WO2010052981A1 - 光電変換装置の製造方法および光電変換装置 - Google Patents

光電変換装置の製造方法および光電変換装置 Download PDF

Info

Publication number
WO2010052981A1
WO2010052981A1 PCT/JP2009/067247 JP2009067247W WO2010052981A1 WO 2010052981 A1 WO2010052981 A1 WO 2010052981A1 JP 2009067247 W JP2009067247 W JP 2009067247W WO 2010052981 A1 WO2010052981 A1 WO 2010052981A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
intermediate contact
photoelectric conversion
contact layer
separation groove
Prior art date
Application number
PCT/JP2009/067247
Other languages
English (en)
French (fr)
Inventor
宇田 和孝
馬場 智義
石出 孝
川添 浩平
西宮 立享
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN2009801288102A priority Critical patent/CN102105991B/zh
Priority to US13/055,297 priority patent/US20110126895A1/en
Priority to EP09824681A priority patent/EP2346087A1/en
Publication of WO2010052981A1 publication Critical patent/WO2010052981A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells the devices comprising monocrystalline or polycrystalline materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a photoelectric conversion device, for example, a thin film solar cell, and a photoelectric conversion device, and more particularly, to a method for manufacturing a photoelectric conversion device having an intermediate contact layer separation groove in which an intermediate contact layer is separated by a pulse laser and a photoelectric conversion device.
  • the present invention relates to a conversion device.
  • a structure in which a plurality of photoelectric conversion layers are stacked is known.
  • a tandem solar cell in which an amorphous silicon layer and a microcrystalline silicon layer are stacked is known.
  • This tandem solar cell is formed by sequentially laminating a transparent electrode, an amorphous silicon layer, a microcrystalline silicon layer, and a back electrode on a light transmissive substrate.
  • a technique is known in which an intermediate contact layer electrically and optically connected is provided between the amorphous silicon layer and the microcrystalline silicon layer, and a part of incident light is reflected to further improve the photoelectric conversion efficiency. ing.
  • a high voltage is obtained by obtaining a desired voltage by connecting a plurality of photoelectric conversion cells in series.
  • a connection groove that penetrates the amorphous silicon layer, the intermediate contact layer, and the microcrystalline silicon layer is formed, and the back electrode is filled in the connection groove, Connect the transparent electrode.
  • the intermediate contact layer has conductivity, when it is electrically connected to the connection groove filled with the back electrode, the current generated in the amorphous silicon layer or the microcrystalline silicon layer passes through the intermediate contact layer. Leaks into the connection groove.
  • a technique for preventing current leakage from the intermediate contact layer to the connection groove by separating the intermediate contact layer by laser processing has been proposed (see Patent Documents 1 and 2).
  • the intermediate contact layer and the amorphous silicon layer are irradiated with a laser so as to separate the intermediate contact layer, the amorphous silicon layer absorbs the thermal energy of the laser, the amorphous silicon layer melts, and is scattered with the intermediate contact layer.
  • An intermediate contact layer separation groove is formed.
  • the amorphous silicon layer is melted and recrystallized at the wall portion (including the bottom wall) forming the intermediate contact layer separation groove. Since this recrystallized region has changed from the original amorphous silicon, it is considered that the resistance is lowered.
  • the recrystallized region whose resistance has been reduced in this way becomes a new leakage path for current, resulting in a decrease in battery performance.
  • the recrystallization region 101 is connected to the amorphous p layer 105, and the acceptor atoms 105a are recrystallized from the amorphous p layer 105. Diffusion into the region 101 causes the recrystallization region 101 to have a low resistance.
  • reference numeral 107 denotes a glass substrate
  • 109 denotes a transparent electrode layer
  • 111 denotes an amorphous i layer
  • 113 denotes an intermediate contact layer.
  • the present invention has been made in view of such circumstances, and provides a photoelectric conversion device manufacturing method and a photoelectric conversion device that prevent current leakage as much as possible through an intermediate contact layer separation groove.
  • the purpose is to do.
  • the method for manufacturing a photoelectric conversion device and the photoelectric conversion device of the present invention employ the following means. That is, the method for manufacturing a photoelectric conversion device according to one embodiment of the present invention includes a first photoelectric conversion layer forming step of forming a first photoelectric conversion layer containing silicon as a main component, and on the first photoelectric conversion layer.
  • the first photoelectric conversion layer is composed of an i layer and a p layer and an n layer formed so as to sandwich the i layer, and the intermediate contact layer separating step includes the first photoelectric conversion layer.
  • the intermediate contact layer separation groove is formed so as to terminate at the i layer.
  • the intermediate contact layer and the first photoelectric conversion layer are melted and scattered by the thermal energy given by the laser irradiation, and a groove is formed in the laser irradiation portion. Thereby, an intermediate contact layer separation groove for separating the intermediate contact layer is formed.
  • an intermediate contact layer separation groove for separating the intermediate contact layer is formed.
  • the end of the intermediate contact layer separation groove is positioned in the i layer of the first photoelectric conversion layer.
  • n-layer donor atoms and the p-layer acceptor atoms are diffused in the recrystallized region to lower the resistance, and a current leakage path is prevented.
  • An amorphous silicon layer is preferably used as the first photoelectric conversion layer, and a microcrystalline silicon layer is used as the second photoelectric conversion layer.
  • GZO Ga-doped ZnO
  • the end position of the intermediate contact layer separation groove is set to a substantially intermediate position in the film thickness direction of the i layer.
  • the end position of the intermediate contact layer separation groove is kept away from the p layer and the n layer formed so as to sandwich the i layer. be able to. Thereby, it is possible to prevent the recrystallization region generated when forming the intermediate contact layer separation groove from being connected to the p layer or the n layer as much as possible.
  • the range of the intermediate position of the i layer is determined in consideration that the unevenness on the surface of the transparent electrode or light transmissive substrate which is the lower layer of the first photoelectric conversion layer affects the film thickness distribution of the i layer.
  • the center position of the i-layer film thickness is within ⁇ 30% of the i-layer film thickness. It is preferable to set the end position of the intermediate contact layer separation groove.
  • the end position of the intermediate contact layer separation groove is determined by adjusting a power density indicating an output per unit area of the pulse laser.
  • the photoelectric conversion device includes a first photoelectric conversion layer mainly composed of silicon, an intermediate contact layer electrically and optically connected to the first photoelectric conversion layer, A second photoelectric conversion layer mainly composed of silicon and electrically connected to the intermediate contact layer and penetrating the intermediate contact layer so as to separate the intermediate contact layer;
  • the first photoelectric conversion layer includes an i layer, a p layer formed to sandwich the i layer, and n The intermediate contact layer separation groove terminates at the i layer of the first photoelectric conversion layer.
  • the intermediate contact layer and the first photoelectric conversion layer are melted and scattered by the thermal energy given by the laser irradiation, and a groove is formed in the laser irradiation portion. Thereby, an intermediate contact layer separation groove for separating the intermediate contact layer is formed.
  • an intermediate contact layer separation groove for separating the intermediate contact layer is formed.
  • the end of the intermediate contact layer separation groove is positioned in the i layer of the first photoelectric conversion layer.
  • n-layer donor atoms and the p-layer acceptor atoms are diffused in the recrystallized region to lower the resistance, and a current leakage path is prevented.
  • An amorphous silicon layer is preferably used as the first photoelectric conversion layer, and a microcrystalline silicon layer is used as the second photoelectric conversion layer.
  • GZO Ga-doped ZnO
  • the end position of the intermediate contact layer separation groove is a substantially intermediate position in the film thickness direction of the i layer.
  • the end position of the intermediate contact layer separation groove is kept away from the p layer and the n layer formed so as to sandwich the i layer. be able to. Thereby, it is possible to prevent the recrystallization region generated when forming the intermediate contact layer separation groove from being connected to the p layer or the n layer as much as possible.
  • the intermediate position of the i layer is ⁇ 30% of the thickness of the i layer from the central position of the thickness of the i layer in consideration of the unevenness on the surface of the transparent electrode or light transmissive substrate that is the lower layer of the first photoelectric conversion layer. It is preferable to be in the range.
  • the end of the intermediate contact layer separation groove is positioned in the i layer of the first photoelectric conversion layer, and the recrystallization region existing around the intermediate contact layer separation groove is connected to the n layer or the p layer. Since this is avoided, it is possible to prevent the resistance of the recrystallization region from being lowered. As a result, when the intermediate contact layer separation groove is formed, a new current leakage path is prevented from being formed, and the efficiency of the photoelectric conversion device is improved.
  • FIG. 1 shows a longitudinal section of a tandem silicon thin film solar cell (photoelectric conversion device).
  • the solar cell 10 includes a glass substrate (translucent substrate) 1, a transparent electrode layer 2, a top layer (first photoelectric conversion layer) 91, an intermediate contact layer 93, and a bottom layer (second photoelectric conversion layer) 92. And a back electrode layer 4.
  • the top layer 91 is a photoelectric conversion layer mainly including an amorphous silicon-based semiconductor
  • the bottom layer 92 is a photoelectric conversion layer mainly including a crystalline silicon-based semiconductor.
  • silicon-based is a generic name including silicon (Si), silicon carbide (SiC), and silicon germanium (SiGe).
  • Crystalstalline silicon means amorphous silicon, that is, silicon other than amorphous silicon, and includes microcrystalline silicon and polycrystalline silicon.
  • the solar cell 10 of the present embodiment having the above-described configuration is manufactured as follows.
  • the glass substrate soda float glass having a size of 1 m square is used. Specifically, a size of 1.4 m ⁇ 1.1 m and a thickness of 3.5 to 4.5 mm is used.
  • the end face of the glass substrate 1 is preferably subjected to corner chamfering or R chamfering in order to prevent damage due to thermal stress or impact.
  • a transparent electrode film mainly composed of a tin oxide film (SnO 2 ) is preferably used as the transparent electrode layer 2.
  • This transparent electrode film has a thickness of about 500 nm to 800 nm, and can be obtained by film formation at about 500 ° C. using a thermal CVD apparatus. During the film forming process, a texture with appropriate irregularities is formed on the surface of the transparent electrode film.
  • an alkali barrier film (not shown) may be interposed between the transparent electrode film and the substrate 1.
  • the alkali barrier film is a silicon oxide film (SiO 2 ) having a thickness of, for example, 50 nm to 150 nm, and is obtained by performing a film forming process at about 500 ° C. with a thermal CVD apparatus.
  • the glass substrate 1 is placed on an XY table, and the first harmonic (1064 nm) of the YAG laser is irradiated from the film surface side (upper side in the drawing) of the transparent electrode layer 2.
  • the laser power is adjusted so as to be appropriate for the processing speed, and the glass substrate 1 and the laser beam are placed in a direction perpendicular to the series connection direction of the power generation cells 5 in the transparent electrode layer 2 (perpendicular to the drawing in the drawing) Are moved relative to each other to form the transparent electrode separation groove 12.
  • the transparent electrode layer 2 is laser-etched into a strip shape having a predetermined width of about 6 mm to 15 mm.
  • a p-layer film / i-layer film / n-layer film made of an amorphous silicon thin film is sequentially formed under the conditions of a reduced pressure atmosphere of 30 to 1000 Pa and a substrate temperature of about 200 ° C.
  • the top layer 91 is formed (first photoelectric conversion layer forming step).
  • the top layer 91 is formed on the transparent electrode layer 2 by a process gas using SiH 4 gas and H 2 gas as main raw materials.
  • the p-layer, i-layer, and n-layer are laminated in this order from the sunlight incident side (glass substrate 1 side).
  • the top layer 91 is 10 nm to 30 nm mainly composed of B-doped amorphous SiC as an amorphous p layer, 200 nm to 350 nm mainly composed of amorphous Si as an amorphous i layer, and amorphous as an amorphous n layer. It is composed of a 30 nm to 50 nm film thickness mainly composed of a p-doped Si layer containing microcrystalline Si in Si. Further, a buffer layer may be provided between the p layer film and the i layer film in order to improve the interface characteristics.
  • a GZO (Ga doped ZnO) film is formed on the top layer 91 as the intermediate contact layer 93 (intermediate contact layer forming process).
  • the GZO (Ga doped ZnO) film has a thickness of 20 nm to 100 nm and is formed by a sputtering apparatus.
  • the intermediate contact layer 93 can improve the contact between the top layer 91 and the bottom layer 92 and obtain current matching.
  • the intermediate contact layer 93 is a semi-reflective film, and realizes an improvement in photoelectric conversion efficiency in the top layer 91 by reflecting a part of light incident from the glass substrate 1.
  • the glass substrate 1 is placed on an XY table, and a YVO4 pulse laser (hereinafter referred to as “nanosecond pulse laser”) having a wavelength of 532 nm and a pulse width of nanosecond order (1 to 100 ns) is used. Irradiation is performed from the film surface side (upper side in the figure) of the transparent electrode layer 2.
  • the intermediate contact layer separation groove 14 is formed between the transparent electrode separation groove 12 and the connection groove 16 (intermediate contact layer separation step). As shown in FIG. 2, the intermediate contact layer separation groove 14 terminates at the i layer 91 i of the top layer 91. This intermediate contact layer separation step will be described in detail later.
  • a plasma CVD apparatus is used to reduce the pressure under a reduced pressure atmosphere of 3000 Pa or less, a substrate temperature of about 200 ° C., and a plasma generation frequency of 40 MHz to 100 MHz.
  • a bottom layer 92 is formed by sequentially forming a microcrystalline p layer film / a microcrystalline i layer film / a microcrystalline n layer film made of a crystalline silicon thin film (second photoelectric conversion layer forming step).
  • the bottom layer 92 has a thickness of 10 nm to 50 nm mainly composed of B-doped microcrystalline SiC as the microcrystalline p layer, and a thickness of 1.2 ⁇ m to 3 mainly composed of microcrystalline Si as the microcrystalline i layer.
  • the film thickness is 20 to 50 nm mainly composed of p-doped microcrystalline Si as a microcrystalline n layer.
  • the distance d between the plasma discharge electrode and the surface of the glass substrate 1 is preferably 3 mm to 10 mm. If it is smaller than 3 mm, it is difficult to keep the distance d constant from the accuracy of each component device in the film forming chamber corresponding to the large substrate, and there is a possibility that the discharge becomes unstable because it is too close. When it is larger than 10 mm, it is difficult to obtain a sufficient film forming speed (1 nm / s or more), and the uniformity of the plasma is lowered and the film quality is lowered by ion bombardment.
  • the glass substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode-pumped YAG laser is applied to the film surface side of the bottom layer 92 (upward in the figure) as shown by the arrow in the figure. Irradiate from the side. Pulse oscillation: 10 to 20 kHz The laser power is adjusted so as to be suitable for the processing speed, and the connection groove 16 is formed at a position spaced apart from the transparent electrode separation groove 12 by about 50 to 350 ⁇ m laterally.
  • the laser may be irradiated from the glass substrate 1 side, and in this case, the intermediate contact layer 93 and the bottom layer 92 can be etched using the high vapor pressure generated by the energy absorbed by the top layer 91, so that it is more stable. Laser etching can be performed.
  • the position of the laser etching line is selected in consideration of positioning tolerances so as not to intersect with the etching line in the previous process.
  • the back electrode layer 4 an Ag film / Ti film is sequentially formed by a sputtering apparatus at a reduced pressure atmosphere at about 150 to 200 ° C.
  • the back electrode layer 4 has a thickness of about 150 to 500 nm, and a Ti film having a high anticorrosion effect is laminated in this order with a thickness of 10 to 20 nm to protect it.
  • a laminated structure of an Ag film having a thickness of about 25 nm to 100 nm and an Al film having a thickness of about 15 nm to 500 nm may be used.
  • a GZO (Ga-doped ZnO) film having a film thickness of 50 to 100 nm between the bottom layer 92 and the back electrode layer 4 is formed by a sputtering apparatus.
  • a film may be formed.
  • the glass substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode pumped YAG laser is irradiated from the glass substrate 1 side (the lower side in the figure).
  • the laser light is absorbed by the top layer 91 and the bottom layer 92, and the back electrode layer 4 is exploded and removed using the high gas vapor pressure generated at this time.
  • the laser pulse oscillation frequency is set to 1 to 10 kHz, the laser power is adjusted so that the processing speed is appropriate, and the cell dividing groove 18 is formed at a position spaced apart from about 250 to 400 ⁇ m laterally from the transparent electrode separation groove 12. So that laser etching.
  • a solar cell is manufactured through a process of attaching a back sheet having a high waterproof effect via an adhesive filler sheet such as EVA (ethylene vinyl acetate copolymer) so as to cover the back electrode 4.
  • EVA ethylene vinyl acetate copolymer
  • the laser used in this process is a nanosecond pulse laser having a pulse width of 1 ns to 100 ns.
  • a YVO4 laser (wavelength of 532 nm) having an oscillation frequency of 12 kHz and a beam spot diameter of 90 ⁇ m is preferably used.
  • the processing speed (that is, the laser feed speed with respect to the glass substrate 1) is, for example, about 800 mm / s.
  • a second high frequency (532 nm) of YAG laser or a fiber laser may be used.
  • the terminal position (bottom) of the intermediate contact layer separation groove 14 is located in the i layer 91 i of the top layer 91. That is, the termination position 14L of the intermediate contact layer separation groove 14 is not located in the n layer 91n and the p layer 91p of the top layer 91. Thereby, the recrystallized region 15 formed in the wall portion (including the bottom portion) where the amorphous silicon is melted and solidified to form the intermediate contact layer separation groove 14 is separated from the n layer 91n and the p layer 91p. Can do.
  • the dopant of the n layer 91n and the p layer 91p is prevented from diffusing into the recrystallized region 15, and the resistance of the recrystallized region due to the dopant can be reduced.
  • the recrystallization region 15 can be confirmed with a transmission electron microscope or the like.
  • FIG. 3 illustrates the concept of setting the end position 14L of the intermediate contact layer separation groove 14.
  • the thick line located at the center indicates the end position 14L of the intermediate contact layer separation tank 14.
  • the vertical direction in the figure means the film thickness direction.
  • a triangular wave-shaped uneven line 91i-L located below the end position 14L indicates the interface between the amorphous i layer 91i and the amorphous p layer 91p.
  • This unevenness reflects the unevenness of the texture structure formed on the surface of the transparent electrode layer 2.
  • a broken line 91i-Lav shown in the approximate center of the uneven line 91i-L is an average line indicating an average value of the uneven line 91i-L in the film thickness direction.
  • a triangular wave-shaped uneven line 91i-U located above the end position 14L indicates the interface between the amorphous i layer 91i and the amorphous p layer 91p.
  • This unevenness reflects the unevenness of the texture structure formed on the surface of the transparent electrode layer 2.
  • a broken line 91i-Uav shown at substantially the center of the uneven line 2L is an average line indicating an average value of the uneven lines 91i-U in the film thickness direction.
  • the end position 14L of the intermediate contact layer separation groove 14 is determined in consideration of the degree of unevenness of the uneven lines 91i-L, U.
  • the position of the end position 14L is equivalent to the degree of the unevenness.
  • the film thickness is set within a range of ⁇ 30% of the film thickness of the i layer from the center position of the film thickness of the amorphous i layer 91i.
  • the termination depth 14L is not located in the amorphous n layer 91n.
  • 70 + 35 105 nm or more is required.
  • the output of the nanosecond pulse laser may be adjusted to an energy density in the range of .45 W). However, from the viewpoint of stabilizing output, it is preferable to adjust the output of the nanosecond pulse laser in the range of 0.3 to 0.4 J / cm 2 .
  • the end 14L of the intermediate contact layer separation groove 14 is positioned on the amorphous i layer 91i of the top layer 91. Thereby, it is avoided that the recrystallization region 15 existing around the intermediate contact layer separation groove 14 is connected to the amorphous n layer 91n or the amorphous p layer 14p, and donor atoms from the n layer are introduced into the recrystallization region 15. Diffusion is prevented, and acceptor atoms are prevented from diffusing from the p layer into the recrystallization region 15. Therefore, the n-layer donor atoms and the p-layer acceptor atoms are prevented from diffusing into the recrystallized region 15 to lower the resistance, and a current leakage path is prevented.
  • the end position 14L of the contact layer separation groove 14 is determined. Thereby, the intermediate contact layer separation groove 14 having a desired depth can be processed with good reproducibility.
  • the solar cell shown in FIG. 1 has a tandem structure in which two power generation layers including the first cell layer 91 and the second cell layer 92 are stacked.
  • the present invention is limited to the tandem structure. This is widely applicable when the silicon-based material is recrystallized when laser processing the intermediate contact layer separation groove. For example, three power generation layers are stacked, and the intermediate contact layer is formed between the power generation layers. It can also be used for a triple structure provided with.
  • the nanosecond pulse laser is used as the laser for processing the intermediate contact layer separation groove 14.
  • the present invention is not limited to this, for example, a pico having a pulse width of 10 to 750 ps.
  • a second pulse laser may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 中間コンタクト層分離溝を介して電流が漏洩することを可及的に防止した光電変換装置の製造方法を提供する。アモルファスシリコンを主成分とするトップ層(91)を製膜する工程と、トップ層(91)上に、電気的および光学的に接続される中間コンタクト層(93)を製膜する工程と、パルスレーザーを照射して、中間コンタクト層(93)を除去するとともに、トップ層(91)まで到達する中間コンタクト層分離溝(14)を形成して中間コンタクト層(93)を分離する工程と、中間コンタクト層(93)上および中間コンタクト層分離溝(14)内に、電気的および光学的に接続されるとともに、微結晶シリコンを主成分とするボトム層(92)を製膜する工程とを有する。中間コンタクト層分離溝(14)は、トップ層(91)のi層内にて終端している。

Description

光電変換装置の製造方法および光電変換装置
 本発明は、例えば薄膜太陽電池とされた光電変換装置の製造方法および光電変換装置に関し、特に、パルスレーザーによって中間コンタクト層が分離される中間コンタクト層分離溝を有する光電変換装置の製造方法および光電変換装置に関するものである。
 従来より、薄膜太陽電池の光電変換効率を向上させるため、複数の光電変換層を積層した構造が知られている。例えば、アモルファスシリコン層および微結晶シリコン層を積層したタンデム型太陽電池が知られている。このタンデム型太陽電池は、光透過性基板上に、透明電極、アモルファスシリコン層、微結晶シリコン層、及び裏面電極を順次積層することによって形成される。そして、アモルファスシリコン層と微結晶シリコン層との間に、電気的および光学的に接続された中間コンタクト層を設け、入射光の一部を反射させて更に光電変換効率向上を図る技術が知られている。
 このようなタンデム型太陽電池では、複数の光電変換セルを直列接続することによって所望の電圧を得る高電圧化を図っている。複数の光電変換セルを直列接続する際には、アモルファスシリコン層、中間コンタクト層及び微結晶シリコン層を貫通する接続溝を形成し、この接続溝内に裏面電極を充填することによって、裏面電極と透明電極とを接続する。
 一方、中間コンタクト層は、導電性を有しているため、裏面電極が充填された接続溝と電気的に接続されると、アモルファスシリコン層や微結晶シリコン層で発生した電流が中間コンタクト層を介して接続溝へと漏れてしまう。
 そこで、レーザー加工によって中間コンタクト層を分離することで、中間コンタクト層から接続溝への電流の漏洩を防止する技術が提案されている(特許文献1及び2参照)。
特開2002-261308号公報 特開2006-313872号公報
 しかしながら、レーザー加工によって中間コンタクト層を分離した場合であっても、以下の理由により、依然として中間コンタクト層から電流が漏洩するおそれがある。
 中間コンタクト層を分離するようにレーザーを中間コンタクト層およびアモルファスシリコン層に照射すると、レーザーの熱エネルギーをアモルファスシリコン層が吸収し、このアモルファスシリコン層が溶融し、中間コンタクト層を伴って飛散し、中間コンタクト層分離溝が形成される。この中間コンタクト層分離溝を形成する際に、中間コンタクト層分離溝を形成する壁部(底壁を含む)では、アモルファスシリコン層が溶融し再結晶する。この再結晶化した領域は、当初のアモルファスシリコンから変質しているため、低抵抗化すると考えられる。このように低抵抗化した再結晶領域は、電流の新たな漏れ経路となり、電池性能の低下を来してしまう。
 本発明者等が鋭意検討したところ、中間コンタクト層分離溝の加工深さに応じて再結晶化領域の低抵抗化が生じる場合に差があることを見出した。
 具体的には、第1に、図5の左側に示すように中間コンタクト層分離溝100aが浅い場合、再結晶化領域101がアモルファスn層103に接続されてしまい、アモルファスn層103からドナー原子103aが再結晶化領域101内に拡散し、再結晶化領域101が低抵抗化してしまう。第2に、図5の右側に示すように中間コンタクト層分離溝100bが深い場合、再結晶化領域101がアモルファスp層105に接続されてしまい、アモルファスp層105からアクセプタ原子105aが再結晶化領域101内に拡散し、再結晶化領域101が低抵抗化してしまう。図5において、符号107はガラス基板、109は透明電極層、111はアモルファスi層、113は中間コンタクト層を示す。
 本発明は、このような事情に鑑みてなされたものであって、中間コンタクト層分離溝を介して電流が漏洩することを可及的に防止した光電変換装置の製造方法および光電変換装置を提供することを目的とする。
 上記課題を解決するために、本発明の光電変換装置の製造方法および光電変換装置は以下の手段を採用する。
 すなわち、本発明の一態様にかかる光電変換装置の製造方法は、シリコンを主成分とする第1光電変換層を製膜する第1光電変換層製膜工程と、前記第1光電変換層上に、該第1光電変換層に対して電気的および光学的に接続される中間コンタクト層を製膜する中間コンタクト層製膜工程と、レーザーを照射して、前記中間コンタクト層を除去するとともに、前記第1光電変換層まで到達する中間コンタクト層分離溝を形成して該中間コンタクト層を分離する中間コンタクト層分離工程と、前記中間コンタクト層上および前記中間コンタクト層分離溝内に、該中間コンタクト層に対して電気的および光学的に接続されるとともに、シリコンを主成分とする第2光電変換層を製膜する第2光電変換層製膜工程とを有する光電変換装置の製造方法において、前記第1光電変換層は、i層と、該i層を挟むように製膜されたp層およびn層とから構成され、前記中間コンタクト層分離工程は、前記第1光電変換層の前記i層にて終端するように前記中間コンタクト層分離溝を形成する。
 レーザーを照射することによって与えられる熱エネルギーにより、中間コンタクト層および第1光電変換層が溶融、飛散し、レーザーの照射部分に溝が形成される。これにより、中間コンタクト層を分離する中間コンタクト層分離溝が形成される。ここで、中間コンタクト層分離溝を形成する壁部には、溶融されたシリコンが再結晶する再結晶化領域が少なからず存在する。
 上記態様では、中間コンタクト層分離溝の終端を、第1光電変換層のi層に位置させることとした。これにより、中間コンタクト層分離溝の周囲に存在する再結晶化領域がn層またはp層に接続されることを回避し、再結晶化領域にn層からドナー原子が拡散することが防止され、また、再結晶化領域にp層からアクセプタ原子が拡散することが防止される。したがって、再結晶化領域にn層のドナー原子やp層のアクセプタ原子が拡散して低抵抗化することが回避され、電流の漏れ経路となることが防止される。
 第1光電変換層としては、好適には、アモルファスシリコン層が用いられ、第2光電変換層としては、微結晶シリコン層が用いられる。中間コンタクト層としては、GZO(GaドープZnO)が好適に用いられる。
 さらに、本発明の一態様にかかる光電変換装置の製造方法では、前記中間コンタクト層分離溝の終端位置は、前記i層の膜厚方向における略中間位置とされている。
 中間コンタクト層分離溝の終端位置をi層の膜厚方向における略中間位置とすることによって、i層を挟むように製膜されたp層およびn層から中間コンタクト層分離溝の終端位置を遠ざけることができる。これにより、中間コンタクト層分離溝を形成する際に生じた再結晶化領域がp層またはn層に接続されることを可及的に防止することができる。
 i層の中間位置の範囲としては、第1光電変換層の下層となる透明電極や光透過性基板の表面における凹凸がi層の膜厚分布に影響を与えることを考慮して決定する。凹凸の程度と同等の範囲となるように、例えば凹凸の範囲がi層膜厚の±30%の場合には、i層の膜厚の中央位置からi層膜厚の±30%の範囲に中間コンタクト層分離溝の終端位置を設定することが好ましい。
 さらに、本発明の一態様にかかる光電変換装置の製造方法では、前記中間コンタクト層分離溝の終端位置は、前記パルスレーザーの単位面積当たりの出力を示すパワー密度を調整することによって決定される。
 パルスレーザーのパワー密度(J/cm)と加工深さとの間には、所定の関係があることを見出した。そこで、パルスレーザーのパワー密度を調整することによって、中間コンタクト層分離溝の終端位置を決定することとし、再現性良く所望深さの中間コンタクト層分離溝を加工することができる。
 また、本発明の一態様にかかる光電変換装置は、シリコンを主成分とする第1光電変換層と、該第1光電変換層に対して電気的および光学的に接続された中間コンタクト層と、該中間コンタクト層に対して電気的および光学的に接続されるとともに、シリコンを主成分とする第2光電変換層とを備え、前記中間コンタクト層を分離するように該中間コンタクト層を貫通するとともに前記第1光電変換層まで到達する中間コンタクト層分離溝が形成された光電変換装置において、前記第1光電変換層は、i層と、該i層を挟むように製膜されたp層およびn層とから構成され、前記中間コンタクト層分離溝は、前記第1光電変換層の前記i層にて終端している。
 レーザーを照射することによって与えられる熱エネルギーにより、中間コンタクト層および第1光電変換層が溶融、飛散し、レーザーの照射部分に溝が形成される。これにより、中間コンタクト層を分離する中間コンタクト層分離溝が形成される。ここで、中間コンタクト層分離溝を形成する壁部には、溶融されたシリコンが再結晶する再結晶化領域が少なからず存在する。
 上記態様では、中間コンタクト層分離溝の終端を、第1光電変換層のi層に位置させることとした。これにより、中間コンタクト層分離溝の周囲に存在する再結晶化領域がn層またはp層に接続されることを回避し、再結晶化領域にn層からドナー原子が拡散することが防止され、また、再結晶化領域にp層からアクセプタ原子が拡散することが防止される。したがって、再結晶化領域にn層のドナー原子やp層のアクセプタ原子が拡散して低抵抗化することが回避され、電流の漏れ経路となることが防止される。
 第1光電変換層としては、好適には、アモルファスシリコン層が用いられ、第2光電変換層としては、微結晶シリコン層が用いられる。
 中間コンタクト層としては、GZO(GaドープZnO)が好適に用いられる。
 さらに、本発明の一態様にかかる光電変換装置では、前記中間コンタクト層分離溝の終端位置は、前記i層の膜厚方向における略中間位置とされている。
 中間コンタクト層分離溝の終端位置をi層の膜厚方向における略中間位置とすることによって、i層を挟むように製膜されたp層およびn層から中間コンタクト層分離溝の終端位置を遠ざけることができる。これにより、中間コンタクト層分離溝を形成する際に生じた再結晶化領域がp層またはn層に接続されることを可及的に防止することができる。
 i層の中間位置としては、第1光電変換層の下層となる透明電極や光透過性基板の表面における凹凸を考慮して、i層の膜厚の中央位置からi層膜厚の±30%の範囲にすることが好ましい。
 本発明によれば、中間コンタクト層分離溝の終端を第1光電変換層のi層に位置させ、中間コンタクト層分離溝の周囲に存在する再結晶化領域がn層またはp層に接続されることを回避することとしたので、再結晶化領域が低抵抗化することを防止することができる。これにより、中間コンタクト層分離溝を形成する際に、新たな電流の漏れ経路が形成されることが防止され、光電変換装置の効率向上が実現される。
本発明の一実施形態にかかるタンデム型太陽電池を示した縦断面図である。 中間コンタクト層分離工程において中間コンタクト層分離溝を形成した状態を示した縦断面図である。 アモルファスi層の膜厚変化に対して中間コンタクト層分離溝の終端位置を決定する考え方を模式的に示した概念図である。 ナノ秒パルスレーザーのエネルギー密度と加工深さの関係を示したグラフである。 中間コンタクト層分離溝の深さによって再結晶化領域が低抵抗化する状態を模式化した縦断面図である。
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
 図1には、タンデム型とされたシリコン系薄膜太陽電池(光電変換装置)の縦断面が示されている。
 太陽電池10は、ガラス基板(透光性基板)1と、透明電極層2と、トップ層(第1光電変換層)91と、中間コンタクト層93と、ボトム層(第2光電変換層)92と、裏面電極層4とを備えている。本実施形態において、トップ層91は非晶質シリコン系半導体を主として有する光電変換層であり、ボトム層92は結晶質シリコン系半導体を主として有する光電変換層である。
 ここで、「シリコン系」とはシリコン(Si)やシリコンカーバイド(SiC)やシリコンゲルマニウム(SiGe)を含む総称である。また、「結晶質シリコン系」とは、アモルファスシリコン系すなわち非晶質シリコン系以外のシリコン系を意味するものであり、微結晶シリコンや多結晶シリコン系も含まれる。
 上記構成の本実施形態の太陽電池10は、以下のように製造される。
 ガラス基板1としては、1m四方の大きさとされたソーダフロートガラスが用いられる。具体的には、1.4m×1.1mの大きさとされ、板厚が3.5から4.5mmのものが用いられる。ガラス基板1の端面は、熱応力や衝撃などによる破損防止のために、コーナー面取り加工やR面取り加工が施されていることが好ましい。
 透明電極層2としては、例えば酸化錫膜(SnO)を主成分とする透明電極膜が好適に用いられる。この透明電極膜は、約500nmから800nmの膜厚とされ、熱CVD装置にて約500℃で製膜処理することによって得られる。この製膜処理の際に、透明電極膜の表面には適当な凹凸のあるテクスチャが形成される。透明電極層2として、透明電極膜と基板1との間にアルカリバリア膜(図示されず)を介在させても良い。アルカリバリア膜は、例えば50nmから150nmの膜厚とされた酸化シリコン膜(SiO)とされ、熱CVD装置にて約500℃で製膜処理することによって得られる。
 その後、ガラス基板1をX-Yテーブルに設置して、YAGレーザーの第1高調波(1064nm)を、透明電極層2の膜面側(図において上方側)から照射する。加工速度に対して適切となるようにレーザーパワーを調整して、透明電極層2を発電セル5の直列接続方向に対して垂直な方向(図において紙面垂直方向)へ、ガラス基板1とレーザー光を相対移動させて、透明電極分離溝12を形成する。これにより、透明電極層2が幅約6mmから15mmの所定幅とされた短冊状にレーザーエッチングされる。
 次に、プラズマCVD装置により、減圧雰囲気を30から1000Paとし、基板温度を約200℃とした条件にて、アモルファスシリコン薄膜からなるp層膜/i層膜/n層膜を順次製膜してトップ層91を形成する(第1光電変換層製膜工程)。トップ層91は、SiHガスとHガスとを主原料としたプロセスガスによって、透明電極層2の上に製膜される。太陽光の入射する側(ガラス基板1側)からp層、i層、n層がこの順で積層される。
 トップ層91は、本実施形態では、アモルファスp層としてBドープしたアモルファスSiCを主とした膜厚10nmから30nm、アモルファスi層としてアモルファスSiを主とした膜厚200nmから350nm、アモルファスn層としてアモルファスSiに微結晶Siを含有するpドープしたSi層を主とした膜厚30nmから50nmから構成されている。また、p層膜とi層膜の間には、界面特性の向上のためにバッファー層を設けても良い。
 次に、中間コンタクト層93としてGZO(GaドープZnO)膜を、トップ層91上に製膜する(中間コンタクト層製膜工程)。GZO(GaドープZnO)膜は、20nmから100nmの膜厚とされ、スパッタリング装置により製膜される。中間コンタクト層93によって、トップ層91とボトム層92との間における接触性を改善するとともに電流整合性を得ることができる。中間コンタクト層93は、半反射膜とされており、ガラス基板1から入射した光の一部を反射させることによってトップ層91における光電変換効率の向上を実現している。
 次に、ガラス基板1をX-Yテーブルに設置して、波長532nmとされ、ナノ秒オーダ(1から100ns)のパルス幅を有するYVO4パルスレーザー(以下「ナノ秒パルスレーザー」という。)を、透明電極層2の膜面側(図において上方側)から照射する。このナノ秒パルスレーザーによって、透明電極分離溝12と接続溝16との間に中間コンタクト層分離溝14を形成する(中間コンタクト層分離工程)。中間コンタクト層分離溝14は、図2に示されているように、トップ層91のi層91iにて終端している。この中間コンタクト層分離工程については、後に詳述する。
 次に、中間コンタクト層93の上および中間コンタクト層分離溝14内に、プラズマCVD装置によって、減圧雰囲気を3000Pa以下、基板温度を約200℃、プラズマ発生周波数を40MHzから100MHzとした条件で、微結晶シリコン薄膜からなる微結晶p層膜/微結晶i層膜/微結晶n層膜を順次製膜してボトム層92を形成する(第2光電変換層製膜工程)。
 ボトム層92は、本実施形態では、微結晶p層としてBドープした微結晶SiCを主とした膜厚10nmから50nm、微結晶i層として微結晶Siを主とした膜厚1.2μmから3.0μm、微結晶n層としてpドープした微結晶Siを主とした膜厚20nmから50nmから構成されている。
 微結晶シリコン薄膜、特に微結晶i層膜をプラズマCVD法で形成するにあたり、プラズマ放電電極とガラス基板1の表面との距離dは、3mmから10mmにすることが好ましい。3mmより小さい場合、大型基板に対応する製膜室内の各構成機器精度から距離dを一定に保つことが難しくなるとともに、近過ぎて放電が不安定になる恐れがある。10mmより大きい場合、十分な製膜速度(1nm/s以上)を得難くなるとともに、プラズマの均一性が低下しイオン衝撃により膜質が低下する。
 次に、ガラス基板1をX-Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、ボトム層92の膜面側(図において上方側)から照射する。パルス発振:10から20kHzとして加工速度に適切となるようにレーザーパワーを調整して、透明電極分離溝12から側方に約50から350μm離間した位置に、接続溝16を形成する。レーザーはガラス基板1側から照射しても良く、この場合はトップ層91で吸収されたエネルギーで発生する高い蒸気圧を利用して中間コンタクト層93及びボトム層92をエッチングできるので、更に安定したレーザーエッチング加工を行うことが可能となる。レーザーエッチングラインの位置は前工程でのエッチングラインと交差しないように位置決め公差を考慮して選定する。
 次に、裏面電極層4として、Ag膜/Ti膜をスパッタリング装置により減圧雰囲気、約150から200℃にて順次製膜する。裏面電極層4は、本実施形態では、Ag膜を約150から500nmの膜厚とし、これを保護するものとして防食効果の高いTi膜を10から20nmの膜厚でこの順に積層する。あるいは約25nmから100nmの膜厚を有するAg膜と、約15nmから500nmの膜厚を有するAl膜との積層構造としても良い。n層と裏面電極層4との接触抵抗低減と光反射向上を目的として、ボトム層92と裏面電極層4との間にGZO(GaドープZnO)膜を膜厚50から100nmで、スパッタリング装置によって製膜しても良い。
 次に、ガラス基板1をX-Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、ガラス基板1側(図において下方側)から照射する。レーザー光がトップ層91及びボトム層92で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して除去される。レーザーのパルス発振周波数を1から10kHzとして加工速度が適切となるようにレーザーパワーを調整して、透明電極分離溝12から側方に約250から400μm離間した位置に、セル分割溝18を形成するようにレーザーエッチングする。
 上記工程の後、裏面電極4を覆うように、EVA(エチレン酢酸ビニル共重合体)等の接着充填材シートを介して防水効果の高いバックシートを貼付する工程等を経て、太陽電池が製造される。
 以下に、上述した中間コンタクト層分離工程について詳述する。
 当該工程に用いられるレーザーは、1nsから100nsのパルス幅を有するナノ秒パルスレーザーである。具体的には、発振周波数12kHz、ビームスポット径90μm、とされたYVO4レーザー(波長532nm)が好適に用いられる。加工速度(即ちガラス基板1に対するレーザーの送り速度)は、例えば、800mm/s程度とされる。
 レーザーとしては、YAGレーザーの第2高周波(532nm)やファイバーレーザーを用いてもよい。
 図2に示されているように、中間コンタクト層分離溝14の終端位置(底部)は、トップ層91のi層91i内に位置している。すなわち、中間コンタクト層分離溝14の終端位置14Lは、トップ層91のn層91nおよびp層91p内に位置していない。これにより、アモルファスシリコンが溶融凝固して中間コンタクト層分離溝14を形成する壁部(底部を含む)に形成された再結晶化領域15を、n層91n及びp層91pに対して離間させることができる。したがって、この再結晶化領域15にn層91nやp層91pのドーパントが拡散されることが防止され、ドーパントによる再結晶化領域の低抵抗化を回避することができる。再結晶化領域15は、透過型電子顕微鏡等で確認することができる。
 図3には、中間コンタクト層分離溝14の終端位置14Lの設定の考え方が図示されている。
 同図において、中央に位置する太線が中間コンタクト層分離槽14の終端位置14Lを示す。したがって、同図において上下方向が膜厚方向を意味する。
 同図において終端位置14Lの下方に位置する三角波形状の凹凸線91i-Lは、アモルファスi層91iとアモルファスp層91pとの界面を示す。この凹凸は、透明電極層2の表面に形成されたテクスチャ構造の凹凸が反映されたものである。この凹凸線91i-Lの略中央に示されている破線91i-Lavは、凹凸線91i-Lの膜厚方向の平均値を示した平均線である。
 同図において終端位置14Lの上方に位置する三角波形状の凹凸線91i-Uは、アモルファスi層91iとアモルファスp層91pとの界面を示す。この凹凸は、透明電極層2の表面に形成されたテクスチャ構造の凹凸が反映されたものである。この凹凸線2Lの略中央に示されている破線91i-Uavは、凹凸線91i-Uの膜厚方向の平均値を示した平均線である。
 中間コンタクト層分離溝14の終端位置14Lは、凹凸線91i-L,Uの凹凸の程度を考慮して決定する。例えば、アモルファスi層91iの膜厚(破線91i-Lav,Uav間の距離)に対して±30%の凹凸が有る場合には、終端位置14Lの位置は、この凹凸の程度と同等となるように、アモルファスi層91iの膜厚の中央位置からi層膜厚の±30%の範囲に設定する。
 中間コンタクト層分離溝14の終端位置14Lは、本発明者等が鋭意検討した結果、本実施形態で用いられるシリコン系材料(より具体的にはアモルファスシリコン)に対して、ビームエネルギー密度によって調整できることを見出した。すなわち、ナノ秒パルスレーザーのビームエネルギー密度と加工深さとの間には一定の関係があることを見出した。この関係が図4に示されている。加工深さをy(nm)、ビームエネルギー密度をx(J/cm)とすると
   y = -1373.4x2 + 1700x -
226.95  ・・・(1)
という二次式に表される関係がある。
 中間コンタクト層93が70nm厚、トップ層91が250nm厚(p層15nm,i層200nm,n層35nm)の場合には、アモルファスn層91nに終端位置14Lが位置しないためには、加工深さは70+35=105nm以上が必要となる。一方、アモルファスp層91pに終端位置14Lが位置しないためには、加工深さは70+35+200=305nm以下が必要となる。
 このような加工深さ範囲、即ち105から305nmの範囲の加工深さでは、上式(1)は精度良く近似される。
 したがって、105から305nmの加工深さを実現するためには、図4に示されているように、0.24J/cm(12kHz,0.18W)から0.6J/cm(12kHz,0.45W)の範囲のエネルギー密度にナノ秒パルスレーザーの出力を調整すればよい。ただし、安定化出力の観点から、0.3から0.4J/cmの範囲にてナノ秒パルスレーザーの出力を調整するのが好ましい。
 上述した本実施形態によれば、以下の作用効果を奏する。
 中間コンタクト層分離溝14の終端14Lを、トップ層91のアモルファスi層91iに位置させることとした。これにより、中間コンタクト層分離溝14の周囲に存在する再結晶化領域15がアモルファスn層91nまたはアモルファスp層14pに接続されることを回避し、再結晶化領域15にn層からドナー原子が拡散することが防止され、また、再結晶化領域15にp層からアクセプタ原子が拡散することが防止される。したがって、再結晶化領域15にn層のドナー原子やp層のアクセプタ原子が拡散して低抵抗化することが回避され、電流の漏れ経路となることが防止される。
 中間コンタクト層分離溝14の終端位置14Lをアモルファスi層91iの膜厚方向における略中間位置とすることによって、アモルファスi層91iを挟むように製膜されたアモルファスp層91pおよびアモルファスn層91nから中間コンタクト層分離溝14の終端位置14Lを遠ざけることができる。これにより、中間コンタクト層分離溝14を形成する際に生じた再結晶化領域15がアモルファスp層91pまたはアモルファスn層91nに接続されることを可及的に防止することができる。
 ナノ秒パルスレーザーのパワー密度(J/cm)と加工深さとの間には、所定の関係があることを見出し、この関係に基づいてナノ秒パルスレーザーのパワー密度を調整することによって、中間コンタクト層分離溝14の終端位置14Lを決定することとした。これにより、再現性良く所望深さの中間コンタクト層分離溝14を加工することができる。
 本実施形態において図1に示した太陽電池は、第1セル層91及び第2セル層92から成る発電層が2つ積層されたタンデム構造とされているが、本発明はタンデム構造に限定されるものではなく、中間コンタクト層分離溝をレーザー加工する際にシリコン系材料が再結晶化する場合に広く適用できるものであり、例えば、発電層が3つ積層され、各発電層間に中間コンタクト層が設けられたトリプル構造に対しても用いることができる。
 本実施形態では、中間コンタクト層分離溝14を加工するレーザーとしてナノ秒パルスレーザーを用いることとしたが、本発明はこれに限定されるものではなく、例えば、10から750psのパルス幅を有するピコ秒パルスレーザーを用いても良い。
1 ガラス基板
2 透明電極層
4 裏面電極層
5 発電セル
10 太陽電池(光電変換装置)
14 中間コンタクト層分離溝
15 再結晶化領域
91 トップ層(第1光電変換層)
92 ボトム層(第2光電変換層)
93 中間コンタクト層

Claims (5)

  1.  シリコンを主成分とする第1光電変換層を製膜する第1光電変換層製膜工程と、
     前記第1光電変換層上に、該第1光電変換層に対して電気的および光学的に接続される中間コンタクト層を製膜する中間コンタクト層製膜工程と、
     レーザーを照射して、前記中間コンタクト層を除去するとともに、前記第1光電変換層まで到達する中間コンタクト層分離溝を形成して該中間コンタクト層を分離する中間コンタクト層分離工程と、
     前記中間コンタクト層上および前記中間コンタクト層分離溝内に、該中間コンタクト層に対して電気的および光学的に接続されるとともに、シリコンを主成分とする第2光電変換層を製膜する第2光電変換層製膜工程と、
    を有する光電変換装置の製造方法において、
     前記第1光電変換層は、i層と、該i層を挟むように製膜されたp層およびn層とから構成され、
     前記中間コンタクト層分離工程は、前記第1光電変換層の前記i層にて終端するように前記中間コンタクト層分離溝を形成する光電変換装置の製造方法。
  2.  前記中間コンタクト層分離溝の終端位置は、前記i層の膜厚方向における略中間位置とされている請求項1に記載の光電変換装置の製造方法。
  3.  前記中間コンタクト層分離溝の終端位置は、前記パルスレーザーの単位面積当たりの出力を示すパワー密度を調整することによって決定される請求項1又は2に記載の光電変換装置の製造方法。
  4.  シリコンを主成分とする第1光電変換層と、
     該第1光電変換層に対して電気的および光学的に接続された中間コンタクト層と、
     該中間コンタクト層に対して電気的および光学的に接続されるとともに、シリコンを主成分とする第2光電変換層と、を備え、
     前記中間コンタクト層を分離するように該中間コンタクト層を貫通するとともに前記第1光電変換層まで到達する中間コンタクト層分離溝が形成された光電変換装置において、
     前記第1光電変換層は、i層と、該i層を挟むように製膜されたp層およびn層とから構成され、
     前記中間コンタクト層分離溝は、前記第1光電変換層の前記i層にて終端している光電変換装置。
  5.  前記中間コンタクト層分離溝の終端位置は、前記i層の膜厚方向における略中間位置とされている請求項4に記載の光電変換装置。
PCT/JP2009/067247 2008-11-05 2009-10-02 光電変換装置の製造方法および光電変換装置 WO2010052981A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801288102A CN102105991B (zh) 2008-11-05 2009-10-02 光电转换装置的制造方法及光电转换装置
US13/055,297 US20110126895A1 (en) 2008-11-05 2009-10-02 Photoelectric conversion device fabrication method and photoelectric conversion device
EP09824681A EP2346087A1 (en) 2008-11-05 2009-10-02 Photoelectric conversion device manufacturing method and photoelectric conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-284209 2008-11-05
JP2008284209A JP5180781B2 (ja) 2008-11-05 2008-11-05 光電変換装置の製造方法および光電変換装置

Publications (1)

Publication Number Publication Date
WO2010052981A1 true WO2010052981A1 (ja) 2010-05-14

Family

ID=42152791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067247 WO2010052981A1 (ja) 2008-11-05 2009-10-02 光電変換装置の製造方法および光電変換装置

Country Status (6)

Country Link
US (1) US20110126895A1 (ja)
EP (1) EP2346087A1 (ja)
JP (1) JP5180781B2 (ja)
KR (1) KR20110026472A (ja)
CN (1) CN102105991B (ja)
WO (1) WO2010052981A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103238218A (zh) * 2010-07-29 2013-08-07 洛桑联邦理工学院(Epfl) 多结光电器件及其生产工艺

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894903B (zh) * 2010-06-25 2012-03-28 清华大学 光电转换装置
JP5557721B2 (ja) * 2010-12-10 2014-07-23 株式会社日立製作所 太陽電池の製造方法
DE102012205378A1 (de) * 2012-04-02 2013-10-02 Robert Bosch Gmbh Verfahren zur Herstellung von Dünnschichtsolarmodulen sowie nach diesem Verfahren erhältliche Dünnschichtsolarmodule
BR112016017717B1 (pt) * 2014-01-31 2022-01-25 Flisom Ag Método para formar pelo menos um dispositivo de cigs de película delgada e o mesmo
KR102429868B1 (ko) 2014-12-04 2022-08-05 삼성전자주식회사 플라즈몬 비아를 이용한 광 인터커넥션 소자
TWI590477B (zh) * 2016-09-19 2017-07-01 聯相光電股份有限公司 太陽能電池鏤空電路及太陽能電池顯示裝置
DE102020108334A1 (de) 2020-03-26 2021-09-30 Helmholtz-Zentrum Berlin für Materialien und Energie Gesellschaft mit beschränkter Haftung Stapelsolarzellenmodul und Verfahren zur Herstellung des Stapelsolarzellenmoduls

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274447A (ja) * 2000-03-23 2001-10-05 Kanegafuchi Chem Ind Co Ltd 集積型薄膜太陽電池の製造方法
JP2002261308A (ja) 2001-03-01 2002-09-13 Kanegafuchi Chem Ind Co Ltd 薄膜光電変換モジュール
JP2003273383A (ja) * 2002-03-15 2003-09-26 Sharp Corp 太陽電池素子およびその製造方法
JP2003298089A (ja) * 2002-04-02 2003-10-17 Kanegafuchi Chem Ind Co Ltd タンデム型薄膜光電変換装置とその製造方法
JP2005038907A (ja) * 2003-07-15 2005-02-10 Kyocera Corp 集積型光電変換装置
JP2006313872A (ja) 2005-04-06 2006-11-16 Mitsubishi Heavy Ind Ltd 多接合薄膜太陽電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582816A (ja) * 1991-09-24 1993-04-02 Sanyo Electric Co Ltd 光起電力装置とその製造方法
JP2938367B2 (ja) * 1995-05-30 1999-08-23 三洋電機株式会社 光起電力モジュールの製造方法
US6632993B2 (en) * 2000-10-05 2003-10-14 Kaneka Corporation Photovoltaic module
JP2004014812A (ja) * 2002-06-07 2004-01-15 Canon Inc 光起電力素子
JP2004158619A (ja) * 2002-11-06 2004-06-03 Matsushita Electric Ind Co Ltd 電子デバイスおよびその製造方法
JP2005197608A (ja) * 2004-01-09 2005-07-21 Mitsubishi Heavy Ind Ltd 光電変換装置
US7781668B2 (en) * 2004-03-25 2010-08-24 Kaneka Corporation Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274447A (ja) * 2000-03-23 2001-10-05 Kanegafuchi Chem Ind Co Ltd 集積型薄膜太陽電池の製造方法
JP2002261308A (ja) 2001-03-01 2002-09-13 Kanegafuchi Chem Ind Co Ltd 薄膜光電変換モジュール
JP2003273383A (ja) * 2002-03-15 2003-09-26 Sharp Corp 太陽電池素子およびその製造方法
JP2003298089A (ja) * 2002-04-02 2003-10-17 Kanegafuchi Chem Ind Co Ltd タンデム型薄膜光電変換装置とその製造方法
JP2005038907A (ja) * 2003-07-15 2005-02-10 Kyocera Corp 集積型光電変換装置
JP2006313872A (ja) 2005-04-06 2006-11-16 Mitsubishi Heavy Ind Ltd 多接合薄膜太陽電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103238218A (zh) * 2010-07-29 2013-08-07 洛桑联邦理工学院(Epfl) 多结光电器件及其生产工艺
US9337367B2 (en) * 2010-07-29 2016-05-10 Ecole Polytechnique Federale De Lausanne Multiple-junction photoelectric device and its production process

Also Published As

Publication number Publication date
KR20110026472A (ko) 2011-03-15
JP5180781B2 (ja) 2013-04-10
EP2346087A1 (en) 2011-07-20
CN102105991A (zh) 2011-06-22
CN102105991B (zh) 2013-12-04
US20110126895A1 (en) 2011-06-02
JP2010114191A (ja) 2010-05-20

Similar Documents

Publication Publication Date Title
JP5180781B2 (ja) 光電変換装置の製造方法および光電変換装置
US8338218B2 (en) Photoelectric conversion device module and manufacturing method of the photoelectric conversion device module
WO2010119581A1 (ja) 光電変換装置の製造方法、光電変換装置の製造装置、及び光電変換装置
WO2010052982A1 (ja) 光電変換装置の製造方法および光電変換装置
JP5022341B2 (ja) 光電変換装置
JP2009246029A (ja) 光電変換装置
WO2010052953A1 (ja) 光電変換装置の製造方法及び光電変換装置
WO2010050035A1 (ja) 光電変換装置の製造方法
WO2011030598A1 (ja) 光電変換装置の製造方法
WO2011070805A1 (ja) 光電変換装置の製造方法
WO2010064455A1 (ja) 光電変換装置
JP4875566B2 (ja) 光電変換装置の製造方法
WO2010061667A1 (ja) 光電変換装置の製造方法
WO2009081855A1 (ja) 光電変換装置の製造方法及び光電変換装置
JP2013140850A (ja) 光電変換装置及びその製造方法
WO2011033885A1 (ja) 光電変換装置
JP2010135637A (ja) 光電変換装置
JP2010199305A (ja) 光電変換装置の製造方法
JP2012253078A (ja) 多接合型光電変換装置の製造方法
JP2011077380A (ja) 光電変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128810.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117000423

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13055297

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009824681

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE