WO2009109515A1 - Medizinsystem - Google Patents

Medizinsystem Download PDF

Info

Publication number
WO2009109515A1
WO2009109515A1 PCT/EP2009/052309 EP2009052309W WO2009109515A1 WO 2009109515 A1 WO2009109515 A1 WO 2009109515A1 EP 2009052309 W EP2009052309 W EP 2009052309W WO 2009109515 A1 WO2009109515 A1 WO 2009109515A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
patient bed
field coil
field
medical
Prior art date
Application number
PCT/EP2009/052309
Other languages
English (en)
French (fr)
Inventor
Clemens Bulitta
Rainer Graumann
Karl-Heinz Maier
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US12/920,640 priority Critical patent/US20110054297A1/en
Publication of WO2009109515A1 publication Critical patent/WO2009109515A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/547Control of apparatus or devices for radiation diagnosis involving tracking of position of the device or parts of the device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient

Definitions

  • the invention relates to a medical system with an electromagnetic navigation system.
  • a field generator is used to generate a known electromagnetic field.
  • Various sensor coils serve to determine the actual position of an object - e.g. of the patient and an instrument carrying the sensor coil.
  • a magnetic field is induced by the field generator, from which then the position of the sensor coil is calculated in relation to the field generator.
  • a control system monitors the entire processes in the navigation system and performs corresponding location calculations and a result output at a suitable interface.
  • the optimal ratio of magnetic field strength to position accuracy of the utmost importance depends decisively on the position of the field generator in the medical environment, for example relative to the imaging system, patients and the instruments used.
  • field generators are known as "stand-alone systems" which are positioned in the vicinity of the area to be observed, ie the "volume of interest", in the case of a medical measure, for example a diagnosis, biopsy or surgery.
  • the field generators are therefore, for example, under, laterally or above a patient bed, usually attached to an adjustable arm attached.
  • accessibility to the patient is usually made more difficult, thereby reducing the acceptance of electromagnetic navigation systems.
  • the navigation system is typically used clinically in patient treatment in the sterile field, e.g. in a puncture of a suspicious structure for biopsy and microscopic diagnosis, therefore, in addition to the accessibility of the surgical or intervention field, the sterility of the navigation system, in particular the field generator must be ensured.
  • Today, expensive sterile covers are required for this purpose, some of which even have to be specific to the respective field generator hardware components. This results in further limited flexibility in the use of the navigation system and time delays due to the required sterile coverage.
  • Object of the present invention is to provide an improved medical system with electromagnetic navigation system.
  • a medical system which contains an electromagnetic navigation system and a patient couch for receiving a patient during a medical procedure, wherein the medical measure is supported by the navigation system.
  • at least one field coil of the navigation system is integrated in a defined spatial position in the patient bed. Under a defined spatial position is to be understood as one whose actual current location on the patient bed the navigation system is always known. Because of the above-mentioned short range of the field generator or its field coil, the field coil is positioned very close to the patient by integration into the patient bed, without additionally taking up disturbing space in the patient's environment. Access to the patient is improved. This results in an improved workflow or workflow in the medical procedure and thus a shorter intervention time for the patient.
  • the navigation system and its field coil is integrated in the patient bed, this can be sterile, without having to work with special covers.
  • the risk of contamination for the patient with associated medical complications, such as wound infections, is reduced by the improved sterility. Since the field coil is already integrated in the patient bed, there is also a shorter preparation time for the medical procedure, since the field generator or field coil need not first be appropriately placed.
  • the field coil is fixedly integrated in the patient couch, i. that e.g. already in the preparation of the patient bed, the field coil is arranged once at a predetermined or known location of the bed and henceforth remains at this location. This location is thus also known to the navigation system as a defined spatial position relative to the couch and thus a patient resting thereon.
  • the field coil is displaceably arranged below a table plane of the patient bed.
  • the shift takes place this usually parallel to the table level.
  • the field coil thus forms a displaceable unit below the table, wherein the displaceability is realized for example by a rail system.
  • This variant offers the advantage that the field coil can be adapted to an optimal position below the patient, depending on the current conditions, such as the size and position of the patient or other medical devices used in the medical system. Since the position of the field coil must be a defined spatial position for the navigation system for this alternative, the navigation system must be informed about the actual current location of the field coil at all times. There are also alternatives for this:
  • a first alternative for this is an embodiment of a medical system which contains a position detection system for determining the position of the field coil relative to the patient couch.
  • a position detection system may e.g. Contain path sensors which detect the current displacement position of the field coil, e.g. Directions x and y, parallel to the table plane, ie the plane of the surface of the couch.
  • An alternative possibility for determining the location of the field coil on the patient bed is a receiver coil of the navigation system arranged stationarily on the patient table. Since a relative position between receiver coil and field coil can always be determined by the navigation system, the position of the field coil can be determined by the navigation system itself if the absolute position of the receiver coil at the patient table is known. This thus represents a reference position.
  • the medical system contains a positioning unit.
  • This serves to record the position of other components of the medical system that are connected to the patient bed during the Interacting action.
  • This can be, for example, one or more imaging systems, therapy units or the like.
  • the positioning unit further serves to determine a suitable position of the field coil relative to the patient bed, which takes into account the determined positional positions of the other components.
  • all additional equipment used in the medical system is taken into account, and a correspondingly suitable position of the field coil is found in which, for example, it is influenced as little as possible by the iron mass of the components or interferes with corresponding imaging.
  • the position of the field coil can be changed or shifted manually or automatically, manually operated, electrically or pneumatically.
  • the medical system therefore contains in an advantageous embodiment, an adjustment for
  • Such a shift may also be e.g. automatically according to a detected shift of the surgical area, so that the field generator or the field coil is always automatically in the optimum position.
  • recognition may e.g. based on the position of sensor coils, which are attached to the surgical field, ie on the patient.
  • the medical system can contain a plurality of field coils which are arranged or distributed in the patient bed such that the fields generated by these cover the entire room area assigned to the patient bed, which is supported by a person lying on the bed Patient is ingestible.
  • the field coils can thus cover the entire couch area for all conceivable patients and therefore need not be moved.
  • the patient on the patient bed does not need to be relocated to a field coil.
  • the medical system may include an imaging system cooperating with the patient couch.
  • the field coils in the patient bed are then arranged at a location which is outside that area of the patient bed which can be imaged by the imaging system. This can be, for example, the corner points of the couch or the location of the patient bed supporting column. This results in an improved combination of navigated measures on the patient with intraoperative imaging.
  • Imaging system in the presence of o.g. Imaging system at this one or more additional field coils of the navigation system to be stationary or in known relative position to the imaging system.
  • the field coils mentioned are connected to the navigation system wirelessly or by cable and must have a known relative position to the images generated by the imaging system. Thus, then the position of the imaging system and thus the images generated by this in the coordinate system of the patient bed is known.
  • the patient bed is made at least in a part of the effective field of non-ferromagnetic material.
  • the effective field is the spatial area of the field coil field, which can be used by the navigation system, so that sufficient field strengths are available for position detection. At least in this Area affects the patient bed then the fields generated by the field coil and thus the location accuracy of the navigation system.
  • the field-generating part of a navigation system consists not only of the field coil, but of a correspondingly associated control or control unit.
  • this control unit can also be arranged stationarily on the patient bed, e.g. again in the vicinity of the surgical column or the coupling unit.
  • the above-mentioned, also optional components such as field coil, control and control unit, position detection system may, if present, be an integral part of a couch for this purpose, i. e.g. already integrated in their manufacture.
  • at least the field coil - and / or the o.g. Additional components, if any - also be designed as a mounting kit for various embodiments of patient beds.
  • the mounting kit is designed so that for each possible patient bed, for which the mounting kit is provided, the respective position of the field coil relative to the patient bed defined again in the above sense, so the navigation system is known.
  • a correspondingly defined spatial position can also be used e.g. be determined once by attaching the mounting kit to the patient bed by a corresponding calibration procedure once.
  • Fig. 1 is a medical system with patient bed and electromagnetic navigation system with fixed integrated field coils
  • Fig. 2 the medical system of Fig. 1 with a slidably mounted field generator.
  • the patient couch 4 comprises a pedestal 10 fixedly mounted on a floor 8 of a treatment room, on which in turn a lying surface 12 is mounted, the upper side 14 of which is for receiving a patient, not shown.
  • the navigation system 6 comprises a field generator 16, which is integrated in the base 10, and a plurality of field coils 18 supplied by the field generator 16.
  • the field coils 18 are firmly integrated into the lying surface 12, i. their location positions Pl to P6 are known both with respect to the lying surface 12 and with respect to an N-coordinate system 20 of the navigation system 6.
  • the N-coordinate system 20 is fixed in space in the treatment room, that is arranged relative to the floor 8.
  • the field coils 18 serve to generate an electromagnetic field 22 in the vicinity of the patient couch 4 during operation of the navigation system 6.
  • the navigation system 6 also includes sensor coils 24, which can be connected to the navigation system 6 via connections 26, which are likewise firmly integrated in the lying surface 12.
  • the sensor coils 24 are e.g. attached to the patient, not shown, or a surgical tool, not shown.
  • control and monitoring unit 26 serves the Control or readout of field generator 16, field coils 18 and sensor coils 24.
  • the operation of such an electromagnetic navigation system 6 is known and will not be explained further here.
  • the field 22 in FIG. 1 covers at least the entire spatial region 27 above the patient couch 4 by the arrangement of the field coils at the spatial positions P 1 to P 6.
  • This spatial region 27 is that region which is surrounded by any patient (not shown) Patient couch 4 is placed, can be taken.
  • the field thus covers the entire area that is interesting for a navigated procedure on a patient.
  • Field coils 18, the field generator 16 and the control and monitoring unit 26 part of a mounting kit 29 shown.
  • the mounting kit 29 is sold separately from the patient bed 4 by the manufacturer of the navigation system 6, but is tailored to the special patient bed 4. When installing the medical system 2, the parts of the mounting kit 29 are attached to the patient bed 4 to upgrade them to a system shown in Fig.l with integrated navigation system 6.
  • FIG. 2 shows an alternative embodiment of a patient couch 4, in which, instead of the plurality of field coils 18 from FIG. 1, a single field generator 16 with an integrated field coil 18 is provided.
  • the field generator 18 is arranged on a rail system 28 movably below the lying surface 12. Due to the rail system 28, the field generator 16 or the field coil 18 can therefore be displaced in the plane of the directions x and y, that is to say parallel to the upper side 14 of the lying surface 12.
  • FIG. 2 additionally shows an imaging system 30 which is projected onto an imaging region 32 of the patient 4 is aligned, ie a patient, not shown, on the patient bed 4 in the imaging area 32 can radiate through. Since both the control and monitoring unit 26 and the field generator 16 would interfere with the imaging of the imaging system 30, they are arranged on the patient couch 4 so that they are not in the imaging area 32.
  • the N-coordinate system 20 is again fixed in space, that is to say anchored to the floor 8, however, the field generator 16 is displaceable, the current position P 7 of the field generator 16 and thus of the field coil 18 is determined by a position detection system 34. In a first embodiment, this determines the coordinates of the field coil 18 with respect to the directions x and y by means of mechanical pickups, not shown, on the rail system 28.
  • a sensor coil 24 is fixedly attached to the patient couch 4 at a known position P 8 .
  • the position detection of the field coil 18 is then done in the control and monitoring unit 26 by the relative position of the sensor coil 24 to the generator 16 and the field coil 18 is determined and from this the current coordinates of the directions x and y are determined, in which the field coil 18 currently located.
  • a positioning unit 36 is integrated, which detects the position of the patient bed 4, the imaging system 30 and other, not shown components of the medical system 2 and determines therefrom an optimal position for the field generator 16, at which he does not interfere with the imaging and the field coil 18 generates an optimal field 22 to the space of interest for other sensor coils, not shown, for example on the patient.
  • an automatic adjustment unit 38 is with

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Robotics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Ein Medizinsystem (2) umfasst ein elektromagnetisches Navigationssystem (6), eine Patientenliege (4) zur Aufnahme eines Patienten während einer durch das Navigationssystem (6) gestützten medizinischen Maßnahme, und mindestens eine an einer definierten Ortsposition (P1-7) in die Patientenliege (4) integrierte Feldspule (18) des Navigationssystems (6).

Description

Beschreibung
Medizinsystem
Die Erfindung betrifft ein Medizinsystem mit einem elektromagnetischen Navigationssystem.
Heutige Medizinsysteme sind teilweise navigationsgestützt . Für derartige Systeme bzw. navigationsgestützte medizinische Maßnahmen an einem Patienten stehen heute optische und elektromagnetische Navigationssysteme zur Verfügung. Die elektromagnetischen Systeme bestehen in der Regel aus drei verschiedenen Komponenten: Ein Feldgenerator dient zur Erzeugung eines bekannten elektromagnetischen Feldes. Verschiedene Sen- sorspulen dienen der eigentlichen Ortsbestimmung eines Objekts - z.B. des Patienten und eines Instruments-, welches die Sensorspule trägt. In den Sensorspulen wird vom Feldgenerator ein Magnetfeld induziert, aus dem dann die Position der Sensorspule in Relation zum Feldgenerator berechnet wird. Ein Kontrollsystem überwacht die gesamten Vorgänge im Navigationssystem und führt entsprechend Ortsberechnungen und eine Ergebnisausgabe an einer geeigneten Schnittstelle durch.
Bei Verwendung eines elektromagnetischen Navigationssystems im medizinischen Umfeld wird dieses in der Regel zusammen mit einem bildgebenden System eingesetzt. Die optimale Positionierung des Feldgenerators stellt hierbei ein bisher nicht bestmöglich gelöstes Problem dar. Die für das Navigationssystem nutzbare Reichweite des Feldgenerators bzw. dessen FeId- spule überdeckt nämlich etwa einem Raumwürfel von nur ca.
50 cm Kantenlänge. Insbesondere ist hierbei das optimale Verhältnis von Magnetfeldstärke zu Positionsgenauigkeit von größter Bedeutung. Die Positionsgenauigkeit hängt dabei entscheidend von der Position des Feldgenerators im medizini- sehen Umfeld, z.B. relativ zum Bildgebungssystem, Patienten und den verwendeten Instrumenten ab. Bekannt sind heute Feldgeneratoren als "stand-alone-Systeme" , welche bei einer medizinischen Maßnahme, also beispielsweise einer Diagnose, Biopsie oder Operation, in der Nähe des zu beobachtenden Bereiches, also des "volume of interest" posi- tioniert werden. Die Feldgeneratoren werden daher beispielsweise unter, seitlich oder oberhalb einer Patientenliege, in der Regel an einem verstellbaren Arm, befestigt. Hierdurch wird jedoch meist die Zugänglichkeit zum Patienten erschwert und damit die Akzeptanz elektromagnetischer Navigationssyste- me reduziert.
Da das Navigationssystem in der Regel klinisch bei einer Patientenbehandlung im sterilen Bereich angewendet wird, z.B. bei einer Punktion einer verdächtigen Struktur zur Biopsie und mikroskopischen Diagnostik, muss daher neben der Zugänglichkeit des Operations- bzw. Interventionsfeldes auch die Sterilität des Navigationssystems, insbesondere des Feldgenerators sichergestellt werden. Heute sind hierfür aufwändige sterile Abdeckungen, welche zum Teil sogar spezifisch für die jeweiligen Feldgenerator-Hardwarekomponenten vorhanden sein müssen, erforderlich. Dies führt zu einer weiter eingeschränkten Flexibilität bei der Nutzung des Navigationssystems und zu zeitlichen Verzögerungen durch das erforderliche sterile Abdecken.
Aufgabe der vorliegenden Erfindung ist es, ein verbessertes Medizinsystem mit elektromagnetischem Navigationssystem anzugeben .
Die Aufgabe wird gelöst durch ein Medizinsystem, welches ein elektromagnetisches Navigationssystem und eine Patientenliege zur Aufnahme eines Patienten während einer medizinischen Maßnahme enthält, wobei die medizinische Maßnahme durch das Navigationssystem gestützt ist. Erfindungsgemäß ist mindestens eine Feldspule des Navigationssystems an einer definierten Ortsposition in die Patientenliege integriert. Unter einer definierten Ortsposition ist eine solche zu verstehen, deren tatsächlicher aktueller Ort an der Patientenliege dem Navigationssystem jederzeit bekannt ist. Wegen der o.g. geringen Reichweite des Feldgenerators bzw. dessen Feldspule, ist durch die Integration in die Patientenliege die Feldspule sehr nahe am Patienten positioniert, ohne hierbei zusätzlich störend Raum in der Umgebung des Patienten einzunehmen. Der Zugang zum Patienten ist verbessert. Hierdurch ergibt sich ein verbesserter Arbeitsablauf bzw. Workflow bei der medizinischen Maßnahme und dadurch eine kürzere Eingriffszeit für den Patienten. Da das Navigationssystem bzw. dessen Feldspule in der Patientenliege integriert ist, kann dies steril erfolgen, ohne hierzu mit speziellen Abdeckungen arbeiten zu müssen. Das Kontaminationsrisiko für den Patienten mit verbundenen medizinischen Komplikationen, wie z.B. Wundinfekten, ist durch die verbesserte Sterilität vermindert. Da die Feldspule bereits in der Patientenliege integriert ist, ergibt sich auch eine kürzere Vorbereitungszeit für die medizinische Maßnahme, da Feldgenerator bzw. Feldspule nicht erst entsprechend platziert werden müssen.
Um das Medizinsystem im Sinne eines optimierten Workflows während der medizinischen Maßnahme auszugestalten, sind zwei Alternativen für die Anordnung der Feldspule an der Patientenliege möglich:
In der ersten Alternative wird die Feldspule ortsfest in der Patientenliege integriert, d.h. dass z.B. bereits bei der Herstellung der Patientenliege die Feldspule einmalig an einem vorbestimmten bzw. bekannten Ort der Liege angeordnet wird und fortan an diesem Ort verbleibt. Dieser Ort ist somit auch dem Navigationssystem als definierte Ortsposition relativ zur Liege und damit einem darauf ruhenden Patienten bekannt .
In einer zweiten alternativen Ausführungsform des Medizinsystems ist die Feldspule unterhalb einer Tischebene der Patientenliege verschiebbar angeordnet. Die Verschiebung erfolgt hierbei in der Regel parallel zur Tischebene. Die Feldspule bildet damit eine verschiebbare Einheit unterhalb des Tisches, wobei die Verschiebbarkeit z.B. durch ein Schienensystem realisiert wird. Diese Variante bietet den Vorteil, dass die Feldspule an eine optimale Position unterhalb des Patienten, abhängig von den aktuellen Gegebenheiten , wie Größe und Lage des Patienten oder sonstigen im Medizinsystem verwendeten medizinischen Geräten, angepasst werden kann. Da auch für diese Alternative die Position der Feldspule eine definierte Ortsposition für das Navigationssystem sein muss, muss das Navigationssystem über den tatsächlichen aktuellen Ort der Feldspule zu jeder Zeit informiert sein. Auch hierfür existieren Alternativen:
Eine erste Alternative hierfür stellt eine Ausführungsform eines Medizinsystems dar, welches ein Positionserfassungssystem zur Ermittlung der Position der Feldspule relativ zur Patientenliege enthält. Ein derartiges Positionserfassungssystem kann z.B. Wegesensoren enthalten, welche die aktuelle Verschiebeposition der Feldspule erfassen, z.B. Richtungen x und y, parallel zur Tischebene, also der Ebene der Liegenoberfläche .
Eine alternative Möglichkeit zur Ortsbestimmung der Feldspule an der Patientenliege ist eine ortsfest am Patiententisch angeordnete Empfängerspule des Navigationssystems. Da vom Navigationssystem stets eine Relativposition zwischen Empfängerspule und Feldspule ermittelbar ist, ist die Position der Feldspule vom Navigationssystem selbst ermittelbar, wenn die Absolutposition der Empfängerspule am Patiententisch bekannt ist. Diese stellt somit eine Referenzposition dar.
Für den Fall einer relativ zur Patientenliege verschiebbaren Feldspule enthält in einer weiteren Ausführungsform der Er- findung das Medizinsystem eine Positionierungseinheit. Diese dient der Erfassung der Ortsposition von anderen Komponenten des Medizinsystems, die mit der Patientenliege während der Maßnahme zusammenwirken. Dies können z.B. ein oder mehrere Bildgebungssysteme, Therapieeinheiten o.a. sein. Die Positioniereinheit dient weiterhin zur Ermittlung einer geeigneten Position der Feldspule relativ zur Patientenliege, die die ermittelten Ortspositionen der anderen Komponenten berücksichtigt. So wird sämtliches zusätzliches im Medizinsystem verwendetes Equipment berücksichtigt, und eine entsprechend geeignete Position der Feldspule gefunden, bei der diese z.B. möglichst wenig von der Eisenmasse der Komponenten beein- flusst wird oder eine entsprechende Bildgebung stört.
Die Position der Feldspule kann hierbei manuell oder automatisch, handbetrieben, elektrisch oder pneumatisch verändert bzw. verschoben werden. Das Medizinsystem enthält daher in einer vorteilhaften Ausgestaltung eine Verstelleinheit zur
Veränderung der Position der Feldspule relativ zur Patientenliege. Eine derartige Verschiebung kann auch z.B. automatisch motorisch entsprechend einer erkannten Verschiebung des OP- Gebiets erfolgen, so dass der Feldgenerator bzw. die Feldspu- Ie sich immer automatisch in der optimalen Position befindet. Eine derartige Erkennung kann z.B. anhand der Position von Sensorspulen erfolgen, welche am Operationsgebiet, also am Patienten befestigt sind.
Insbesondere für fest in die Patientenliege integrierte Feldspulen kann das Medizinsystem mehrere Feldspulen enthalten, welche derart in der Patientenliege angeordnet bzw. verteilt sind, dass die von diesen erzeugten Felder gemeinsam den gesamten der Patientenliege zugeordneten Raumbereich überde- cken, der von einem auf der Liege gelagerten Patienten einnehmbar ist. Die Feldspulen können so also den gesamten Liegenbereich für sämtliche denkbaren Patienten abdecken und müssen daher auch nicht verschoben werden. Auch muss der Patient auf der Patientenliege nicht zu einer Feldspule hin verlagert werden. Das Medizinsystem kann ein mit der Patientenliege zusammenwirkendes Bildgebungssystem enthalten. In einer weiteren vorteilhaften Ausgestaltung der Erfindung sind die Feldspulen in der Patientenliege dann an einem Ort angeordnet, der sich außerhalb desjenigen Bereiches der Patientenliege befindet, welcher durch das Bildgebungssystem abbildbar ist. Dies können z.B. die Eckpunkte der Liege oder der Ort der die Patientenliege tragenden Säule sein. Hierdurch ergibt sich eine verbesserte Kombination navigierter Maßnahmen am Patienten mit intraoperativer Bildgebung.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung können bei Vorhandensein des o.g. Bildgebungssystems an diesem eine oder mehrere zusätzliche Feldspulen des Navigations- Systems ortsfest bzw. in bekannter Relativposition zum Bildgebungssystem angeordnet sein. Die genannten Feldspulen werden dabei am Navigationssystem kabellos oder per Kabel angeschlossen und müssen dabei eine bekannte Relativposition zu den vom Bildgebungssystem erzeugten Bildern aufweisen. Somit ist dann auch die Position des Bildgebungssystems und damit der von diesem erzeugten Bilder im Koordinatensystem der Patientenliege bekannt.
Sind Teile der Patientenliege ferromagnetisch, so beeinflus- sen diese die von der Feldspule erzeugten Felder bzw. die Genauigkeit des Navigationssystems. Derartige metallische Komponenten sind jedoch für eine gegebene Liege bekannt und können beispielsweise in das Navigationssystem, z.B. per FEM- Simulation, eingerechnet werden oder durch eine einmalige Ka- libriermessung nach Fertigstellung der Liege entsprechend tabellarisch berücksichtigt werden. In einer vorteilhaften Ausgestaltung der Erfindung ist jedoch die Patientenliege zumindest in einem Teil des wirksamen Feldes aus nicht ferromagne- tischem Material gefertigt. Das wirksame Feld ist der Raumbe- reich des Feldes der Feldspule, der für das Navigationssystem nutzbar ist, in dem also ausreichende Feldstärken für eine Positionserfassung zur Verfügung stehen. Zumindest in diesem Bereich beeinflusst die Patientenliege dann die von der Feldspule erzeugten Felder und damit die Ortsgenauigkeit des Navigationssystems nicht.
In der Regel besteht der felderzeugende Teil eines Navigationssystems nicht nur aus der Feldspule, sondern aus einer entsprechend zugeordneten Kontroll- bzw. Steuereinheit. Nach einer Weiterbildung der Erfindung kann auch diese Steuereinheit ortsfest an der Patientenliege angeordnet sein, z.B. wiederum in der Nähe der OP-Säule bzw. der Ankopplungsein- heit .
Die oben genannten, auch optionalen Komponenten, wie Feldspule, Kontroll- und Steuereinheit, Positionserfassungssystem können - falls vorhanden - als integraler Bestandteil einer Liege zu dieser zugehören, d.h. z.B. bei deren Herstellung bereits integriert werden. In einer vorteilhaften Ausgestaltung der Erfindung kann jedoch zumindest die Feldspule - und/oder die o.g. Zusatzkomponenten, falls vorhanden - auch als Anbausatz für verschiedene Ausführungsformen von Patientenliegen ausgestaltet sein. Somit ergibt sich im Medizinsystem mit anderen Worten ein modularer Navigations-Bausatz zur variablen Kopplung von Komponenten, wie der Feldspule, mit verschieden ausgestalteten bzw. dimensionierten Patientenlie- gen, z.B. verschiedener Hersteller. Der Anbausatz ist jedoch so gestaltet, dass zu jeder möglichen Patientenliege, für welche der Anbausatz vorgesehen ist, die jeweilige Position der Feldspule relativ zur Patientenliege wieder im oben genannten Sinne definiert, also dem Navigationssystem bekannt ist. Eine entsprechend definierte Ortsposition kann auch z.B. nach Anbringung des Anbausatzes an die Patientenliege durch ein entsprechendes Kalibrierverfahren einmalig ermittelt werden .
Für eine weitere Beschreibung der Erfindung wird auf die Ausführungsbeispiele der Zeichnung verwiesen. Es zeigen, jeweils in einer schematischen Prinzipskizze. Fig. 1 ein Medizinsystem mit Patientenliege und elektromagnetischem Navigationssystem mit ortsfest integrierten Feldspulen, Fig. 2 das Medizinsystem aus Fig. 1 mit einem verschiebbar angeordneten Feldgenerator.
Fig. 1 zeigt ein Medizinsystem 2 mit einer Patientenliege 4 und einem elektromagnetischen Navigationssystem 6. Die Pati- entenliege 4 umfasst einen, auf einem Fußboden 8 eines Behandlungsraums fest montierten Standfuß 10, auf welchen wiederum eine Liegefläche 12 montiert ist, deren Oberseite 14 zur Aufnahme eines nicht dargestellten Patienten dient.
Das Navigationssystem 6 umfasst einen Feldgenerator 16, der im Standfuß 10 integriert ist, sowie mehrere, vom Feldgenerator 16 versorgte Feldspulen 18. Die Feldspulen 18 sind fest in die Liegefläche 12 integriert, d.h. deren Ortspositionen Pl bis P6 sind sowohl bezüglich der Liegefläche 12 als auch bezüglich eines N-Koordinatensystem 20 des Navigationssystems 6 bekannt. Das N-Koordinatensystem 20 ist raumfest im Behandlungsraum, also relativ zum Fußboden 8 angeordnet.
Die Feldspulen 18 dienen dazu, im Betrieb des Navigationssys- tems 6 ein elektromagnetisches Feld 22 im Umfeld der Patientenliege 4 zu erzeugen. Das Navigationssystem 6 umfasst außerdem Sensorspulen 24, welche über Anschlüsse 26, die ebenfalls fest in der Liegefläche 12 integriert sind, mit dem Navigationssystem 6 verbindbar sind. Die Sensorspulen 24 sind z.B. am nicht dargestellten Patienten oder einem nicht dargestellten Operationswerkzeug befestigt.
Durch die Anwesenheit der Sensorspulen 24 im Feld 22 kann deren Ortsposition ermittelt werden. Dies geschieht durch eine zum Navigationssystem 6 gehörende Steuer- und Kontrolleinheit 26, welche ebenfalls fest an der Patientenliege 4 angeordnet ist. Die Steuer- und Kontrolleinheit 26 dient der Steuerung bzw. dem Auslesen von Feldgenerator 16, Feldspulen 18 und Sensorspulen 24. Die Funktionsweise eines derartigen elektromagnetischen Navigationssystems 6 ist bekannt und soll hier nicht weiter erläutert werden.
Das Feld 22 in Fig. 1 überdeckt durch die Anordnung der Feldspulen an den Ortspositionen Pl bis P6 mindestens den gesamten Raumbereich 27 oberhalb der Patientenliege 4. Dieser Raumbereich 27 ist derjenige Bereich, welcher von einem be- liebigen, nicht dargestellten Patienten, der auf der Patientenliege 4 platziert wird, eingenommen werden kann. Das Feld deckt somit den gesamten Bereich, der für einen navigierten Eingriff an einem Patienten interessant ist.
In Fig. 1 sind in einer alternativen Ausführungsform die
Feldspulen 18, der Feldgenerator 16 und die Steuer- und Kontrolleinheit 26 Teil eines Anbausatzes 29 dargestellt. Der Anbausatz 29 wird getrennt von der Patientenliege 4 vom Hersteller des Navigationssystems 6 vertrieben wird, ist jedoch auf die spezielle Patientenliege 4 zugeschnitten. Bei Installation des Medizinsystems 2 werden die Teile des Anbausatzes 29 an der Patientenliege 4 angebracht, um diese zu einem entsprechend in Fig.l dargestellten System mit integrierten Navigationssystem 6 aufzurüsten.
Fig. 2 zeigt eine alternative Ausführungsform einer Patientenliege 4, bei der anstelle der mehreren Feldspulen 18 aus Fig. 1 ein einziger Feldgenerator 16 mit einer integrierten Feldspule 18 vorgesehen ist. Der Feldgenerator 18 ist an ei- nem Schienensystem 28 beweglich unterhalb der Liegefläche 12 angeordnet ist. Aufgrund des Schienensystems 28 kann also der Feldgenerator 16 bzw. die Feldspule 18 in der Ebene der Richtungen x und y, also parallel zur Oberseite 14 der Liegefläche 12 verschoben werden.
In Fig. 2 ist zusätzlich ein Bildgebungssystem 30 dargestellt, welches auf einen Abbildungsbereich 32 der Patienten- liege 4 ausgerichtet ist, d.h. einen nicht dargestellten Patienten auf der Patientenliege 4 im Abbildungsbereich 32 durchstrahlen kann. Da sowohl die Steuer- und Kontrolleinheit 26 als auch der Feldgenerator 16 die Bildgebung des Bildgebungssystems 30 stören würden, sind diese an der Patientenliege 4 derart angeordnet, dass sie nicht im Abbildungsbereich 32 liegen.
Da das N-Koordinatensystem 20 wieder raumfest, also z.B. am Fußboden 8 verankert sein soll, der Feldgenerator 16 jedoch verschiebbar ist, wird die aktuelle Position P7 des Feldgenerators 16 und damit der Feldspule 18 durch ein Positionserfassungssystem 34 ermittelt. In einer ersten Ausführungsform ermittelt dieses die Koordinaten der Feldspule 18 bezüglich der Richtungen x und y anhand nicht dargestellter mechanischer Aufnehmer am Schienensystem 28.
In einer alternativen Ausführungsform ist an der Patientenliege 4 eine Sensorspule 24 fest an einer bekannten Positi- on P8 angebracht. Die Positionserfassung der Feldspule 18 geschieht dann in der Steuer- und Kontrolleinheit 26, indem die relative Position der Sensorspule 24 zum Generator 16 bzw. der Feldspule 18 ermittelt wird und hieraus die aktuellen Koordinaten der Richtungen x und y bestimmt werden, an denen sich die Feldspule 18 aktuell befindet.
In Fig. 2 ist außerdem eine Positionierungseinheit 36 integriert, welche die Position der Patientenliege 4, des Bildgebungssystems 30 und anderer, nicht dargestellter Komponenten des Medizinsystems 2 erfasst und hieraus eine optimale Position für den Feldgenerator 16 ermittelt, an welcher er die Bildgebung nicht stört und die Feldspule 18 ein optimales Feld 22 erzeugt, um den interessierenden Raumbereich für weitere, nicht gezeigte Sensorspulen, z.B. am Patienten abzude- cken. Durch eine automatische Verstelleinheit 38 wird mit
Hilfe des Schienensystems 28 die Feldspule 18 automatisch an die entsprechend ermittelte Position verfahren. Bezugs zeichenliste
2 Medizinsystem
4 Patientenliege 6 Navigationssystem
8 Fußboden
10 Standfuß
12 Liegefläche
14 Oberseite 16 Feldgenerator
18 Feldspule
20 N-Koordinatensystem
22 Feld
24 Sensorspulen 26 Steuer- und Kontrolleinheit
27 Raumbereich
28 Schienensystem 29 Anbausatz
30 Bildgebungssystem 32 Abbildungsbereich
34 Positionserfassungssystem
36 Positionierungseinheit
38 Verstelleinheit
Pi-8 Ortsposition x, y Richtung

Claims

Patentansprüche
1. Medizinsystem (2) mit einem elektromagnetischen Navigationssystem (6), und mit einer Patientenliege (4) zur Aufnahme eines Patienten während einer durch das Navigationssystem (6) gestützten medizinischen Maßnahme, mit mindestens einer an einer definierten Ortsposition (P1-7) in die Patientenliege (4) integrierten Feldspule (18) des Navigationssystems (6), wobei die Feldspule (18) unterhalb einer Tischebene (14) der Patientenliege (4) verschiebbar angeordnet ist.
2. Medizinsystem (2) nach Anspruch 1, mit einem Positionserfassungssystem (34) zur Ermittlung der Position (x,y) der Feldspule (18) relativ zur Patientenliege (4) .
3. Medizinsystem (2) nach Anspruch 2, mit einer ortsfest an der Patientenliege (4) angeordneten Empfängerspule (24) des Navigationssystems (6) .
4. Medizinsystem (2) nach einem der vorhergehenden Ansprüche, mit einer Positionierungseinheit (36) zur Erfassung von Ortspositionen von mit der Patientenliege (4) während der Maßnahme zusammenwirkenden Komponenten (30) und zur Ermittlung einer von den Ortspositionen abhängigen, das Navigationssystem von den Komponenten möglichst entkoppelnden Position (x,y) für die Feldspule (18) relativ zur Patientenliege (4) .
5. Medizinsystem (2) nach einem der vorhergehenden Ansprüche, mit einer Verstelleinheit (38) zur Veränderung der Position (x,y) der Feldspule (18) relativ zur Patientenliege (4) .
6. Medizinsystem (2) nach einem der vorhergehenden Ansprüche, bei dem mehrere Feldspulen (18) derart in der Patientenliege (4) angeordnet sind, dass deren Felder (22) gemeinsam den gesamten der Patientenliege (4) zugeordneten Raumbereich (27) überdecken, der von einem auf der Patientenliege (4) gelagerten Patienten einnehmbar ist.
7. Medizinsystem (2) nach einem der vorhergehenden Ansprüche, mit einem mit der Patientenliege (4) zusammenwirkenden BiId- gebungssystem (30), bei der die Feldspule (18) in der Patien- tenliege (4) an einem Ort angeordnet ist, der sich außerhalb des durch das Bildgebungssystem (30) abbildbaren Bereiches (32) der Patientenliege (4) befindet.
8. Medizinsystem (2) nach Anspruch 7, bei dem eine zusätzli- che Feldspule (18) des Navigationssystems (6) am Bildgebungssystem (30) angeordnet ist.
9. Medizinsystem (2) nach einem der vorhergehenden Ansprüche, bei dem die Patientenliege (4) zumindest in einem Teil des wirksamen Bereiches des Feldes (22) der Feldspule aus nicht- ferromagnetischem Material besteht.
10. Medizinsystem (2) nach einem der vorhergehenden Ansprüche mit einer ortsfest an der Patientenliege (4) angeordneten Steuereinheit (26) des Navigationssystems (6) .
11. Medizinsystem (2) nach einem der vorhergehenden Ansprüche, bei dem zumindest die Feldspule (18) als Anbausatz (29) für verschiedene Ausführungsformen von Patientenliegen (4) ausgestaltet ist.
PCT/EP2009/052309 2008-03-03 2009-02-26 Medizinsystem WO2009109515A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/920,640 US20110054297A1 (en) 2008-03-03 2009-02-26 Medical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008012342A DE102008012342A1 (de) 2008-03-03 2008-03-03 Medizinsystem
DE102008012342.0 2008-03-03

Publications (1)

Publication Number Publication Date
WO2009109515A1 true WO2009109515A1 (de) 2009-09-11

Family

ID=40577880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/052309 WO2009109515A1 (de) 2008-03-03 2009-02-26 Medizinsystem

Country Status (3)

Country Link
US (1) US20110054297A1 (de)
DE (1) DE102008012342A1 (de)
WO (1) WO2009109515A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945147B2 (en) 2009-04-27 2015-02-03 Smith & Nephew, Inc. System and method for identifying a landmark
DE102009021025A1 (de) 2009-05-13 2010-11-25 Siemens Aktiengesellschaft Medizinisches Navigationssystem
US10441236B2 (en) 2012-10-19 2019-10-15 Biosense Webster (Israel) Ltd. Integration between 3D maps and fluoroscopic images
EP2914180B1 (de) * 2012-10-31 2018-03-07 Brainlab AG Positionierungsvorrichtung für einen medizinischen feldgenerator
US20150179053A1 (en) * 2013-12-20 2015-06-25 General Electric Company System and method to detect a presence of an object relative to a support
US9495569B2 (en) 2013-12-20 2016-11-15 General Electric Company System and method to detect an event associated with a person relative to a bed

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029683A1 (en) * 1996-02-15 1997-08-21 Biosense, Inc. Movable transmit or receive coils for location system
US20040068178A1 (en) * 2002-09-17 2004-04-08 Assaf Govari High-gradient recursive locating system
EP1570781A1 (de) * 2004-03-05 2005-09-07 Biosense Webster, Inc. Positionserfassungssystem für orthopädische Anwendungen
WO2005086062A2 (en) * 2004-03-05 2005-09-15 Depuy International Limited Registration methods and apparatus
US20060025668A1 (en) * 2004-08-02 2006-02-02 Peterson Thomas H Operating table with embedded tracking technology

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697659B1 (en) * 1991-12-04 2004-02-24 Bonutti 2003 Trust-A Method of imaging a joint in a body of patient
US5724970A (en) * 1993-04-06 1998-03-10 Fonar Corporation Multipositional MRI for kinematic studies of movable joints
ES2210498T3 (es) * 1996-02-15 2004-07-01 Biosense, Inc. Transductores posicionables independientemente para sistema de localizacion.
EP0910299B1 (de) * 1996-02-15 2003-02-12 Biosense, Inc. Verfahren zum konfigurieren und zur benutzung einer sonde
AU709081B2 (en) * 1996-02-15 1999-08-19 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US5997473A (en) * 1996-09-06 1999-12-07 Olympus Optical Co., Ltd. Method of locating a coil which consists of determining the space occupied by a source coil generating a magnetic field
US6311082B1 (en) * 1997-11-12 2001-10-30 Stereotaxis, Inc. Digital magnetic system for magnetic surgery
IL138369A (en) * 1998-03-30 2005-09-25 Bioesence Inc Three-axis coil sensor
US6511417B1 (en) * 1998-09-03 2003-01-28 Olympus Optical Co., Ltd. System for detecting the shape of an endoscope using source coils and sense coils
WO2000033722A2 (en) * 1998-12-08 2000-06-15 Odin Medical Technologies Ltd System for positioning a mri probe
US6330467B1 (en) * 1999-02-04 2001-12-11 Stereotaxis, Inc. Efficient magnet system for magnetically-assisted surgery
US6773393B1 (en) * 1999-08-05 2004-08-10 Olympus Optical Co., Ltd. Apparatus and method for detecting and displaying form of insertion part of endoscope
US8239001B2 (en) * 2003-10-17 2012-08-07 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7366562B2 (en) * 2003-10-17 2008-04-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6484049B1 (en) * 2000-04-28 2002-11-19 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
US6497648B1 (en) * 2000-07-18 2002-12-24 Omar Vicente Rey Device for applying electromagnetic therapy
JP3720727B2 (ja) * 2001-05-07 2005-11-30 オリンパス株式会社 内視鏡形状検出装置
US7907986B2 (en) * 2001-09-24 2011-03-15 Given Imaging Ltd. System and method for controlling a device in vivo
US20040199072A1 (en) * 2003-04-01 2004-10-07 Stacy Sprouse Integrated electromagnetic navigation and patient positioning device
EP1797812B1 (de) * 2003-08-22 2011-04-13 Olympus Corporation Vorrichtung zum Erkennen einer Endoskopform
US7840253B2 (en) * 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8046050B2 (en) * 2004-03-05 2011-10-25 Biosense Webster, Inc. Position sensing system for orthopedic applications
US7974681B2 (en) * 2004-03-05 2011-07-05 Hansen Medical, Inc. Robotic catheter system
ITSV20040015A1 (it) * 2004-04-07 2004-07-07 Esaote Spa Dispositivo porta-paziente, come un lettino od un tavolo oppure una poltrona, e per macchine a risonanza magnetica nucleare, macchina a rosonanza magnetica nucleare e metodo per l'acquisizione di immagini in risonanza magnetica nucleare
JP4709594B2 (ja) * 2004-08-03 2011-06-22 オリンパス株式会社 磁気誘導医療システム
EP1808117A4 (de) * 2004-10-26 2015-07-15 Olympus Corp Vorrichtung zur erkennung der endoskopform
JP4578942B2 (ja) * 2004-11-10 2010-11-10 オリンパス株式会社 内視鏡形状検出装置
JP2006175058A (ja) * 2004-12-22 2006-07-06 Ge Medical Systems Global Technology Co Llc コイルエレメント選択方法および磁気共鳴イメージング装置
DE102005032289B4 (de) * 2005-07-11 2011-06-30 Siemens AG, 80333 Endoskopiesystem
US20100036394A1 (en) * 2007-01-31 2010-02-11 Yoav Mintz Magnetic Levitation Based Devices, Systems and Techniques for Probing and Operating in Confined Space, Including Performing Medical Diagnosis and Surgical Procedures
WO2008104522A2 (en) * 2007-02-28 2008-09-04 Esaote Spa Mri apparatus comprising pivotable patient table
DE102008012857B4 (de) * 2008-03-06 2018-08-09 Siemens Healthcare Gmbh Medizinsystem und Verfahren zur ortsrichtigen Zuordnung eines Bilddatensatzes zu einem elektromagnetischen Navigationssystem
DE102008055918A1 (de) * 2008-11-05 2010-05-06 Siemens Aktiengesellschaft Verfahren zum Betreiben eines medizinischen Navigationssystems und medizinisches Navigationssystem
DE102009021025A1 (de) * 2009-05-13 2010-11-25 Siemens Aktiengesellschaft Medizinisches Navigationssystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029683A1 (en) * 1996-02-15 1997-08-21 Biosense, Inc. Movable transmit or receive coils for location system
US20040068178A1 (en) * 2002-09-17 2004-04-08 Assaf Govari High-gradient recursive locating system
EP1570781A1 (de) * 2004-03-05 2005-09-07 Biosense Webster, Inc. Positionserfassungssystem für orthopädische Anwendungen
WO2005086062A2 (en) * 2004-03-05 2005-09-15 Depuy International Limited Registration methods and apparatus
US20060025668A1 (en) * 2004-08-02 2006-02-02 Peterson Thomas H Operating table with embedded tracking technology

Also Published As

Publication number Publication date
DE102008012342A1 (de) 2009-09-10
US20110054297A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
DE19732784C1 (de) Positioniersystem und Verfahren zur exakten Positionsbestimmung eines manuell geführten Manipulators in einem MR-Tomographen
DE60032156T2 (de) Chirurgisches scannersystem
DE102004061591B3 (de) Verfahren zum Betrieb eines bildgebenden medizinischen Gerätes
DE102006008042A1 (de) Medizinisches Gerät mit im medizinischen Gerät kombinierter Bilderfassungs- und Positionsbestimmungsvorrichtung
WO2009109515A1 (de) Medizinsystem
DE10207736B4 (de) Verfahren zur Bestimmung der Position einer Lokalantenne
DE102012210821A1 (de) Verfahren zu einer Kommunikation zwischen einer Steuereinheit und einem Patienten und/oder einem Bedienpersonal sowie eine medizinische Bildgebungsvorrichtung hierzu
DE102007030568A1 (de) Liegeeinrichtung mit einer Lokalantenneneinrichtung für ein Magnetresonanzgerät
DE112014005479T5 (de) Ermittlung der Koordinatentransformation zwischen einem optischen Bewegungs- Trackingsystem und einem Magnetresonanztomographen
DE102005061209A1 (de) Verfahren zur Planung und Durchführung einer Magnetresonanzuntersunchung, Magnetresonanzgerät und Spuleneinheit
EP1208808A1 (de) Vorrichtung und Verfahren zur Navigation
EP1271172A2 (de) MR-Verfahren und MR-Anordnung mit Mitteln zur Erfassung von Positions- und/oder Lageänderungen von Spulen
EP1905355A1 (de) Beckenregistrierungsvorrichtung für die medizintechnische Navigation
DE102010018627A1 (de) Röntgensystem und Verfahren zur Generierung von 3D-Bilddaten
WO2010052155A1 (de) Verfahren zum betreiben eines medizinischen navigationssystems und medizinisches navigationssystem
DE102014219077A1 (de) Mobiles medizinisches Gerät
DE102008009673A1 (de) Magnetresonanz-Anlage
DE102005055653A1 (de) Verfahren und Vorrichtung zur Röntgendiagnose eines Untersuchungsobjekts
DE19905239B4 (de) Positioniereinrichtung zur Positionierung von medizinischen Werkzeugen zur MR-gestützten Untersuchung und Behandlung von Körperteilen
DE102015209237A1 (de) Magnetresonanzvorrichtung sowie ein Verfahren zu einem Positionieren eines auf einer Patientenlagerungsvorrichtung angeordneten Objekts innerhalb eines Isozentrums einer Magnetresonanzvorrichtung
DE102008032313B3 (de) Medizintechnische Vorrichtung
DE102008012857B4 (de) Medizinsystem und Verfahren zur ortsrichtigen Zuordnung eines Bilddatensatzes zu einem elektromagnetischen Navigationssystem
JP4034874B2 (ja) 寝台及びそれを用いた医療用画像診断装置
EP2926734B1 (de) Verfahren zur Einrichtung einer Patientenbestrahlungseinrichtung
DE102012206922A1 (de) Empfangsspulensystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09717458

Country of ref document: EP

Kind code of ref document: A1