WO2010057367A1 - RE-Fe-B系储氢合金及其用途 - Google Patents

RE-Fe-B系储氢合金及其用途 Download PDF

Info

Publication number
WO2010057367A1
WO2010057367A1 PCT/CN2009/001301 CN2009001301W WO2010057367A1 WO 2010057367 A1 WO2010057367 A1 WO 2010057367A1 CN 2009001301 W CN2009001301 W CN 2009001301W WO 2010057367 A1 WO2010057367 A1 WO 2010057367A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
alloy
hydrogen
storage alloy
nickel
Prior art date
Application number
PCT/CN2009/001301
Other languages
English (en)
French (fr)
Inventor
闫慧忠
孔繁清
熊玮
李宝犬
李金�
Original Assignee
包头稀土研究院
瑞科稀土冶金及功能材料国家工程研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN200810176872.8A external-priority patent/CN101407883B/zh
Priority claimed from CN2008101768732A external-priority patent/CN101417786B/zh
Priority claimed from CN200910145266A external-priority patent/CN101633985A/zh
Priority claimed from CN200910145267A external-priority patent/CN101633975A/zh
Application filed by 包头稀土研究院, 瑞科稀土冶金及功能材料国家工程研究中心有限公司 filed Critical 包头稀土研究院
Priority to JP2011536727A priority Critical patent/JP5773878B2/ja
Publication of WO2010057367A1 publication Critical patent/WO2010057367A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of hydrogen storage materials and its application. Background technique
  • Hydrogen storage alloys are a kind of high-density storage hydrogen functional materials discovered in the late 1960s. Hydrogen storage alloys can be roughly divided into six categories: rare earth AB 5 type such as LaNi 5 ; magnesium type such as Mg 2 Ni, MgN" La 2 Mg 17 ; rare earth - magnesium - nickel type AB 3 - 3 . 5 type such as La 2 MgNi 9 , La 5 Mg 2 Ni 23 , La 3 MgNi 14 ; titanium type AB such as TiNi, TiFe; zirconium Titanium Laves phase AB 2 type such as ZrNi 2 ; vanadium solid solution type such as ( Vo. J i o. ! !- x Fe x .
  • rare earth AB 5 type such as LaNi 5
  • magnesium type such as Mg 2 Ni, MgN" La 2 Mg 17
  • rare earth - magnesium - nickel type AB 3 - 3 . 5 type such as La 2 MgNi 9 , La
  • the hydrogen storage material is widely LaNi 5 type hydrogen storage alloy, a hydrogen storage capacity of about 1. 3 wt.%.
  • the alloy is mainly used as a negative electrode material for metal hydride-nickel (MH/Ni) secondary batteries, and its theoretical electrochemical capacity is 373 mAh'g - a practical commercial anode material Mm (NiCoMnAl) 5 (where Mm is a mixed rare earth)
  • the metal has a capacity of about 320 mAh.g - the hydrogen storage alloy has a high cost due to the high value of the metal element Co, and its dynamic performance and low temperature performance also need to be improved.
  • the magnesium-based hydrogen storage alloy material has a high theoretical electrochemical capacity or a high hydrogen storage capacity, and is relatively inexpensive, but exhibits poor chemical stability due to the active metal element magnesium. Zirconium, titanium and vanadium hydrogen storage materials have not been widely used due to difficulties in activation and high cost.
  • a Fe element may be substituted or a B element may be added.
  • the reduction of cycling capacity degradation of Mg - Ni-based electrode alloys by Fe subs ti tut ion (International Journal of Hydrogen Energy) 27 (2002): 501-505 prepared Mg"Fe 5 Ni 5 by amorphous MA.
  • the amorphous alloy has better cycle discharge capacity than the ternary alloy Mg 5 replaced by B side.
  • the negative electrode active material of an alkaline nickel-hydrogen (MH-Ni) secondary battery and a metal hydride air (MH-Air) battery generally employs a rare earth-based AB 5 (LaNis) type hydrogen storage alloy.
  • MH-Ni secondary batteries have the advantages of high specific energy, fast charge and discharge, no pollution and long life, and are widely used in portable wireless communication equipment and household appliances.
  • High-power nickel-metal hydride batteries are also the main source of power for power tools, toys, and new energy vehicles such as hybrid electric vehicles (HEVs) and electric vehicles (EVs).
  • MH metal hydride
  • NiMH power batteries The main factors affecting the performance of NiMH power batteries include power performance, high/low temperature performance, cycle life, battery management systems, and more.
  • the power performance of a nickel-hydrogen battery is required to enable the battery to discharge and charge at a high rate.
  • the battery is generally charged at a current of 3C-10C, discharged at a current of 10C-30C, and the specific power at a depth of 50% reaches 1000W/Kg. To achieve such a level, it is necessary to improve from the selection of active materials (mainly hydrogen storage negative electrode alloys), overall battery design and manufacturing processes.
  • active materials mainly hydrogen storage negative electrode alloys
  • the invention patent discloses a surface treatment method of a LaNi 5 type negative electrode hydrogen storage alloy.
  • the low temperature performance of the battery is mainly solved by improving the properties of the hydrogen storage alloy material.
  • the use temperature of nickel-hydrogen batteries is generally in the range of -20 to 50, and is mainly used under the conditions of 0 to 40 Torr.
  • nickel-metal hydride batteries can not meet the requirements of use, especially the nickel-hydrogen battery used in HEV and EV must ensure the cold start of the car in low temperature environment.
  • NiMH batteries The cycle life of NiMH batteries is consistent with the life of the car, which is generally required to reach 8 years or 160,000 km.
  • Nickel-metal hydride batteries for HEV applications are often used under conditions of shallow charge and shallow discharge of high-magnification or ultra-high-rate current.
  • the termination condition of cycle life is not only the degree of capacity attenuation in general applications, but more importantly The attenuation of the power characteristics.
  • the main reason for the decrease of the power characteristics of the nickel-hydrogen battery is the increase of the positive and negative resistances in the battery, and the increase of the positive resistance is nearly twice that of the negative electrode.
  • the main reason is that the dissolution of the corrosion products of the negative electrode alloy, Al and Mn ions, reduces the specific surface area of the positive electrode. Accelerated low activity Y-NiOOH formation. Improving the corrosion resistance of the negative electrode alloy is an important way to improve the cycle life of the nickel-hydrogen battery.
  • RE-Fe-B alloys have been studied as magnetic materials. Common chemical formulas include RE 2 Fe 14 B, RE 8 Fe 27 B 24 , RE 2 FeB 3 , RE 15 Fe 77 B 8 and the like. However, no RE-Fe-B alloy has been reported as a hydrogen storage material and its application. Many metals or alloys can absorb hydrogen more or less. The hydrogen-absorbing metal or alloy becomes brittle. This is the so-called "hydrogen embrittlement phenomenon". The "hydrogen embrittlement" of metal or alloy materials can be used to make powders, such as Nd. One of the powdering processes of the -Fe-B permanent magnet material is hydrogen embrittlement milling.
  • a new hydrogen storage alloy was developed based on the chemical composition of the RE-Fe-B alloy.
  • the RE-Fe-B alloy becomes a practical hydrogen storage material by replacing some or all of the elements such as RE, Fe, B and the like in the alloys with certain elements and corresponding preparation processes.
  • the invented RE-Fe-B hydrogen storage alloy can be developed into a hydrogen storage material excellent in hydrogen storage and storage performance because it can contain inexpensive Fe element, B element with high chemical stability, and a unique multiphase structure.
  • Developed into hydrogen storage materials with specific market requirements such as low-cost hydrogen storage materials, high-power wide-temperature hydrogen storage electrode alloys, low-temperature hydrogen storage alloys, low-self-discharge hydrogen storage materials, and high-temperature hydrogen storage materials.
  • the inventive RE-Fe-B hydrogen storage alloy can be used for a negative electrode active material such as a nickel hydrogen battery or a metal hydride air battery, and can also be used for a vapor phase hydrogen absorption hydrogen storage material.
  • the chemical composition of RE-Fe- B hydrogen storage alloy mainly includes RE 19 Fe 68 B 68 , RE Fe76B?, REisFe77Bs, REsFe2sB24, REsFeisBis-* RE 5 Fe 2 B 6 , RE 2 Fe 23 B 3 , RE 2 FeB 3 , RE 2 Fe"B.
  • RE may be rare earth elements La (La ), ⁇ ( Ce ), ⁇ (Pr), ⁇ (Nd), ⁇ (Sm), ⁇ (Eu), ⁇ (Gd), ⁇ (Tb), ⁇ (Dy)
  • RE can be chemical element
  • Fe (iron) can be chemically periodicated Transition metal elements such as nickel (Ni), manganese (Mn), aluminum (A1), cobalt (Co), copper (Cu), zirconium (Zr), titanium (Ti), vanadium (V:), zinc (Zn) ,
  • the atomic ratio of each element in the composition of the RE-Fe-B hydrogen storage alloy can be adjusted within a range of 20%.
  • Nd 8 Fe 27 B 24 alloy can adjust the atomic ratio range of 6-10: 22-31: 20-28.
  • the RE-Fe-B hydrogen storage alloy is a multi-phase structure including one or two or three of a LaNi 5 phase and a La 3 Ni 13 B 2 phase, a (Fe, Ni) phase, and a Ni phase, Other phase structures can also be formed by the difference in the substitution elements in the composition.
  • the raw material for the production of the RE-Fe-B hydrogen storage alloy is a simple substance of RE (rare earth) and its substitute elements, a simple substance of Fe and its substitute elements, a simple substance of B and its substitute elements, and a RE-Fe alloy. , B-Fe alloy, B-Ni alloy, RE-Ni alloy, RE-Fe-B alloy and other intermediate alloys containing constituent elements. Two or more kinds of raw materials are prepared according to the chemical composition formula of the alloy.
  • the RE-Fe-B hydrogen storage alloy can be improved in structure and properties by one of the following heat treatment methods.
  • the high-temperature smelted RE-Fe-B hydrogen storage alloy is subjected to a stage heat treatment in an environment of a vacuum of 10 - 2 - 10 - 6 Pa or in an inert gas atmosphere.
  • the alloy is first heated to 850-1050 C for 2-6 hours, then held at 450-850 for 2-6 hours, and the hydrogen storage alloy after cooling is cooled to room temperature with the furnace.
  • the RE-Fe-B hydrogen storage alloy is prepared by a jet mill or a ball mill or a hammer mill or a high temperature atomization method to prepare particles or powder having a particle size of 0.3 to 10 legs.
  • the RE-Fe-B hydrogen storage alloy particles or powder may be subjected to surface treatment by physical, chemical or mechanical means to improve the properties thereof.
  • the present invention also provides a nickel-hydrogen secondary battery and a metal hydride air (MH-Ai r ) battery comprising the RE-Fe-B hydrogen storage electrode alloy, the battery comprising a positive electrode, a separator, a negative electrode and an electrolyte. They are packaged in a battery case.
  • the negative electrode active material of the nickel-hydrogen secondary battery and the metal hydride air battery is the RE-Fe-B-based hydrogen storage alloy.
  • the invention also provides a hydrogen storage and transportation device using the RE-Fe-B hydrogen storage alloy, which can be used for preparation and purification of fuel cells, heat pumps, hydrogen and its isotopes. It is characterized in that the hydrogen storage material in the hydrogen storage and transportation device is the RE-Fe-B hydrogen storage alloy.
  • the RE-Fe-B hydrogen storage alloy of the present invention is a novel hydrogen storage alloy having a composition and structure different from that of the existing hydrogen storage alloy.
  • the new alloy has lower cost, good high current discharge characteristics and low temperature discharge characteristics. Effect of the invention
  • the hydrogen storage alloy of the RE-Fe-B hydrogen storage alloy of the present invention has a hydrogen storage capacity of more than 1. 0 wt. %; the hydrogen storage alloy electrode has good activation performance, and the discharge capacity is generally greater than 300 mAh-g- 1 ; The hydrogen storage alloy electrode has excellent high current discharge capability and good dynamic performance.
  • the charging efficiency of 3C (0.9 A/g) -10C (3A/g) is over 90%, and the discharge time of 30C (10A/g) is greater than 15 s ;
  • the hydrogen storage alloy electrode has good low temperature discharge performance, - 40 X discharge capacity is greater than 50% of the rated capacity;
  • the hydrogen storage alloy has good corrosion resistance and small suction and discharge due to the unique composition and structure Hydrogen expansion rate, thus having good charge and discharge or hydrogen absorption and desorption cycle stability.
  • the hydrogen absorbing alloy can be produced by using an inexpensive raw material such as Fe and a material having a higher value such as Co, and thus having a lower cost.
  • the hydrogen storage alloy of the present invention can be used to manufacture a battery comprising a metal hydride (MH) electrode and a hydrogen storage and transportation device comprising a hydrogen storage alloy.
  • RE is La and Ce, Pr, Nd
  • Ni, Mn, and A1 are used to partially replace Fe and B.
  • the alloy compositions prepared are Lai 5 Fei2Ni64Mn 5 B2Al 2 , Lan.5?Cei. nPr 0 . 3 4Nd 0 . 98 Fei 2 N i 6 oMn 5 B 4 A 1 4 , La 8 Fe 4 Ni 35 Mii 5 B 5 Al3 , La . i 9 Ce 0 .37 ⁇ ⁇ 0. nNd 0 .
  • the constituent elements are calculated and weighed (the purity is greater than 99.0%, and the B element can be B-Fe or B-
  • the form of the Ni alloy is added as a raw material for preparing the alloy.
  • the medium-frequency induction melting process is used to prepare the alloy by high-temperature melting under the protection of Ar gas.
  • the test electrode is prepared by mechanically breaking the alloy into a powder of 50-150 ⁇ , mixing the alloy powder with the nickel carbonyl powder in a mass ratio of 1:4, and forming a ⁇ 15 female electrode sheet under a pressure of 16 MPa, the electrode sheet Placed between two pieces of foamed nickel, while sandwiching the nickel strip as a tab, and again making a hydrogen storage negative electrode (MH electrode) for testing under the pressure of 16 MPa, and ensuring the electrode sheet and nickel by spot welding around the electrode sheet. Close contact between the nets.
  • MH electrode hydrogen storage negative electrode
  • the negative electrode in the open-ended two-electrode system for testing electrochemical performance is the MH electrode, the positive electrode is used for the sintered Ni (0H) 2 /Ni00H electrode with excess capacity, the electrolyte is 6 mol'L - 1 K0H solution, and the assembled battery is placed on hold. 24 h, using LAND battery tester to determine the electrochemical performance of the alloy electrode by the galvanostatic method (activation number, maximum capacity, high rate discharge capacity HRD, cycle stability, etc.), test ambient temperature is 25, charging current density 70 mA- G- 1 , charging time 6 h, discharge current density 70 mA-g" 1 , discharge cut-off potential is 1.0 V, charge/discharge intermittent time 10 min. Test results are shown in Table 1. Table 1 RE-Fe-B system Electrochemical characteristics of alloy electrodes
  • a is the number of cycles required for electrode activation; b is the maximum discharge capacity; c is The capacity retention rate of 100 cycles; d is the rate discharge capability when the discharge current density Id is 350 mA'g- 1 .
  • Example 2 is the number of cycles required for electrode activation; b is the maximum discharge capacity; c is The capacity retention rate of 100 cycles; d is the rate discharge capability when the discharge current density Id is 350 mA'g- 1 .
  • the alloy compositions prepared are respectively La 8 Fe 4 Ni 34 Mn 5 B 5 Al 3 , La 15 Fe 7 Ni 65 Mn 5 B 4 Al 4 and La 17 Fe 6 Ni 65 Mn 5 B 4 Al 3 .
  • the medium-frequency induction melting-quick quenching process is used to form the RE-Fe-B alloy flakes under the protection of Ar gas.
  • the prepared alloy flakes are subjected to heat treatment under vacuum or inert gas treatment under the conditions of: 850-1050 Torr for 2-5 hours, and then incubated at 450-850 for 2-5 hours.
  • the microstructure of the alloy was analyzed by Phi 1 ips-PW1700 X-ray diffractometer.
  • the alloy was a multiphase structure dominated by LaNi 5 phase, including LaNi 5 phase, La 3 Ni 13 B 2 phase, (Fe, Ni ) phase. And Ni phase.
  • Figure 1 and Figure 2 are XRD patterns of the rapidly quenched and annealed states of La 15 Fe 7 Ni 65 Mn 5 B 4 Al 4 alloy, respectively.
  • the pressure-composition isotherm curve of the alloy was measured at 313 K using the Sievert method. The results show that the alloy has very good reversible hydrogen absorption and desorption characteristics, the platform pressure is between 0.01-0.10 MPa, and the hydrogen storage capacity of the alloy is greater than 1.0 wt.%.
  • 3, 4 and 5 are the -c- ⁇ curves of the annealed state of the RE 8 Fe 27 B 24 , La 15 Fe 77 B 8 and RE 17 Fe 76 B 7 alloys, respectively.
  • the prepared alloy composition is RE 19 (FeNiMn ) 68 ( BMnAl ) 68 , RE 17 (FeNiMn ) 76 ( ⁇ 1 ) 7, RE 15 (FeNiMn ) 77 (BMnAl ) 8 , RE 15 (FeNiMnCu ) 77 ( BMnAl ) 8 , RE 15 (FeNiMnCu) 77 (BMnAISi ) 8 , RE 8 (FeNiMn) 86 (BMnAl ) 6 , RE 8 (FeNiMn) 27 (BMnAl ) 24 , RE 5 ( FeNiMn ) 18 ( BMnAl ) 18 , RE 5 ( FeNiMn ) 2 (BMnAl) 6 , RE 2 (FeNiMn ) 23 ( BMnAl ) 3 , RE 2 (FeNiMn ) ( BMnAl ) 3 , RE 2 (F
  • the alloy preparation and heat treatment method was the same as in Example 2.
  • the preparation method of the test electrode and the battery assembly and test method were the same as those in Example 1. The results of some alloy tests in the examples are shown in Table 2.
  • the alloy composition prepared was RE 15 (FeNiMn) 77 (BMnAl ) 8 .
  • the elemental metal La, metal Ni, metal Mn, metal A1, and La-Fe, B-Fe alloy are used as raw materials, and La and Mn are considered.
  • the smelting of the A1 element is burned, and various raw materials are calculated and weighed (purity is greater than 99.0%). They are prepared by high-temperature smelting casting method, high-temperature smelting-gas atomization method, and powder sintering method, respectively.
  • the preparation process was carried out under the protection of Ar gas.
  • the preparation method of the test electrode and the battery assembly and test method were the same as those in Example 1. The test results are shown in Table 3. Table 3 Comparison of different preparation methods of RE 15 (FeNiMn) "(BMnAl) 8 hydrogen storage alloy
  • the alloy composition is RE 19 (FeNiMn) 6g ( BMnAl ) 68 , RE delete (FeNiMn) 76 ( BMnAl ) 7 , RE 15 ( FeNiMn ) 77 ( BMnAl ) 8 , RE 15 ( FeNiMnCu ) 77 ( BMnAl ) 8 , RE 15 ( FeNiMnCu) " (BMnAISi) 8 , RE 8 (FeNiMn) 86 (BMnAl ) 6 , RE 8 (FeNiMn ) 27 (BMnAl ) 24 , RE 5 ( FeNiMn ) 18 ( BMnAl ) 18 , RE 5 ( FeNiMn ) 2 ( BMnAl ) 6.
  • the medium-frequency induction melting-quick quenching process is used to make RE-Fe-B alloy flakes under the protection of Ar gas.
  • the prepared alloy flakes were subjected to heat treatment in a vacuum degree of 1 (T 2 Pa) under heat treatment conditions of: 950 for 3 hours, then at 600 t; for 3 hours, and the heat-storing alloy after cooling was cooled to room temperature with the furnace.
  • the preparation method of the test electrode and the battery assembly and test method were the same as those in Example 1. The test results are shown in Table 4.
  • the prepared RE 15 (FeNiMn) " ( BMnAl ) 8 hydrogen storage alloy sheet was sealed in two quartz glass tubes with a vacuum of 10 _ 2 Pa.
  • the quartz glass tube with the alloy flakes was placed in a heat treatment furnace for heating and holding.
  • the heat treatment condition is 950 for 5 hours.
  • the quartz glass tube with the alloy flakes is immediately taken out, one is placed in the water, the other is placed in the oil, and the glass tube is broken, so that the alloy flakes are Quenching medium contact, quenching treatment.
  • Electrode preparation and electrochemical performance test method Same as Example 1. The test results are shown in Table 5. Table 5 Comparison of performance of RE 15 (FeNiMn ) 77 ( BMnAl ) 8 hydrogen storage alloy in different quenching media
  • RE is a rare earth element, and Ni Mn Al Cu is used.
  • the element partially replaces the Fe B element, and the prepared alloy composition is listed in Table 6.
  • the alloy preparation and heat treatment method is the same as in Example 5.
  • the test electrode preparation method and the battery assembly and test method are the same as those in the first embodiment.
  • the charging efficiency of the prepared alloy electrode 3C (0.9 A/g) -10C (3A/g) (0.
  • the ratio of the discharge capacity of 2C to the rated capacity) is more than 90%, and the capacity retention rate of the charge and discharge cycle is more than 80%.
  • the test results of other properties are shown in Table 6.
  • a is the number of cycles required for electrode activation; b is the maximum discharge capacity; c is the discharge current density Id is 10C; the rate discharge capacity at 20C; d is the discharge current density Id The discharge time at 30C; e is the ratio of the discharge capacity to the rated capacity of -40.
  • Example 8 is the ratio of the discharge capacity to the rated capacity of -40.
  • RE is a rare earth element
  • Ni is used.
  • the Mn, Al, and Cu elements partially replace the Fe and B elements, and the alloy composition prepared is as listed in Table 10.
  • the alloy preparation and heat treatment method was the same as in Example 5.
  • the preparation method of the test electrode and the battery assembly and test method were the same as those in Example 1.
  • the capacity retention rate of the charge and discharge cycle of 500 times was 80% or more.
  • the test results of other properties are shown in Table 7. Table 7 Low-temperature discharge characteristics of RE-Fe-B alloy electrodes
  • La6Ce2FesNi «MnB 3 301 63 95 86 74 La6Sm2Fe5Ni 4MnB 3 290 67 98 90 81
  • a is the number of cycles required for electrode activation
  • b is the maximum discharge capacity
  • c is the rate discharge capacity when the discharge current density Id is 10C (3A/g)
  • d is the ambient temperature respectively *C, - 30"C, the ratio of discharge capacity to rated capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Abstract

一神RE-Fe-B系偌氧合金,狙成式包括RE19Fe68B68, RE17Fe76B7, RE8Fe86B6, RE8Fe27B24, RE8Fe28B24, RE5Fe18B18, RE5Fe2B6, RE2Fe23B3, RE2FeB3或RE2Fe14B。RE旺是腩、師、躋、敏等稀土元素中的一神或几神,井且RE可以被鎂、鈣、皓、臥、帆全部或部分取代;Fe可以被線、猛、描、姑、恫、皓、臥、帆、辟、路、冉、傢、踢、皓全部或部分取代;B可以被跌、線、猛、描、姑、恫、皓、臥、帆、辟、路、冉、傢、踢、皓、桂、硫、碳、磷全部或部分取代。所迷偌氧合金偌氧量大于1.0wt%;放咀容量超迂nAh g-1

Description

RE-Fe-B系储氢合金及其用途 技术领域
本发明属于储氢材料及其应用领域。 背景技术
储氢合金是上世纪 60 年代末发现的一类高密度存储氢的功 能材料, 已有储氢合金从组成上大致可分为六类: 稀土系 AB5型 如 LaNi5; 镁系如 Mg2Ni、 MgN" La2Mg17; 稀土-镁 -镍系 AB33.5型如 La2MgNi9, La5Mg2Ni23, La3MgNi14; 钛系 AB型如 TiNi、 TiFe; 锆、 钛系 Laves相 AB2型如 ZrNi2; 钒系固溶体型如 ( Vo. J i o. ! ) !― xFex
目前广泛使用的储氢材料是 LaNi5型储氢合金, 氢贮存量大 约为 1. 3 wt. %。 该合金主要作为金属氢化物-镍 ( MH/Ni )二次电 池的负极材料, 其理论电化学容量为 373 mAh'g- 实际应用的商 品负极材料 Mm ( NiCoMnAl ) 5 (其中, Mm为混合稀土金属) 的容 量大约 320 mAh.g- 该储氢合金中由于含有价值较高的金属元素 Co而成本较高, 其动力学性能及低温使用性能也有待提高。 镁基 储氢合金材料的理论电化学容量或储氢量高, 价格相对便宜, 但 由于含有活泼金属元素镁而表现出较差的化学稳定性。 锆、 钛系 以及钒系储氢材料由于活化困难、 成本太高等原因都未被广泛应 用。
为了降低 LaNi5型储氢合金的成本, 一方面降低 Co对 Ni的 取代量, 另一方面可以用 Fe取代部分 Ni, 这种取代必然牺牲储 氢合金的性能。 文献《镍氢电池负极用低成本储氢合金的研究》 稀有金属, 27 ( 2001 ) : 443-447的研究结果表明, 随 AB5型储氢 合金中 Co含量的降低, 合金寿命下降, 但最高容量有所提高。 文 献《贮氢电极合金¾11 (^1^1 ) 4.2( 0。. 8-^6, ( = 0-0. 8)的电化学性 能》稀有金属材料与工程, 28 ( 1999 ) : 302-304 的研究表明, 随着 Fe含量 的增加,合金的活化性能得到改善,但其最大放电 容量、 高倍率放电性能及循环稳定性均有不同程度的降低。
为了改善镁基储氢材料的化学稳定性,可以采用 Fe元素取代 或添加 B元素等方式。文献《The reduction of cycling capacity degradation of Mg - Ni-based electrode alloys by Fe subs ti tut ion》(通过 Fe替代降低 Mg- Ni基电极合金的循环容量 衰减 ) International Journal of Hydrogen Energy (国际氬能 ), 27 ( 2002 ) : 501-505通过 MA制备了 Mg"Fe5Ni5。非晶态合金, 其 循环放电能力优于 B侧 Fe替代的三元合金 Mg5。Ni45Fe5和母合金 Mg5oNi5o。 文献 《 Investigation on the microstructure and electrochemical performances of La2Mg (Ni 085Co0.i5) = 0-0.2) hydrogen storage electrode alloys prepared by casting and rapid quenching》 (通过洗铸和快浮制备的 La2Mg(Ni。 85Co。 15)9B, (x = 0-0.2)储氢电极合金的结构和电化学性 能研究) J. Alloys Comp. (合金与化合物) , 379 ( 2004 ) : 298-304 报道了添加 B提高了储氢合金的循环稳定性, 但降低了 合金的放电容量。
碱性镍氢(MH-Ni )二次电池及金属氢化物空气(MH-Air)电 池的负极活性物质一般采用稀土系 AB5( LaNis )型贮氢合金。 MH-Ni 二次电池具有高比能量、可快速充放电、无污染和长寿命等优点, 广泛应用于便携式无线通讯设备及家用电器。 大功率镍氢电池也 是电动工具、 玩具以及混合电动车(HEV)和电动车(EV)等新能 源汽车的主要电源。 对于这类以金属氢化物 (MH)作为负极活性 材料的电池, 除了要求具有高能量、 长寿命等特性外, 还要求其 能在大电流充放电以及低温条件下使用, 即具备良好的高功率和 低温电化学特性。
影响镍氢动力电池性能的主要因素包括功率性能、高 /低温性 能、 循环寿命、 电池组管理系统等。 镍氢电池的功率性能是要求电池能够超高倍率放电和充电的 性能。 电池一般为 3C-10C的电流充电, 10C-30C的电流放电, 50% 放电深度的比功率达到 1000W/Kg。要达到这样的水平需要从活性 材料(主要是贮氢负极合金)选择、 电池整体设计及制作工艺等 方面来提高。
发明专利 "一种高功率镍氢电池负极活性物质及其制备方法 和镍氢蓄电池" ( 200510035315. 0 )公开了一种 LaNi5型负极贮 氢合金的表面处理方法。
电池的低温性能主要通过提高贮氢合金材料性能来解决。 目 前镍氢电池的使用温度一般在 -20 ~ 50 范围内, 主要在 0 ~ 40Ό 条件下使用。 在寒冷地区(- 40 )及军事、 航空航天等领域, 镍 氢电池无法满足使用要求,尤其是 HEV及 EV使用的镍氢动力电池 必须保证汽车在低温环境下的冷启动。
中国专利 "可用于低温镍氢电池的负极贮氢材料及其电池" ( 200510123747. 7 ) 和 "一种低温镍氢动力电池用贮氢合金" ( 200810027969. 2 )均公开了一种用于低温(低至- 40" )镍氢电 池使用的 LaNi5型贮氢合金。
镍氢电池的循环寿命要与汽车寿命一致, 一般要求达到 8年 或 16万公里。 HEV应用的镍氢电池往往处在高倍率乃至超高倍率 电流的浅充电、 浅放电的条件下使用, 此时其循环寿命的终止判 定条件不只是普通应用中的容量衰减程度, 更主要的是功率特性 的衰减状况。 镍氢电池功率特性降低的主要原因是电池中正、 负 极电阻的增加, 而正极电阻的增加幅度接近负极的 2倍, 主要是 由于负极合金腐蚀产物 Al、 Mn 离子的溶解降低了正极的比表面 积、 加速了低活性的 Y - NiOOH生成。 提高负极合金的耐蚀性是提 高镍氢电池循环寿命的重要途径。
为了进一步提高镍氢动力电池的功率性能及低温放电能力, 有必要开发新型贮氢负极材料。 中国专利 " RE-Fe-B 系储氢合金" ( 200810176872. 8 ) 、 "La15Fe77Bs型储氢合金及其用途" ( 200810176873. 2 ) 中指出, RE-Fe-B 系贮氢材料可以代替镍氢二次电池中的 LaNi5型贮氢电 极合金, 显著降低镍氢电池的成本。
RE-Fe-B 系合金作为磁性材料得到了较多的研究, 常见的化 学式有 RE2Fe14B、 RE8Fe27B24、 RE2FeB3、 RE15Fe77B8等。但未见 RE-Fe-B 系合金作为储氢材料及其应用的报道。 许多金属或合金都可以或 多或少地吸氢, 吸氢后的金属或合金变脆, 这就是所谓的 "氢脆 现象" , 利用金属或合金材料的 "氢脆" 可以制粉, 如 Nd-Fe-B 永磁材料的制粉工艺之一就是氢脆制粉。文献《Nd2Fe14B等合金吸 氢性能研究》无机化学学报, 6 ( 1990 ) : 454-456从 Nd-Fe-B永 磁材料中存在的主要物相研究磁性材料的吸氢性能。 但能够吸氢 的材料并不都是储氢材料, 只有那些吸放氢反应快、 可逆性优良 而且储氢密度高的材料才可以称为贮氢合金。 发明目的
根据 RE-Fe-B系合金的化学组成式开发新型的储氢合金。 通 过某些元素对该系列合金中 RE、 Fe、 B等元素的部分或全部替代 以及相应的制备工艺, 使 RE-Fe-B系合金成为可以实用的储氢材 料。 所发明的 RE-Fe-B系储氢合金由于可以含有廉价的 Fe元素、 化学稳定性高的 B元素以及特有的多相结构, 可以开发成综合储 放氢性能优良的储氢材料, 也可以开发成具有特定市场需求的储 氢材料, 如低成本储氢材料、 高功率宽温区贮氢电极合金、 低温 型贮氢合金、 低自放电储氢材料、 高温型储氢材料等。 所发明的 RE-Fe-B 系储氢合金可以用于镍氢电池、 金属氢化物空气电池等 的负极活性材料, 也可用于气相吸放氢储氢材料。 发明内容 RE-Fe- B 系储氢合金的化学组成式主要包括 RE19Fe68B68、 RE Fe76B?、 REisFe77Bs、
Figure imgf000007_0001
REsFe2sB24、 REsFeisBis-* RE5Fe2B6、 RE2Fe23B3、 RE2FeB3、 RE2Fe"B。 根据 RE—Fe-B系合金的化 学组成式开发新型的储氢合金,其中, RE可以是稀土元素镧( La )、 铈( Ce ) 、 镨 (Pr)、 钕 (Nd)、 钐 (Sm)、 铕 (Eu)、 钆 (Gd)、 铽 (Tb)、 镝(Dy)、 钬(Ho)、 铒 (Er)、 铥(Tm)、 镱(Yb)、 镥(Lu)、 钪( Sc ) 和钇(Y) 中的一种或几种, 并且, RE 可以被化学元素周期表中 能与氢形成氢化物的镁(Mg) 、 钙 (Ca) 、 锆(Zr) 、 钛(Ti) 、 钒(V)元素全部或部分取代; Fe (铁)能被化学元素周期表中的 过渡金属元素镍( Ni )、锰( Mn )、铝( A1 )、钴( Co )、铜( Cu )、 锆(Zr) 、 钛(Ti) 、 钒(V:) 、 锌 (Zn) 、 铬(Cr) 、 钨 (W) 以及非过渡金属元素镓(Ga) 、 锡 (Sn) 、 铅(Pb)全部或部分 取代; B (硼) 可以被金属元素铁( Fe ) 、 镍( Ni ) 、 锰( Mn ) 、 铝( A1 )、 钴( Co )、 铜( Cu )、 锆( Zr )、 钛( Ti ) 、 钒( V ) 、 锌(Zn) 、 铬(Cr) 、 钨(W) 、 镓(Ga) 、 锡(Sn) 、 铅( Pb ) 等以及金属元素硅(Si) 、 硫(S) 、 碳(C) 、 磷(P)全部或部 分取代。 所发明的 RE-Fe- B系储氢合金也可以与其它储氢材料按 不同比例复合而制备新的储氢材料。
所述 RE-Fe-B系储氢合金组成中各元素的原子比可以在 20% 的范围内调整。 如 Nd8Fe27B24合金可以调整的原子比范围为 6-10: 22-31: 20-28。
所述 RE-Fe-B 系储氢合金为多相结构, 包括 LaNi5相以及 La3Ni13B2相、 (Fe,Ni )相和 Ni 相中的一种或两种或三种, 由于 组成中取代元素的不同, 也可形成其它相组织结构。
所述 RE-Fe-B 系储氢合金的制造原材料为合金组成中的 RE (稀土)及其替代元素的单质、 Fe及其替代元素的单质、 B及其 替代元素的单质、 RE-Fe合金、 B-Fe合金、 B- Ni合金、 RE-Ni合 金、 RE-Fe-B合金以及其它含有组成元素的中间合金, 逸择其中 两种或两种以上的原料按照合金的化学组成式配制。 采用高温熔 炼铸造法或高温熔炼-快淬法或高温熔炼-气体雾化法或粉末烧结 法或机械合金化法在惰性气体保护下或在真空环境下进行制造, 其中, 快淬合金片的厚度控制在 1. 0 mm以下。
所述 RE-Fe-B系储氢合金可以采用下列热处理方法之一改善 其组织结构和性能。
1 )在真空度为 10—2-10— 6Pa的环境中,或者在惰性气体保护的 环境中, 将高温熔炼的 RE- Fe-B系储氢合金进行分段热处理。 首 先将合金加热到 850-1050 C保温 2-6小时, 然后在 450- 850 保 温 2-6小时, 保温后的储氢合金随炉冷却到室温。
2 )在真空度为 l (T-l(r6Pa的环境中,或者在惰性气体保护的 环境中,将高温熔炼制备的 RE-Fe- B系储氢合金进行分段热处理。 首先将合金加热到 850-1050X保温 2-6小时, 然后在 450-8501 保温 2-6小时, 保温后的储氢合金在快速淬火介质水或油中进行 淬火处理。
3 )在真空度为 10—2-10—6Pa的环境中,或者在惰性气体保护的 环境中,将高温熔炼的 RE-Fe-B系储氢合金加热到 450-1050" 保 温 3-24小时,保温后的储氢合金随炉冷却到室温,或在快速淬火 介质水或油中进行淬火处理。
所述 RE-Fe- B系贮氢合金采用气流磨或球磨或锤磨或高温雾 化方法制备成粒度为 0. 3 ~ 10腿的颗粒或粉末。
所述 RE-Fe- B系储氢合金颗粒或粉末可以采用物理、 化学、 机械方法进行表面处理以改善其性能。
本发明也提供了含有所述 RE-Fe- B系贮氢电极合金的镍氢二 次电池及金属氢化物空气(MH- Ai r ) 电池, 该类电池包括正极、 隔膜、 负极及电解液, 它们封装于电池外壳内。 其特征在于, 镍 氢二次电池及金属氢化物空气电池的负极活性物质为所述的 RE-Fe-B系贮氢合金。 本发明还提供了应用所述 RE-Fe-B系贮氢合金的氢贮存及运 输装置, 该类装置可用于燃料电池、 热泵、 氢及其同位素的制备 和净化等。 其特征在于, 氢贮存及运输装置中的贮氢物质为所述 的 RE- Fe-B系贮氢合金。
本发明与已有技术的主要区别: 本发明所述 RE- Fe-B系储氢 合金是一种全新的储氢合金, 其组成和结构不同于已有的储氢合 金。 该新型合金具有更低的成本、 良好的大电流放电特性及低温 放电特性。 发明效果
本发明 RE-Fe-B系储氢合金在通常条件下的储氢量大于 1. 0 wt. %; 其储氢合金电极具有良好的活化性能, 放电容量一般大于 300 mAh-g-1; 该储氢合金电极大电流放电能力优异, 具有良好的 动力学性能, 3C ( 0. 9A/g ) -10C ( 3A/g ) 的充电效率达到 90%以 上, 30C ( 10A/g )放电时间大于 15 s ; 该贮氢合金电极具有良好 的低温放电性能, - 40 X的放电容量大于额定容量的 50%; 该储 氢合金由于特有的组成和结构而具有良好的耐腐蚀性能和较小的 吸放氢膨胀率, 从而具有良好的充放电或吸放氢循环稳定性。 该 储氢合金的制造可以使用如 Fe等廉价原料以及可以不使用如 Co 等价值较高的原料, 因此具有较低的成本。 采用本发明贮氢合金 可以制造包含金属氢化物 (MH ) 电极的电池及包含贮氢合金的贮 氢和运输装置。 具体实施方式
实施例 1.
按照所发明 RE—Fe-B系合金中 La15Fe"B8、RE8Fe28B24、RE5Fe18B18、 RE2FeB3的化学组成式, RE为 La及 Ce、 Pr、 Nd等稀土元素, 用 Ni、 Mn、 A1 部分替代 Fe 和 B , 所制备的合金组成分别为 Lai5Fei2Ni64Mn5B2Al2 、 Lan.5?Cei. nPr0.34Nd0.98Fei2N i6oMn5B4A 14 、 La8Fe4Ni35Mii5B5Al3 、 La . i9Ce0.37Ρ Γ0. nNd0.33Fe2Ni22Mn5B4Al 3 和 La2Ni3Mn。.5B。.5。 按照合金组成的化学计量比, 同时考虑其中的 La、 Mn> B、 A1 元素的熔炼烧损, 计算并称量各组成元素 (纯度均大 于 99. 0%, B元素可以 B-Fe或 B-Ni合金的形式加入)作为制备合 金的原材料。采用中频感应熔炼工艺将称量好的原材料在 Ar气保 护下经高温熔炼制备合金。 试验电极的制备方法是, 合金经机械 破碎成 50-150μηι的粉末, 合金粉与羰基镍粉以 1 : 4的质量比混 合, 在 16 MPa压力下制成 φ15 雌的电极片, 将该电极片置于两 片泡沫镍之间, 同时夹入作为极耳的镍带, 再次在 16 MPa压力下 制成用于测试的储氢负极(MH电极) , 电极片周围通过点焊保证 电极片与镍网之间的紧密接触。
测试电化学性能的开口式二电极体系中的负极为 MH电极,正 极釆用容量过剩的烧结 Ni (0H) 2/Ni00H 电极, 电解液为 6 mol'L -1 K0H 溶液, 装配好的电池搁置 24 h, 应用 LAND电池测试仪以恒 电流法测定合金电极的电化学性能 (活化次数、 最高容量、 高倍 率放电能力 HRD、 循环稳定性等) , 测试环境温度为 25 , 充电 电流密度 70 mA-g-1 , 充电时间 6 h, 放电电流密度 70 mA-g"1 , 放 电截止电位为 1. 0 V, 充 /放电间歇时间 10 min。 测试结果见表 1。 表 1 RE-Fe-B系合金电极的电化学特性
合金样品 a Γ 1 ' (mAh · g- ') S,ooC ( % ) HRD35od ( % )
Lal5Fei2Ni64MngB2Al2 1 332 96 93
La 57Ce ! Pr 34N do.98Fe 12N i 60MnsB4 A 1 3 302 98 93
La8Fe5Ni33Mn5B5Al3 1 326 96 95
La . i9Ce0.37Pr0. iiNd0.33Fe2Ni22Mn5B4Al3 3 335 92 93
La2Ni3Mn0.5B0.5 3 263 96 85 注: a是电极活化需要的循环次数; b是最大放电容量; c是 循环 100次的容量保持率; d是放电电流密度 Id为 350 mA'g- 1时 的倍率放电能力。 实施例 2.
按照所发明的 RE8Fe27B24、 La15Fe77B85LRE17Fe76B7组成, 所制备 的合金组成分别为 La8Fe4Ni34Mn5B5Al3、 La15Fe7Ni65Mn5B4Al4 和 La17Fe6Ni65Mn5B4Al3。 釆用中频感应熔炼-快淬工艺将原材料在 Ar 气保护下制成 RE-Fe-B合金薄片。 将所制备的合金薄片在真空或 惰性气体保护下进行热处理,热处理条件为: 850- 1050Ό保温 2-5 小时, 然后在 450-850 保温 2- 5小时。 使用 Phi 1 ips-PW1700型 X-射线衍射仪分析合金的组织结构, 合金为以 LaNi5相为主的多 相组织, 包括 LaNi5相、 La3Ni13B2相、 ( Fe, Ni )相和 Ni相。 图 1 和图 2分别为 La15Fe7Ni65Mn5B4Al4合金快淬态与退火态的 XRD图。 应用 Sievert法在 313K测量合金的压力 -组成等温线 曲 线) 。 结果表明, 该合金具有非常好的吸放氢可逆特性, 平台压 力在 0.01-0.10 MPa之间, 合金的储氢量大于 1.0 wt. %。 图 3、 图 4和图 5分别为 RE8Fe27B24、 La15Fe77B8及 RE17Fe76B7合金退火态的 - c-Γ曲线。 实施例 3.
所制备的合金组成为 RE19( FeNiMn )68( BMnAl )68、 RE17( FeNiMn ) 76(ΒΜηΑ1 ) 7、 RE15 ( FeNiMn )77( BMnAl )8、 RE15 ( FeNiMnCu ) 77 ( BMnAl ) 8、 RE15 (FeNiMnCu) 77 (BMnAISi ) 8、 RE8 (FeNiMn) 86 (BMnAl ) 6、 RE8( FeNiMn) 27 (BMnAl )24、 RE5( FeNiMn )18( BMnAl )18、 RE5( FeNiMn) 2 ( BMnAl ) 6、 RE2 ( FeNiMn ) 23 ( BMnAl ) 3、 RE2 ( FeNiMn ) ( BMnAl ) 3、 RE2 (FeNiMn) 14 (BMnAl ) 。 按照所制备合金的化学计量比, 以 RE-Fe合金、 RE-Ni合金、 RE-Fe-B合金、 B-Fe合金、 B-Ni合 金为原料, 同时以合金组成中其它元素单质 RE、 Fe、 Ni、 Mn、 Cu、 Al、 Si 为平衡组分的原料, 考虑其中的 La、 Mn、 A1元素的熔炼 烧损。 计算并称量各种原料(纯度均大于 99.0%) 。 合金制备及 热处理方法同实施例 2。 试验电极的制备方法和电池组装及测试 方法同实施例 1。 实施例中部分合金测试结果见表 2。
表 2 实施例中部分 RE-Fe-B系合金的性能
^^样品 储氢量(wt.%) N CI, (mAh · g ') SlOO ( % ) HRD3S0 ( % )
RE (FeNiMn) 7, 5 (BMnAl) 1.28 1 345 96 95
RE (FeNiMn) , (BMnAl) 1.23 1 335 95 96
RE (FeNi nCu) (BMnAl) 8 1.18 2 318 95 92
RE15 (FeNiMnCu) 7: , (BMnAISi) 8 1.12 2 305 93 94
RE8 (FeNiMn) 86 (BMnAl) 1.06 1 286 98 97
RE8 (FeNiMn) 27 (BMnAl) 1.22 1 313 96 93
RE5 (FeNiMn) ,e (BMnAl) 1.23 321 95 95 实施例 4.
所制备的合金组成为 RE15 (FeNiMn) 77 (BMnAl ) 8。 按照 RE15 (FeNiMn) 77 (BMnAl ) 8合金的化学计量比, 以单质的金属 La、 金属 Ni、 金属 Mn、 金属 A1以及 La-Fe、 B-Fe合金为原料, 同时 考虑其中的 La、 Mn、 A1元素的熔炼烧损,计算并称量各种原料(纯 度均大于 99.0%)。 分别采用高温熔炼铸造法、 高温熔炼-气体雾 化法、 粉末烧结法制备。 制备过程在 Ar气保护下进行。 试验电极 的制备方法和电池组装及测试方法同实施例 1。 测试结果见表 3。 表 3 RE15 (FeNiMn) " (BMnAl) 8储氢合金不同制备方法的性 能比较
制备方法 储氢量 (wt.%) N C , S10o ( % ) HRD35„ ( % ) 高温熔炼铸造法 1.18 1 321 94 95 高温熔炼 -气体雾化法 1.20 1 335 95 96 粉末烧结法 1.12 2 318 95 92 实施例 5.
合金组成为 RE19 (FeNiMn) 6g ( BMnAl ) 68、 RE„ (FeNiMn) 76 ( BMnAl ) 7、 RE15 ( FeNiMn ) 77 ( BMnAl ) 8、 RE15 ( FeNiMnCu ) 77 ( BMnAl ) 8、 RE15 (FeNiMnCu) " (BMnAISi ) 8、 RE8 (FeNiMn) 86 (BMnAl ) 6、 RE8( FeNiMn) 27 (BMnAl )24、 RE5( FeNiMn )18( BMnAl )18、 RE5( FeNiMn) 2 ( BMnAl ) 6、 RE2 ( FeNiMn ) 23 ( BMnAl ) 3、 RE2 ( FeNiMn ) ( BMnAl ) 3、 RE2 (FeNiMn) 14 (BMnAl) 。 釆用中频感应熔炼-快淬工艺将原 材料在 Ar气保护下制成 RE-Fe-B系合金薄片。将所制备的合金薄 片在真空度为 l(T2Pa 的环境中进行热处理, 热处理条件为: 950 保温 3小时, 然后在 600t;保温 3小时, 保温后的储氢合金随 炉冷却到室温。 试验电极的制备方法和电池组装及测试方法同实 施例 1。 测试结果见表 4。
表 4 实施例中部分 RE- Fe-B系合金热处理后的性能
合金样品 储氢量(wt.%) N Cmi (mAh - g l) Si HRD350 ( % )
RE,? (FeNiMn) (BMnAl) 1.28 1 345 96 95
RE,5 (FeNiMn) 7 (BMnAl) 1.23 1 335 95 96
RE (FeNiMnCu) (BMnAl) 1.18 2 318 95 92
RE (FeNiMnCu) 7 (BMnAISi) 8 1.12 2 305 93 94
RE8 (FeNiMn) 8I (BMnAl) 1.06 1 286 98 97
RE8 (FeNiMn) 27 (BMnAl) 1.22 1 313 96 93
RE5 (FeNiMn) (BMnAl) 1.23 321 95 95 实施例 6.
将所制备的 RE15 (FeNiMn) " ( BMnAl ) 8储氢合金薄片封入两 支真空度为 10_2Pa的石英玻璃管中。 将装有合金薄片的石英玻璃 管放入热处理炉中加热保温, 热处理条件为 950 保温 5小时。 达到保温时间后, 立即将装有合金薄片的石英玻璃管取出, 一支 放入水中, 另一支放入油中, 同时将玻璃管打碎, 让合金薄片与 淬火介质接触, 实现淬火处理。 电极制备及电化学性能测试方法 同实施例 1。 测试结果见表 5 表 5 RE15 ( FeNiMn ) 77 ( BMnAl ) 8储氢合金在不同淬火介质中 的性能比较
淬火介质 储氢量(wt. % ) N Cma» (mAh · g ') S, ( % ) HRD350 ( % ) 水 1. 28 1 345 96 95 油 1. 23 1 335 95 96 实施例 7.
按照所发明 RE-Fe-B系合金中 REsFe27B24 RE8Fe28B24 RE15Fe77B8 RE„Fe76B7的化学组成式, RE为稀土元素, 用 Ni Mn Al Cu元 素部分替代 Fe B元素, 所制备的合金组成如表 6所列。 合金制 备及热处理方法同实施例 5。 试验电极的制备方法和电池组装及 测试方法同实施例 1。高倍率放电的放电制度分别为 10C( 3 A*g - ^ 20C ( 6 A.g- 1 ) 30C ( 9 A.g-1 ) 。 所制备合金电极 3C ( 0. 9A/g ) -10C ( 3A/g ) 的充电效率 (0. 2C的放电容量与额定容量的比值) 均达到 90%以上,充放电循环 500次的容量保持率均达到 80%以上。 其它性能的测试结果见表 6
Figure imgf000014_0001
La8Fe2Ni43Mn3Al2B2 2 318 63 35 19 65
La8Fe3Ni Mn3B2 1 326 82 47 22 59
LasFe3Ni42Mn4CuB2 1 312 66 38 20 60
Lai2Ce3Fe5Ni73Mn6B 2 322 64 37 16 65
LaisFeiNiTiMnsALBz 2 335 75 48 28 62
Lai5Fe2Ni7eMn5B2 1 346 73 41 24 59
Lai5Fe4Ni72Mn5Cu2B2 1 331 69 40 18 60
LaisCe2Fe6N i 70ΜΠ3Α I2B2 2 317 58 32 18 71
Lai5Gd2Fe6Ni7oMn3Al2Bz 3 311 62 36 20 67
Lai7Fe6Ni7oMn3Al2B2 2 331 53 31 16 64
Lai7Fe6Ni7oMn3Cu2B2 1 312 51 27 15 60 注: a是电极活化需要的循环次数; b是最大放电容量; c是 放电电流密度 Id分别为 10C;、 20C时的倍率放电能力; d是放电电 流密度 Id为 30C时的放电时间; e是 - 40 的放电容量与额定容 量的比值。 实施例 8.
按照所发明 RE-Fe-B系合金中 RE8Fe27B24、RE8Fe28B24、RE15Fe77B8、 RE17Fe76B7的化学组成式, RE为稀土元素, 用 Ni、 Mn、 Al、 Cu元 素部分替代 Fe、 B元素, 所制备的合金组成如表 10所列。 合金制 备及热处理方法同实施例 5。 试验电极的制备方法和电池组装及 测试方法同实施例 1。充放电循环 500次的容量保持率均达到 80% 以上。 其它性能的测试结果见表 7。 表 7 RE-Fe-B系合金电极的低温放电特性
样品 NA C B HRD,oc CO C C
(mAh · g" 1) (%) (% ) (%) (%)
La6Ce2FesNi«MnB 3 301 63 95 86 74 La6Sm2Fe5Ni 4MnB 3 290 67 98 90 81
La8Fe2Ni43Mn2Al2B2 2 306 58 94 83 71
LaeFe3Ni44Mn2B2 2 312 60 95 82 65
LaeFe3Ni 3Mn2CuB2 1 301 60 92 80 62
La6Ce2FesNi«Mn2B 2 304 68 97 84 72
LaeGd2Fe5Ni4 Mn2B 3 295 62 100 93 86
LaeFezNi «Mn2A 12B2 2 311 63 96 88 74
La8Fe3Ni45Mn2B2 1 319 75 95 83 69
LasFe3Ni4 Mn2CuB2 1 304 66 93 83 63
Lai2Ce3FesNi73Mn3B 2 312 64 92 83 70
Lai5Fe5Ni74Mn2Al2B2 2 321 72 98 87 73
Lai5Fe Ni77Mn2B2 1 329 74 93 80 71
Lai5Fe5Ni75MnCu2B2 1 317 71 91 79 62
Lai5Ce2Fe6Ni72MnAl2B2 2 311 57 87 73 62
LaisGd2Fe6Ni72MnAl2B2 3 304 62 90 71 63
Lai7Fe6Ni72MnAl2B2 2 322 51 86 68 59
Lai7Fe6Ni72MnCu2B2 1 301 46 89 73 64 注: a是电极活化需要的循环次数; b是最大放电容量; c是 放电电流密度 Id为 10C ( 3A/g ) 时的倍率放电能力; d是环境温 度分别 0*C、 - 30"C、 时的放电容量与额定容量的比值。

Claims

权 利 要 求
1. 一种 RE-Fe-B系储氢合金, 其化学组成式主要包括 RE19Fe68B68、 RE17Fe76B7、 RE15Fe77B8、 RE8Fe86B6、 RE8Fe27B24、 RE8Fe28B24、 RE5Fe18B18、 RE5Fe2B6、 RE2Fe23B3、 RE2FeB3、 RE2Fe14B, 其中, RE可以是稀土元素镧 ( La ) 、 铈
( Ce )、镨 (Pr)、钕 (Nd)、钐 (Sm)、铕 (Eu)、钆 (Gd)、铽 (Tb)、镝 (Dy)、 钬 (Ho)、 铒 (Er)、 铥 (Tm)、 镱 (Yb)、 镥 (Lu)、 钪( Sc )和钇 (Y) 中的 一种或几种, 并且, RE可以被化学元素周期表中能与氢形成氢化物的 镁( Mg ) 、 钙 ( Ca ) 、 锆( Zr ) 、 钛( Ti ) 、 钒( V )元素全部或部分 取代; Fe (铁) 能被化学元素周期表中的过渡金属元素镍(Ni) 、 锰
( Mn ) 、 铝 (A1 ) 、 钴 ( Co ) 、 铜 ( Cu ) 、 锆( Zr ) 、 钛( Ti ) 、 钒
(V) 、 锌(Zn) 、 铬(Cr) 、 钨(W) 以及非过渡金属元素镓(Ga) 、 锡( Sn )、铅( Pb )全部或部分取代; B (硼)可以被金属元素铁( Fe )、 镍( Ni ) 、 锰( Mn ) 、 铝 ( A1 ) 、 钴 ( Co ) 、 铜 ( Cu ) 、 锆( Zr ) 、 钛(Ti) 、 钒(V) 、 锌(Zn) 、 铬(Cr) 、 钨 (W) 、 镓(Ga) 、 锡
(Sn) 、 铅(Pb) 等以及非金属元素硅(Si) 、 硫(S) 、 碳(C) 、 磷(P)中的一种或多几种元素全部或部分取代, 所述 RE- Fe-B系储氢 合金组成中各元素的原子比可以在 50%的范围内调整。
2. 一种如权利要求 1所述的 RE-Fe-B系储氢合金的用途,其特征 是: 用于制备电池的负极材料, 或用于气相吸放氢的储氢材料。
PCT/CN2009/001301 2008-11-21 2009-11-23 RE-Fe-B系储氢合金及其用途 WO2010057367A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011536727A JP5773878B2 (ja) 2008-11-21 2009-11-23 RE−Fe−B系水素貯蔵合金及びその使用

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN200810176872.8 2008-11-21
CN200810176872.8A CN101407883B (zh) 2008-11-21 2008-11-21 RE-Fe-B系储氢合金
CN2008101768732A CN101417786B (zh) 2008-11-21 2008-11-21 La15Fe77B8型储氢合金及其用途
CN200810176873.2 2008-11-21
CN200910145267.9 2009-05-21
CN200910145266A CN101633985A (zh) 2009-05-21 2009-05-21 RE-Fe-B系储氢合金的制备方法
CN200910145267A CN101633975A (zh) 2009-05-21 2009-05-21 RE-Fe-B系储氢合金的热处理方法
CN200910145266.4 2009-05-21

Publications (1)

Publication Number Publication Date
WO2010057367A1 true WO2010057367A1 (zh) 2010-05-27

Family

ID=42197818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001301 WO2010057367A1 (zh) 2008-11-21 2009-11-23 RE-Fe-B系储氢合金及其用途

Country Status (2)

Country Link
JP (1) JP5773878B2 (zh)
WO (1) WO2010057367A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672721A (zh) * 2022-03-31 2022-06-28 包头稀土研究院 非化学计量比稀土-铁基储氢合金及制备方法和应用
US11976235B2 (en) 2020-10-27 2024-05-07 Battelle Savannah River Alliance, Llc High temperature thermochemical energy storage materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6464268B2 (ja) * 2014-08-28 2019-02-06 バオトウ リサーチ インスティチュート オブ レア アース 希土類系水素吸蔵合金およびその用途

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290509A (en) * 1990-01-22 1994-03-01 Sanyo Electric Co., Ltd. Multiphase hydrogen-absorbing alloy electrode for an alkaline storage cell
JPH0997608A (ja) * 1995-09-29 1997-04-08 Toshiba Corp 電池用水素吸蔵合金,その製造方法およびニッケル水素二次電池
US5753386A (en) * 1995-09-29 1998-05-19 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy for battery and secondary nickel-metal hydride battery
JP2000265228A (ja) * 1999-03-15 2000-09-26 Toshiba Battery Co Ltd 水素吸蔵合金及び二次電池
JP2008071687A (ja) * 2006-09-15 2008-03-27 Toshiba Corp 電池用水素吸蔵合金、それを用いた負極、およびニッケル水素二次電池
JP2008084733A (ja) * 2006-09-28 2008-04-10 Toshiba Corp 水素吸蔵合金、それを用いた電極、およびニッケル水素二次電池
CN101407883A (zh) * 2008-11-21 2009-04-15 包头稀土研究院 RE-Fe-B系储氢合金
CN101417786A (zh) * 2008-11-21 2009-04-29 包头稀土研究院 La15Fe77B8型储氢合金及其用途

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155641A (ja) * 1984-01-26 1985-08-15 Sumitomo Special Metals Co Ltd 鉄−希土類元素系水素吸蔵合金
JP2894721B2 (ja) * 1989-05-16 1999-05-24 株式会社東芝 二次電池
JP2999785B2 (ja) * 1990-01-22 2000-01-17 三洋電機株式会社 アルカリ蓄電池用水素吸蔵合金電極
JP3005247B2 (ja) * 1990-05-31 2000-01-31 三洋電機株式会社 水素吸蔵合金
JP3688716B2 (ja) * 1995-07-10 2005-08-31 株式会社三徳 希土類金属−ニッケル系水素吸蔵合金及びその製造法、並びにニッケル水素2次電池用負極
JP3737163B2 (ja) * 1995-07-10 2006-01-18 株式会社三徳 希土類金属−ニッケル系水素吸蔵合金及びニッケル水素2次電池用負極
JP2000104133A (ja) * 1998-09-29 2000-04-11 Shin Etsu Chem Co Ltd 希土類−ニッケル系水素吸蔵合金及びアルカリ蓄電池用負極

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290509A (en) * 1990-01-22 1994-03-01 Sanyo Electric Co., Ltd. Multiphase hydrogen-absorbing alloy electrode for an alkaline storage cell
JPH0997608A (ja) * 1995-09-29 1997-04-08 Toshiba Corp 電池用水素吸蔵合金,その製造方法およびニッケル水素二次電池
US5753386A (en) * 1995-09-29 1998-05-19 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy for battery and secondary nickel-metal hydride battery
JP2000265228A (ja) * 1999-03-15 2000-09-26 Toshiba Battery Co Ltd 水素吸蔵合金及び二次電池
JP2008071687A (ja) * 2006-09-15 2008-03-27 Toshiba Corp 電池用水素吸蔵合金、それを用いた負極、およびニッケル水素二次電池
JP2008084733A (ja) * 2006-09-28 2008-04-10 Toshiba Corp 水素吸蔵合金、それを用いた電極、およびニッケル水素二次電池
CN101407883A (zh) * 2008-11-21 2009-04-15 包头稀土研究院 RE-Fe-B系储氢合金
CN101417786A (zh) * 2008-11-21 2009-04-29 包头稀土研究院 La15Fe77B8型储氢合金及其用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11976235B2 (en) 2020-10-27 2024-05-07 Battelle Savannah River Alliance, Llc High temperature thermochemical energy storage materials
CN114672721A (zh) * 2022-03-31 2022-06-28 包头稀土研究院 非化学计量比稀土-铁基储氢合金及制备方法和应用

Also Published As

Publication number Publication date
JP2012509399A (ja) 2012-04-19
JP5773878B2 (ja) 2015-09-02

Similar Documents

Publication Publication Date Title
Yan et al. Investigations on AB3-, A2B7-and A5B19-type LaYNi system hydrogen storage alloys
Xiong et al. Characteristics of A2B7-type LaYNi-based hydrogen storage alloys modified by partially substituting Ni with Mn
US7344677B2 (en) Hydrogen storage alloys having improved cycle life and low temperature operating characteristics
US9219277B2 (en) Low Co hydrogen storage alloy
CN110317974B (zh) 一种钇-镍稀土系储氢合金
Liu et al. A new strategy for enhancing the cycling stability of superlattice hydrogen storage alloys
Jiang et al. Rare earth-Mg-Ni-based alloys with superlattice structure for electrochemical hydrogen storage
CN101407883B (zh) RE-Fe-B系储氢合金
Wang et al. Clarifying the capacity deterioration mechanism sheds light on the design of ultra-long-life hydrogen storage alloys
CN111471895A (zh) 含钆和镍的储氢合金、负极、电池及制备方法
JPWO2006085542A1 (ja) 低Co水素吸蔵合金
CN105274395A (zh) 一种La-Mg-Ni型储氢材料
CN101740770A (zh) 低温蓄电池用RE-Fe-B系贮氢合金及其蓄电池
CN111471894A (zh) 掺杂的a5b19型含钐储氢合金、电池及制备方法
TWI395364B (zh) Adsorption of hydrogen alloy and nickel - hydrogen battery electrode
JP5773878B2 (ja) RE−Fe−B系水素貯蔵合金及びその使用
CN107075617A (zh) 一种稀土系储氢合金及其用途
JP7311507B2 (ja) 二次充電可能なニッケル水素電池用大容量且つ長寿命のLa-Mg-Ni型負極水素吸蔵材料及びそれを作製する方法
CN102383011A (zh) 一种低成本长寿命稀土镁基贮氢合金及其应用
US20210408535A1 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery using the same
JP2020117801A (ja) 水素吸蔵合金およびその調製方法、水素吸蔵合金電極、ならびにニッケル水素電池
Zhao et al. Effect of AB2-based alloy addition on structure and electrochemical properties of La0. 5Pr0. 2Zr0. 1Mg0. 2Ni2. 75Co0. 45Fe0. 1Al0. 2 hydrogen storage alloy
Li et al. Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml-Mg-Ni-based alloys
CN111471912B (zh) 掺杂的ab3型储氢合金、负极、电池及制备方法
Xuechao et al. Effect of the partial substitution of samarium for lanthanum on the structure and electrochemical properties of La15Fe77B8-type hydrogen storage alloys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827116

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011536727

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827116

Country of ref document: EP

Kind code of ref document: A1