WO2010052155A1 - Verfahren zum betreiben eines medizinischen navigationssystems und medizinisches navigationssystem - Google Patents

Verfahren zum betreiben eines medizinischen navigationssystems und medizinisches navigationssystem Download PDF

Info

Publication number
WO2010052155A1
WO2010052155A1 PCT/EP2009/064171 EP2009064171W WO2010052155A1 WO 2010052155 A1 WO2010052155 A1 WO 2010052155A1 EP 2009064171 W EP2009064171 W EP 2009064171W WO 2010052155 A1 WO2010052155 A1 WO 2010052155A1
Authority
WO
WIPO (PCT)
Prior art keywords
navigation
location indicator
area
location
navigation device
Prior art date
Application number
PCT/EP2009/064171
Other languages
English (en)
French (fr)
Inventor
Martin Ringholz
Clemens Bulitta
Tim Dannenmann
Rainer Graumann
Markus Nagel
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US13/127,939 priority Critical patent/US20110251625A1/en
Publication of WO2010052155A1 publication Critical patent/WO2010052155A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Definitions

  • the invention relates to a method for operating a medical navigation system and a medical navigation system.
  • a medical navigation system works in such a way that, for example, a location indicator in the form of a marker is attached to the patient and to surgical instruments to be used.
  • This marker in the optical case, for example, a tripod of optically visible spheres, in the electromagnetic case, a sensor coil, interacts with a stationary mounted navigation device of the navigation system, in the optical case of one or more cameras and in the magnetic case of one or more field coils.
  • the camera recognizes the spatial position of the markers; in the electromagnetic case, the spatial position is determined by evaluation of the field of the field coil received in the sensor coil.
  • the navigation device is attached to the ceiling, eg of the operating room.
  • Mobile systems include, for example, a camera mounted on a tripod as a navigation device, which can be freely placed anywhere in the room, eg in the operating theater.
  • the navigation device only covers a certain volume of space, the so-called tracking volume, as the navigation area, wherein the position of the location indicator can only be detected within this navigation area.
  • tracking volume the volume of space
  • the optical camera systems must be readjusted in the event of a change in the surgical setup if the camera no longer has any visual contact with markers on instruments or patients.
  • the user In the case of an optical occlusion, eg as a result of a rearrangement of the patient, the user must therefore manually adjust the optical tracking system, ie, for example, move the camera arranged on a tripod or on the operating room ceiling in order to ensure sufficient visibility to the location indicators in the interesting area eg to ensure the situs.
  • the field generator In electromagnetic navigation systems, the field generator only generates a magnetic field in a limited spatial area in which the receiver coils operate with sufficient accuracy. In some cases, the field generator must be moved.
  • the navigation device by hand by eg a doctor or surgical staff to be readjusted.
  • the navigation system is usually non-sterile and provided with appropriate sterile covers or packaging, which must be mitverlagert when tracking the system. Manual contact with the unsterile navigation system is particularly problematic.
  • the object of the invention is to specify an improved method for operating a medical navigation system and an improved medical navigation system.
  • the object is achieved by a method for operating a medical navigation system, the navigation system having a navigation device to which a limited navigation area is assigned.
  • the navigation system also includes at least one location indicator, which can be attached to an object to be located and which can only be located within the navigation area.
  • the navigation system has a motor drive for the location and position change of the navigation device. Due to the change in location of the navigation device, the position and orientation of the navigation area inevitably coupled with it are also changed.
  • the navigation system also has a detection device for detecting the current position and orientation of navigation area and location indicator. According to the invention, the navigation system detects the position change of the navigation device carried out by the motor drive.
  • a control taking into account the coordinates of the position change, controls the drive in such a way via a control signal that the navigation area always contains the location indicator.
  • the controller uses an input signal from the detection device, which informs about the current position of the navigation area of the location indicator.
  • the invention is based on the idea of a motor drive and a correspondingly suitable one Control or regulation, the navigation device always to proceed so that the tracking volume, so the navigation area is always aligned with the currently required space area.
  • the spatial area is therefore always automatically maintained or selected by the control so that the required location indicators, for example the medical instrument and the patient reference, ie the location indicator attached to the patient, are always located inside.
  • the integrated control means that the navigation system or its navigation device itself can optimally align, if e.g. Instruments are held or moved with appropriate location indicators at awkward angles or distances to the navigation device. In other words, therefore, the control always seeks an optimal or improved position, if by changing the navigation area of the location indicator is better placed in this.
  • Manual readjustment of the navigation device e.g. through surgical staff is no longer necessary.
  • the user of the navigation system does not lose any time and generally does not have to worry about the appropriate placement of the navigation device. during OP setup, do not think about setting optimal viewing conditions for a navigation camera. The user does not have to make himself unsterile by contact with components of the navigation system and does not waste time with work that is annoying for him.
  • the navigation is made more comfortable to use by this method and thus increases its acceptance. The risk to the patient is significantly reduced.
  • the controller controls the drive in such a way that the navigation device has a certain distance from the location indicator.
  • an optimal distance for a given navigation system between camera and marker or field generator and receiver coil can be preselected, that is to say determined, and the navigation device can be kept in the correspondingly optimal distance by the controller.
  • the medical navigation system has at least two location indicators.
  • the controller controls the drive such that the navigation device is centered relative to the location indicator. In other words, the navigation device is moved to a location which, for example, allows an average distance as equal as possible to the various location indicators or the local distances between the navigation device and the location indicators have the smallest possible range of variation by an optimum distance.
  • the navigation device operates optically and simultaneously operates as a detection device.
  • a detection device e.g. a tracking camera at the same time to the actual
  • Navigation but also used to capture the current navigation area, just the viewing angle or field of view of the navigation camera. An additional separate detection device is therefore superfluous.
  • the navigation device operates electromagnetically and the location indicator simultaneously operates as a detection device.
  • a sensor coil is used both for navigation and for measuring the electromagnetic field generated by the navigation device in order to determine the navigation area.
  • An additional separate detection device is also not necessary here.
  • the controller also controls the drive in such a way that the electromagnetic field generated by the navigation device at the location of the location indicator has a definite orientation.
  • the control can always align the field coil in such a way that the generated field always has optimum field alignment at the location of the sensor coil, for example, it passes perpendicularly.
  • the detection device monitors the navigation area for interfering foreign objects.
  • the detection device monitors its field of view on the intrusion of interfering, ie the camera view obscuring foreign body, such as OR staff or a voluminous instrument such as an X-ray C-arm. The spatial position of the corresponding foreign objects can then be detected and the controller can determine a new position for the navigation device so that there is again a clear view of the location indicator.
  • the detection device monitors the navigation area with the aid of a camera coupled to an image processing system.
  • a monitoring of the navigation area on foreign objects is thereby particularly easy.
  • additional knowledge or additional data is acquired by redundant or additional components of the detection device.
  • the second, ie redundant camera continues to provide tracking information, during which time the hidden system, ie the first camera, can search for a new, optimal position.
  • Redundant or additional components are, for example, a second optical tracking system or a video camera with connected image processing, which can record and evaluate image information regarding movements, displacements of components of the surgical setup, etc.
  • location information about the operating room setup, persons involved, the geometry of the operating theater, etc. is additional knowledge or data.
  • a medical navigation system of the above-mentioned embodiment, which according to the invention thus comprises in particular a detection device and a correspondingly operating control.
  • the medical navigation system together with its advantages and the embodiments according to the invention, have already been explained in detail in connection with the method according to the invention.
  • FIG. 1 shows a visually operating navigation system which is operated according to the method according to the invention
  • Fig. 2 shows a corresponding electromagnetically operating navigation system.
  • FIG. 1 shows an operating room, that is, an operating room 2 with a couch 4 on which a patient 6 is mounted.
  • an optical navigation system 8 is installed in the operating room 2.
  • the patient 6 is performed with the aid of an instrument 10, a surgical intervention that requires high local precision with respect to the site of intervention of the instrument 10 on the patient 6.
  • the intervention is therefore coordinated with the aid of the navigation system 8.
  • Objects to be located are therefore the patient 6 and the instrument 10.
  • the navigation system has two optical markers in the form of the location indicator 12 a, which is fixedly attached to the patient 6 and the location indicator 12 b, which is fixedly mounted on the instrument 10.
  • a dual camera as navigation device 14 detects the location positions P a and P b of the location indicator 12a, b optically.
  • the navigation device 14 has here as an optical detection area a navigation area 16, within which the markers 12a, b must be located so that their spatial positions P a, b in the navigation system 8 can be determined.
  • the navigation device 14 is mounted on the ceiling 18 of the operating room 2 by means of a rail system 20, which comprises two electric motors 22.
  • the navigation device 14 is displaceable in the direction of the arrows Ie x and y to an arbitrary position P N.
  • the position P E of the navigation area 16 is also displaceable.
  • the navigation system 8 further comprises a detection device 24 integrated into the navigation device 14, which determines both the instantaneous position or position P E of the detection region 16 in the instantaneous position of the navigation device 14 and the positions P a, b of the location indicators 12a, b ,
  • the detection device is a separate structural unit which is installed or can be moved independently of the navigation device 14.
  • the cameras of the navigation device 14 simultaneously form part of the detection device 24, since their images are also used for the evaluation or determination of the position or position P E of the navigation region 16.
  • the cameras may also be used to observe the navigation area 16 by monitoring it for intrusion of foreign objects 34a, b, such as a person obscuring the camera's view or a bulky medical device.
  • the detection unit 24 transmits the detected positions P a, b, E as measured variables 26 to a control 28 belonging to the navigation system 8. This calculates from the measured variables 26 a control signal 30 for operating the electric motors 22.
  • the control 28 determines the control signals 30 in such a way that in that the navigation device 14 is moved by means of the electric motors 22 or of the rail system 20 to a position P N along the arrows x, y, in which the detection region 16 is directed, that is to say a position P E such that the position indicators 12 a, b lie within this.
  • the control 28 is an automatically operating control and regulation.
  • the camera in the navigation device 14 is also rotatable in an alternative embodiment by not shown further motors and pivotable in order to be able to align the detection area 16 flexibly in suitable positions P E.
  • the controller 28 controls the motors 22 such that the distances d a , b of the navigation device 14 to the location indicators 12a, b correspond to a predetermined distance or at least differ from this as little or as possible the same or a maximum amount ,
  • Fig. 2 shows the operating room 2 of Fig. 1 with the patient 6, on which, however, with an alternative instrument 10 another medical measure is performed.
  • the navigation system 8 in FIG. 2 is an electromagnetic navigation system that includes a field coil as a navigation device 14. Both on the instrument 10 and on the patient 6 b receiver coils are mounted as a location indicator 12 a, b which determine according to the position of position of patient 6 as position P a and instrument 10 as position P b relative to the navigation device 14.
  • the navigation device 14 is here attached to the couch 4 via the rail system 20 and can be adjusted with respect to its position P N along the arrows x and y via motors 22.
  • the navigation system 8 in turn comprises a controller 28.
  • the detection device 24 is integrated into the controller 28.
  • the detection device 24 again detects the positions P a , b , E of navigation area 16 and location indicators 12 a, b.
  • the navigation region 16 is the spatial region surrounding the field coil, in which it generates a magnetic field which is sufficiently strong and homogeneous for receiver coils.
  • the control 28 also receives measured quantities 26 in FIG.
  • the orientation R of the electric field generated by the field coil is look at the field.
  • the field coil in the form of the navigation device 14 is suitably rotated to allow the direction R of the field, the location indicator 12a, b in the form of the receiver coils as perpendicular as possible.
  • an additional camera 32 is provided as an extension of the detection device 24, which serves to detect foreign objects 34a, b, namely a retaining plate interfering with the navigation region and an ultrasound head. Both are metallic and interfere with the field connection between the location indicators 12a, b and the navigation device 14.
  • the controller 28 is connected to the camera 32 via an image processing system 36 to suitably evaluate the image information and recalculate therefrom the position PN of the navigation device 14 so that the above disturbances can be eliminated, ie the foreign objects no longer disturb the navigation area 16 in the area of the location indicators 12a, b in question.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Remote Sensing (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Robotics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Biomedical Technology (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Bei einem Verfahren zum Betreiben eines medizinischen Navigationssystems (8) mit einer einen Navigationsbereich (16) aufweisenden Navigationseinrichtung (14), mit mindestens einem im Navigationsbereich (16) ortbaren, an ein zu ortendes Objekt (6, 10) anbringbaren Ortsanzeiger (12a, b), mit einem motorischen Antrieb (20, 22) zur Ortsveränderung der Navigationseinrichtung (14) zusammen mit ihrem Navigationsbereich (16), mit einer Erfassungseinrichtung (24) zur Erfassung der aktuellen Lagen (PN, a, b) des Navigationsbereiches (16) und des Ortsanzeigers (12a, b), erfasst das Navigationssystem (8) die durch den motorischen Antrieb (20, 22) durchgeführte Lageveränderung der Navigationseinrichtung (14), und steuert eine mit der Erfassungseinrichtung (24) gekoppelte Regelung (28) unter Berücksichtigung der Koordinaten der Lageveränderung den Antrieb (20, 22) derart über ein Steuersignal (30) an, dass der Navigationsbereich (16) jederzeit den Ortsanzeiger (12a, b) enthält. Ein Medizinisches Navigationssystem (8) umfasst eine einen Navigationsbereich (16) aufweisende Navigationseinrichtung (14), mindestens einen im Navigationsbereich (16) ortbaren, an ein zu ortendes Objekt (6, 10) anbringbaren Ortsanzeiger (12a, b), einen motorischen Antrieb (20, 22) zur Ortsveränderung der Navigationseinrichtung (14) zusammen mit ihrem Navigationsbereich (16), eine Erfassungseinrichtung (24) zur Erfassung der aktuellen Lage (PN, a, b) des Navigationsbereiches (16) und des Ortsanzeigers (12a, b), und eine mit der Erfassungseinrichtung (24) gekoppelte und den Antrieb (20, 22) derart ansteuernde Regelung (28), dass der Navigationsbereich (16) jederzeit den Ortsanzeiger (12a, b) enthält.

Description

Beschreibung
Verfahren zum Betreiben eines medizinischen Navigationssystems und medizinisches Navigationssystem
Die Erfindung betrifft ein Verfahren zum Betreiben eines medizinischen Navigationssystems und ein medizinisches Navigationssystem.
Für medizinische Verfahren an Patienten, wie z.B. Diagnosen, Therapien oder insbesondere operative Eingriffe ist eine möglichst hohe Ortsgenauigkeit wünschenswert. Bei chirurgischen Eingriffen z.B. am Gehirn oder der Wirbelsäule eines Patienten ist es sogar unabdingbar, mit einem medizinischen Instru- ment einen genau bestimmten Ort im Patienten zu bearbeiten.
Seit langem existieren hierzu sogenannte medizinische Naviga- tions- oder Trackingsysteme . Im Wesentlichen werden hierbei optisch oder elektromagnetisch arbeitende Systeme unterschieden. Ein medizinisches Navigationssystem arbeitet derart, dass z.B. am Patienten und an zu benutzenden chirurgischen Instrumenten jeweils ein Ortsanzeiger in Form eines Markers angebracht wird. Dieser Marker, im optischen Fall z.B. ein Dreibein aus optisch gut erkennbaren Kugeln, im elektromagnetischen Fall eine Sensorspule, interagiert mit einer ortsfest montierten Navigationseinrichtung des Navigationssystems, im optischen Fall einer oder mehreren Kameras und im magnetischen Fall einer oder mehreren Feldspulen. Im optischen Fall erkennt die Kamera die Ortsposition der Marker, im elektromagnetischem Fall wird die Ortsposition durch Auswertung des in der Sensorspule empfangenen Feldes der Feldspule ermittelt. Bei deckengestützten Navigationssystemen ist die Navigationseinrichtung an der Raumdecke, z.B. des Operationssaals angebracht. Mobile Systeme beinhalten z.B. eine auf einem Stativ montierte Kamera als Navigationseinrichtung, welche frei beliebig im Raum, z.B. im Operationssaal platzierbar ist . Die Navigationseinrichtung deckt hierbei nur ein gewisses Raumvolumen, das sog. Trackingvolumen als Navigationsbereich ab, wobei nur innerhalb dieses Navigationsbereichs die Position des Ortsanzeigers erfasst werden kann. Insbesondere bei optischen Navigationssystemen müssen die optischen Kamerasysteme bei einer Änderung des OP-Setup nachjustiert werden, wenn hierdurch die Kamera keine Sichtverbindung mehr zu Markern an Instrumenten oder Patient hat. Im Falle einer optischen Verdeckung, z.B. als Resultat einer Umlagerung des Pa- tienten, muss also der Benutzer das optische Trackingsystem manuell umstellen, d.h. z.B. die auf einem Stativ oder an der OP-Saaldecke angeordnete Kamera verschieben, um ausreichend Sichtbarkeit auf die Ortsanzeiger im interessanten Gebiet, z.B. dem Situs zu gewährleisten. Bei elektromagnetischen Na- vigationssystemen erzeugt der Feldgenerator lediglich in einem begrenzten Raumbereich ein Magnetfeld, in welchem die Empfängerspulen, hinreichend genau funktionieren. Fallweise muss dann der Feldgenerator verschoben werden.
Bezüglich des OP-Workflow ist dies nicht gewünscht, da Aufwand nötig ist und sich Zeitverzögerungen ergeben, der OP- Workflow gestört wird. Z.B. wird das Tracking gestoppt, sobald keine Sichtverbindung besteht. Liegt der Ortsanzeiger nämlich nicht mehr im Trackingvolumen, so ist dem Navigati- onssystem kurzzeitig unbekannt, wo sich ein chirurgischen Instrument im Patienten gerade befindet. Der medizinische Eingriff muss ohne die Ortsinformation unterbrochen werden. Z.B. bei Eingriffen an der Wirbelsäule eines Patienten in Nähe des Rückenmarks ist dies problematisch, da hier unbeabsichtigte Verletzungen zu Komplikationen für den Patienten führen können. Bei bekannten Navigationssystemen ist daher durch das OP-Personal genau darauf zu achten, dass in jeder denkbaren Situation des Eingriffs die Ortsanzeiger im Navigationsbereich liegen bzw. die Navigationseinrichtung einen geeigneten Navigationsbereich erzeugt und der Navigationsbereich durch das OP-Setup in keiner Situation des Eingriffes gestört wird.
Bei bekannten Systemen muss also in den oben genannten Fällen die Navigationseinrichtung von Hand durch z.B. einen Arzt oder OP-Personal nachjustiert werden. Zusätzlich ist in einer sterilen OP-Umgebung hierbei hinderlich, dass Sterilitätsaspekte zu beachten sind. Das Navigationssystem ist in der Regel unsteril und mit entsprechenden sterilen Abdeckungen oder Verpackungen versehen, welche bei Nachführung des Systems mitverlagert werden müssen. Händischer Kontakt mit dem unsterilen Navigationssystem ist besonders problematisch.
Aufgabe der Erfindung ist es, ein verbessertes Verfahren zum Betreiben eines medizinischen Navigationssystems und ein verbessertes medizinisches Navigationssystem anzugeben.
Hinsichtlich des Verfahrens wird die Aufgabe gelöst durch ein Verfahren zum Betreiben eines medizinischen Navigationssys- tems, wobei das Navigationssystem eine Navigationseinrichtung aufweist, welcher ein begrenzter Navigationsbereich zugeordnet ist. Das Navigationssystem umfasst außerdem mindestens einen Ortsanzeiger, welcher an einem zu ortenden Objekt anbringbar ist und welcher lediglich innerhalb des Navigati- onsbereiches ortbar ist. Das Navigationssystem weist einen motorischen Antrieb zur Orts- und Lageveränderung der Navigationseinrichtung auf. Durch die Ortsveränderung der Navigationseinrichtung wird auch Lage und Ausrichtung des mit ihr unweigerlich gekoppelten Navigationsbereiches verändert. Das Navigationssystem weist außerdem eine Erfassungseinrichtung zur Erfassung der aktuellen Lage und Ausrichtung von Navigationsbereich und Ortsanzeiger auf. Erfindungsgemäß erfasst das Navigationssystem die durch den motorischen Antrieb durchgeführte Lageveränderung der Navigationseinrichtung. Zu- sätzlich steuert eine Regelung unter Berücksichtigung der Koordinaten der Lageveränderung den Antrieb derart über ein Steuersignal an, dass der Navigationsbereich jederzeit den Ortsanzeiger enthält. Hierzu benutzt die Regelung ein Eingangssignal von der Erfassungseinrichtung, welche über die aktuelle Lage des Navigationsbereiches des Ortsanzeigers informiert .
Die Erfindung beruht mit anderen Worten auf der Idee, durch einen motorischen Antrieb und eine entsprechend geeignete Steuerung bzw. Regelung die Navigationseinrichtung stets so zu verfahren, dass das Trackingvolumen, also der Navigationsbereich jederzeit auf den gerade benötigten Raumbereich ausgerichtet ist. Der Raumbereich wird also durch die Steuerung automatisch stets so gehalten bzw. gewählt, dass sich die benötigten Ortsanzeiger, z.B. des medizinischen Instruments und die Patientenreferenz, also der am Patienten angebrachte Ortsanzeiger, stets innerhalb befinden.
Durch die integrierte Regelung kann sich mit anderen Worten das Navigationssystem bzw. dessen Navigationseinrichtung selbst optimal ausrichten, wenn z.B. Instrumente mit entsprechenden Ortsanzeigern in ungünstigen Winkeln oder Abständen zur Navigationseinrichtung gehalten oder bewegt werden. Mit anderen Worten sucht also die Regelung stets eine optimale bzw. verbesserte Position, falls durch Veränderung des Navigationsbereiches der Ortsanzeiger besser in diesem platzierbar ist. Ein manuelles Nachjustieren der Navigationseinrichtung z.B. durch OP-Personal ist nicht mehr notwendig. Der Be- nutzer des Navigationssystems verliert keine Zeit und muss sich generell nicht um das geeignete Platzieren der Navigationseinrichtung kümmern, muss z.B. beim OP-Setup nicht auf die Einstellung optimaler Sichtverhältnisse für eine Navigationskamera nachdenken. Der Benutzer muss sich nicht durch Kontakt mit Komponenten des Navigationssystems unsteril machen und verliert keine Zeit mit für ihn lästiger Arbeit. Die Navigation wird durch dieses Verfahren komfortabler zu benutzen und somit seine Akzeptanz erhöht. Das Risiko für den Patienten wird deutlich verringert.
In einer bevorzugten Ausgestaltung der Erfindung steuert die Regelung den Antrieb derart an, dass die Navigationseinrichtung einen bestimmten Abstand zum Ortsanzeiger aufweist. So kann beispielsweise ein für ein gegebenes Navigationssystem optimaler Abstand zwischen Kamera und Marker oder Feldgenerator und Empfängerspule vorgewählt, also bestimmt werden, und die Navigationseinrichtung durch die Steuerung in entsprechend optimaler Entfernung gehalten werden. In der Regel weist das medizinische Navigationssystem mindestens zwei Ortsanzeiger auf. In einer bevorzugten Ausführungsform des Verfahrens steuert die Regelung den Antrieb derart an, dass die Navigationseinrichtung bezüglich der Ortsanzei- ger zentriert ist. Mit anderen Worten wird die Navigationseinrichtung an einen Ort verbracht, der z.B. einen mittleren möglichst gleichen Abstand zu den verschiedenen Ortsanzeigern ermöglicht bzw. die Ortsabstände zwischen Navigationseinrichtung und den Ortsanzeigern eine möglichst geringe Schwan- kungsbreite um einen optimalen Abstand aufweisen.
In einer weiteren bevorzugten Ausführungsform des Verfahrens arbeitet die Navigationseinrichtung optisch und arbeitet gleichzeitig als Erfassungseinrichtung. Mit anderen Worten wird z.B. eine Trackingkamera gleichzeitig zur eigentlichen
Navigation aber auch zur Erfassung des aktuellen Navigationsbereiches, eben des Blickwinkels bzw. Sichtbereiches der Navigationskamera benutzt. Eine zusätzliche separate Erfassungseinrichtung ist demnach überflüssig.
In einer alternativen Verfahrensvariante arbeitet die Navigationseinrichtung elektromagnetisch und der Ortsanzeiger arbeitet gleichzeitig als Erfassungseinrichtung. Mit anderen Worten wird hier eine Sensorspule sowohl zur Navigation als auch zur Ausmessung des von der Navigationseinrichtung erzeugten elektromagnetischen Feldes benutzt, um so den Navigationsbereich zu ermitteln. Eine zusätzliche separate Erfassungseinrichtung ist hier ebenfalls nicht nötig.
Im Falle einer elektromagnetischen Navigationseinrichtung steuert in einer weiteren Ausführungsform des Verfahrens die Regelung den Antrieb auch derart an, dass das von der Navigationseinrichtung am Ort des Ortsanzeigers erzeugte elektromagnetische Feld eine bestimmt Ausrichtung aufweist. Bei- spielsweise kann die Steuerung die Feldspule stets derart ausrichten, dass das erzeugte Feld am Ort der Sensorspule stets optimale Feldausrichtung besitzt, diese z.B. senkrecht durchtritt . In einer weiteren Ausführungsform des Verfahrens überwacht die Erfassungseinrichtung den Navigationsbereich auf störende Fremdobjekte hin. Im Falle einer Trackingkamera beispielsweise überwacht die Erfassungseinrichtung deren Sichtfeld auf das Eindringen störender, d.h. die Kamerasicht verdeckender Fremdkörper, z.B. OP-Personal oder ein voluminöses Instrument wie z.B. ein Röntgen-C-Bogen . Die Ortsposition der entsprechenden Fremdobjekte kann dann erfasst werden und die Regelung eine neue Position für die Navigationseinrichtung ermit- teln, so dass wieder freie Sicht auf den Ortsanzeiger besteht .
In einer weiteren Ausführungsform des Verfahrens überwacht die Erfassungseinrichtung den Navigationsbereich mit Hilfe einer mit einem Bildverarbeitungssystem gekoppelten Kamera. Eine Überwachung des Navigationsbereiches auf Fremdobjekte ist hierdurch besonders einfach möglich.
In einer vorteilhaften Ausführungsform des Verfahrens wird durch redundante bzw. zusätzliche Komponenten der Erfassungseinrichtung zusätzliches Wissen bzw. zusätzliche Daten erfasst. Z.B. kann durch eine zweite Kamera ein größerer Navigationsbereich getrackt werden. Wenn eine Kamera durch Verdeckung „blind" wird, liefert die zweite, also redundante Kame- ra weiter Trackinginformation . In dieser Zeit kann das verdeckte System, also die erste Kamera sich eine neue, optimale Position suchen. Die Steuerung nutzt dann diese Daten bzw. das Wissen für die Optimierung der Position der Navigationseinrichtung. Redundante bzw. zusätzliche Komponenten sind z.B. ein zweites optisches Trackingsystem oder eine Videokamera mit angeschlossener Bildverarbeitung, die Bildinformationen hinsichtlich Bewegungen, Ortsverschiebungen von Komponenten des OP-Setup o.a. aufnehmen und auswerten kann. Für optische Navigationssysteme könnte eine solche z.B. in der Navigationseinrichtung, die die Navigationskameras trägt, eingebaut sein. Zusätzliches Wissen bzw. Daten sind dann z.B. bei einer technisch komplexen Umsetzung Ortsinformationen über das OP-Setup, beteiligte Personen, die Geometrie des OP- Saales etc .. Hinsichtlich des Navigationssystem wird die Aufgabe gelöst durch ein medizinisches Navigationssystem der oben genannten Ausgestaltung, welches erfindungsgemäß also insbesondere eine Erfassungseinrichtung und eine entsprechend arbeitende Regelung umfasst. Das medizinische Navigationssystem wurde zusammen mit seinen Vorteilen und den erfindungsgemäßen Ausgestaltungen bereits im Zusammenhang mit dem erfindungsgemäßen Verfahren ausführlich erläutert.
Für eine weitere Beschreibung der Erfindung wird auf die Ausführungsbeispiele der Zeichnungen hingewiesen. Es zeigen, jeweils in einer schematischen Prinzipskizze: Fig. 1 ein optisch arbeitendes Navigationssystem, welches nach dem erfindungsgemäßen Verfahren betrieben wird,
Fig. 2 ein entsprechendes elektromagnetisch arbeitendes Navigationssystem.
Fig. 1 zeigt einen Operations-, also OP-Saal 2 mit einer Lie- ge 4, auf der ein Patient 6 gelagert ist. Im OP-Saal 2 ist ein optisches Navigationssystem 8 installiert. Am Patienten 6 wird mit Hilfe eines Instrumentes 10 ein chirurgischer Eingriff durchgeführt, der bezüglich des Eingriffsortes des Instruments 10 am Patienten 6 hohe Ortspräzision erfordert. Der Eingriff wird daher mit Hilfe des Navigationssystems 8 ortskoordiniert. Zu ortende Objekte sind also de Patient 6 und das Instrument 10.
Das Navigationssystem verfügt über zwei optische Marker in Form des Ortsanzeigers 12a, welcher ortsfest am Patienten 6 angebracht ist und des Ortsanzeigers 12b, welcher ortsfest am Instrument 10 angebracht ist. Eine Doppelkamera als Navigationseinrichtung 14 erfasst die Ortspositionen Pa und Pb der Ortsanzeiger 12a, b optisch. Die Navigationseinrichtung 14 hat hierbei als optischen Erfassungsbereich einen Navigationsbereich 16, innerhalb dessen sich die Marker 12a, b aufhalten müssen, damit deren Ortspositionen Pa,b im Navigationssystem 8 bestimmbar sind. Erfindungsgemäß ist die Navigationseinrichtung 14 an der Decke 18 des OP-Saals 2 mit Hilfe eines Schienensystems 20 montiert, welches zwei elektrische Motoren 22 umfasst. Mit deren Hilfe ist die Navigationseinrichtung 14 in Richtung der Pfei- Ie x und y an eine beliebige Position PN verschiebbar. Hierdurch ist auch die Position PE des Navigationsbereiches 16 verschiebbar. Das Navigationssystem 8 umfasst außerdem eine in die Navigationseinrichtung 14 integrierte Erfassungseinrichtung 24, welche sowohl die augenblickliche Lage bzw. Po- sition PE des Erfassungsbereiches 16 in der augenblicklichen Position der Navigationseinrichtung 14 als auch die Positionen Pa,b der Ortsanzeiger 12a, b ermittelt. In einer alternativen Ausführungsform ist die Erfassungseinrichtung eine separate Baueinheit, die unabhängig von der Navigationseinrich- tung 14 installiert ist bzw. bewegt werden kann. In einer alternativen Ausführungsform bilden die Kameras der Navigationseinrichtung 14 gleichzeitig einen Teil der Erfassungseinrichtung 24, da deren Bilder auch zur Auswertung bzw. Bestimmung von Position bzw. Lage PE des Navigationsbereiches 16 benutzt werden. Die Kameras können außerdem zur Beobachtung des Navigationsbereiches 16 benutzt werden, indem sie diesem auf das Eindringen von Fremdobjekten 34a, b überwachen, z.B. einer die Sicht der Kamera verdeckenden Person oder eines voluminösen medizinischen Gerätes.
Die Erfassungseinheit 24 übermittelt die erfassten Positionen Pa,b,E als Messgrößen 26 an eine zum Navigationssystem 8 gehörende Regelung 28. Diese errechnet aus den Messgrößen 26 ein Steuersignal 30 zur Bedienung der Elektromotoren 22. Die Steuerung 28 ermittelt hierbei die Steuersignale 30 derart, dass die Navigationseinrichtung 14 mit Hilfe der Elektromotoren 22 bzw. des Schienensystems 20 zu einer Position PN entlang der Pfeile x, y verfahren wird, in welcher der Erfassungsbereich 16 so gerichtet ist, also eine solche Lage PE aufweist, dass die Ortsanzeiger 12a, b innerhalb diesem liegen. Die Regelung 28 ist hierbei eine automatisch arbeitende Steuerung und Regelung. Die Kamera in der Navigationseinrichtung 14 ist in einer alternativen Ausführungsform zusätzlich durch nicht dargestellte weitere Motoren auch dreh- und schwenkbar, um den Erfassungsbereich 16 entsprechend flexibel in geeignete Positionen PE ausrichten zu können.
In einer alternativen Ausführungsform steuert die Regelung 28 die Motoren 22 derart an, dass die Abstände da,b von Navigationseinrichtung 14 zu den Ortsanzeigern 12a, b einem vorgegebenen Abstand entsprechen oder zumindest von diesem möglichst wenig oder um möglichst den gleichen oder einen maximalen Betrag abweichen.
Fig. 2 zeigt den OP-Saal 2 aus Fig. 1 mit dem Patienten 6, an welchem jedoch mit einem alternativen Instrument 10 eine andere medizinische Maßnahme durchgeführt wird. Das Navigationssystem 8 in Fig. 2 ist ein elektromagnetisches Navigati- onssystem, welches eine Feldspule als Navigationseinrichtung 14 umfasst. Sowohl am Instrument 10 als auch am Patienten 6 sind als Ortsanzeiger 12a, b Empfängerspulen angebracht, welche entsprechend die Ortsposition von Patient 6 als Position Pa und Instrument 10 als Position Pb relativ zur Navigationseinrichtung 14 ermitteln.
Die Navigationseinrichtung 14 ist hier über das Schienensystem 20 an der Liege 4 angebracht und bezüglich ihrer Ortsposition PN entlang der Pfeile x und y über Motoren 22 ver- stellbar. Das Navigationssystem 8 umfasst wiederum eine Steuerung 28. In dieser Ausführungsform ist die Erfassungseinrichtung 24 in die Steuerung 28 integriert. Die Erfassungseinrichtung 24 erfasst wieder die Positionen Pa,b,E von Navigationsbereich 16 und Ortsanzeigern 12a, b. Der Navigationsbe- reiches 16 ist im vorliegenden Fall der die Feldspule umgebende Raumbereich, in welchem diese ein für Empfängerspulen hinreichend starkes und homogenes Magnetfeld erzeugt. Entsprechend empfängt die Steuerung 28 auch in Fig. 2 Messgrößen 26, aus welchen sie die optimale Position PN der Naviga- tionseinrichtung 14 ermittelt und die Motoren 22 entsprechend ansteuert um diese an die geeignete Position zu verfahren, damit die Ortsanzeiger 12a, b sicher und optimal im Navigationsbereich 16 liegen. Hierbei ist in dieser Ausführungsform die Ausrichtung R des von der Feldspule erzeugten elektri- sehen Feldes berücksichtigt. Die Feldspule in Form der Navigationseinrichtung 14 wird dazu geeignet rotiert, damit die Richtung R des Feldes die Ortsanzeiger 12a, b in Form der Empfängerspulen möglichst senkrecht durchtritt.
In einer Ausführungsform ist als Erweiterung der Erfassungseinrichtung 24 eine zusätzliche Kamera 32 vorhanden, welche zur Erfassung von Fremdobjekten 34a, b dient, nämlich einer den Navigationsbereich störenden Halteplatte und eines Ultra- schallkopfes. Beide sind metallisch und stören die Feldverbindung zwischen den Ortsanzeigern 12a, b und der Navigationseinrichtung 14. Die Steuerung 28 ist mit der Kamera 32 über ein Bildverarbeitungssystem 36 verbunden, um die Bildinformation geeignet auszuwerten und daraus die Position PN der Na- vigationseinrichtung 14 neu zu berechnen, damit die o.g. Störungen eliminiert werden können, d.h. die Fremdobjekte nicht mehr den Navigationsbereich 16 im fraglichen Bereich der Ortsanzeiger 12a, b stören.
Bezugs zeichenliste
2 OP-Saal 4 Liege 6 Patient
8 Navigationssystem
10 Instrument
12a, b Ortsanzeiger
14 Navigationseinrichtung 16 Navigationsbereich
20 Schienensystem
22 Motor
24 Erfassungseinrichtung
26 Messgröße 28 Regelung
30 Steuersignal
32 Kamera
34a, b Fremdobjekt
36 Bildverarbeitungssystem
x, y Pfeil
Pa,b,N,E Position da,b Abstand
R Ausrichtung

Claims

Patentansprüche
1. Verfahren zum Betreiben eines medizinischen Navigationssystems (8) , - mit einer einen Navigationsbereich (16) aufweisenden Navigationseinrichtung (14),
- mit mindestens einem im Navigationsbereich (16) ortbaren, an ein zu ortendes Objekt (6,10) anbringbaren Ortsanzeiger (12a, b) , - mit einem motorischen Antrieb (20,22) zur Ortsveränderung der Navigationseinrichtung (14) zusammen mit ihrem Navigationsbereich (16) ,
- mit einer Erfassungseinrichtung (24) zur Erfassung der aktuellen Lagen (PN,a,b) des Navigationsbereiches (16) und des Ortsanzeigers (12a, b), bei dem das Navigationssystem (8) die durch den motorischen Antrieb (20,22) durchgeführte Lageveränderung der Navigationseinrichtung (14) erfasst, und eine mit der Erfassungseinrichtung (24) gekoppelte Regelung (28) unter Berücksichtigung der Koordinaten der Lageveränderung den Antrieb (20,22) derart über ein Steuersignal (30) ansteuert, dass der Navigationsbereich (16) jederzeit den Ortsanzeiger (12a, b) enthält.
2. Verfahren nach Anspruch 1, bei dem die Regelung (28) den Antrieb (20,22) derart ansteuert, dass die Navigationseinrichtung (14) einen bestimmten Abstand (da,b) zum Ortsanzeiger (12a, b) aufweist.
3. Verfahren nach Anspruch 1 oder 2, wobei das Navigations- System (8) mindestens zwei Ortsanzeiger (12a, b) enthält, bei dem die Regelung (28) den Antrieb (20,22) derart ansteuert, dass die Navigationseinrichtung (14) bezüglich der Ortsanzeiger (12a, b) zentriert ist.
4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem die
Navigationseinrichtung (14) optisch arbeitet, und gleichzeitig als Erfassungseinrichtung (24) arbeitet.
5. Verfahren nach einem der Ansprüche 1 bis 3, bei dem die Navigationseinrichtung (14) elektromagnetisch arbeitet, und der Ortsanzeiger (12a, b) gleichzeitig als Erfassungseinrichtung (24) arbeitet.
6. Verfahren nach einem der Ansprüche 1 bis 3 oder 5, bei dem die Navigationseinrichtung (14) elektromagnetisch arbeitet, und die Regelung (28) den Antrieb (20,22) derart ansteuert, dass das von der Navigationseinrichtung (14) am Ort (Pa,b) des Ortsanzeigers (12a, b) erzeugte elektromagnetische Feld eine bestimmte Ausrichtung (R) aufweist.
7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem die Erfassungseinrichtung (24) den Navigationsbereich (16) auf störende Fremdobjekte (34a, b) hin überwacht.
8. Verfahren nach Anspruch 7, bei dem die Erfassungseinrichtung (24) den Navigationsbereich (16) mit Hilfe einer mit einem Bildverarbeitungssystem (36) gekoppelten Kamera (32) überwacht.
9. Medizinisches Navigationssystem (8) :
- mit einer einen Navigationsbereich (16) aufweisenden Navigationseinrichtung (14), - mit mindestens einem im Navigationsbereich (16) ortbaren, an ein zu ortendes Objekt (6,10) anbringbaren Ortsanzeiger (12a, b) ,
- mit einem motorischen Antrieb (20,22) zur Ortsveränderung der Navigationseinrichtung (14) zusammen mit ihrem Navigati- onsbereich (16),
- mit einer Erfassungseinrichtung (24) zur Erfassung der aktuellen Lage (Pw,a,b) des Navigationsbereiches (16) und des Ortsanzeigers (12a, b),
- mit einer mit der Erfassungseinrichtung (24) gekoppelten und den Antrieb (20,22) derart ansteuernden Regelung (28), dass der Navigationsbereich (16) jederzeit den Ortsanzeiger (12a, b) enthält.
10. Medizinisches Navigationssystem (8) nach Anspruch 9, mit einer optisch arbeitenden Navigationseinrichtung (14), die gleichzeitig zumindest einen Teil der Erfassungseinrichtung (24) bildet.
11. Medizinisches Navigationssystem (8) nach Anspruch 9, mit einer elektromagnetisch arbeitenden Navigationseinrichtung (14), bei dem der Ortsanzeiger (12a, b) gleichzeitig zumindest einen Teil der Erfassungseinrichtung (24) bildet.
12. Medizinisches Navigationssystem (8) nach einem der Ansprüche 9 bis 11, bei dem die Erfassungseinrichtung (24) zur Erfassung von den Navigationsbereich (16) störenden Fremdobjekten (34a, b) ausgebildet ist.
13. Medizinisches Navigationssystem (8) nach Anspruch 12, bei dem die Erfassungseinrichtung (24) eine mit einem Bildverarbeitungssystem (36) gekoppelte Kamera (32) enthält.
PCT/EP2009/064171 2008-11-05 2009-10-28 Verfahren zum betreiben eines medizinischen navigationssystems und medizinisches navigationssystem WO2010052155A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/127,939 US20110251625A1 (en) 2008-11-05 2009-10-28 Medical navigation system and method for the operation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008055918.0 2008-11-05
DE102008055918A DE102008055918A1 (de) 2008-11-05 2008-11-05 Verfahren zum Betreiben eines medizinischen Navigationssystems und medizinisches Navigationssystem

Publications (1)

Publication Number Publication Date
WO2010052155A1 true WO2010052155A1 (de) 2010-05-14

Family

ID=41571497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/064171 WO2010052155A1 (de) 2008-11-05 2009-10-28 Verfahren zum betreiben eines medizinischen navigationssystems und medizinisches navigationssystem

Country Status (3)

Country Link
US (1) US20110251625A1 (de)
DE (1) DE102008055918A1 (de)
WO (1) WO2010052155A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008012342A1 (de) * 2008-03-03 2009-09-10 Siemens Aktiengesellschaft Medizinsystem
FR2974473B1 (fr) 2011-04-19 2013-11-08 Maquet S A Dispositif de surveillance, utilisation d'un tel dispositif de surveillance et installation d'operation comprenant un tel dispositif de surveillance
EP2765946B1 (de) * 2011-10-13 2015-08-12 Brainlab AG Medizinisches verfolgungssystem mit einer multifunktionellen sensorvorrichtung
EP3335662B1 (de) 2011-10-13 2020-08-19 Brainlab AG Medizinisches verfolgungssystem mit zwei oder mehreren kommunizierenden sensorvorrichtungen
EP2802894B1 (de) 2012-01-12 2018-03-28 Brainlab AG Verfahren und system für medizinische verfolgung mit mehreren kamerapositionen
DE102014209831A1 (de) * 2014-05-23 2015-11-26 Siemens Aktiengesellschaft Verfahren zum Ermitteln des Höhenunterschiedes eines Tischbrettes bei Belastung und CT-System
ES2647226T3 (es) * 2014-11-26 2017-12-20 Masmec S.P.A. Sistema asistido por ordenador para guiar un instrumento quirúrgico/de diagnóstico en el cuerpo de un paciente
US20160278864A1 (en) * 2015-03-19 2016-09-29 Medtronic Navigation, Inc. Apparatus And Method For Instrument And Gesture Based Image Guided Surgery
EP3585294A1 (de) 2017-02-22 2020-01-01 Orthosoft Inc. Knochen- und instrumentenverfolgung in der computergestützten chirurgie
CA3093980C (en) * 2019-09-26 2023-10-31 Ascension Technology Corporation Reconfigurable transmitter array for electromagnetic tracking systems
CN111035452B (zh) 2019-12-27 2021-07-02 苏州微创畅行机器人有限公司 定位工具、机械臂系统、手术系统以及注册配准方法
CN113768627A (zh) * 2021-09-14 2021-12-10 武汉联影智融医疗科技有限公司 视觉导航仪感受野获取方法、设备、手术机器人

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076033A1 (de) * 2004-02-05 2005-08-18 Synthes Ag Chur Vorrichtung zur kontrollierten bewegung einer kamera
US20060079756A1 (en) * 2004-10-07 2006-04-13 Lloyd Charles F Method and system for positioning a tracking sensor for optimal accuracy
US20070265495A1 (en) * 2005-12-15 2007-11-15 Medivision, Inc. Method and apparatus for field of view tracking
WO2008103383A1 (en) * 2007-02-20 2008-08-28 Gildenberg Philip L Videotactic and audiotactic assisted surgical methods and procedures

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7840253B2 (en) * 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
CN101040288A (zh) * 2004-07-07 2007-09-19 真实成像有限公司 3d热乳癌检测
DE102006060421B4 (de) * 2006-12-20 2016-12-22 Siemens Healthcare Gmbh Medizinisches System zur bildgestützten Diagnose oder Therapie des Körpers eines Patienten sowie von dem System durchgeführtes Verfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076033A1 (de) * 2004-02-05 2005-08-18 Synthes Ag Chur Vorrichtung zur kontrollierten bewegung einer kamera
US20060079756A1 (en) * 2004-10-07 2006-04-13 Lloyd Charles F Method and system for positioning a tracking sensor for optimal accuracy
US20070265495A1 (en) * 2005-12-15 2007-11-15 Medivision, Inc. Method and apparatus for field of view tracking
WO2008103383A1 (en) * 2007-02-20 2008-08-28 Gildenberg Philip L Videotactic and audiotactic assisted surgical methods and procedures

Also Published As

Publication number Publication date
US20110251625A1 (en) 2011-10-13
DE102008055918A1 (de) 2010-05-06

Similar Documents

Publication Publication Date Title
WO2010052155A1 (de) Verfahren zum betreiben eines medizinischen navigationssystems und medizinisches navigationssystem
EP1246566B1 (de) Vorrichtung zur kontrollierten bewegung eines medizinischen geräts
DE102005032523B4 (de) Verfahren zur prä-interventionellen Planung einer 2D-Durchleuchtungsprojektion
EP2082687B1 (de) Überlagerte Darstellung von Aufnahmen
DE19751761A1 (de) System und Verfahren zur aktuell exakten Erfassung von Behandlungszielpunkten
DE102011006574B4 (de) Verfahren und System zur Unterstützung des Arbeitsablaufs in einer Operationsumgebung
DE19817039A1 (de) Anordnung für die bildgeführte Chirurgie
EP1854425A1 (de) Medizintechnische Positionsbestimmung mit redundanten Positionserfassungseinrichtungen und Prioritätsgewichtung für die Positionserfassungseinrichtungen
WO2008058520A2 (de) Vorrichtung zur bereitstellung von bildern für einen operateur
EP2259725A1 (de) Roentgenvorrichtung und medizinischer arbeitsplatz
DE102013213727A1 (de) Interventionelles Bildgebungssystem
WO2019149400A1 (de) Verfahren zur positionsplanung eines aufnahmesystems eines medizinischen bildgebenden geräts und medizinisches bildgebendes gerät
DE102019209543A1 (de) Verfahren zum Bereitstellen einer Kollisionsinformation und medizinische Bildgebungsvorrichtung
DE10234465A1 (de) Verfahren zur Schichthöhenpositionierung
DE102014210121A1 (de) Operationsmikroskop und bildgeführtes Chirurgiesystem sowie Verfahren zu deren Betrieb
EP1114621A2 (de) Anordnung zur Darstellung von Schichtbildern
DE102008050572A1 (de) Verfahren zur Positionierung eines medizinischen Bildgebungsgerätes an einem Patienten sowie Vorrichtung zur medizinischen Bildgebung und Bildgebungssystem
WO2009109515A1 (de) Medizinsystem
DE102007031475A1 (de) Vorrichtung für die Aufnahme von Projektionsbildern
WO2002074500A2 (de) Vorrichtung zum anzeigen der räumlichen position eines chirurgischen instruments während einer operation
DE102011050240A1 (de) Vorrichtung und Verfahren zur Bestimmung der relativen Position und Orientierung von Objekten
DE69728006T2 (de) Vorrichtung für chirurgische Eingriffe
DE10032982B4 (de) Vorrichtung zur Überwachung des Therapiefokus einer Therapieeinheit zum Zielkreuz eines Röntgen-C-Bogens
DE10153787A1 (de) Mobile chirurgische Röntgendiagnostikeinrichtung mit einem C-Bogen
DE102007029199B4 (de) Verfahren zum Ausrichten eines Zielführungssystems für eine Punktion und Röntgenangiographiesystem nebst Verfahren zum technischen Unterstützen der Zielführung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09753059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13127939

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09753059

Country of ref document: EP

Kind code of ref document: A1