び図2Gは、本発明の第1の実施形態に係る二次電池システムの制御装置1の制御による電力変換装置INV1,INV2,INV3の出力電力と二次電池B1,B2,B3の蓄電池残量の推移を示すグラフ図である。
 図2Aは、二次電池B1の蓄電池残量の推移を示すグラフ図である。図2Bは、電力変換装置INV1の出力電力の推移を示すグラフ図である。図2Cは、二次電池B2の蓄電池残量の推移を示すグラフ図である。図2Dは、電力変換装置INV2の出力電力の推移を示すグラフ図である。図2Eは、二次電池B3の蓄電池残量の推移を示すグラフ図である。図2Fは、電力変換装置INV3の出力電力の推移を示すグラフ図である。図2Gは、二次電池システムの出力電力の推移を示すグラフ図である。
 ここで、二次電池システムは、負荷側の電力系統に400kWの電力量を供給する必要があるとする。電力変換装置INV1,INV2,INV3は、最大発電電力が200kWであるとする。制御装置1に設定されている電力変換装置INV1,INV2,INV3の運転を切り替えるための設定値は、70%であるとする。
 今、制御装置1は、時刻T0から制御を開始するとする。
 二次電池システムの負荷側の電力系統に必要な供給電力は、400kWであり、電力変換装置INV1,INV2,INV3のそれぞれの最大発電電力が200kWであるため、2台の電力変換装置の運転で供給することができる。そこで、制御装置1は、2台の電力変換装置で電力を供給し、残りの1台の電力変換装置を停止させる。
 時刻T0での二次電池B1,B2,B3のそれぞれの蓄電池残量は、次の通りである。二次電池B1の蓄電池残量は、90%である。二次電池B2の蓄電池残量は、100%である。二次電池B1の蓄電池残量は、70%である。
 そこで、制御装置1は、蓄電池残量の多い方から2つの二次電池B1,B2に接続されている電力変換装置INV1,INV2を運転する。最も蓄電池残量の少ない二次電池B3に接続されている電力変換装置INV3は、停止させている。
 制御装置1は、時刻T0から時刻T1までの間、電力変換装置INV1,INV2を運転する。
 時刻T0になると、電力変換装置INV1の蓄電池残量は、約49%になる。この49%は、停止している電力変換装置INV3の蓄電池残量70%に対して、制御装置1の設定値である70%に相当する値である。
 そこで、制御装置1は、電力変換装置INV1を停止し、電力変換装置INV3を運転する。
 即ち、停止している電力変換装置の蓄電池残量をA%、制御装置1の設定値をB%、運転している電力変換装置のうち最も残量の少ない方の蓄電池残量をC%とすると、制御装置1は、次の不等式が成立するときに、電力変換装置の切り替えを行う。
 C% < A%×B%
 上の不等式が成立すると、制御装置1は、最も蓄電池残量の少ない電力変換装置の運転を停止し、停止させていた電力変換装置の運転を開始する。
 図2Aから図2Gに示す時刻T1では、最も蓄電池残量の少ない電力変換装置は、電力変換装置INV1である。また、停止させていた電力変換装置は、電力変換装置INV3である。よって、制御装置1は、電力変換装置INV1の運転を停止し、電力変換装置INV3の運転を開始する。
 制御装置1は、上述の手順を繰り返しながら、電力変換装置INV1,INV2,INV3の運転をする。
 本実施形態によれば、二次電池システムは、負荷側の電力系統に必要な供給電力を1台の電力変換装置を停止させても供給可能な場合には、常に1台の電力変換装置を停止させることで、設備全体として電力変換装置の1台分の損失を低減することができる。
 また、二次電池システムは、全ての二次電池B1,B2,B3の蓄電池残量を均一になるように電力変換装置を運転して、負荷側の電力系統に電力を供給することができる。このように、蓄電池残量を均一に保つことで、二次電池システムにおける設備の運用及び保守を容易にすることができる。
(第2の実施形態)
 図3は、本発明の第2の実施形態に係る二次電池システムの構成を示す構成図である。
 本実施形態に係る二次電池システムは、図1に示す第1の実施形態に係る二次電池システムにおいて、制御装置1を制御装置1Aに代えた点以外は、第1の実施形態に係る二次電池システムと同様の構成である。
 制御装置1Aは、電力変換装置INV1,INV2,INV3の制御を行う。制御装置1Aは、電力変換装置INV1,INV2,INV3の運転を切り替えるための設定値が設定されている。制御装置1Aは、この設定値に基づいて、電力変換装置INV1,INV2,INV3の運転の切り替えをする。
 次に、図4A、図4B、図4C、及び図4Dを参照して、制御装置1Aの制御について説明する。
 図4A、図4B、図4C、及び図4Dは、本発明の第2の実施形態に係る二次電池システムの制御装置1Aの制御による電力変換装置INV1,INV2,INV3の出力電力の推移を示すグラフ図である。
 図4Aは、電力変換装置INV1の出力電力の推移を示すグラフ図である。図4Bは、電力変換装置INV2の出力電力の推移を示すグラフ図である。図4Cは、電力変換装置INV3の出力電力の推移を示すグラフ図である。図4Dは、二次電池システムの出力電力の推移を示すグラフ図である。
 ここで、二次電池システムは、負荷側の電力系統に400kWの電力量を供給する必要があるとする。電力変換装置INV1,INV2,INV3は、最大発電電力が200kWであるとする。電力変換装置INV1,INV2,INV3のそれぞれに対応する二次電池B1,B2,B3の蓄電池残量は、ほぼ均一であるとする。制御装置1Aに設定されている電力変換装置INV1,INV2,INV3の運転を切り替えるための設定値は、時間Tであるとする。
 今、制御装置1Aは、時刻T0から制御を開始するとする。
 二次電池システムの負荷側の電力系統に必要な供給電力は、400kWであり、電力変換装置INV1,INV2,INV3のそれぞれの最大発電電力が200kWであるため、2台の電力変換装置の運転で供給することができる。そこで、制御装置1Aは、2台の電力変換装置で電力を供給し、残りの1台の電力変換装置を停止させる。
 制御装置1Aは、2台の電力変換装置INV1,INV3の運転を開始する。
 運転を開始してから設定値の時間Tの半分である時間T/2の経過後の時刻T1に、制御装置1Aは、電力変換装置INV3の運転を停止し、電力変換装置INV2の運転を開始する。これにより、制御装置1Aは、運転する電力変換装置を、電力変換装置INV3から電力変換装置INV2に切り替える。
 時刻T1から時間T/2の経過後の時刻T2に、制御装置1Aは、電力変換装置INV1の運転を停止し、電力変換装置INV3の運転を開始する。これにより、制御装置1Aは、運転する電力変換装置を、電力変換装置INV1から電力変換装置INV3に切り替える。
 同様にして、時間T/2の経過毎の時刻T3,T4,T5において、制御装置1Aは、運転する電力変換装置INV1,INV2,INV3の切り替えを行う。制御装置1Aは、この切り替えを繰り返しながら、電力変換装置INV1,INV2,INV3の運転をする。
 上述の制御装置1Aの制御により、電力変換装置INV1,INV2,INV3は、設定値である時間T連続して運転して、停止することを繰り返す。
 本実施形態によれば、二次電池システムは、負荷側の電力系統に必要な供給電力を1台の電力変換装置を停止させても供給可能な場合には、常に1台の電力変換装置を停止させることで、設備全体として電力変換装置の1台分の損失を低減することができる。
 また、制御装置1Aに設定された時間T/2毎に、電力変換装置INV1,INV2,INV3の運転を順次に切り替えるため、全ての二次電池B1,B2,B3の蓄電池残量を均一に消費することができる。これにより、二次電池B1,B2,B3の蓄電池残量を均一に保つことで、二次電池システムにおける設備の運用及び保守を容易にすることができる。
 なお、各実施形態では、二次電池及び電力変換装置をそれぞれ3つとしたが、2以上であれば、いくつであってもよい。また、電力変換装置を停止させる台数を1つとしたが、負荷側の電力系統に必要な電力供給ができるのであれば、2以上でもよい。この様な構成において、運転を停止させている電力変換装置が2以上あり、運転を開始する電力変換装置を選択する場合、最も蓄電池残量の多い二次電池に対応する電力変換装置を選択することとしてもよい。これにより、全ての二次電池の蓄電池残量を均等に消費することができる。
 また、本実施形態では、二次電池として、NAS電池を用いたが、他のものでもよい。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 本発明によれば、複数の二次電池を用いた二次電池システムにおいて、効率よく運転することのできる二次電池システムを提供することができる。

Claims (6)

  1.  2以上の二次電池と、
     前記2以上の二次電池のそれぞれに対応して設けられ、対応する前記二次電池から供給された電力を変換する2以上の電力変換手段と、
     運転している前記電力変換手段のうちいずれか1の前記電力変換手段に対応する前記二次電池の蓄電池残量が、停止している前記電力変換手段に対応する前記二次電池の蓄電池残量の所定の割合以下になったことを検出する検出手段と、
     前記検出手段による検出の対象とされた前記電力変換手段の運転を停止し、停止している前記電力変換手段の運転を開始する運転切替手段と
    を備えたことを特徴とする二次電池システム。
  2.  2以上の二次電池のそれぞれに対応して設けられ、対応する前記二次電池から供給された電力を変換する2以上の電力変換装置を制御する二次電池システムの制御装置であって、
     運転している前記電力変換装置のうちいずれか1の前記電力変換装置に対応する前記二次電池の蓄電池残量が、停止している前記電力変換装置に対応する前記二次電池の蓄電池残量の所定の割合以下になったことを検出する検出手段と、
     前記検出手段による検出の対象とされた前記電力変換装置の運転を停止し、停止している前記電力変換装置の運転を開始する運転切替手段と
    を備えたことを特徴とする二次電池システムの制御装置。
  3.  2以上の二次電池のそれぞれに対応して設けられ、対応する前記二次電池から供給された電力を変換する2以上の電力変換装置を制御する二次電池システムの制御方法であって、
     運転している前記電力変換装置のうちいずれか1の前記電力変換装置に対応する前記二次電池の蓄電池残量が、停止している前記電力変換装置に対応する前記二次電池の蓄電池残量の所定の割合以下になったことを検出する検出手順と、
     前記検出手順による検出の対象とされた前記電力変換装置の運転を停止し、停止している前記電力変換装置の運転を開始する運転切替手順と
    を含むことを特徴とする二次電池システムの制御方法。
  4.  2以上の二次電池と、
     前記2以上の二次電池のそれぞれに対応して設けられ、対応する前記二次電池から供給された電力を変換する2以上の電力変換手段と、
     前記電力変換手段のうち1の前記電力変換手段を停止した場合における最大発電電力が負荷側に必要な供給電力を超える場合、所定時間毎に、該所定時間の間連続して運転した前記電力変換手段の運転を停止し、停止している前記電力変換手段の運転を開始する運転切替手段と
    を備えたことを特徴とする二次電池システム。
  5.  2以上の二次電池のそれぞれに対応して設けられ、対応する前記二次電池から供給された電力を変換する2以上の電力変換装置を制御する二次電池システムの制御装置であって、
     前記電力変換手段のうち1の前記電力変換手段を停止した場合における最大発電電力が負荷側に必要な供給電力を超える場合、所定時間毎に、所定時間毎に、該所定時間の間連続して運転した前記電力変換手段の運転を停止し、停止している前記電力変換手段の運転を開始する運転切替手段と
    を備えたことを特徴とする二次電池システムの制御装置。
  6.  2以上の二次電池のそれぞれに対応して設けられ、対応する前記二次電池から供給された電力を変換する2以上の電力変換装置を制御する二次電池システムの制御方法であって、
     前記電力変換手段のうち1の前記電力変換手段を停止した場合における最大発電電力が負荷側に必要な供給電力を超える場合、所定時間毎に、所定時間毎に、該所定時間の間連続して運転した前記電力変換手段の運転を停止し、停止している前記電力変換手段の運転を開始する運転切替手順と
    を含むことを特徴とする二次電池システムの制御方法。
PCT/JP2008/071040 2008-11-19 2008-11-19 二次電池システム WO2010058460A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MYPI2011002231A MY160070A (en) 2008-11-19 2008-11-19 Secondry battery system
EP08878257.8A EP2352215A4 (en) 2008-11-19 2008-11-19 SECONDARY BATTERY SYSTEM
CA2743994A CA2743994C (en) 2008-11-19 2008-11-19 Secondary battery system
AU2008364377A AU2008364377B2 (en) 2008-11-19 2008-11-19 Secondary battery system
PCT/JP2008/071040 WO2010058460A1 (ja) 2008-11-19 2008-11-19 二次電池システム
KR1020117011428A KR101493124B1 (ko) 2008-11-19 2008-11-19 2차 전지 시스템
JP2010539071A JP5501248B2 (ja) 2008-11-19 2008-11-19 二次電池システム
CN200880132071.XA CN102217162B (zh) 2008-11-19 2008-11-19 充电电池系统
US13/109,766 US9214814B2 (en) 2008-11-19 2011-05-17 Secondary battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071040 WO2010058460A1 (ja) 2008-11-19 2008-11-19 二次電池システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/109,766 Continuation US9214814B2 (en) 2008-11-19 2011-05-17 Secondary battery system

Publications (1)

Publication Number Publication Date
WO2010058460A1 true WO2010058460A1 (ja) 2010-05-27

Family

ID=42197907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071040 WO2010058460A1 (ja) 2008-11-19 2008-11-19 二次電池システム

Country Status (9)

Country Link
US (1) US9214814B2 (ja)
EP (1) EP2352215A4 (ja)
JP (1) JP5501248B2 (ja)
KR (1) KR101493124B1 (ja)
CN (1) CN102217162B (ja)
AU (1) AU2008364377B2 (ja)
CA (1) CA2743994C (ja)
MY (1) MY160070A (ja)
WO (1) WO2010058460A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122826A (zh) * 2011-01-17 2011-07-13 中国南方电网有限责任公司电网技术研究中心 一种大容量蓄电池储能双向换流器
CN102457072A (zh) * 2010-10-22 2012-05-16 湖州雷霆能源科技有限公司 光电互补电池的充放电方法及系统
JP2013042584A (ja) * 2011-08-12 2013-02-28 Ihi Corp 電源システム
JP2013172567A (ja) * 2012-02-21 2013-09-02 Mitsubishi Heavy Ind Ltd 電力制御装置および電力制御方法
JPWO2012169046A1 (ja) * 2011-06-09 2015-02-23 東芝三菱電機産業システム株式会社 無停電電源システム
EP2698897A4 (en) * 2011-04-11 2015-06-10 Ngk Insulators Ltd ENERGY STORAGE DEVICE AND METHOD FOR OPERATING THE ENERGY STORAGE DEVICE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355040A (zh) * 2011-10-19 2012-02-15 北京四方继保自动化股份有限公司 与电池成组应用相匹配的变流器模块化设计与控制方法
JP6323822B1 (ja) * 2017-07-07 2018-05-16 Mirai−Labo株式会社 電源装置および電源制御方法
EP3462560B1 (en) * 2017-09-27 2021-05-12 Indielux UG (Haftungsbeschränkt) A method and system for determining and controlling an electricity feed to an electricity grid from a load side of an electric circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140285A (ja) * 1994-11-07 1996-05-31 Hitachi Ltd 電力貯蔵システム
JPH0946914A (ja) * 1995-07-31 1997-02-14 Oki Electric Ind Co Ltd 電源供給装置及びその充電装置
JPH11252812A (ja) * 1998-02-27 1999-09-17 Nec Yonezawa Ltd バッテリ放電制御方法および装置
JP2000116014A (ja) * 1998-10-06 2000-04-21 Hitachi Ltd 電力貯蔵装置
JP2001327083A (ja) * 2000-05-18 2001-11-22 Ngk Insulators Ltd 高温二次電池による電力貯蔵及び補償システム
JP2003256083A (ja) * 2002-03-01 2003-09-10 Internatl Business Mach Corp <Ibm> 電気機器、コンピュータ装置、コントローラ、電池切換方法、およびプログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1044954C (zh) * 1995-02-20 1999-09-01 三洋电机株式会社 向电子器具供电的电源装置
US6111764A (en) * 1998-10-12 2000-08-29 Sanyo Denki Co., Ltd. Power failure-free power supply apparatus
JP3697121B2 (ja) * 1998-10-15 2005-09-21 キヤノン株式会社 太陽光発電装置およびその制御方法
JP2001103740A (ja) * 1999-09-30 2001-04-13 Oki Electric Ind Co Ltd 電源回路
JP3398703B2 (ja) * 2000-02-14 2003-04-21 米沢日本電気株式会社 放電回路及びデューティー比設定方法
JP4003553B2 (ja) * 2002-06-26 2007-11-07 Jfeスチール株式会社 副生ガスを用いた発電方法および発電設備
US7081737B2 (en) * 2003-06-19 2006-07-25 O2Micro International Limited Battery cell monitoring and balancing circuit
CN1300910C (zh) * 2003-07-23 2007-02-14 黄府能 一种电池供电装置
JP5039980B2 (ja) * 2005-11-14 2012-10-03 日立ビークルエナジー株式会社 二次電池モジュール
JP4784566B2 (ja) * 2006-07-12 2011-10-05 日産自動車株式会社 二次電池の入出力電力制御装置及び入出力電力制御方法
JP4886562B2 (ja) * 2007-03-19 2012-02-29 本田技研工業株式会社 電力変換器及び多入出力電力変換器
CN101436830B (zh) * 2007-11-15 2011-06-08 鸿富锦精密工业(深圳)有限公司 电源装置及其保护方法
WO2009091395A1 (en) * 2008-01-17 2009-07-23 Hewlett-Packard Development Company, L.P. Backup power system management
JP4530078B2 (ja) * 2008-06-04 2010-08-25 トヨタ自動車株式会社 蓄電制御装置及び車両
JP5141772B2 (ja) * 2008-10-31 2013-02-13 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法
US8368347B2 (en) * 2008-11-28 2013-02-05 Toyota Jidosha Kabushiki Kaisha Vehicular charging system
EP2428387A4 (en) * 2009-04-23 2017-03-22 Toyota Jidosha Kabushiki Kaisha Power supply system of electric vehicle and control method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140285A (ja) * 1994-11-07 1996-05-31 Hitachi Ltd 電力貯蔵システム
JPH0946914A (ja) * 1995-07-31 1997-02-14 Oki Electric Ind Co Ltd 電源供給装置及びその充電装置
JPH11252812A (ja) * 1998-02-27 1999-09-17 Nec Yonezawa Ltd バッテリ放電制御方法および装置
JP2000116014A (ja) * 1998-10-06 2000-04-21 Hitachi Ltd 電力貯蔵装置
JP2001327083A (ja) * 2000-05-18 2001-11-22 Ngk Insulators Ltd 高温二次電池による電力貯蔵及び補償システム
JP2003256083A (ja) * 2002-03-01 2003-09-10 Internatl Business Mach Corp <Ibm> 電気機器、コンピュータ装置、コントローラ、電池切換方法、およびプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The January issue of Monthly Energy", 28 December 2004, THE NIKKAN KOGYO SHIMBUN, LTD., pages: 82 - 84
See also references of EP2352215A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457072A (zh) * 2010-10-22 2012-05-16 湖州雷霆能源科技有限公司 光电互补电池的充放电方法及系统
CN102122826A (zh) * 2011-01-17 2011-07-13 中国南方电网有限责任公司电网技术研究中心 一种大容量蓄电池储能双向换流器
EP2698897A4 (en) * 2011-04-11 2015-06-10 Ngk Insulators Ltd ENERGY STORAGE DEVICE AND METHOD FOR OPERATING THE ENERGY STORAGE DEVICE
US9337654B2 (en) 2011-04-11 2016-05-10 Ngk Insulators, Ltd. Power storage device and method for operating power storage device
JPWO2012169046A1 (ja) * 2011-06-09 2015-02-23 東芝三菱電機産業システム株式会社 無停電電源システム
US10284006B2 (en) 2011-06-09 2019-05-07 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply system
JP2013042584A (ja) * 2011-08-12 2013-02-28 Ihi Corp 電源システム
JP2013172567A (ja) * 2012-02-21 2013-09-02 Mitsubishi Heavy Ind Ltd 電力制御装置および電力制御方法

Also Published As

Publication number Publication date
CA2743994C (en) 2018-02-20
CN102217162A (zh) 2011-10-12
AU2008364377A1 (en) 2010-05-27
EP2352215A1 (en) 2011-08-03
AU2008364377B2 (en) 2015-07-16
US20110278930A1 (en) 2011-11-17
MY160070A (en) 2017-02-15
EP2352215A4 (en) 2014-01-15
CA2743994A1 (en) 2010-05-27
KR20110096117A (ko) 2011-08-29
CN102217162B (zh) 2014-05-21
JP5501248B2 (ja) 2014-05-21
JPWO2010058460A1 (ja) 2012-04-12
US9214814B2 (en) 2015-12-15
KR101493124B1 (ko) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5501248B2 (ja) 二次電池システム
WO2012169046A1 (ja) 無停電電源システム
CN111725879B (zh) 一种光储联合供电的移动式储能系统及其控制方法
CN105379045B (zh) 用于ups系统的lps体系结构
CN111384718A (zh) 一种供电装置、供电系统及数据中心
WO2012169045A1 (ja) 無停電電源システム
KR20180009187A (ko) 전원 공급 시스템
JP5941826B2 (ja) 二次電池用双方向電源装置及びその制御方法
KR20140107098A (ko) 축전 장치
JP5948116B2 (ja) 無停電電源システム
JP2011188706A (ja) 無停電電源装置
US11644506B2 (en) Power switch fault detection method and power switch fault detection circuit
JP6468593B2 (ja) 蓄電システム
JP2017216809A (ja) 電力変換装置
JP2010172115A (ja) 電力供給方法及び交直流電車用電源システム
JP5369047B2 (ja) 電力変換装置
JP7193634B2 (ja) 無停電電力供給マイクログリッドシステム
JP2008283729A (ja) 無停電電源装置
CN102769340A (zh) 一种接触器线包的供电电路
JP3286068B2 (ja) エレベータの電力変換装置
JP2010220339A (ja) 無停電電源システム
WO2021157087A1 (ja) 分散電源用電力変換システム
AU2016352424A1 (en) Battery-operated relay test device
RU2404439C1 (ru) Двухступенчатая электронная нагрузка
JP2015211494A (ja) 電力供給システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880132071.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010539071

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2743994

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008364377

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20117011428

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008878257

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008364377

Country of ref document: AU

Date of ref document: 20081119

Kind code of ref document: A