WO2010055607A1 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
WO2010055607A1
WO2010055607A1 PCT/JP2009/005024 JP2009005024W WO2010055607A1 WO 2010055607 A1 WO2010055607 A1 WO 2010055607A1 JP 2009005024 W JP2009005024 W JP 2009005024W WO 2010055607 A1 WO2010055607 A1 WO 2010055607A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
oxidizing gas
fuel cell
gas flow
flow path
Prior art date
Application number
PCT/JP2009/005024
Other languages
English (en)
French (fr)
Inventor
貴嗣 中川
松本 敏宏
竹口 伸介
美由紀 吉本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/128,701 priority Critical patent/US8084163B2/en
Priority to EP09825862.7A priority patent/EP2352196B1/en
Priority to JP2010507756A priority patent/JP4575524B2/ja
Priority to CN2009801331085A priority patent/CN102132449A/zh
Publication of WO2010055607A1 publication Critical patent/WO2010055607A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell.
  • a fuel cell basically includes a polymer electrolyte membrane that selectively transports protons and a pair of catalyst electrodes (a fuel electrode and an air electrode) that sandwich the polymer electrolyte membrane.
  • the fuel cell having the above-described configuration can continuously extract electric energy using the fuel gas (including hydrogen) supplied to the fuel electrode and the oxidizing gas (including oxygen) supplied to the air electrode. .
  • the polymer electrolyte membrane is composed of an electrolyte having a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group or a hydrocarbon resin ion exchange membrane.
  • a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group or a hydrocarbon resin ion exchange membrane.
  • the polymer electrolyte membrane needs to contain a certain amount of moisture.
  • the catalyst electrode is located on the polymer electrolyte membrane side, and includes a catalyst layer that promotes a redox reaction in the catalyst electrode, and a gas diffusion layer that is located outside the catalyst layer and has air permeability and conductivity. . Further, the gas diffusion layer is located on the catalyst layer side, and a carbon coating layer for improving the contact property with the catalyst layer, and a gas diffusion base material for diffusing the gas supplied from the outside and supplying the catalyst layer Composed of layers.
  • the catalyst layer of the fuel electrode includes, for example, platinum, an alloy of platinum and ruthenium
  • the catalyst layer of the air electrode includes, for example, an alloy of platinum, platinum, and cobalt.
  • MEAs can be electrically connected in series by being stacked. At this time, a conductive separator is disposed between each MEA so as not to mix the fuel gas and the oxidizing gas and to electrically connect each MEA in series.
  • the separator includes a fuel electrode separator in contact with the fuel electrode and an air electrode separator in contact with the air electrode.
  • the fuel electrode separator is formed with a fuel gas flow path for supplying fuel gas to the MEA
  • the air electrode separator is formed with an oxidizing gas flow path for supplying oxidizing gas to the MEA.
  • FIG. 1 is an exploded perspective view of the fuel cell disclosed in Patent Document 1.
  • FIG. 1 has a membrane electrode assembly 1, an air electrode separator 2, and a fuel electrode separator 3.
  • the air electrode separator 2 has a plurality of linear oxidizing gas flow paths 8 parallel to each other.
  • the gap between the oxidizing gas flow paths that is, the width of the rib is generally small.
  • the rib does not contribute to the supply of the oxidizing gas. Therefore, when the rib width is reduced, more oxidizing gas can be supplied to the MEA. Therefore, in the conventional fuel cell, the rib width tends to be reduced in order to increase the supply amount of the oxidizing gas.
  • the polymer electrolyte membrane requires a certain amount of moisture for the function of transmitting ions. Therefore, in the conventional fuel cell, the fuel gas and the oxidizing gas are humidified in advance in order to ensure sufficient moisture in the fuel cell.
  • a humidifier for humidifying oxidizing gas does not directly contribute to power generation and requires space. Therefore, if a fuel cell cogeneration system that does not require a humidifier can be developed, the fuel cell cogeneration system can be reduced in size, and the cost of the entire system can be reduced. In addition, if a fuel cell cogeneration system that does not require a humidifier can be developed, energy loss due to the humidifier can be eliminated, so that the efficiency of the entire system can be improved. Therefore, there has been a demand for the development of a fuel cell in which the power generation efficiency does not decrease even when the oxidizing gas is in a low or non-humidified state.
  • each independent reaction gas flow path is formed in a meandering shape.
  • Patent Document 5 a technique is known in which two or more reaction gases are arranged in parallel in order to ensure the strength of the ribs that define the reaction gas flow path (see, for example, Patent Document 5).
  • the reaction gas flow paths of the fuel cell disclosed in Patent Document 5 are each meandering.
  • the fuel cell separator disclosed in Patent Document 5 is a carbon separator.
  • FIG. 2 is a partial cross-sectional view perpendicular to the surface direction of the MEA of the fuel cell.
  • the fuel cell shown in FIG. 2 has an MEA 110, an air electrode separator 120, and a fuel electrode separator 130.
  • the MEA further includes a polymer electrolyte membrane 111, an air electrode catalyst layer 113, a fuel electrode catalyst layer 115, an air electrode gas diffusion layer 117, and a fuel electrode gas diffusion layer 119.
  • the air electrode separator 120 has an oxidizing gas channel 121 and a rib 123.
  • the fuel electrode separator 130 has a fuel gas channel 131 and a rib 133.
  • a plurality of arrows Z indicate movement of water generated in the air electrode catalyst layer 113. Ribs 123 and 133 form a gap between the gas flow paths.
  • part of the water generated in the air electrode catalyst layer 113 moves into the oxidizing gas channel 121 and partly moves under the ribs 123 due to diffusion.
  • the water that has moved into the oxidizing gas channel 121 is discharged to the outside of the fuel cell through the oxidizing gas channel 121, and the water that has moved under the rib 123 is held under the rib 123. Therefore, by reducing the amount of water discharged through the oxidizing gas flow path and increasing the amount of water retained under the ribs, the water generated in the catalyst layer of the air electrode during power generation is put into the fuel cell. Can be fastened.
  • the gap between the oxidizing gas flow paths is increased to increase the amount of water held under the rib and maintain the humidity of the MEA. Is also possible. However, when the rib width is simply increased, the amount of oxidizing gas supplied to the MEA is reduced, and the output density is reduced.
  • An object of the present invention is to provide a sufficient amount of moisture in the fuel cell and supply a sufficient amount of oxygen gas to the MEA even when supplying oxygen gas with no or low humidification. It is to provide a fuel cell that can be used.
  • a polymer electrolyte membrane, and a membrane electrode assembly having a pair of catalyst electrodes composed of an air electrode and a fuel electrode sandwiching the polymer electrolyte membrane; an air electrode separator and a fuel electrode separator sandwiching the membrane electrode assembly
  • a pair of separators comprising: two or more oxidizing gas passages along a specific direction for supplying an oxidizing gas to the air electrode; and two or more parallel to the specific direction for supplying a fuel gas to the fuel electrode
  • a fuel cell having a linear fuel gas flow path, and between two adjacent oxidizing gas flow paths, there are a portion where the gap between the oxidizing gas flow passages is large and a portion where the gap is small.
  • the fuel cell is alternately arranged along the specific direction, and the fuel gas channel does not overlap a portion of the oxidizing gas channel that is parallel to the fuel gas channel.
  • the oxidizing gas channel is defined by a rib having permeability to oxidizing gas, and the rib is made of a conductive porous body.
  • an average pore diameter in the conductive porous body is 10 ⁇ m or less.
  • the two or more oxidizing gas flow paths are meandering, and the two adjacent oxidizing gas flow paths are line-symmetric with respect to a line parallel to the specific direction.
  • the air electrode separator includes a metal plate and a rib formed on the metal plate and made of a conductive porous body.
  • the air electrode includes a catalyst layer in contact with the polymer electrolyte membrane, and a gas diffusion layer laminated on the catalyst layer and in contact with the air electrode separator, and the oxidizing gas flow path includes: The fuel cell according to any one of [1] to [4], which is formed in the gas diffusion layer.
  • the fuel gas flow path is formed in the fuel electrode separator, the fuel electrode separator has a rib defining the fuel gas flow path, and the rib has permeability to the fuel gas.
  • the fuel cell according to any one of [1] to [7].
  • the fuel electrode separator is a carbon separator or a metal separator.
  • the flowing direction of the oxidizing gas flowing in the oxidizing gas flow channel and the flowing direction of the fuel gas flowing in the fuel gas flow channel are the same as the specific direction, and are supplied to the fuel cell.
  • the flowing direction of the oxidizing gas flowing in the oxidizing gas flow channel and the flowing direction of the fuel gas flowing in the fuel gas flow channel are the same as the specific direction, and are supplied to the fuel cell.
  • the fuel cell according to any one of [1] to [9], wherein a dew point of the oxidizing gas is ⁇ 10 to 45 ° C., and the oxidizing gas supplied to the fuel cell is not humidified.
  • the direction in which the oxidizing gas flows in the oxidizing gas flow path is the same as the specific direction, and the direction in which the fuel gas flows in the fuel gas flow path is opposite to the specific direction,
  • the fuel cell according to any one of [1] to [9], wherein a dew point of the oxidizing gas supplied to the fuel cell is 55 to 75 ° C.
  • a polymer electrolyte membrane and a membrane electrode assembly having a pair of catalyst electrodes composed of an air electrode and a fuel electrode sandwiching the polymer electrolyte membrane; an air electrode separator and a fuel electrode separator sandwiching the membrane electrode assembly
  • a fuel cell comprising: a pair of separators; and two or more oxidizing gas channels along a specific direction for supplying an oxidizing gas to the oxidizing electrode, wherein the oxidizing gas channel includes an upstream region; A region having a large gap between the two oxidizing gas flow paths and a portion having a small gap between the two adjacent oxidizing gas flow paths along the specific direction.
  • the size of the gap between the two adjacent downstream flow oxidizing gas channels is constant, and the two adjacent oxidizing gas channels in the downstream region are constant.
  • the gap is smaller than the maximum value of the gap between adjacent two of said oxidizing gas flow path in the upstream region, fuel cells.
  • the fuel cell of the present invention a sufficient amount of moisture can be ensured in the fuel cell even when oxygen gas is supplied with no humidification or low humidification, and a sufficient amount of oxygen gas is supplied to the MEA. Can be supplied. Further, according to the present invention, the fuel gas can be selectively supplied to a region where the membrane resistance of the polymer electrolyte membrane is low and the concentration of the oxidizing gas is high. Therefore, the fuel cell of the present invention can maintain the durability and high output density of MEA even when oxygen gas is supplied without or with low humidity.
  • FIG. 1 1 is an exploded perspective view of a fuel cell according to Embodiment 1.
  • the fuel cell of the present invention has 1) MEA, 2) a pair of separators composed of an air electrode separator and a fuel electrode separator, 4) a plurality of oxidizing gas passages, and 5) a plurality of fuel gas passages.
  • the fuel cell of the present invention also relates to a fuel cell to which a low humidified or non-humidified oxidizing gas is supplied.
  • the MEA has a polymer electrolyte membrane and a pair of catalyst electrodes composed of an air electrode and a fuel electrode sandwiching the polymer electrolyte membrane.
  • the air electrode preferably has an air electrode catalyst layer in contact with the polymer electrolyte membrane and an air electrode gas diffusion layer laminated on the air electrode catalyst layer.
  • the fuel electrode preferably has a fuel electrode catalyst layer in contact with the polymer electrolyte membrane and a fuel electrode gas diffusion layer laminated on the fuel electrode catalyst layer.
  • the polymer electrolyte membrane is a polymer membrane having a function of selectively transporting protons in a wet state.
  • the material of the polymer electrolyte membrane is not particularly limited as long as it selectively moves protons.
  • examples of such materials include fluorine-based polymer electrolyte membranes and hydrocarbon-based polymer electrolyte membranes.
  • Specific examples of the fluorine-based polymer electrolyte membranes include DuPont's Nafion (registered trademark) membrane, Asahi Glass Co., Ltd. Flemion (registered trademark) membrane, Asahi Kasei Corporation's Aciplex (registered trademark) membrane, Japan Gore-Tex GORE-SELECT (registered trademark) film of the company.
  • the air electrode catalyst layer is a layer containing a catalyst that promotes a redox reaction of hydrogen and oxygen.
  • the air electrode catalyst layer is not particularly limited as long as it has conductivity and has a catalytic ability to promote a redox reaction of hydrogen and oxygen.
  • the air electrode catalyst layer includes, for example, platinum, an alloy of platinum and cobalt, an alloy of platinum, cobalt, and nickel as a catalyst.
  • the fuel electrode catalyst layer is a layer containing a catalyst that promotes the oxidation reaction of hydrogen.
  • the fuel electrode catalyst layer is not particularly limited as long as it has conductivity and has a catalytic ability to promote the oxidation reaction of hydrogen.
  • the fuel electrode catalyst layer includes, for example, platinum or an alloy of platinum and ruthenium as a catalyst.
  • the air electrode catalyst layer and the fuel electrode catalyst layer are, for example, carbon fine particles such as acetylene black, ketjen black, and vulcan that carry these catalysts on an electrolyte having proton conductivity and polytetrafluoroethylene having water repellency ( It is formed by mixing a resin such as Polytetrafluoroethylene (PTFE) and applying it onto the polymer electrolyte membrane.
  • carbon fine particles such as acetylene black, ketjen black, and vulcan that carry these catalysts on an electrolyte having proton conductivity and polytetrafluoroethylene having water repellency ( It is formed by mixing a resin such as Polytetrafluoroethylene (PTFE) and applying it onto the polymer electrolyte membrane.
  • PTFE Polytetrafluoroethylene
  • the gas diffusion layer (air electrode gas diffusion layer and fuel electrode gas diffusion layer) is a porous layer that is disposed on the outermost side of the membrane electrode assembly and has electrical conductivity in contact with a separator described later.
  • the material of the gas diffusion layer is not particularly limited as long as it has conductivity and can diffuse the reaction gas.
  • the gas diffusion layer may be composed of a gas diffusion base layer that diffuses the gas supplied from the separator side into the catalyst layer, and a carbon coat layer that improves the contact between the gas diffusion base layer and the catalyst layer. Good.
  • the gas diffusion layer is formed by, for example, thermocompression bonding carbon fiber impregnated with a resin such as PTFE having water repellency, carbon cloth produced by weaving thread-like carbon, paper-like carbon paper, etc. to the catalyst layer surface, It may be produced.
  • a resin such as PTFE having water repellency
  • carbon cloth produced by weaving thread-like carbon, paper-like carbon paper, etc.
  • the separator is a conductive plate for mechanically fixing the MEA and preventing the oxidizing gas and fuel gas supplied to the MEA from being mixed.
  • the air electrode separator is in contact with the air electrode, and the fuel electrode separator is in contact with the fuel electrode.
  • An oxidizing gas channel is a channel for supplying oxidizing gas to an air electrode.
  • the width of the oxidizing gas channel is preferably about 0.8 to 1.2 mm, and the depth of the oxidizing gas channel is preferably 0.3 to 0.8 mm.
  • the oxidizing gas flow path is defined by ribs.
  • the rib that defines the oxidizing gas is preferably conductive and permeable to the oxidizing gas. Since the rib has permeability to the oxidizing gas, the oxidizing gas can diffuse not only in the oxidizing gas flow path but also in the rib. For this reason, the oxidizing gas can be supplied to the air electrode not only from the oxidizing gas channel but also from the rib that defines the oxidizing gas channel. For this reason, oxidizing gas can be supplied to the whole surface of an air electrode, and the electric power generation area of an air electrode can be expanded.
  • the material of such ribs is not particularly limited, but is preferably a conductive porous body.
  • the average pore diameter in the conductive porous body is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the average pore diameter in the conductive porous body can be obtained by calculating the average area equivalent diameter from the area of the pores measured from the SEM photograph of the cross-sectional view of the porous body. Or the average pore diameter in a conductive porous body can also be calculated
  • Examples of such conductive porous bodies include carbon fibers attached with a resin such as PTFE having water repellency, carbon cloth produced by weaving thread-like carbon, paper-like carbon paper, carbon fibers and the like. Carbon sheets and the like that are kneaded with PTFE into a sheet form are included.
  • a resin such as PTFE having water repellency
  • carbon cloth produced by weaving thread-like carbon, paper-like carbon paper, carbon fibers and the like.
  • Carbon sheets and the like that are kneaded with PTFE into a sheet form are included.
  • the porous body has a large surface area. For this reason, if the rib defining the oxidizing gas flow path is porous, the contact area between the air electrode separator and the air electrode increases, and the contact resistance between the air electrode separator and the air electrode decreases. As a result, the generated power can be efficiently extracted.
  • the oxidizing gas channel may be formed in the air electrode separator (see FIG. 10) or in the air electrode gas diffusion layer (see FIG. 14).
  • the air electrode separator may be composed of a conductive flat plate and a rib formed on the flat plate and made of a conductive porous body.
  • the flat plate is, for example, a metal plate.
  • the fuel cell of the present invention is characterized by the shape of the oxidizing gas flow path.
  • the shape of the oxidizing gas channel will be described in detail with reference to the drawings.
  • FIG. 3 is a diagram showing an example of the pattern of the oxidizing gas flow path according to the present invention.
  • FIG. 3 shows an example in which the oxidizing gas channel 121 is formed in the air electrode separator 120.
  • the air electrode separator 120 includes a plurality of oxidizing gas flow paths 121 and ribs 123 that define the oxidizing gas flow paths 121 along the specific direction X.
  • the “specific direction X” indicates the direction in which the oxidizing gas flows.
  • the rib 123 forms a gap between the adjacent oxidizing gas flow paths 121.
  • water retention region 125 a portion 125 (hereinafter referred to as “water retention region 125”) having a large gap (rib width) between the oxidizing gas flow paths and the oxidizing gas flow between two adjacent oxidizing gas flow paths.
  • Locations 127 (hereinafter referred to as “oxidizing gas supply regions”) having small gaps (rib widths) between the flow paths are alternately arranged along the specific direction X.
  • the “water retention area” means an area where moisture is held during operation of the fuel cell
  • oxidation gas supply area means an area where oxidant gas is supplied intensively during operation of the fuel cell. (Described later).
  • the maximum gap value 125w between the two adjacent oxidant gas flow paths is the minimum gap value 127w between the two adjacent oxidant gas flow paths (hereinafter simply referred to as “ It is preferably 2 to 4 times the width of the oxidizing gas supply region. More specifically, the width 125w of the water retention region is preferably 3 to 6 mm, and the width 127w of the oxidizing gas supply region is preferably 1.4 to 3.1 mm.
  • two adjacent oxidizing gas flow paths are meandered, and the two adjacent oxidizing gas flow paths are parallel to the specific direction.
  • the line may be symmetric with respect to a straight line.
  • one of the two adjacent oxidizing gas flow paths may be serpentine and the other may be linear.
  • FIG. 4 shows an example in which two adjacent oxidizing gas flow paths meander.
  • FIG. 4 shows an example of the pattern of the oxidizing gas flow path of the fuel cell of the present invention.
  • the oxidizing gas channel 121 and the oxidizing gas channel 121 'adjacent to the oxidizing gas channel 121 have a meandering shape.
  • the oxidizing gas channel 121 and the oxidizing gas channel 121 ′ are line symmetric with respect to a line Y parallel to the specific direction X.
  • the oxidizing gas channel 121 and the oxidizing gas channel 121 ′ are meandering, and the oxidizing gas channel 121 and the oxidizing gas channel 121 ′ are axisymmetric with respect to the line Y, the water retention region 125 and the oxidizing gas
  • the supply areas 127 are alternately arranged along the specific direction X.
  • the oxidizing gas channel may meander at right angles (FIG. 4A), may meander in a curved manner (FIG. 4B), or may meander in a zigzag manner (FIG. 4C).
  • the fuel gas flow path is a flow path for supplying fuel gas to the fuel electrode.
  • the width of the fuel gas channel is preferably 0.8 to 1.2 mm, and the depth of the fuel gas channel is preferably 0.3 to 0.7 mm.
  • the shape of the fuel gas flow path is preferably not a meandering shape like the oxidizing gas flow path but a straight line.
  • the fuel gas flow path is preferably parallel to the specific direction X described above.
  • a protrusion may be provided in the fuel gas flow path.
  • the rib defining the fuel gas flow path basically has no permeability to the fuel gas.
  • the fuel gas flow path is formed in the fuel electrode separator.
  • the fuel electrode separator may be a carbon separator or a metal separator.
  • Positional relationship between oxidizing gas channel and fuel gas channel is further characterized in the positional relationship between the oxidizing gas channel and the fuel gas channel.
  • the fuel gas channel selectively overlaps the water retention region and the oxidizing gas supply region. Further, the fuel gas channel does not overlap a portion of the oxidizing gas channel that is parallel to the fuel gas channel.
  • overlap means an overlapping relationship when the fuel cells are viewed from a direction perpendicular to the surface direction of the MEA.
  • FIG. 5 is a perspective view of a cross section of the fuel cell of the present invention, showing the positional relationship between the fuel gas channel and the oxidizing gas channel.
  • the fuel cell shown in FIG. 5 includes an MEA 110, an air electrode separator 120, a fuel electrode separator 130, an oxidizing gas channel 121, and a fuel gas channel 131.
  • the MEA 110 includes a polymer electrolyte membrane 111, an air electrode catalyst layer 113, a fuel electrode catalyst layer 115, an air electrode gas diffusion layer 117, and a fuel electrode gas diffusion layer 119.
  • FIG. 6A is a diagram showing a positional relationship between the oxidizing gas passage 121 and the fuel gas passage 131 shown in FIG. 5 when viewed from a direction perpendicular to the surface direction of the MEA 110.
  • the fuel gas channel selectively overlaps the water retention region 125 and the oxidizing gas supply region 127. Further, like the fuel gas channel 131 shown in FIGS. 5 and 6A, the fuel gas channel may be arranged so as to overlap only the water retention region 125. On the other hand, as shown in FIG. 6B, the fuel gas channel 131 is not preferably disposed so as to overlap a portion of the oxidizing gas channel 121 that is parallel to the fuel gas channel 131. As will be described later, water generated at the air electrode passes through the oxidant gas flow path and is discharged to the outside of the fuel cell. Therefore, in the region where the oxidant gas flow path is located, the humidity of the MEA decreases, and the polymer electrolyte This is because the film resistance of the film increases.
  • the fuel gas channel so as to overlap the water retention region, the fuel gas can be supplied to the region where the moisture content is high (the membrane resistance of the MEA is low), and the protons are efficiently supplied to the air electrode. Can be transported to the side. Further, by arranging the fuel gas flow path so as to overlap the water retention region and the oxidizing gas supply region, the fuel gas can be supplied to the region where the moisture content and the oxidizing gas content are high, thereby generating power generation energy more efficiently. Can be obtained.
  • the direction in which the oxidizing gas flows in the oxidizing gas flow path and the direction in which the fuel gas flows in the fuel gas flow path differ depending on the operating conditions of the fuel cell. For example, when the fuel cell is operated under a medium temperature non-humidified condition, it is preferable that the flowing directions of the oxidizing gas and the fuel gas are the same. Therefore, when the fuel cell is operated under a medium temperature non-humidified condition, the direction in which the oxidizing gas flows and the direction in which the fuel gas flows are the same as the specific direction X.
  • medium temperature non-humidified condition means an operating condition in which the oxidizing gas supplied to the fuel cell is not humidified.
  • the medium temperature non-humidified condition is that the temperature during power generation of the fuel cell is 55 to 75 ° C .; the dew point of the oxidizing gas supplied to the fuel cell is 45 ° C. or less, preferably ⁇ 10 to 45 ° C. Yes; means that the dew point of the fuel gas supplied to the fuel cell is 50 to 70 ° C.
  • the dew point increases when the moisture contained in the gas is large, and decreases when the moisture contained in the gas is small.
  • the dew point of the oxidizing gas is usually 20 ° C. or lower than the dew point of the fuel gas.
  • the direction in which the oxidizing gas flows and the direction in which the fuel gas flows are preferably opposite. Therefore, when the fuel cell is operated under high temperature and low humidification conditions, the direction in which the fuel gas flows is opposite to the specific direction X.
  • the “high temperature and low humidification condition” is a condition in which the temperature during power generation of the fuel cell is 80 to 100 ° C .; the dew point of the oxidizing gas is 55 to 75 ° C .; the dew point of the fuel gas is 50 to 70 ° C. Means. Under such high temperature and low humidification conditions, the difference between the dew point of the oxidizing gas and the dew point of the fuel gas is usually 10 ° C. or less.
  • the fuel gas supplied to the fuel cell cogeneration system is usually generated by reforming a hydrocarbon gas using a fuel cell processor.
  • the dew point of the fuel gas generated by reforming the hydrocarbon gas using the fuel cell processor is 50 ° C. to 70 ° C.
  • the dew point of the fuel gas in the medium temperature non-humidified condition and the high temperature and low humidified condition was relatively high at 50 ° C. to 70 ° C.
  • the reason is that the hydrocarbon gas is reformed using the fuel cell processor. This is because it is assumed that the fuel gas generated in this way is used.
  • the fuel cell of the present invention may have an oxidizing gas flow path as shown in FIG.
  • the oxidizing gas channel 121 is along the specific direction X. That is, the oxidizing gas flows in the specific direction X in the straight region 121a.
  • the oxidizing gas flow path 121 is along the direction X ′ opposite to the specific direction X. That is, in the straight region 121c, the oxidizing gas flows in the specific direction X ′.
  • the fuel gas channel when the oxidizing gas channel has a turn region as described above, it is preferable that the fuel gas channel also has a turn region.
  • the fuel cell stack may be manufactured by stacking the fuel cells configured as described above. Usually, the fuel cell stack is sandwiched between a current collector plate, an insulating plate, and an end plate, and further fixed with stud bolts and nuts.
  • non-humidified or low-humidified oxidizing gas is supplied to the oxidizing gas channel, and fuel gas containing hydrogen gas is supplied to the fuel gas channel to obtain electric energy. Electric energy is obtained by the following reaction.
  • hydrogen molecules supplied to the fuel electrode diffuse through the fuel electrode gas diffusion layer and reach the fuel electrode catalyst layer.
  • hydrogen molecules are divided into protons and electrons.
  • Protons move to the air electrode side through the humidified polymer electrolyte membrane.
  • Electrons move to the air electrode through an external circuit. At this time, the electrons passing through the external circuit can be used as electric energy.
  • protons that have moved through the polymer electrolyte membrane, electrons that have moved through the external circuit, and oxygen supplied to the air electrode react to generate water.
  • non-humidified or low-humidified oxidizing gas is supplied to the oxidizing gas flow path.
  • the polymer electrolyte membrane dries near the inlet of the oxidizing gas channel, the membrane resistance increases, and the output density decreases. was there.
  • the water retention region is arranged between the adjacent oxidizing gas flow paths, the generated water can be retained even near the inlet of the oxidizing gas flow path. it can.
  • FIG. 8A is a cross-sectional view taken along one-dot chain line A of the fuel cell 100 of the present invention shown in FIG.
  • a plurality of arrows Z in FIG. 8A indicate the movement of water.
  • the gap between the oxidizing gas channel 121 and the oxidizing gas channel 121 ′ is large (the rib width is large) in the water retention region, most of the water generated in the air electrode catalyst layer 113 is ribs. It diffuses below 123 and is held.
  • maintains the water
  • FIG. 8B is a cross-sectional view taken along the two-dot chain line B of the fuel cell 100 of the present invention shown in FIG. 5 and a cross-sectional view of the oxidizing gas supply region 127.
  • a plurality of arrows Z ′ in FIG. 8B indicate the movement of the oxidizing gas.
  • the gap (the rib width is small) between the oxidizing gas channel 121 and the oxidizing gas channel 121 ′ is small in the oxidizing gas supply region.
  • the rib 123 is a porous body that transmits an oxidizing gas.
  • the oxidizing gas flows into the oxidizing gas supply region from the oxidizing gas channel 121 and the oxidizing gas channel 121 ′, and the oxidizing gas is intensively supplied.
  • the oxidant gas supply region since the gap between the oxidant gas channel 121 and the oxidant gas channel 121 ′ is small (the rib width is small), the water held under the ribs 123 It is easy to diffuse and moisture is not retained.
  • the region having a high water content and the region having a high oxygen concentration are alternately arranged along the specific direction. Can be formed. Thereby, it is possible to supply a sufficient amount of oxygen to the air electrode while retaining moisture in the fuel cell.
  • the fuel gas can be supplied to the region where the membrane resistance of the polymer electrolyte membrane is low and the concentration of the oxidizing gas is high. . Thereby, power generation energy can be obtained more efficiently.
  • the durability and high output density of the MEA can be maintained even when oxygen gas is supplied without humidification or low humidification.
  • FIG. 9 is a perspective view of the fuel cell of the first embodiment.
  • FIG. 10 is a part of an exploded perspective view of the fuel cell 100 of the first embodiment.
  • the fuel cell 100 includes an MEA 110, an air electrode separator 120, and a fuel electrode separator 130.
  • the MEA 110 includes a polymer electrolyte membrane 111, an air electrode catalyst layer 113, a fuel electrode catalyst layer 115, an air electrode gas diffusion layer 117, and a fuel electrode gas diffusion layer 119.
  • the oxidizing gas channel 121 is formed in the air electrode separator 120.
  • the fuel electrode separator 130 is a metal separator having a corrugated cross section.
  • the fuel electrode separator 130 has a fuel gas channel 131 on the surface in contact with the MEA 110 and a refrigerant channel 153 on the back surface of the surface in contact with the MEA 110.
  • the fuel gas channel 131 ′ selectively overlaps the water retention region 125 and the oxidizing gas supply region 127 and does not overlap the portion of the oxidizing gas channel 121 that is parallel to the fuel gas channel 131.
  • FIG. 11 is a plan view of the air electrode separator 120 shown in FIG. 9 and FIG.
  • the air electrode separator 120 of the first embodiment includes the oxidizing gas supply manifold hole 140, the oxidizing gas discharge manifold hole 141, the fuel gas supply manifold hole 160, the fuel gas discharge manifold hole 161, and the refrigerant supply.
  • a manifold hole 150 and a refrigerant discharge manifold hole 151 are provided.
  • the oxidizing gas supply manifold hole 140 is a hole for supplying oxidizing gas to the oxidizing gas channel 121.
  • the oxidizing gas discharge manifold hole 141 is a hole for discharging the oxidizing gas from the oxidizing gas channel 121.
  • the oxidizing gas passage 121 is formed in the air electrode separator 120.
  • the air electrode separator 120 has two or more oxidizing gas flow paths 121 along the specific direction X.
  • the two or more oxidizing gas flow paths 121 are formed in a meandering shape and are line symmetric with respect to a line parallel to the specific direction X.
  • the air electrode separator 120 alternately has the water retention regions 125 and the oxidizing gas supply regions 127 along the specific direction X.
  • FIG. 12 is a plan view of the fuel electrode separator 130 shown in FIG. 9 and FIG. 12A is a plan view of the surface of the fuel electrode separator 130 on which the fuel gas passage 131 is formed, and FIG. 12B is a plan view of the back surface 130 'of the fuel electrode separator 130 shown in FIG. 11A. Two or more refrigerant flow paths 153 parallel to each other are formed on the back surface 130 ′.
  • the fuel electrode separator 130 of the first embodiment includes the oxidizing gas supply manifold hole 140 and the oxidizing gas discharge manifold hole 141, the fuel gas supply manifold hole 160, the fuel gas discharge manifold hole 161, and A refrigerant supply manifold hole 150 and a refrigerant discharge manifold hole 151 are provided. Further, the fuel electrode separator 130 is formed with two or more fuel gas passages 131 parallel to each other.
  • the fuel gas supply manifold hole 160 is a hole for supplying fuel gas to the fuel gas flow path 131.
  • the fuel gas discharge manifold hole 161 is a hole for discharging the fuel gas from the fuel gas flow path 131.
  • the refrigerant supply manifold hole 150 is a hole for supplying a refrigerant to the refrigerant flow path 153.
  • the refrigerant discharge manifold hole 151 is a hole for discharging the refrigerant from the refrigerant flow path 153.
  • the fuel electrode separator 130 is a metal separator
  • the fuel gas flow path 131 and the refrigerant flow path 153 are in an integrated relationship. That is, the rib 133 formed on the fuel electrode separator 130 corresponds to the refrigerant flow path 153 on the back surface 130 ′, and the rib 155 formed on the back surface 130 ′ corresponds to the fuel gas flow path 131 in the fuel electrode separator 130 (FIG. 10).
  • the water retention region and the oxidation gas supply region are alternately arranged along the specific direction between the adjacent oxidation gas flow channels of the fuel cell according to the first embodiment. Even when this oxidizing gas is supplied, sufficient moisture can be retained in the fuel cell, and a sufficient amount of oxidizing gas can be supplied to the fuel cell.
  • the fuel gas can be supplied to a region where the membrane resistance of the polymer electrolyte membrane is low and the concentration of the oxidizing gas is high.
  • the power generation energy can be obtained more efficiently. Therefore, according to the present embodiment, the durability and high output density of MEA can be maintained even when oxygen gas is supplied without humidification or with low humidification.
  • the fuel cell of Embodiment 2 is the same as the fuel cell 100 of Embodiment 1 except that the downstream shape of the oxidizing gas flow path is different. Therefore, in the present embodiment, only the shape of the oxidizing gas channel will be described.
  • FIG. 13 is a plan view of the air electrode separator 220 of the fuel cell of the second embodiment.
  • the same components as those of the air electrode separator 120 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the air electrode separator 220 shown in FIG. 13 has two or more oxidizing gas flow paths 221 along the specific direction X.
  • the oxidizing gas channel 221 includes an upstream region 221a and a downstream region 221b.
  • the “upstream region” means a region on the oxidizing gas supply manifold hole 140 side in the oxidizing gas channel
  • the “downstream region” means a region on the oxidizing gas discharge manifold hole 141 side in the oxidizing gas channel. Means.
  • the oxidizing gas channel 221 has a meandering shape. Further, in the upstream region 221 a, the adjacent oxidizing gas flow paths 221 are symmetrical with respect to a line parallel to the specific direction X. For this reason, in the upstream region 221a, the water retention regions 125 and the oxidizing gas supply regions 127 are alternately arranged along the specific direction X between the adjacent oxidizing gas flow paths 221.
  • the oxidizing gas channel 221 is linear. Therefore, in the downstream region 221b, the gap (the width of the rib 123) between the adjacent oxidizing gas flow paths 221 is constant. Further, the gap between the adjacent oxidizing gas flow paths 221 in the downstream region 221b is smaller than the maximum value of the gap (the width of the water retention region 125) between the adjacent oxidizing gas flow channels 221 in the upstream region 221a.
  • the gap between adjacent oxidizing gas flow paths 221 in the downstream region 221b is preferably substantially the same as the width of the oxidizing gas supply region 127 disposed between the adjacent oxidizing gas flow channels 221 in the upstream region 221a.
  • the downstream area 221b is oxidized more than the upstream area 221a.
  • the number of gas flow paths 221 increases.
  • the water retention region By forming the water retention region only in the adjacent upstream region in this way, it is possible to selectively retain only the vicinity of the oxidizing gas supply manifold hole (upstream region) that is particularly easily dried in the fuel cell. Further, in the downstream region where the oxidant gas is easily depleted, the supply amount of the oxidant gas can be increased by making the oxidant gas passages linear and reducing the gap between the oxidant gas passages.
  • Embodiment 3 In the first and second embodiments, the form in which the oxidizing gas flow path is formed in the air electrode separator has been described. In Embodiment 3, an embodiment in which the oxidizing gas flow path is formed in the air electrode gas diffusion layer will be described.
  • FIG. 14 is an exploded perspective view of the fuel cell 300 of the third embodiment.
  • the same components as those of the fuel cell 100 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the fuel cell 300 has an air electrode gas diffusion layer 317 and an air electrode separator 320.
  • An oxidizing gas flow path 121 is formed in the air electrode gas diffusion layer 317.
  • the air electrode separator 320 is a flat plate.
  • FIG. 15 shows the fuel cell of the first embodiment and the fuel cell of the second embodiment under a medium temperature and non-humidified condition (temperature during power generation of the fuel cell: 65 ° C. Dew point of oxidizing gas: 35 ° C. Dew point of fuel gas: 65 ° C. ) Shows the simulation results of the generated voltage and the membrane resistance when operated in ().
  • a conventional fuel cell (a fuel cell not having a water retention region and an oxidizing gas supply region) is subjected to a medium temperature full humidification condition (temperature during power generation of the fuel cell: 65 ° C., dew point of oxidizing gas: 65 ° C.) Also shown are simulation results of power generation voltage and membrane resistance when operated at a gas dew point of 65 ° C. (conventional example 1) and when a conventional fuel cell is operated under medium temperature non-humidified conditions (conventional example 2). .
  • the “same direction” shown in FIG. 15 indicates a case where the flowing direction of the oxidizing gas and the flowing direction of the fuel gas are the same, and the “reverse direction” means that the flowing direction of the oxidizing gas and the flowing direction of the fuel gas are The reverse case is shown.
  • Embodiment 1 and Embodiment 2 have the same generation voltage as that of the fuel cell (Conventional Example 1) operated under the medium temperature full humidification condition of the conventional oxidizing gas. It became. However, the fuel cells of Embodiments 1 and 2 have lower membrane resistance than the fuel cell of Conventional Example 2. This result suggests that the fuel cells of Embodiments 1 and 2 have higher MEA moisture content than the fuel cell of Conventional Example 2.
  • FIG. 16 shows the relative humidity (FIG. 16A) in the oxidizing gas flow path and the fuel gas flow path when the fuel cell of Embodiment 1 and the fuel cell of Embodiment 2 are operated under a medium temperature non-humidified condition.
  • the simulation result of relative humidity (FIG. 16B) is shown.
  • the simulation result of the relative humidity in the road is also shown. In this simulation, the direction in which the oxidizing gas flows and the direction in which the fuel gas flows are the same.
  • the alternate long and short dash line A1 indicates the relative humidity of the first embodiment
  • the solid line A2 indicates the relative humidity of the second embodiment
  • the two-dot chain line B1 indicates the relative humidity of the conventional example 1
  • a dotted line B2 indicates the relative humidity of Conventional Example 2.
  • the relative humidity in the oxidant gas flow path of the fuel cells of Embodiments 1 and 2 is maintained at approximately 70% or more even in the vicinity of the oxidant gas flow path inlet that is most dry. Yes.
  • the relative humidity in the oxidizing gas channel of the fuel cell of Conventional Example 2 was 30% or less near the oxidizing gas channel inlet.
  • the relative humidity exceeds 100% near the outlet of the oxidizing gas channel, but in the fuel cell of the second embodiment, the relative humidity is also near the outlet of the oxidizing gas channel. It does not exceed 100%. This suggests that in the fuel cell of Embodiment 2, flooding is unlikely to occur near the outlet of the oxidizing gas flow path.
  • the relative humidity in the fuel gas flow paths of the fuel cells of Embodiments 1 and 2 was generally maintained at 80% or more.
  • the relative humidity in the fuel gas channel of the fuel cell of Conventional Example 2 was 70% or less near the fuel gas channel inlet.
  • the fuel cell of the present invention has higher relative humidity and lower membrane resistance than the conventional fuel cell under the medium temperature and no humidification condition. Therefore, it is expected that the fuel cell of the present invention has higher MEA durability than the conventional fuel cell under the medium temperature non-humidified condition.
  • FIG. 17 shows the fuel cell of Embodiment 1 and the fuel cell of Embodiment 2 under high-temperature and low-humidification conditions (temperature during power generation of the fuel cell: 90 ° C. Dew point of oxidizing gas: 65 ° C. Dew point of fuel gas: 65 The simulation results of the generated voltage and the membrane resistance when operated at (° C.) are shown. Furthermore, as a comparative example, when a conventional fuel cell is operated under a medium temperature full humidification condition (Conventional Example 1), and when a conventional fuel cell is operated under a high temperature low humidification condition (Conventional Example 2), The simulation results of power generation voltage and membrane resistance are also shown.
  • the “same direction” shown in FIG. 17 indicates a case where the flowing direction of the oxidizing gas and the flowing direction of the fuel gas are the same, and the “reverse direction” means that the flowing direction of the oxidizing gas and the flowing direction of the fuel gas are The reverse case is shown.
  • the generated voltage is higher when the flow directions of the oxidizing gas and the fuel gas are opposite.
  • the power generation performance is higher when the direction in which the fuel gas flows and the direction in which the oxidizing gas flows are reversed under high temperature and low humidification conditions.
  • the fuel cells of Embodiments 1 and 2 have lower membrane resistance than the fuel cell of Conventional Example 2. This result suggests that the water content of the fuel cells of Embodiments 1 and 2 is higher than that of Conventional Example 2.
  • the fuel cell of the second embodiment has a higher power generation voltage than the fuel cell of the conventional example 2 and the first embodiment.
  • FIG. 18 shows the relative humidity (FIG. 18A) in the oxidizing gas flow path and the fuel gas flow path when the fuel cell of Embodiment 1 and the fuel cell of Embodiment 2 are operated under high temperature and low humidification conditions.
  • the simulation result of relative humidity (FIG. 18B) is shown.
  • FIG. 18A when a conventional fuel cell is operated under a medium temperature full humidification condition (conventional example 1), and when a conventional fuel cell is operated under a high temperature low humidification condition (conventional example 2), The simulation result of the relative humidity in the gas flow path is also shown.
  • the direction in which the oxidizing gas flows is opposite to the direction in which the fuel gas flows.
  • the alternate long and short dash line A1 indicates the relative humidity of the first embodiment
  • the solid line A2 indicates the relative humidity of the second embodiment
  • the two-dot chain line B1 indicates the relative humidity of the conventional example 1
  • a dotted line B2 indicates the relative humidity of Conventional Example 2.
  • the relative humidity in the oxidant gas flow path of the fuel cells of Embodiments 1 and 2 is maintained at approximately 40% or more even in the vicinity of the oxidant gas flow path inlet that is most likely to dry. Yes.
  • the relative humidity in the oxidizing gas channel of the fuel cell of Conventional Example 2 was 40% or less near the oxidizing gas channel inlet.
  • the relative humidity in the fuel gas channel of the fuel cells of Embodiments 1 and 2 was approximately 60% near the inlet of the fuel gas channel, whereas In Example 2, the relative humidity did not exceed 60%.
  • the fuel cell of the present invention has a higher power generation voltage and lower membrane resistance than the conventional fuel cell. Therefore, the fuel cell of the present invention is expected to have a higher output density and higher MEA durability than conventional fuel cells under high temperature and low humidification conditions.
  • the size of the catalyst electrode was 200 mm in length.
  • the width of the oxidizing gas channel was 1.0 mm and the depth was 0.3 mm.
  • the width of the fuel gas channel was 1.0 mm, and the depth was 0.5 mm.
  • the thickness of the polymer electrolyte membrane is 30 ⁇ m; the thickness of the air electrode catalyst layer is 10 ⁇ m; the thickness of the air electrode gas diffusion layer is 200 ⁇ m; the thickness of the fuel electrode catalyst layer is 10 ⁇ m;
  • the thickness was set to 400 ⁇ m.
  • the gas diffusion layer has the same diffusibility as the paper type and cloth type.
  • the dew point of the oxidizing gas was 65 ° C.
  • the dew point of the fuel gas was 65 ° C.
  • the cell temperature was 80 ° C.
  • the utilization rate of oxidizing gas (air) was 55%
  • the utilization rate of fuel gas (75% hydrogen, 25% carbon dioxide) was 75%.
  • the width of the oxidizing gas supply area was set to 0 to 6 mm as a variable.
  • the width of the water retaining region was set to 2 to 8 mm as a value obtained by adding the width value of the two flow paths (2 mm) to the width value of the oxidizing gas supply region.
  • FIG. 19 is a graph showing the analysis results of Experimental Example 3.
  • the horizontal axis of the graph shown in FIG. 19 indicates the width of the oxidizing gas supply region, and the vertical axis indicates the generated voltage.
  • the generated voltage increases when the width of the oxidizing gas supply region is 0 to 2 mm, and decreases when the width of the oxidizing gas supply region is 2 mm or more.
  • the power generation voltage becomes high (6.9 mV or more).
  • the fuel cell according to the present invention is useful for a polymer electrolyte fuel cell that is operated at a high temperature and low humidity or a medium temperature non-humidification operation.
  • Fuel cell 110 MEA DESCRIPTION OF SYMBOLS 111
  • Polymer electrolyte membrane 113
  • Air electrode catalyst layer 115
  • Fuel electrode catalyst layer 117,317 Air electrode gas diffusion layer 119
  • Fuel electrode gas diffusion layer 120,220,320
  • Air electrode separator 121,221
  • Oxidation gas flow path 123,133,155 Rib 125 Water retention area 127
  • Oxidizing gas supply area 130 Fuel electrode separator 131
  • Fuel gas flow path 140 Oxidizing gas supply manifold hole 141
  • Oxidizing gas discharge manifold hole 150
  • Refrigerant supply manifold hole 151
  • Refrigerant discharge manifold hole 153
  • Refrigerant flow path 160
  • Fuel gas supply manifold hole 161 Fuel gas discharge manifold hole

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 高分子電解質膜ならびに前記高分子電解質膜を挟み、空気極および燃料極からなる一対の触媒電極を有する膜電極接合体と;前記膜電極接合体を挟む空気極セパレータおよび燃料極セパレータからなる一対のセパレータと;前記空気極に酸化ガスを供給する、特定方向に沿った2以上の酸化ガス流路と;前記燃料極に燃料ガスを供給する、前記特定方向に平行な2以上の直線状の燃料ガス流路と;を有する燃料電池であって、隣接する2つの前記酸化ガス流路の間には、前記酸化ガス流路間のギャップが大きい箇所と前記ギャップが小さい箇所とが、前記特定方向に沿って交互に配置され、前記燃料ガス流路は、前記酸化ガス流路のうち、前記燃料ガス流路に平行な部分に重ならない、燃料電池。

Description

燃料電池
 本発明は、燃料電池に関する。
 燃料電池は、基本的に、プロトンを選択的に輸送する高分子電解質膜、ならびに高分子電解質膜を挟持する一対の触媒電極(燃料極および空気極)から構成される。上記構成を有する燃料電池は、燃料極に供給される燃料ガス(水素を含む)、および空気極に供給される酸化ガス(酸素を含む)を用いて、電気エネルギを継続的に取り出すことができる。
 高分子電解質膜は、スルホン酸基を有するフッ素樹脂系イオン交換膜や、炭化水素樹脂系イオン交換膜のような高分子イオン交換膜などを有する電解質から構成される。また、高分子電解質膜が、イオン輸送機能を有するためには、高分子電解質膜が一定量の水分を含むことが必要である。
 触媒電極は、高分子電解質膜側に位置し、触媒電極内における酸化還元反応を促進させる触媒層と、触媒層の外側に位置し、通気性および導電性を有するガス拡散層とから構成される。さらに、ガス拡散層は、触媒層側に位置し、触媒層との接触性を向上させるカーボンコート層と、外部から供給されるガスを拡散させて、触媒層に供給するためのガス拡散基材層とから構成される。燃料極の触媒層には、例えば、白金や白金とルテニウムとの合金などが含まれ、空気極の触媒層には、例えば、白金や白金とコバルトとの合金などが含まれる。これら高分子電解質膜および一対の触媒電極(触媒層、カーボンコート層およびガス拡散基材層)を一体化したものは、膜電極接合体(membrane electrode assembly;以下「MEA」という)と呼ばれる。
 MEAは、積層されることで電気的に直列に接続されうる。このとき、燃料ガスと酸化ガスとが混ざらないようにするため、および各MEAを電気的に直列に接続するために、導電性のセパレータが各MEAの間に配置される。
 セパレータには、燃料極に接する燃料極セパレータおよび空気極に接する空気極セパレータが含まれる。通常、燃料極セパレータには、MEAに燃料ガスを供給するための燃料ガス流路が形成され、空気極セパレータには、MEAに酸化ガスを供給するための酸化ガス流路が形成される。
 従来の燃料電池ではガス流路は、直線状のガス流路が互いに平行である(例えば特許文献1参照)。図1は特許文献1に開示された燃料電池の分解斜視図である。図1に示された燃料電池は、膜電極接合体1、空気極セパレータ2および燃料極セパレータ3を有する。空気極セパレータ2は、互いに平行の複数の直線状の酸化ガス流路8を有する。
 このような構成を有する燃料電池では、一般的に酸化ガス流路同士のギャップ、すなわちリブの幅が小さい。リブは酸化ガス流路と異なり、酸化ガスの供給に寄与しないことから、リブの幅を小さくすると、より多くの酸化ガスをMEAに供給することができる。そのため、従来の燃料電池では、酸化ガスの供給量を増やすため、リブの幅は小さくされる傾向にあった。
 また、上述のように高分子電解質膜は、イオンを透過する機能のために一定量の水分を必要とする。したがって、従来の燃料電池では、燃料電池内に充分な水分を確保するために、燃料ガスおよび酸化ガスは予め加湿される。しかし酸化ガスを加湿するための加湿器は、発電には直接寄与せず、スペースを必要とする。したがって、加湿器を必要としない燃料電池コージェネレーションシステムを開発できれば、燃料電池コージェネレーションシステムの小型化が可能となり、システム全体のコストを削減することができる。また、加湿器を必要としない燃料電池コージェネレーションシステムを開発できれば、加湿器によるエネルギーロスが無くなるので、システム全体の効率の向上が可能となる。そのため、酸化ガスが低加湿または無加湿の状態であっても、発電効率が低下しない燃料電池の開発が求められてきた。
 また、反応ガス流路内に発電時に生成された水が残存することによって起こるフラッディング現象を防止するため、セパレータに2以上の独立した反応ガス流路を形成する技術が知られている(例えば特許文献2、特許文献3および特許文献4参照)。特許文献2、特許文献3および特許文献4に開示された燃料電池では、それぞれの独立した反応ガス流路は、蛇行状に形成されている。
 また、反応ガス流路を規定するリブの強度を確保するために、2以上の反応ガスを平行に配置する技術が知られている(例えば、特許文献5参照)。特許文献5に開示された燃料電池の反応ガス流路はそれぞれ蛇行状である。また、特許文献5に開示された燃料電池のセパレータは、カーボンセパレータである。
特開2003-249243号公報 特開2004-247289号公報 米国特許出願公開第2004/0157103号明細書 特開2002-50392号公報 特開2008-66242号公報
 燃料電池を低加湿または無加湿で運転するためには、発電中に空気極の触媒層で生成される水分を燃料電池内に留めることが課題になる。燃料電池の発電時に空気極の触媒層で生成された水の燃料電池内における移動を図を用いて説明する。
 図2は、燃料電池のMEAの面方向に垂直な部分断面図である。図2に示された燃料電池は、MEA110、空気極セパレータ120および燃料極セパレータ130を有する。MEAはさらに高分子電解質膜111、空気極触媒層113、燃料極触媒層115、空気極ガス拡散層117および燃料極ガス拡散層119を有する。
 空気極セパレータ120は酸化ガス流路121およびリブ123を有する。また、燃料極セパレータ130は燃料ガス流路131およびリブ133を有する。複数の矢印Zは、空気極触媒層113で生成された水の移動を示す。リブ123および133はガス流路間のギャップを形成する。
 図2に示されるように空気極触媒層113で生成された水は、拡散によって一部が酸化ガス流路121内に移動し、一部がリブ123の下に移動する。酸化ガス流路121内に移動した水は、酸化ガス流路121を通って燃料電池の外部に排出され、リブ123の下に移動した水は、リブ123の下に保持される。したがって、酸化ガス流路を通って排出される水の量を減らし、リブの下に保持される水の量を増やすことで、発電時に空気極の触媒層で生成された水を燃料電池内に留めることができる。
 上述のように特許文献1に開示されたような燃料電池では、酸化ガス流路間のギャップ(リブ幅)が小さいので、発電中に生成された水の多くは、酸化ガス流路内に移動し、酸化ガス流路を通して燃料電池の外部に排出されてしまう。またリブ幅が小さいと、リブの下に保持された水分も拡散によって酸化ガス流路内に移動しやすくなる。そのため、MEAが乾燥し、出力密度が低下してしまう。またMEAが乾燥すると、出力密度が下がるだけではなく、MEAが劣化しやすくなり、燃料電池の寿命が縮まる。
 また、特許文献1に開示されたような燃料電池において、酸化ガス流路間のギャップ(リブ幅)を大きくすることで、リブ下に保持される水の量を増やし、MEAの湿度を保つことも考えられる。しかし、単純にリブ幅を大きくした場合、MEAに供給される酸化ガスの量が低下し、出力密度が低下してしまう。
 本発明の目的は、酸素ガスを無加湿または低加湿で供給する場合であっても、燃料電池内に充分な量の水分を確保することができ、かつMEAに充分な量の酸素ガスを供給することができる燃料電池を提供することである。
 本発明は以下に記載される燃料電池に関する。
 [1]高分子電解質膜、ならびに前記高分子電解質膜を挟み、空気極および燃料極からなる一対の触媒電極を有する膜電極接合体と;前記膜電極接合体を挟む空気極セパレータおよび燃料極セパレータからなる一対のセパレータと;前記空気極に酸化ガスを供給する、特定方向に沿った2以上の酸化ガス流路と;前記燃料極に燃料ガスを供給する、前記特定方向に平行な2以上の直線状の燃料ガス流路と;を有する燃料電池であって、隣接する2つの前記酸化ガス流路の間には、前記酸化ガス流路間のギャップが大きい箇所と前記ギャップが小さい箇所とが、前記特定方向に沿って交互に配置され、前記燃料ガス流路は、前記酸化ガス流路のうち、前記燃料ガス流路に平行な部分に重ならない、燃料電池。
 [2]前記酸化ガス流路は、酸化ガスに対する透過性を有するリブによって規定され、前記リブは、導電性多孔質体からなる、[1]に記載の燃料電池。
 [3]前記導電性多孔質体における平均孔径は、10μm以下である、[2]に記載の燃料電池。
 [4]前記2以上の酸化ガス流路は、蛇行状であり、隣接する2つの前記酸化ガス流路同士は、前記特定方向に平行な線に関して線対称である、[1]~[3]のいずれか一つに記載の燃料電池。
 [5]前記酸化ガス流路は、前記空気極セパレータに形成される、[1]~[4]のいずれか一つに記載の燃料電池。
 [6]前記空気極セパレータは、金属板と、前記金属板上に配置され、導電性多孔質体からなるリブとを有する、[5]に記載の燃料電池。
 [7]前記空気極は、前記高分子電解質膜に接する触媒層と、前記触媒層上に積層され、前記空気極セパレータに接するガス拡散層と、を有し、前記酸化ガス流路は、前記ガス拡散層に形成される、[1]~[4]のいずれか一つに記載の燃料電池。
 [8]前記燃料ガス流路は、前記燃料極セパレータに形成され、前記燃料極セパレータは、前記燃料ガス流路を規定するリブを有し、前記リブは、前記燃料ガスに対する透過性を有さない、[1]~[7]のいずれか一つに記載の燃料電池。
 [9]前記燃料極セパレータは、カーボンセパレータまたは金属セパレータである、[8]に記載の燃料電池。
 [10]前記酸化ガス流路に流れる前記酸化ガスの流れる方向と、前記燃料ガス流路に流れる前記燃料ガスの流れる方向とは、前記特定方向と同一であり、前記燃料電池に供給される前記酸化ガスの露点は、45℃以下である、[1]~[9]のいずれか一つに記載の燃料電池。
 [11]前記酸化ガス流路に流れる前記酸化ガスの流れる方向と、前記燃料ガス流路に流れる前記燃料ガスの流れる方向とは、前記特定方向と同一であり、前記燃料電池に供給される前記酸化ガスの露点は、-10~45℃であり、前記燃料電池に供給される前記酸化ガスは加湿されない、[1]~[9]のいずれか一つに記載の燃料電池。
 [12]前記酸化ガス流路に流れる前記酸化ガスの流れる方向は、前記特定方向と同一であり、前記燃料ガス流路に流れる前記燃料ガスの流れる方向は、前記特定方向と逆であり、前記燃料電池に供給される前記酸化ガスの露点は、55~75℃である、[1]~[9]のいずれか一つに記載の燃料電池。
 [13]高分子電解質膜、ならびに前記高分子電解質膜を挟む、空気極および燃料極からなる一対の触媒電極を有する膜電極接合体と;前記膜電極接合体を挟む空気極セパレータおよび燃料極セパレータからなる一対のセパレータと;前記酸化極に酸化ガスを供給する、特定方向に沿った2以上の酸化ガス流路と;を有する燃料電池であって、前記酸化ガス流路は、上流領域と、下流領域とからなり、前記上流領域では、隣接する2つの前記酸化ガス流路の間には、前記酸化ガス流路間のギャップが大きい箇所と前記ギャップが小さい箇所とが、前記特定方向に沿って交互に配置され、前記下流領域では、隣接する2つの前記下流流酸化ガス流路間のギャップの大きさは、一定であり、前記下流領域における隣接する2つの前記酸化ガス流路間のギャップは、前記上流領域における隣接する2つの前記酸化ガス流路間のギャップの最大値よりも小さい、燃料電池。
 本発明の燃料電池によれば、酸素ガスを無加湿または低加湿で供給する場合であっても、燃料電池内に充分な量の水分を確保することができ、MEAに充分な量の酸素ガスを供給することができる。また、本発明によれば高分子電解質膜の膜抵抗が低く、酸化ガスの濃度が高い領域に、燃料ガスを選択的に供給することができる。そのため本発明の燃料電池は、酸素ガスを無加湿または低加湿で供給する場合であっても、MEAの耐久性および高い出力密度を維持することができる。
従来の燃料電池の分解斜視図 従来の燃料電池内の水の動きを示す図 本発明の燃料電池の酸化ガス流路のパターンを示す図 本発明の燃料電池の酸化ガス流路のパターンを示す図 本発明の燃料電池の断面の斜視図 本発明の燃料電池における酸化ガス流路と燃料ガス流路との位置関係を示す図 本発明の燃料電池の酸化ガス流路のパターンを示す図 本発明の燃料電池内の水の挙動を示す図 実施の形態1の燃料電池の斜視図 実施の形態1の燃料電池の分解斜視図 実施の形態1の燃料電池の空気極セパレータの平面図 実施の形態1の燃料電池の燃料極セパレータの平面図 実施の形態2の燃料電池の空気極セパレータの平面図 実施の形態3の燃料電池の分解斜視図 本発明の燃料電池の中温無加湿条件下での発電電圧および膜抵抗を示すグラフ 本発明の燃料電池の中温無加湿条件下でのガス流路内の相対湿度を示すグラフ 本発明の燃料電池の高温低加湿条件下での発電電圧および膜抵抗を示すグラフ 本発明の燃料電池の高温低加湿条件下でのガス流路内の相対湿度を示すグラフ 実験例3の結果を示すグラフ
 本発明の燃料電池は、1)MEAと、2)空気極セパレータおよび燃料極セパレータからなる一対のセパレータと、4)複数の酸化ガス流路と、5)複数の燃料ガス流路とを有する。また本発明の燃料電池は、低加湿または無加湿の酸化ガスが供給される燃料電池に関する。
 (1)膜電極接合体(MEA)について
 MEAは、高分子電解質膜ならびに高分子電解質膜を挟む空気極および燃料極からなる一対の触媒電極を有する。空気極は、高分子電解質膜に接する空気極触媒層と、空気極触媒層に積層される空気極ガス拡散層とを有することが好ましい。同様に、燃料極は、高分子電解質膜に接する燃料極触媒層と、燃料極触媒層に積層される燃料極ガス拡散層とを有することが好ましい。
 高分子電解質膜は、湿潤状態において、プロトンを選択的に輸送する機能を有する高分子膜である。高分子電解質膜の材料は、プロトンを選択的に移動させるものであれば特に限定されない。このような材料の例にはフッ素系の高分子電解質膜や炭化水素系の高分子電解質膜などが含まれる。フッ素系の高分子電解質膜の具体的な例には、デュポン社のNafion(登録商標)膜や旭硝子株式会社のFlemion(登録商標)膜、旭化成株式会社のAciplex(登録商標)膜、ジャパンゴアテックス社のGORE-SELECT(登録商標)膜などが含まれる。
 空気極触媒層は、水素および酸素の酸化還元反応を促進する触媒を含む層である。空気極触媒層は、導電性を有し、かつ水素および酸素の酸化還元反応を促進する触媒能を有するものであれば特に限定されない。空気極触媒層は、例えば触媒として白金や白金とコバルトとの合金、白金とコバルトとニッケルとの合金など含む。
 燃料極触媒層は、水素の酸化反応を促進する触媒を含む層である。燃料極触媒層は、導電性を有し、かつ水素の酸化反応を促進する触媒能を有するものであれば特に限定されない。燃料極触媒層は、例えば、触媒として白金や白金とルテニウムとの合金などを含む。
 空気極触媒層および燃料極触媒層は、例えば、これらの触媒を担持させたアセチレンブラックやケッチェンブラック、バルカンなどのカーボン微粒子に、プロトン導電性を有する電解質と撥水性を有するポリテトラフルオロエチレン(Polytetrafluoroethylene, PTFE)などの樹脂を混合し、高分子電解質膜上に塗布することで形成される。
 ガス拡散層(空気極ガス拡散層および燃料極ガス拡散層)は、膜電極接合体の最も外側に配置され、後述するセパレータに接する導電性を有する多孔質層である。ガス拡散層の材料は、導電性を有し、かつ反応ガスが拡散できるものであれば特に限定されない。ガス拡散層は、セパレータ側から供給されるガスを触媒層に拡散させるガス拡散基材層と、ガス拡散基材層と触媒層との接触性を向上させるカーボンコート層とから構成されていてもよい。
 ガス拡散層は、例えば、撥水性を有するPTFEなどの樹脂を含浸させた炭素繊維や、糸状のカーボンを織って作製したカーボンクロス、紙状のカーボンペーパーなどを触媒層表面に熱圧着して、作製されてもよい。
 (2)セパレータについて
 セパレータは、MEAを機械的に固定し、かつMEAに供給される酸化ガスと燃料ガスとを混ざらないようにするための導電性の板である。空気極セパレータは、空気極に接し、燃料極セパレータは、燃料極に接する。
 (3)酸化ガス流路について
 酸化ガス流路は、酸化ガスを空気極に供給するための流路である。酸化ガス流路の幅は、0.8~1.2mm程度であることが好ましく、酸化ガス流路の深さは、0.3~0.8mmであることが好ましい。酸化ガス流路はリブによって規定される。
 酸化ガスを規定するリブは、導電性を有し、酸化ガスに対する透過性を有することが好ましい。リブが酸化ガスに対する透過性を有することで、酸化ガスは酸化ガス流路だけでなく、リブ内にも拡散することができる。このため、酸化ガスは、酸化ガス流路からだけでなく、酸化ガス流路を規定するリブからも、空気極に供給されることができる。このため、空気極の表面全体に酸化ガスを供給することができ、空気極の発電面積を拡大させることができる。
 このようなリブの材料は特に限定されないが、導電性の多孔質体であることが好ましい。導電性の多孔質体における平均孔径は、10μm以下であることが好ましく、5μm以下であることがさらに好ましい。導電性多孔質体における平均孔径は、多孔質体の断面図のSEM写真から測定された孔の面積から、面積相当径の平均を算出することで得られる。または、導電性多孔質体における平均孔径は、水銀ポロシメータを用いた細孔分布計測によって求めることもできる。
 このような導電性の多孔質体の例には、撥水性を有するPTFEなどの樹脂を付帯させた炭素繊維や、糸状のカーボンを織って作製したカーボンクロス、紙状のカーボンペーパー、炭素繊維とPTFEとを混練してシート状にしたカーボンシートなどが含まれる。
 また、多孔質体は、表面積が大きい。このため、酸化ガス流路を規定するリブが多孔質であると、空気極セパレータと空気極との接触面積が増加して、空気極セパレータと空気極との接触抵抗が低下する。これにより、発電された電力を効率的に取り出すことが可能となる。
 本発明では、酸化ガス流路は、空気極セパレータに形成されてもよいし(図10参照)、空気極ガス拡散層に形成されてもよい(図14参照)。空気極セパレータに酸化ガス流路を形成する場合、空気極セパレータは、導電性の平板と、平板上に配置され、導電性多孔質体からなるリブとから構成されてもよい。平板は、例えば金属板である。
 本発明の燃料電池は、酸化ガス流路の形状に特徴を有する。以下、図を参照しながら酸化ガス流路の形状について、詳細に説明する。
 図3は、本発明の酸化ガス流路のパターンの一例を示す図である。図3では、酸化ガス流路121が空気極セパレータ120に形成された例を示す。図3に示されるように空気極セパレータ120は、特定方向Xに沿った、複数の酸化ガス流路121と、酸化ガス流路121を規定するリブ123とを有する。「特定方向X」は、酸化ガスの流れる方向を示す。リブ123は隣接する酸化ガス流路121間のギャップを形成する。
 図3に示されるように、隣接する二つの酸化ガス流路の間には、酸化ガス流路間のギャップ(リブ幅)が大きい箇所125(以下「保水領域125」と称する)と、酸化ガス流路同士のギャップ(リブ幅)が小さい箇所127(以下「酸化ガス供給領域」という)とが、特定方向Xに沿って交互に配置されている。ここで「保水領域」とは、燃料電池の運転時に水分が保持される領域を意味し、「酸化ガス供給領域」とは、燃料電池の運転時に酸化ガスが集中的に供給される領域を意味する(後述)。
 隣接する二つの酸化ガス流路の間のギャップの最大値125w(以下単に「保水領域の幅」とも称する)は、隣接する二つの酸化ガス流路の間のギャップの最小値127w(以下単に「酸化ガス供給領域の幅」とも称する)の2~4倍であることが好ましい。より具体的には、保水領域の幅125wは、3~6mmであることが好ましく、酸化ガス供給領域の幅127wは、1.4~3.1mmであることが好ましい。
 特定方向に沿って保水領域と酸化ガス供給領域とを交互に形成するには、例えば隣接する2つの酸化ガス流路を蛇行状とし、かつ当該隣接する2つの酸化ガス流路を特定方向に平行な線に関して線対称とすればよい。また、隣接する2つの酸化ガス流路の一方を蛇行状とし、もう一方を直線状とすればよい。隣接する2つの酸化ガス流路を蛇行状とした例が図4に示される。
 図4は、本発明の燃料電池の酸化ガス流路のパターンの例を示す。図4に示されるように酸化ガス流路121および酸化ガス流路121に隣接する酸化ガス流路121’は、蛇行状である。また、酸化ガス流路121と酸化ガス流路121’とは特定方向Xに平行な線Yに関して線対称である。
 酸化ガス流路121および酸化ガス流路121’が蛇行状であり、かつ酸化ガス流路121と、酸化ガス流路121’とが線Yに関して線対称であることで、保水領域125および酸化ガス供給領域127が特定方向Xに沿って交互に配置される。
 酸化ガス流路は、直角に蛇行していてもよいし(図4A)、湾曲して蛇行していてもよいし(図4B)、ジグザグに蛇行していてもよい(図4C)。
 (4)燃料ガス流路について
 燃料ガス流路は、燃料極に燃料ガスを供給するための流路である。燃料ガス流路の幅は、0.8~1.2mmであることが好ましく、燃料ガス流路の深さは、0.3~0.7mmであることが好ましい。燃料ガス流路の形状は、酸化ガス流路のように蛇行状ではなく、直線状であることが好ましい。燃料ガス流路は上述した特定方向Xに平行であることが好ましい。また燃料ガスの圧力損失を調節するために、燃料ガス流路内に突起を設けてもよい。さらに、燃料ガス流路を規定するリブは、基本的に燃料ガスに対する透過性を有さないことが好ましい。燃料ガス流路を規定するリブを燃料ガスに対して非透過性とすることで、燃料ガスを所望の領域に集中的に供給することができる。
 本発明では、燃料ガス流路は、燃料極セパレータに形成される。燃料極セパレータは、カーボンセパレータであってもよく、金属セパレータであってもよい。
 (5)酸化ガス流路と燃料ガス流路との位置関係について
 本発明は、酸化ガス流路と燃料ガス流路との位置関係にさらに特徴を有する。具体的には、本発明の燃料電池では、燃料ガス流路は、保水領域および酸化ガス供給領域に選択的に重なる。また、燃料ガス流路は、酸化ガス流路のうち、燃料ガス流路に平行な部分に重ならない。ここで「重なる」とは、燃料電池をMEAの面方向に対して垂直な方向から見たときに、重なりあう関係を意味する。
 図5は本発明の燃料電池の断面の斜視図であり、燃料ガス流路と酸化ガス流路との位置関係を示す図である。図5に示された燃料電池は、MEA110、空気極セパレータ120、燃料極セパレータ130、酸化ガス流路121、燃料ガス流路131を有する。MEA110は、高分子電解質膜111、空気極触媒層113、燃料極触媒層115、空気極ガス拡散層117、および燃料極ガス拡散層119を有する。
 また、図6Aは、MEA110の面方向に対して垂直な方向から見たときの、図5に示された酸化ガス流路121と燃料ガス流路131との位置関係を示した図である。
 図5および図6Aに示された燃料ガス流路131’のように、燃料ガス流路は、保水領域125および酸化ガス供給領域127に選択的に重なる。また、図5および図6Aに示された燃料ガス流路131のように、燃料ガス流路は、保水領域125のみに重なるように配置されていてもよい。
 一方で、燃料ガス流路131は、図6Bで示されるように酸化ガス流路121のうち燃料ガス流路131に平行な部分に重なるように配置されることは好ましくない。後述するように空気極で生成された水は、酸化ガス流路を通って、燃料電池の外部に排出されるため、酸化ガス流路が位置する領域ではMEAの湿度が低下し、高分子電解質膜の膜抵抗が上昇するからである。
 このように、燃料ガス流路を保水領域に重なるように配置することで水分含有率が高い(MEAの膜抵抗が低い)領域に燃料ガスを供給することができ、プロトンが効率的に空気極側に輸送されることができる。また、燃料ガス流路を保水領域および酸化ガス供給領域に重なるように配置することで、水分含有率および酸化ガス含有率が高い領域に燃料ガスを供給することができ、より効率的に発電エネルギを得ることができる。
 酸化ガス流路に流れる酸化ガスの流れる方向と燃料ガス流路に流れる燃料ガスの流れる方向とは、燃料電池の運転条件によって異なる。
 例えば、燃料電池が中温無加湿条件下で運転される場合は、酸化ガスおよび燃料ガスの流れる方向は同一であることが好ましい。したがって、燃料電池が中温無加湿条件下で運転される場合は、酸化ガスの流れる方向と燃料ガスの流れる方向とは、特定方向Xと同じである。
 ここで「中温無加湿条件」とは、燃料電池に供給される酸化ガスが加湿されない運転条件を意味する。具体的には、中温無加湿条件とは、燃料電池の発電時の温度が55~75℃であり;燃料電池に供給される酸化ガスの露点が45℃以下、好ましくは-10~45℃であり;燃料電池に供給される燃料ガスの露点が50~70℃である条件を意味する。露点は、ガスに含まれる水分が多いと高くなり、ガスに含まれる水分が少ないと低くなる。このような中温無加湿条件では、酸化ガスの露点は、燃料ガスの露点よりも通常20℃以上低い。
 一方で、燃料電池が高温低加湿条件下で運転される場合、酸化ガスの流れる方向と、燃料ガスの流れる方向とは、逆であることが好ましい。したがって、燃料電池が高温低加湿条件下で運転される場合は、燃料ガスの流れる方向は、特定方向Xと逆である。
 ここで「高温低加湿条件」とは、燃料電池の発電時の温度が80~100℃であり;酸化ガスの露点が55~75℃であり;燃料ガスの露点が50~70℃である条件を意味する。このような高温低加湿条件では、酸化ガスの露点と、燃料ガスの露点との差は通常10℃以下である。
 燃料電池コージェネレーションシステムに供給される燃料ガスは、通常、燃料電池処理器を用いて炭化水素系のガスを改質して生成される。燃料電池処理器を用いて炭化水素系のガスを改質して生成された燃料ガスの露点は、50℃~70℃になる。上述のように中温無加湿条件および高温低加湿条件における燃料ガスの露点が、ともに50℃~70℃と比較的高かったのは、燃料電池処理器を用いて炭化水素系のガスを改質して生成された燃料ガスを用いることを想定したからである。
 これまでは、全ての酸化ガス流路に流れる酸化ガスの流れる方向が全て同一である例について説明してきた(図3参照)。しかし本発明では、酸化ガスの流れる方向が同一である必要はない。例えば本発明の燃料電池は、図7に示されるような、酸化ガス流路を有することもある。
 図7に示された酸化ガス流路121は、直線領域121aおよび直線領域121cならびにターン領域121bを有する。ターン領域121bは、直線領域121aと直線領域121cとを接続する。酸化ガス流路の入口から最初のターン領域121bまでの直線領域121aでは酸化ガス流路121は特定方向Xに沿っている。すなわち直線領域121aでは、酸化ガスは特定方向Xに流れる。一方で、ターン領域121b後の直線領域121cでは酸化ガス流路121は特定方向Xとは逆の方向X’に沿っている。すなわち直線領域121cでは、酸化ガスは特定方向X’に流れる。
 また、上述のように酸化ガス流路がターン領域を有する場合は、燃料ガス流路もターン領域を有することが好ましい。
 このように構成された燃料電池を積層し、燃料電池スタックを製造してもよい。通常、燃料電池スタックは、集電板、絶縁板および端板によって挟持され、さらにスタッドボルトとナットとで固定される。
 次に本発明の燃料電池の運転時における燃料電池内の水分の挙動について説明する。
 本発明の燃料電池の運転時には、酸化ガス流路に、無加湿または低加湿の酸化ガスを供給し、燃料ガス流路に水素ガスを含む燃料ガスを供給して、電気エネルギを得る。電気エネルギは以下の反応で得られる。
 まず、燃料極に供給された水素分子は、燃料極ガス拡散層を拡散し燃料極触媒層に達する。燃料極触媒層において、水素分子は、プロトンと電子に分けられる。プロトンは、加湿された高分子電解質膜を通して空気極側に移動する。電子は、外部回路を通して空気極に移動する。このとき、外部回路を通る電子は、電気エネルギとして利用されうる。空気極触媒層では、高分子電解質膜を通して移動してきたプロトンと、外部回路を通して移動してきた電子と、空気極に供給された酸素とが反応し、水が生成される。
 上述のように本発明の燃料電池では、無加湿または低加湿の酸化ガスを酸化ガス流路に供給する。従来の燃料電池では、無加湿または低加湿の酸化ガスを酸化ガス流路に供給すると、酸化ガス流路の入口付近で高分子電解質膜が乾燥し、膜抵抗が上昇し、出力密度が下がることがあった。しかし、本発明の燃料電池では、隣接する酸化ガス流路間には、保水領域が配置されていることから、酸化ガス流路の入口付近であっても、生成された水分を保持することができる。また、隣接する酸化ガス流路間には、酸化ガス供給領域が配置されていることから、充分な量の酸化ガスをMEAに供給することができる。以下図面を用いて、本発明の燃料電池における水分の動きについて説明する。
 図8Aは、図5に示した本発明の燃料電池100の一点鎖線Aにおける断面図であり、保水領域125の断面図である。図8Aにおける複数の矢印Zは水の動きを示す。図8Aに示されるように保水領域では酸化ガス流路121と酸化ガス流路121’とのギャップが大きい(リブ幅が大きい)ことから、空気極触媒層113で生成された水のほとんどはリブ123の下に拡散し、保持される。また、保水領域では、酸化ガス流路121と酸化ガス流路121’とのギャップが大きいことから、リブ123の下に保持されている水は、酸化ガス流路121に拡散しにくい。このため、保水領域125には、発電によって生成された水分が保持される。
 図8Bは、図5に示した本発明の燃料電池100の二点鎖線Bにおける断面図であり、酸化ガス供給領域127の断面図である。図8Bにおける複数の矢印Z’は酸化ガスの動きを示す。図8Bに示されるように、酸化ガス供給領域では、酸化ガス流路121と酸化ガス流路121’とのギャップ(リブ幅が小さい)が小さい。また上述したようにリブ123は、酸化ガスを透過する多孔質体である。このため、酸化ガス供給領域には、酸化ガス流路121および酸化ガス流路121’から酸化ガス流入し、酸化ガスが集中的に供給される。
 一方で酸化ガス供給領域では、酸化ガス流路121と酸化ガス流路121’とのギャップが小さい(リブ幅が小さい)ことから、リブ123の下に保持されている水は、酸化ガス流路に拡散しやすく、水分が保持されない。
 このように、本発明の燃料電池では、保水領域と酸化ガス供給領域とを特定方向に沿って交互に配置することで、水分が多い領域と酸素濃度が高い領域とを特定方向に沿って交互に形成することができる。これにより、燃料電池内に水分を保持しつつも、空気極に充分な量の酸素を供給することができる。
 さらに、燃料ガス流路を、保水領域および酸化ガス供給領域に選択的に重ねることで、高分子電解質膜の膜抵抗が低く、酸化ガスの濃度が高い領域に、燃料ガスを供給することができる。これにより、より効率的に発電エネルギを得ることができる。
 そのため本発明によれば、酸素ガスを無加湿または低加湿で供給する場合であっても、MEAの耐久性および高い出力密度を維持することができる。
 以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
 (実施の形態1)
 実施の形態1では、酸化ガス流路が空気極セパレータに形成され、燃料極セパレータが金属セパレータである燃料電池について説明する。
 図9は、実施の形態1の燃料電池の斜視図である。図10は、実施の形態1の燃料電池100の分解斜視図の一部である。
 図9および図10に示されるように燃料電池100は、MEA110、空気極セパレータ120および燃料極セパレータ130を有する。MEA110は、高分子電解質膜111、空気極触媒層113、燃料極触媒層115、空気極ガス拡散層117、および燃料極ガス拡散層119を有する。
 図10に示されるように、酸化ガス流路121は、空気極セパレータ120に形成されている。また、燃料極セパレータ130は、波形形状の断面を有する金属セパレータである。燃料極セパレータ130は、MEA110と接する面に燃料ガス流路131を有し、MEA110と接する面の裏面に冷媒流路153を有する。燃料ガス流路131’は保水領域125および酸化ガス供給領域127に選択的に重なり、かつ、酸化ガス流路121のうち、燃料ガス流路131と平行な部分に重ならない。
 図11は、図9および図10で示された空気極セパレータ120の平面図である。
 図11に示されたように、実施の形態1の空気極セパレータ120は、酸化ガス供給マニホールド孔140および酸化ガス排出マニホールド孔141、燃料ガス供給マニホールド孔160および燃料ガス排出マニホールド孔161ならびに冷媒供給マニホールド孔150および冷媒排出マニホールド孔151を有する。
 酸化ガス供給マニホールド孔140は、酸化ガス流路121に酸化ガスを供給するための孔である。酸化ガス排出マニホールド孔141は、酸化ガス流路121から酸化ガスを排出するための孔である。
 上述のように本実施の形態では酸化ガス流路121は、空気極セパレータ120に形成されている。このため空気極セパレータ120は、特定方向Xに沿った2以上の酸化ガス流路121を有する。2以上の酸化ガス流路121は蛇行状に形成され、特定方向Xと平行な線に関して線対称である。このため空気極セパレータ120は、特定方向Xに沿って保水領域125と酸化ガス供給領域127とを交互に有する。
 図12は、図9および図10に示された燃料極セパレータ130の平面図である。図12Aは燃料極セパレータ130の燃料ガス流路131が形成された面の平面図であり、図12Bは図11Aに示された燃料極セパレータ130の裏面130’の平面図である。裏面130’には互いに平行な2以上の冷媒流路153が形成されている。
 図12AおよびBに示されたように、実施の形態1の燃料極セパレータ130は、酸化ガス供給マニホールド孔140および酸化ガス排出マニホールド孔141、燃料ガス供給マニホールド孔160および燃料ガス排出マニホールド孔161ならびに冷媒供給マニホールド孔150および冷媒排出マニホールド孔151を有する。また、燃料極セパレータ130には、互いに平行な2以上の燃料ガス流路131が形成されている。
 燃料ガス供給マニホールド孔160は、燃料ガス流路131に燃料ガスを供給するための孔である。燃料ガス排出マニホールド孔161は、燃料ガス流路131から燃料ガスを排出するための孔である。
 冷媒供給マニホールド孔150は、冷媒流路153に冷媒を供給するための孔である。冷媒排出マニホールド孔151は、冷媒流路153から冷媒を排出するための孔である。
 上述したように燃料極セパレータ130は金属セパレータなので、燃料ガス流路131と、冷媒流路153とはそれぞれ表裏一体の関係にある。すなわち燃料極セパレータ130に形成されたリブ133は、裏面130’における冷媒流路153に対応し、裏面130’に形成されたリブ155は燃料極セパレータ130における燃料ガス流路131に対応する(図10参照)。
 このように実施の形態1の燃料電池の隣接する酸化ガス流路間に保水領域と酸化ガス供給領域とを特定方向に沿って交互に配置することで、酸化ガス流路に無加湿または低加湿の酸化ガスを供給する場合であっても、燃料電池内に充分に水分を保持することができ、かつ燃料電池に充分な量の酸化ガスを供給することができる。
 さらに、燃料ガス流路を、保水領域および酸化ガス供給領域に選択的に重ねることで、高分子電解質膜の膜抵抗が低く、酸化ガスの濃度が高い領域に、燃料ガスを供給することができ、より効率的に発電エネルギを得ることができる。そのため、本実施の形態によれば、酸素ガスを無加湿または低加湿で供給する場合であっても、MEAの耐久性および高い出力密度を維持することができる。
 (実施の形態2)
 実施の形態1では、上流側の酸化ガス流路および下流側の酸化ガス流路の両方が蛇行状である例について説明した。実施の形態2では上流側の酸化ガス流路のみが蛇行状であり、下流側の酸化ガス流路は直線状である燃料電池について説明する。
 実施の形態2の燃料電池は、酸化ガス流路の下流の形状が異なる以外は、実施の形態1の燃料電池100と同じである。したがって、本実施の形態では、酸化ガス流路の形状についてのみ説明する。
 図13は実施の形態2の燃料電池の空気極セパレータ220の平面図である。実施の形態1の空気極セパレータ120と同じ構成要素については、同一の符号を付し、説明を省略する。
 図13に示された空気極セパレータ220は、特定方向Xに沿った2以上の酸化ガス流路221を有する。酸化ガス流路221は、上流領域221aと下流領域221bとからなる。ここで「上流領域」とは、酸化ガス流路のうち酸化ガス供給マニホールド孔140側の領域を意味し、「下流領域」とは、酸化ガス流路のうち酸化ガス排出マニホールド孔141側の領域を意味する。
 上流領域221aでは、酸化ガス流路221は蛇行状である。また、上流領域221aでは、隣接する酸化ガス流路221同士は特定方向Xと平行な線に関して線対称である。このため、上流領域221aでは、隣接する酸化ガス流路221間には、特定方向Xに沿って保水領域125と酸化ガス供給領域127とが交互に配置される。
 一方、下流領域221bでは、酸化ガス流路221は、直線状である。したがって、下流領域221bでは、隣接する酸化ガス流路221間のギャップ(リブ123の幅)は一定である。また、下流領域221bにおける隣接する酸化ガス流路221間のギャップは、上流領域221aにおける隣接する酸化ガス流路221間にギャップの最大値(保水領域125の幅)よりも小さい。下流領域221bにおける隣接する酸化ガス流路221間のギャップは、上流領域221aにおける隣接する酸化ガス流路221間に配置された酸化ガス供給領域127の幅と同程度であることが好ましい。このように、下流領域221bにおける隣接する酸化ガス流路221間のギャップは、上流領域221aにおける隣接する酸化ガス流路221間のギャップよりも小さいので、下流領域221bでは、上流領域221aよりも酸化ガス流路221の数が多くなる。
 このように隣接する上流領域にのみに保水領域を形成することで、燃料電池のうち特に乾燥しやすい酸化ガス供給マニホールド孔付近(上流領域)のみを選択的に保水させることができる。また、酸化ガスが枯渇し易い下流領域では、酸化ガス流路同士を直線状にし、酸化ガス流路のギャップを小さくすることで、酸化ガスの供給量を増やすことができる。
 (実施の形態3)
 実施の形態1および2では、酸化ガス流路が空気極セパレータに形成された形態について説明した。実施の形態3では、酸化ガス流路が空気極ガス拡散層に形成された形態について説明する。
 図14は、実施の形態3の燃料電池300の分解斜視図である。実施の形態1の燃料電池100と同一の構成部材については同一の符号を付し説明を省略する。
 図14に示されるように、燃料電池300は、空気極ガス拡散層317および空気極セパレータ320を有する。空気極ガス拡散層317には、酸化ガス流路121が形成されている。また、空気極セパレータ320は平板である。
 [実験例1]
 実験例1では、本発明の実施の形態1および実施の形態2の燃料電池を、中温無加湿条件下で運転したときの発電電圧、膜抵抗および反応ガスの相対湿度を、コンピューターシミュレーションで解析した。
 図15は、実施の形態1の燃料電池および実施の形態2の燃料電池を中温無加湿条件下(燃料電池の発電時の温度:65℃ 酸化ガスの露点:35℃ 燃料ガスの露点:65℃)で運転した場合の、発電電圧および膜抵抗のシミュレーション結果を示す。
 さらに比較例として、従来の燃料電池(保水領域および酸化ガス供給領域を有さない燃料電池)を、中温フル加湿条件下(燃料電池の発電時の温度:65℃ 酸化ガスの露点:65℃ 燃料ガスの露点:65℃)で運転した場合と(従来例1)、従来の燃料電池を、中温無加湿条件下で運転した場合(従来例2)の、発電電圧および膜抵抗のシミュレーション結果も示す。
 図15に示された「同一方向」とは酸化ガスの流れる方向と燃料ガスの流れる方向が同一である場合を示し、「逆方向」とは、酸化ガスの流れる方向と燃料ガスの流れる方向が逆である場合を示す。
 図15に示されるように、従来例2および実施の形態1の燃料電池を中温無加湿条件下運転する場合、酸化ガスと燃料ガスの流れる方向が同一である場合の方が、発電電圧は高い。この結果は、中温無加湿条件下では、酸化ガスの流れる方向と燃料ガスの流れる方向とは同じであるほうが発電性能は高いことを示唆する。
 また、従来例2、実施の形態1および実施の形態2の燃料電池は、従来の酸化ガスの中温フル加湿条件下で運転した燃料電池(従来例1)と同等の発電電圧を有することが明らかとなった。しかし、実施の形態1および実施の形態2の燃料電池は、従来例2の燃料電池よりも膜抵抗が低い。この結果は、実施の形態1および実施の形態2の燃料電池では、従来例2の燃料電池よりもMEAの水分含有率が高いことを示唆する。
 図16は、実施の形態1の燃料電池および実施の形態2の燃料電池を中温無加湿条件下で運転した場合の、酸化ガス流路内の相対湿度(図16A)および燃料ガス流路内の相対湿度(図16B)のシミュレーション結果を示す。
 さらに比較例として、従来の燃料電池を中温フル加湿条件下で運転した場合と(従来例1)、従来の燃料電池を、中温無加湿条件下で運転した場合(従来例2)とのガス流路内の相対湿度のシミュレーション結果も示す。
 また、本シミュレーションでは、酸化ガスの流れる方向と燃料ガスの流れる方向とは同一とした。
 図16Aおよび図16Bにおける一点鎖線A1は、実施の形態1の相対湿度を示し;実線A2は、実施の形態2の相対湿度を示し;二点鎖線B1は、従来例1の相対湿度を示し;点線B2は、従来例2の相対湿度を示す。
 図16Aに示されるように、実施の形態1および実施の形態2の燃料電池の酸化ガス流路内の相対湿度は、最も乾燥しやすい酸化ガス流路入口付近でも概ね70%以上を維持している。一方で、従来例2の燃料電池の酸化ガス流路内の相対湿度は、酸化ガス流路入口付近で30%以下となった。
 また、実施の形態1の燃料電池では、酸化ガス流路の出口付近で、相対湿度が100%を超えるが、実施の形態2の燃料電池では、酸化ガス流路の出口付近でも、相対湿度が100%を超えることがない。これは、実施の形態2の燃料電池では、酸化ガス流路の出口付近でフラッディングが起こりにくいことを示唆する。
 図16Bに示されるように、実施の形態1および実施の形態2の燃料電池の燃料ガス流路内の相対湿度は、概ね80%以上を維持した。一方で、従来例2の燃料電池の燃料ガス流路内の相対湿度は、燃料ガス流路入口付近で70%以下となった。
 このように中温無加湿条件下では、本発明の燃料電池のほうが、従来の燃料電池よりも、相対湿度が高く、膜抵抗が低い。したがって中温無加湿条件下では、本発明の燃料電池の方が、従来の燃料電池よりもMEAの耐久性が高いことが予想される。
 [実験例2]
 実験例2では、本発明の実施の形態1および実施の形態2の燃料電池を、高温低加湿条件下で運転したときの発電電圧、膜抵抗および反応ガスの相対湿度を、コンピューターシミュレーションで解析した。
 図17は、実施の形態1の燃料電池および実施の形態2の燃料電池を、高温低加湿条件下(燃料電池の発電時の温度:90℃ 酸化ガスの露点:65℃ 燃料ガスの露点:65℃)で運転した場合の、発電電圧および膜抵抗のシミュレーション結果を示す。
 さらに比較例として、従来の燃料電池を、中温フル加湿条件下で運転した場合と(従来例1)、従来の燃料電池を、高温低加湿条件下で運転した場合(従来例2)との、発電電圧および膜抵抗のシミュレーション結果も示す。
 図17に示された「同一方向」とは酸化ガスの流れる方向と燃料ガスの流れる方向が同一である場合を示し、「逆方向」とは、酸化ガスの流れる方向と燃料ガスの流れる方向が逆である場合を示す。
 図17に示されるように、従来例2および実施の形態1の燃料電池では、酸化ガスと燃料ガスの流れる方向が逆である場合の方が、発電電圧は高い。この結果は、高温低加湿条件下では、燃料ガスの流れる方向と酸化ガスの流れる方向とが逆である方が発電性能は高いことを示唆する。
 また、実施の形態1および実施の形態2の燃料電池は、従来例2の燃料電池よりも膜抵抗が低い。この結果は、実施の形態1および実施の形態2の燃料電池の水分含有率が、従来例2のそれよりも高いことを示唆する。さらに、実施の形態2の燃料電池は、従来例2および実施の形態1の燃料電池よりも、発電電圧が高かった。
 図18は、実施の形態1の燃料電池および実施の形態2の燃料電池を高温低加湿条件下で運転した場合の、酸化ガス流路内の相対湿度(図18A)および燃料ガス流路内の相対湿度(図18B)のシミュレーション結果を示す。
 さらに比較例として、従来の燃料電池を、中温フル加湿条件下で運転した場合(従来例1)と、従来の燃料電池を、高温低加湿条件下で運転した場合(従来例2)との、ガス流路内における相対湿度のシミュレーション結果も示す。
 また、シミュレーションでは、酸化ガスの流れる方向は燃料ガスの流れる方向と逆にした。
 図18Aおよび図18Bにおける一点鎖線A1は、実施の形態1の相対湿度を示し;実線A2は、実施の形態2の相対湿度を示し;二点鎖線B1は、従来例1の相対湿度を示し;点線B2は、従来例2の相対湿度を示す。
 図18Aに示されるように、実施の形態1および実施の形態2の燃料電池の酸化ガス流路内の相対湿度は、最も乾燥しやすい酸化ガス流路入口付近でも概ね40%以上を維持している。一方で、従来例2の燃料電池の酸化ガス流路内の相対湿度は、酸化ガス流路入口付近で40%以下となった。
 図18Bに示されるように、実施の形態1および実施の形態2の燃料電池の燃料ガス流路内の相対湿度は、燃料ガス流路の入口付近で概ね60%であったのに対し、従来例2では、相対湿度60%を上回ることが無かった。
 このように高温低加湿条件下では、本発明の燃料電池は、従来の燃料電池よりも発電電圧が高く、膜抵抗が低い。したがって高温低加湿条件下では本発明の燃料電池の方が、従来の燃料電池よりも出力密度が高く、かつMEAの耐久性が高いことが予想される。
 [実験例3]
 本実験例では、保水領域および酸化ガス供給領域の幅によって燃料電池の出力が変化することを示すシミュレーション実験について説明する。
 シミュレーション用のプログラムとしてANSYS社のFLUENT12を用いた。
 次にシミュレーションにおける各種パラメータについて説明する。
 触媒電極のサイズは縦200mmとした。
 酸化ガス流路の幅を1.0mmとし、深さを0.3mmとした。燃料ガス流路の幅を1.0mmとし、深さを0.5mmとした。高分子電解質膜の厚さを30μmとし;空気極触媒層の厚さを10μmとし;空気極ガス拡散層の厚さを200μmとし;燃料極触媒層の厚さを10μmとし;燃料極ガス拡散層の厚さを400μmとした。ガス拡散層の拡散性は、ペーパタイプ、クロスタイプと同程度とした。
 酸化ガスの露点を65℃とし、燃料ガスの露点を65℃とし、セル温度を80℃とした。酸化ガス(空気)の利用率を55%とし、燃料ガス(水素75%、二酸化炭素25%)の利用率を75%とした。
 酸化ガス供給領域の幅を変数として、0~6mmとした。また保水領域の幅は、酸化ガス供給領域の幅の値に流路2本分の幅の値(2mm)を足した値として、2~8mmとした。
 図19は、実験例3の解析結果を示すグラフである。図19に示されたグラフの横軸は、酸化ガス供給領域の幅を示し、縦軸は発電電圧を示す。図19に示されるように発電電圧は、酸化ガス供給領域の幅が0~2mmの範囲では増加し、酸化ガス供給領域の幅が2mm以上の範囲では減少する。また、酸化ガス供給領域の幅が1.4~3.1mmの範囲である場合に、発電電圧が高く(6.9mV以上)なる。
 この結果は、酸化ガス供給領域の幅が1.4mm~3.1mmであり、保水領域の幅が、3.4~5.1mmである場合に、発電電圧が高くなることを示唆する。
 本出願は、2008年11月12日出願の特願2008-290010に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
 本発明に係る燃料電池は、高温低加湿または中温無加湿運転の固体高分子形燃料電池などに有用である。
 100、300 燃料電池
 110 MEA
 111 高分子電解質膜
 113 空気極触媒層
 115 燃料極触媒層
 117,317 空気極ガス拡散層
 119 燃料極ガス拡散層
 120、220、320 空気極セパレータ
 121、221 酸化ガス流路
 123、133、155 リブ
 125 保水領域
 127 酸化ガス供給領域
 130 燃料極セパレータ
 131 燃料ガス流路
 140 酸化ガス供給マニホールド孔
 141 酸化ガス排出マニホールド孔
 150 冷媒供給マニホールド孔
 151 冷媒排出マニホールド孔
 153 冷媒流路
 160 燃料ガス供給マニホールド孔
 161 燃料ガス排出マニホールド孔

Claims (13)

  1.  高分子電解質膜、ならびに前記高分子電解質膜を挟み、空気極および燃料極からなる一対の触媒電極を有する膜電極接合体と;
     前記膜電極接合体を挟む空気極セパレータおよび燃料極セパレータからなる一対のセパレータと;
     前記空気極に酸化ガスを供給する、特定方向に沿った2以上の酸化ガス流路と;
     前記燃料極に燃料ガスを供給する、前記特定方向に平行な2以上の直線状の燃料ガス流路と;を有する燃料電池であって、
     隣接する2つの前記酸化ガス流路の間には、前記酸化ガス流路間のギャップが大きい箇所と前記ギャップが小さい箇所とが、前記特定方向に沿って交互に配置され、
     前記燃料ガス流路は、前記酸化ガス流路のうち、前記燃料ガス流路に平行な部分に重ならない、燃料電池。
  2.  前記酸化ガス流路は、酸化ガスに対する透過性を有するリブによって規定され、
     前記リブは、導電性多孔質体からなる、請求項1に記載の燃料電池。
  3.  前記導電性多孔質体における平均孔径は、10μm以下である、請求項2に記載の燃料電池。
  4.  前記2以上の酸化ガス流路は、蛇行状であり、
     隣接する2つの前記酸化ガス流路同士は、前記特定方向に平行な線に関して線対称である、請求項1に記載の燃料電池。
  5.  前記酸化ガス流路は、前記空気極セパレータに形成される、請求項1に記載の燃料電池。
  6.  前記空気極セパレータは、金属板と、前記金属板上に配置され、導電性多孔質体からなるリブとを有する、請求項5に記載の燃料電池。
  7.  前記空気極は、前記高分子電解質膜に接する触媒層と、前記触媒層上に積層され、前記空気極セパレータに接するガス拡散層と、を有し、
     前記酸化ガス流路は、前記ガス拡散層に形成される、請求項1に記載の燃料電池。
  8.  前記燃料ガス流路は、前記燃料極セパレータに形成され、
     前記燃料極セパレータは、前記燃料ガス流路を規定するリブを有し、
     前記リブは、前記燃料ガスに対する透過性を有さない、請求項1に記載の燃料電池。
  9.  前記燃料極セパレータは、カーボンセパレータまたは金属セパレータである、請求項8に記載の燃料電池。
  10.  前記酸化ガス流路に流れる前記酸化ガスの流れる方向と、前記燃料ガス流路に流れる前記燃料ガスの流れる方向とは、前記特定方向と同一であり、
     前記燃料電池に供給される前記酸化ガスの露点は、45℃以下である、請求項1に記載の燃料電池。
  11.  前記酸化ガス流路に流れる前記酸化ガスの流れる方向と、前記燃料ガス流路に流れる前記燃料ガスの流れる方向とは、前記特定方向と同一であり、
     前記燃料電池に供給される前記酸化ガスの露点は、-10~45℃であり、前記燃料電池に供給される前記酸化ガスは加湿されない、請求項1に記載の燃料電池。
  12.  前記酸化ガス流路に流れる前記酸化ガスの流れる方向は、前記特定方向と同一であり、
     前記燃料ガス流路に流れる前記燃料ガスの流れる方向は、前記特定方向と逆であり、
     前記燃料電池に供給される前記酸化ガスの露点は、55~75℃である、請求項1に記載の燃料電池。
  13.  高分子電解質膜、ならびに前記高分子電解質膜を挟む、空気極および燃料極からなる一対の触媒電極を有する膜電極接合体と;
     前記膜電極接合体を挟む空気極セパレータおよび燃料極セパレータからなる一対のセパレータと;
     前記酸化極に酸化ガスを供給する、特定方向に沿った2以上の酸化ガス流路と;を有する燃料電池であって、
     前記酸化ガス流路は、上流領域と、下流領域とからなり、
     前記上流領域では、隣接する2つの前記酸化ガス流路の間には、前記酸化ガス流路間のギャップが大きい箇所と前記ギャップが小さい箇所とが、前記特定方向に沿って交互に配置され、
     前記下流領域では、隣接する2つの前記酸化ガス流路間のギャップの大きさは、一定であり、
     前記下流領域における隣接する2つの前記酸化ガス流路間のギャップは、前記上流領域における隣接する2つの前記酸化ガス流路間のギャップの最大値よりも小さい、燃料電池。
     
     
PCT/JP2009/005024 2008-11-12 2009-09-30 燃料電池 WO2010055607A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/128,701 US8084163B2 (en) 2008-11-12 2009-09-30 Fuel cell
EP09825862.7A EP2352196B1 (en) 2008-11-12 2009-09-30 Fuel cell
JP2010507756A JP4575524B2 (ja) 2008-11-12 2009-09-30 燃料電池
CN2009801331085A CN102132449A (zh) 2008-11-12 2009-09-30 燃料电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008290010 2008-11-12
JP2008-290010 2008-11-12

Publications (1)

Publication Number Publication Date
WO2010055607A1 true WO2010055607A1 (ja) 2010-05-20

Family

ID=42169754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005024 WO2010055607A1 (ja) 2008-11-12 2009-09-30 燃料電池

Country Status (5)

Country Link
US (1) US8084163B2 (ja)
EP (1) EP2352196B1 (ja)
JP (1) JP4575524B2 (ja)
CN (1) CN102132449A (ja)
WO (1) WO2010055607A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868094B1 (ja) * 2011-01-28 2012-02-01 トヨタ自動車株式会社 燃料電池システム
JP2019029240A (ja) * 2017-08-01 2019-02-21 日本特殊陶業株式会社 燃料電池発電単位および燃料電池スタック
JP2021511634A (ja) * 2018-01-17 2021-05-06 ヌヴェラ・フュエル・セルズ,エルエルシー 改善された流体流れ設計を伴うpem燃料セル

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6170698B2 (ja) * 2013-03-26 2017-07-26 株式会社アツミテック 発電装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195468A (ja) * 1987-10-07 1989-04-13 Mitsubishi Electric Corp 燃料電池
JP2000012051A (ja) * 1998-04-22 2000-01-14 Toyota Motor Corp 燃料電池用ガスセパレータおよび該燃料電池用ガスセパレータを用いた燃料電池
JP2002050392A (ja) 2000-08-02 2002-02-15 Honda Motor Co Ltd 燃料電池スタック
JP2002208417A (ja) * 2001-01-10 2002-07-26 Tokyo Gas Co Ltd 平板型固体電解質燃料電池における空気及び燃料供給方法
JP2002270201A (ja) * 2001-03-09 2002-09-20 Nissin Electric Co Ltd 燃料電池用のガス分離板
WO2002078108A1 (fr) * 2001-03-26 2002-10-03 Matsushita Electric Industrial Co., Ltd. Pile a combustible a electrolyte haut polymere
JP2003249243A (ja) 2002-02-26 2003-09-05 Nissan Motor Co Ltd 燃料電池
US20040157103A1 (en) 2003-01-20 2004-08-12 Shinsuke Takeguchi Fuel cell, separator plate for a fuel cell, and method of operation of a fuel cell
JP2004247289A (ja) 2003-01-20 2004-09-02 Matsushita Electric Ind Co Ltd 燃料電池及びその運転方法
JP2008066242A (ja) 2006-09-11 2008-03-21 Fco Kk 燃料電池
JP2008290010A (ja) 2007-05-25 2008-12-04 Panasonic Corp 電気装置および溶接装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689731A (ja) * 1992-09-10 1994-03-29 Fuji Electric Co Ltd 固体高分子電解質型燃料電池発電システム
US5549983A (en) * 1996-01-22 1996-08-27 Alliedsignal Inc. Coflow planar fuel cell stack construction for solid electrolytes
US5776625A (en) * 1997-06-18 1998-07-07 H Power Corporation Hydrogen-air fuel cell
US6358642B1 (en) * 1999-12-02 2002-03-19 General Motors Corporation Flow channels for fuel cell
KR100409042B1 (ko) * 2001-02-24 2003-12-11 (주)퓨얼셀 파워 막전극 접합체와 그 제조 방법
JP4995063B2 (ja) 2001-03-26 2012-08-08 パナソニック株式会社 高分子電解質型燃料電池
CA2560069C (en) * 2004-03-15 2012-10-30 Cabot Corporation Modified carbon products, their use in fuel cells and similar devices and methods relating to the same
US7220513B2 (en) * 2004-03-18 2007-05-22 General Motors Corporation Balanced humidification in fuel cell proton exchange membranes
US8557466B2 (en) * 2006-06-21 2013-10-15 Panasonic Corporation Fuel cell including separator with gas flow channels
DE102006059857A1 (de) * 2006-12-15 2008-06-19 Behr Gmbh & Co. Kg Bipolarplatte, insbesondere für eine Brennstoffzelle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195468A (ja) * 1987-10-07 1989-04-13 Mitsubishi Electric Corp 燃料電池
JP2000012051A (ja) * 1998-04-22 2000-01-14 Toyota Motor Corp 燃料電池用ガスセパレータおよび該燃料電池用ガスセパレータを用いた燃料電池
JP2002050392A (ja) 2000-08-02 2002-02-15 Honda Motor Co Ltd 燃料電池スタック
JP2002208417A (ja) * 2001-01-10 2002-07-26 Tokyo Gas Co Ltd 平板型固体電解質燃料電池における空気及び燃料供給方法
JP2002270201A (ja) * 2001-03-09 2002-09-20 Nissin Electric Co Ltd 燃料電池用のガス分離板
WO2002078108A1 (fr) * 2001-03-26 2002-10-03 Matsushita Electric Industrial Co., Ltd. Pile a combustible a electrolyte haut polymere
JP2003249243A (ja) 2002-02-26 2003-09-05 Nissan Motor Co Ltd 燃料電池
US20040157103A1 (en) 2003-01-20 2004-08-12 Shinsuke Takeguchi Fuel cell, separator plate for a fuel cell, and method of operation of a fuel cell
JP2004247289A (ja) 2003-01-20 2004-09-02 Matsushita Electric Ind Co Ltd 燃料電池及びその運転方法
JP2008066242A (ja) 2006-09-11 2008-03-21 Fco Kk 燃料電池
JP2008290010A (ja) 2007-05-25 2008-12-04 Panasonic Corp 電気装置および溶接装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2352196A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868094B1 (ja) * 2011-01-28 2012-02-01 トヨタ自動車株式会社 燃料電池システム
JP2019029240A (ja) * 2017-08-01 2019-02-21 日本特殊陶業株式会社 燃料電池発電単位および燃料電池スタック
JP2021511634A (ja) * 2018-01-17 2021-05-06 ヌヴェラ・フュエル・セルズ,エルエルシー 改善された流体流れ設計を伴うpem燃料セル
JP7449228B2 (ja) 2018-01-17 2024-03-13 ヌヴェラ・フュエル・セルズ,エルエルシー 改善された流体流れ設計を伴うpem燃料セル

Also Published As

Publication number Publication date
JP4575524B2 (ja) 2010-11-04
US8084163B2 (en) 2011-12-27
US20110212381A1 (en) 2011-09-01
EP2352196A1 (en) 2011-08-03
CN102132449A (zh) 2011-07-20
JPWO2010055607A1 (ja) 2012-04-05
EP2352196A4 (en) 2012-04-04
EP2352196B1 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP4559539B2 (ja) 燃料電池
JP7304524B2 (ja) 燃料電池のカソード触媒層および燃料電池
KR101223082B1 (ko) 연료전지
JPWO2007094459A1 (ja) 膜触媒層接合体、膜電極接合体及び高分子電解質形燃料電池
JP4575524B2 (ja) 燃料電池
WO2011074191A1 (ja) 高分子電解質形燃料電池、それを備える燃料電池スタック、燃料電池システム、及び燃料電池システムの運転方法
JP2004030959A (ja) ガス拡散部材、ガス拡散電極および燃料電池
JP5541291B2 (ja) 燃料電池及び燃料電池を備えた車両
EP2405515B1 (en) Fuel cell separator and fuel cell including same
JP2013225398A (ja) 燃料電池スタック
JP4606038B2 (ja) 高分子電解質型燃料電池及びその運転方法
JP4880131B2 (ja) ガス拡散電極およびこれを用いた燃料電池
JP2006049115A (ja) 燃料電池
US9325015B2 (en) Reaction layer for fuel cell
JP2008071633A (ja) 固体高分子型燃料電池
US8568941B2 (en) Fuel cell separator and fuel cell including same
JP5518721B2 (ja) 燃料電池及びこれを備える燃料電池スタック
CN217955916U (zh) 燃料电池单元和燃料电池系统
US20220336834A1 (en) Membrane electrode assembly and fuel cell
JP2005142027A (ja) 高分子電解質型燃料電池
JP2011018605A (ja) 燃料電池
JP5780414B2 (ja) 燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133108.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010507756

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13128701

Country of ref document: US

Ref document number: 2009825862

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE