WO2005076033A1 - Vorrichtung zur kontrollierten bewegung einer kamera - Google Patents

Vorrichtung zur kontrollierten bewegung einer kamera Download PDF

Info

Publication number
WO2005076033A1
WO2005076033A1 PCT/CH2004/000060 CH2004000060W WO2005076033A1 WO 2005076033 A1 WO2005076033 A1 WO 2005076033A1 CH 2004000060 W CH2004000060 W CH 2004000060W WO 2005076033 A1 WO2005076033 A1 WO 2005076033A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
transmitter
transmitters
pan
objects
Prior art date
Application number
PCT/CH2004/000060
Other languages
English (en)
French (fr)
Inventor
Frank Langlotz
Corey Mose Kereliuk
Original Assignee
Synthes Ag Chur
Synthes (Usa)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synthes Ag Chur, Synthes (Usa) filed Critical Synthes Ag Chur
Priority to PCT/CH2004/000060 priority Critical patent/WO2005076033A1/de
Publication of WO2005076033A1 publication Critical patent/WO2005076033A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • A61B2034/2057Details of tracking cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient

Definitions

  • the invention relates to a method for the automatic tracking of a sensor and to a device for the controlled movement of a camera according to the preamble of claim 2.
  • the area that must be "observed" by the camera during an operation is relatively large.
  • total knee replacement e.g. Both the entire thigh and the entire lower leg (but usually never both at the same time) must be in the camera field of view at different phases of the operation.
  • the cameras used today have a field of view diameter of approx. 1 m, so that the entire leg cannot lie in the field of vision. Since it is understandably difficult to reposition the patient, this requires readjustment of the camera orientation in order to shift the field of vision from the thigh to the lower leg. Even in operations in which such readjustment would actually not be necessary, correction often has to be made if the surgical work area is only slightly smaller than the field of view of the camera and the camera was initially not optimally aligned.
  • the invention seeks to remedy this.
  • the invention has for its object to provide a device which can be attached to a camera and which permits controlled movement of the camera in such a way that the field of vision of the camera can be tracked to the moving objects to be observed.
  • the invention achieves the stated object with a device for the controlled movement of a camera, which has the features of claim 1. Further advantageous embodiments of the invention are characterized in the dependent claims.
  • the camera is mounted on a controllable tilt-and-tilt device.
  • a controllable tilt-and-tilt device allow rotary movements to be carried out around a horizontal and a vertical axis. If an object tracked by the surgical navigation system now moves to the edge of the field of view of the camera and you assume that it will soon leave this field of view, you can turn the camera in the corresponding direction and thus ensure that the object remains in view for a longer time.
  • Several objects are usually tracked simultaneously during an operation (e.g. instrument, thigh bone, lower leg bone).
  • the measurement volume in particular the field of view of the camera does not have to be checked by an auxiliary person;
  • the senor in particular the camera, can be moved automatically so that the mandatory objects remain within the field of view of the camera, while optional objects can leave the field of view of the camera.
  • the device comprises at least two reference elements that are different from one another with respect to their transmitter-specific signals and can be detected by the sensor, one of which can be attached to an object to be observed.
  • the difference in the reference elements can be determined by the computer connected to the sensor, so that each reference element can be assigned to a specific object, for example a femur, a drill or another surgical instrument.
  • the senor is implemented as an optical camera and comprises at least two cameras, preferably commercially available CCD cameras.
  • the different transmitter-specific signals of the reference elements can be implemented, for example, as follows:
  • the markers that can be detected by the camera (e.g. light emitting diodes: LEDs or IREDs) on the reference elements;
  • the individual objects can thus be differentiated from one another and can be tracked or dropped by the camera in the order of their importance.
  • the optics of the cameras serving as receivers are designed and arranged in such a way that each camera has a conical reception area which has an optical axis.
  • the tips of these conical reception areas lie in the centers of the optics of the cameras.
  • the optical axes form the axes of symmetry of the conical reception areas and are aligned in such a way that the conical reception areas intersect and cover a common volume. This intersection of the two conical reception areas forms the measuring volume of the sensor.
  • the optical axes of the cameras can be arranged skewed or intersecting in space.
  • the center of gravity of the measurement volume defined in this way can be moved on a spherical section by means of the pan-tilt device.
  • the distance of the measurement volume from the sensor is preferably artificially trimmed by the calibration of the cameras. Signals that come from a position outside the measuring volume calibrated during camera production are not converted into position data, although they are recorded by the cameras.
  • the pan-tilt device comprises a separate drive device for each of the two axes of rotation, so that the rotary movements of the sensor about each of the axes of rotation can be carried out independently of one another.
  • the pan-tilt device is preferably designed such that the sensor can be rotated around the first axis of rotation by an angle within -25 ° and + 25 ° and around the second axis of rotation by an angle within -90 ° and + 90 °.
  • FIG. 1 shows a surgical position detection system for movable objects with a sensor which can be pivoted by means of an embodiment of the device according to the invention.
  • the device 1 shown in FIG. 1 essentially comprises an optical, on a tripod 4 arranged longitudinal sensor 2 with two receivers 13 arranged side by side on the longitudinal axis 3 of the sensor 2, a pan-tilt device 10 attached to the tripod 4 for pivoting the Sensor 2 about two mutually perpendicular axes of rotation 7; 8, two different reference elements 9a; 9b serving as transmitters 20a; 20b, each of which can be attached to an object 21a; 21b, and one with a data memory 23 and a first and a second Comparator 22; 24 equipped computer 12.
  • the receivers 13 are designed as cameras, the optical axes 17a; 17b lie in a plane 18.
  • the data storage Rather 23 and the first and second comparators 22; 24 are implemented by the hardware and software components of the computer 12.
  • the axes of rotation 7; 8 of the tilt-and-tilt device 10 are arranged such that the first axis of rotation 7 is parallel to the longitudinal axis 3 of the sensor 2, while the second axis of rotation 8 is perpendicular to the first axis of rotation 7 and which is defined by the optical axes 17a; 17b spanned plane 18 penetrates.
  • the pan-tilt device 10 comprises two drive devices 5; 6 which can be controlled by the computer 12, one drive device 5; 6 each causing the sensor 12 to rotate about an axis of rotation 7; 8.
  • the first reference element 9a is attached to the bone 19 to be treated, while the second reference element 9b is attached here to a surgical drill 15.
  • Both reference elements 9a; 9b serve as transmitters 20a; 20b and are each provided with four markers 14a; 14b, preferably equipped with LEDs.
  • the markers 14a; 14b emitted electromagnetic waves are emitted by the receivers 13, i.e. captured by the cameras, whereby the position of the markers 14a; 14b can be determined in the operating room by means of the computer 12.
  • sensor 2 can be tracked to one or more objects 21a; 21b in such a way that transmitters 20a; 20b remain within the measurement volume of sensor 2.
  • a possible embodiment of this method for the automatic tracking of the sensor 2 by means of the pan-tilt device 10 comprises the following steps:
  • step F Decide whether the at least one object 21a; 21b determined by step F) is a mandatory object 21a or an optional object 21b by means of a second comparator 24.
  • the transmitter-specific signals of all objects 21a; 21b to be measured are compared with the data stored in data memory 23 under step C) by means of second comparator 24;
  • step H outputting a control signal from the second comparator 24 to the controller 11 of the pan-tilt device 10 if it was decided under step G) that the object 21a; 21b determined under step F) is a mandatory object 21a; and I) tracking the sensor (2) by means of the pan-tilt device 10, the drive devices 5; 6 of the pan-tilt device 10 being controlled by the controller 11.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Remote Sensing (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Pathology (AREA)
  • Robotics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Accessories Of Cameras (AREA)

Abstract

Vorrichtung (1) zur kontrollierten Bewegung und Verfahren zum Nachführen eines longitudinalen, eine Längsachse (3) und ein Messvolumen V aufweisenden Sensors (2) mit A) mindestens zwei nebeneinander auf der Längsachse (3) angeordneten Empfängern (13) zum Empfangen von elektromagnetischen öder akustischen Signalen, welche von mit Objekten (21a;21b) verbundenen Sendern (20a;20b) abgegeben werden; B) einer mit dem Sensor (2) verbundenen Schwenk-Neige-Vorrichtung (10); C) einer Steuerung (11), mittels welcher die Antriebsvorrichtungen (5;6) der Schwenk Neige-Vorrichtung (10) bezüglich der Rotationsbewegungen um die zwei Drehachsen (7;8) steuerbar sind; D) einem Datenspeicher (23), worin i) senderspezifische Signale voneinander unterscheidbar speicherbar sind; ii) das Messvolumen V des Sensors (2) speicherbar ist; und E) einem ersten Komperator (22), mittels welchem gemessene Orte von mit Objekten (2la;21b) verbundenen Sendern (20a;20b) mit dem im Datenspeicher (23) gespeicherten Messvolumen V des Sensors (2) vergleichbar sind; und F) einem zweiten Komperator (24), mittels welchem Sender (20a;20b) in mindestens zwei bezüglich der senderspezifischen Signale unterscheidbare Klassen einteilbar sind.

Description

Vorrichtung zur kontrollierten Bewegung einer Kamera
Die Erfindung bezieht sich auf ein Verfahren zur automatischen Nachführung eines Sensors gemäss Patentanspruch 1 und auf eine Vorrichtung zur kontrollierten Bewegung einer Kamera gemäss dem Oberbegriff des Patentanspruchs 2.
In der computerassistierten Chirurgie werden Instrumente und behandelte Anatomie üblicherweise mit Hilfe eines optoelektronischen Kamerasystems (kurz: Kamera) vermessen und verfolgt. Verständlicherweise ist es dabei notwendig, dass sich alle für einen bestimmten Operationsschritt interessanten Objekte im Sichtfeld der Kamera befinden.
In einigen Fällen ist der Bereich, der im Laufe einer Operation von der Kamera "beobachtet" werden muss, relativ gross. Beim totalen Kniegelenksersatz z.B. müssen sich zu verschiedenen Operationsphasen sowohl der gesamte Oberschenkel als auch der gesamte Unterschenkel (normalerweise jedoch nie beide gleichzeitig) im Kamerasichtfeld befinden. Die heute verwendeten Kameras haben einen Sichtfelddurchmesser von ca. 1 m, so dass nicht das gesamte Bein im Sichtfeld liegen kann. Da eine Umlagerung des Patienten verständlicherweise schlecht möglich ist, bedingt dies eine Nachjustierung der Kameraausrichtung, um das Sichtfeld vom Oberschenkel auf den Unterschenkel zu verschieben. Auch in Eingriffen, in denen eine solche Nachjustierung eigentlich nicht notwendig wäre, muss oftmals korrigiert werden, wenn der chirurgische Arbeitsbereich nur geringfügig kleiner als das Sichtfeld der Kamera ist und diese anfänglich nicht optimal ausgerichtet war.
Hier will die Erfindung Abhilfe schaffen. Der Erfindung liegt die Aufgabe zugrunde, eine an einer Kamera befestigbare Vorrichtung zu schaffen, welche eine kontrollierte Bewegung der Kamera gestattet, derart, dass das Sichtfeld der Kamera den zu beobachtenden, bewegten Objekten nachführbar ist.
Die Erfindung löst die gestellte Aufgabe mit einer Vorrichtung zur kontrollierten Bewegung einer Kamera, welche die Merkmale des Anspruchs 1 aufweist. Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen gekennzeichnet.
Anstatt einer starren Fixierung der Kamera auf einem Stativ wird die Kamera auf einer steuerbaren Schenk-Neige-Vorrichtung montiert. Solche Vorrichtungen erlauben es, Drehbewegungen um eine horizontale und eine vertikale Achse auszuführen. Wenn sich nun ein vom chirurgischen Navigationssystem verfolgtes Objekt zum Rande des Sichtfeldes der Kamera bewegt und man annimmt, dass es dieses Sichtfeld demnächst verlassen wird, kann man die Kamera in die entsprechende Richtung drehen und so gewährleisten, dass das Objekt länger in Sicht bleibt. Während einer Operation werden üblicherweise mehrere Objekte gleichzeitig verfolgt (z.B. Instrument, Oberschenkelknochen, Unterschenkelknochen).
Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, dass dank der erfindungsgemässen Vorrichtung:
- Das Messvolumen, insbesondere das Sichtfeld der Kamera nicht von einer Hilfsperson kontrolliert werden muss; und
- Bei Verschiebungen der beobachteten Objekte der Sensor, insbesondere die Kamera automatisch so bewegbar ist, dass die obligatorischen Objekte innerhalb des Sichtfeldes der Kamera bleiben, während fakultative Objekte das Sichtfeld der Kamera verlassen können.
In einer bevorzugten Ausführungsform umfasst die Vorrichtung mindestens zwei voneinander bezüglich ihrer senderspezifischen Signale verschiedene, durch den Sensor erfassbare Referenzelemente, wovon je eines an einem zu beobachtenden Objekt befestigbar ist. Die Verschiedenheit der Referenzelemente ist durch den mit dem Sensor verbunden Computer ermittelbar, so dass jedes Referenzelement einem bestimmten Objekt, z.B. einem Oberschenkelknochen, einer Bohrmaschine oder einem anderen chirurgischen Instrument zugeordnet werden kann. Damit ist der Vorteil erreichbar, dass wenn das beschriebene Verfahren Gefahr läuft, beim Verfolgen eines Objektes ein anderes zu verlieren, eine Prioritätenliste definiert werden kann, die die Wichtigkeit der einzelnen Objekte zueinander festlegt und es dem Kontrollmechanismus damit erlaubt, in einem Konfliktfall zu entscheiden, welches Objekt "fallengelassen" werden soll. Ferner ist der Vorteil erreichbar, dass handelsübliche, mit Markern versehene Referenzelemente einsetzbar sind.
In einer anderen Ausführungsform ist der Sensor als optische Kamera realisiert und umfasst mindestens zwei Kameras, vorzugsweise handelsübliche CCD-Kameras. Die voneinander verschiedenen senderspezifischen Signale der Referenzelemente sind beispielsweise wie folgt realisierbar:
- durch eine verschiedene geometrische Anordnung der durch die Kamera erfassbaren Marker (z.B Light Emitting Dioden: LED's, oder IRED's) an den Referenzelementen;
- durch Anbringen verschiedener Sorten von Marker mit einer bestimmten elektromagnetischen Wellenlänge an jedem Referenzelement; oder
- durch separates, zu unterschiedlichen Zeitpunkten kurzzeitiges Aktivieren von jedem Marker in sehr schneller Abfolge, so dass immer nur ein „Lichtblitz" für das Kamerasystem sichtbar ist, der dann eindeutig dem gerade aktivierten Marker zugeordnet werden kann
Damit sind die einzelnen Objekte voneinander differenzierbar und können durch die Kamera in der Reihenfolge ihrer Wichtigkeit verfolgt oder fallen gelassen werden.
In einer weiteren Ausführungsform sind die Optiken der als Empfänger dienenden Kameras derart ausgebildet und angeordnet, dass jede Kamera einen eine optische Achse aufweisenden kegelförmigen Empfangsbereich hat. Die Spitzen dieser kegelförmigen Empfangsbereiche liegen in den Mittelpunkten der Optiken der Kameras. Die optischen Achsen bilden dabei die Symmetrieachsen der kegelförmigen Empfangsbereiche und sind so ausgerichtet, dass sich die kegelförmigen Empfangsbereiche schneiden und ein gemeinsames Volumen abdecken. Diese Schnittmenge der zwei kegelförmigen Empfangsbereiche bildet das Messvolumen des Sensors. Dabei können die optischen Achsen der Kameras windschief oder sich schneidend im Raum angeordnet sein. Der Schwerpunkt des so definierten Messvolumens ist mittels der Schwenk-Neige- Vorrichtung auf einem Kugelausschnitt verschiebbar. Vorzugsweise wird der Abstand des Messvolumens vom Sensor durch die Kalibrierung der Kameras künstlich beschnitten. Signale, welche von einer Position ausserhalb des bei der Kameraherstellung kalibrierten Messvolumens kommen, werden nicht in Positionsdaten umgerechnet, obwohl sie von den Kameras erfasst werden.
In wiederum einer weiteren Ausführungsform umfasst die Schwenk-Neige-Vorrichtung für jede der zwei Drehachsen eine separate Antriebsvorrichtung, so dass die Drehbewegungen des Sensors um jede der Drehachsen unabhängig voneinander ausführbar sind.
Vorzugsweise ist die Schwenk-Neige-Vorrichtung derart ausgebildet, dass der Sensor um einen Winkel innerhalb von -25° und +25° um die erste Drehachse und um einen Winkel innerhalb von -90° und +90° um die zweite Drehachse drehbar ist.
Die Erfindung und Weiterbildungen der Erfindung werden im folgenden anhand der teilweise schematischen Darstellungen mehrerer Ausführungsbeispiele noch näher erläutert.
Es zeigen:
Fig. 1 ein chirurgisches Positionserfassungssystem für bewegbare Objekte mit einem mittels einer Ausführungsform der erfindungsgemässen Vorrichtung schwenkbaren Sensor.
Die in Fig. 1 dargestellte Vorrichtung 1 umfasst im wesentlichen einen optischen, auf einem Stativ 4 angeordneten longitudinalen Sensor 2 mit zwei nebeneinander auf der Längsachse 3 des Sensors 2 angeordneten Empfängern 13, eine am Stativ 4 angebrachte Schwenk-Neige-Vorrichtung 10 zur Schwenkung des Sensors 2 um zwei senkrecht zueinander stehende Drehachsen 7;8, zwei verschiedene, als Sender 20a;20b dienende Referenzelemente 9a;9b, welche je an einem Objekt 21a;21 b befestigbar sind, und einen mit einem Datenspeicher 23 sowie einem ersten und einem zweiten Komperator 22;24 ausgestatteten Computer 12. Die Empfänger 13 sind als Kameras ausgebildet, deren optische Achsen 17a; 17b in einer Ebene 18 liegen. Der Datenspei- eher 23 sowie der erste und zweite Komperator 22;24 werden durch die Hard- und Softwarekomponenten des Computers 12 realisiert.
Die Drehachsen 7;8 der Schenk-Neige-Vorrichtung 10 sind derart angeordnet, dass die erste Drehachse 7 parallel zur Längsachse 3 des Sensors 2 steht, während die zweite Drehachse 8 senkrecht auf der ersten Drehachse 7 steht und die durch die optischen Achsen 17a; 17b aufgespannte Ebene 18 durchdringt. Die Schwenk-Neige-Vorrichtung 10 umfasst zwei durch den Computer 12 steuerbare Antriebsvorrichtungen 5;6, wobei je eine Antriebsvorrichtung 5;6 eine Drehbewegung des Sensors 12 um je eine Drehachse 7;8 verursacht.
Bei der hier dargestellten Anwendung der Vorrichtung 1 im chirurgischen Operationsraum wird das erste Referenzelement 9a am zu behandelnden Knochen 19 befestigt, während das zweite Referenzelement 9b hier an einer chirurgischen Bohrmaschine 15 befestigt ist. Beide Referenzelemente 9a;9b dienen als Sender 20a;20b und sind mit je vier Markern 14a; 14b, vorzugsweise LED's ausgestattet. Die von den Markern 14a; 14b abgegebenen elektromagnetischen Wellen werden von den Empfängern 13, d.h. den Kameras erfasst, wodurch sich die Position der Marker 14a; 14b im Operationsraum mittels des Computers 12 ermitteln lässt.
Durch die verschiedene geometrische Anordnung der Marker 14a; 14b auf jedem Referenzelement 9a;9b lässt sich somit die Lage jedes der durch das jeweilige Referenzelement 9a;9b gekennzeichneten Objekte 21 a;21 b ermitteln.
Bei Verschiebungen der Objekte 21a;21b lässt sich der Sensor 2 einem oder mehreren Objekten 21a;21 b derart nachführen, dass die Sender 20a;20b innerhalb des Messvolumens des Sensors 2 bleiben.
Eine mögliche Ausführungsform dieses Verfahrens zum automatischen Nachführen des Sensors 2 mittels der Schwenk-Neige-Vorrichtung 10 umfasst die folgenden Schritte:
A) Bestimmung mindestens eines obligatorischen Objektes 21 a, welches nicht aus dem Messvolumen des Sensors 2 bewegt werden darf;
B) Bestimmung mindestens eines fakultativen Objektes 21 b, welches aus dem Messvolumen des Sensors 2 entfernt werden darf; C) Eingabe der senderspezifischen Signale der mit unter den Schritten A) und B) bestimmten Objekten 21a;21 b verbundenen Sender 20a;20b in einen Datenspeicher 23, worin die senderspezifischen Signale voneinander unterscheidbar abgespeichert werden;
D) Ausrichten der Position des Sensors 2, so dass alle zu vermessenden Sender 20a;20b innerhalb des Messvolumens des Sensors 2 liegen;
E) Bewegen mindestens eines Objektes 21a;21 b im Raum;
F) Vergleichen der aktuellen Lage aller an den Objekten 21a;21b befestigten Sender 20a;20b mit dem Messvolumen des Sensors 2 ohne Bewegung des Sensors 2 mittels eines ersten Komperators 22 bis mindestens eines der Objekte 21a;21 b soweit verschoben wurde, dass der zugehörige Sender 20a;20b innerhalb einer definierten Randzone des Messvolumens des Sensors 2 liegt;
G) Entscheiden, ob das mindestens eine und durch den Schritt F) ermittelte Objekt 21a;21 b ein obligatorisches Objekt 21 a oder ein fakultatives Objekt 21 b ist, mittels eines zweiten Komperators 24. Zur Entscheidung, ob das unter Schritt F) ermittelte Objekt 21a;21b ein obligatorisches Objekt 21a oder ein fakultatives Objekt 21b ist, werden die senderspezifischen Signale aller zu vermessenden Objekte 21 a;21 b mit den im Datenspeicher 23 unter Schritt C) abgespeicherten Daten mittels des zweiten Komperators 24 verglichen;
H) Abgabe eines Steuersignals vom zweiten Komperator 24 an die Steuerung 11 der Schwenk-Neige-Vorrichtung 10 falls unter Schritt G) entschieden wurde, dass das unter Schritt F) ermittelte Objekt 21a;21 b ein obligatorisches Objekt 21a ist; und I) Nachführen des Sensors (2) mittels der Schwenk-Neige-Vorrichtung 10, wobei die Antriebsvorrichtungen 5;6 der Schwenk-Neige-Vorrichtung 10 durch die Steuerung 11 gesteuert werden.

Claims

Patentansprüche
1. Verfahren zum automatischen Nachführen eines eine Schwenk-Neige-Vorrichtung
(10) umfassenden Sensors (2), welcher zur Ermittlung der Lage von mindestens zwei Sendern (20a;20b) geeignet ist, wobei jeder Sender (20a;20b) senderspezifische Signale abgibt und mit je einem im Raum bewegbaren Objekt (21a;21 b) verbunden ist, gekennzeichnet durch die Schritte:
A) Bestimmung mindestens eines obligatorischen Objektes (21a), welches nicht aus dem Messvolumen V des Sensors (2) bewegt werden darf;
B) Bestimmung mindestens eines fakultativen Objektes (21 b), welches aus dem Messvolumen V des Sensors (2) entfernt werden darf;
C) Eingabe der senderspezifischen Signale der mit unter den Schritten A) und B) bestimmten Objekten (21a;21 b) verbundenen Sender (20a;20b) in einen Datenspeicher (23);
D) Ausrichten der Position des Sensors (2), so dass alle zu vermessenden Sender (20a;20b) innerhalb des Messvolumens V des Sensors (2) liegen;
E) Bewegen mindestens eines Objektes (21a;21 b) im Raum;
F) Vergleichen der aktuellen Lage aller an den Objekten (21a;21 b) befestigten Sender (20a;20b) mit dem Messvolumen V des Sensors (2) ohne Bewegung des Sensors (2) mittels eines ersten Komperators (22) bis mindestens eines der Objekte (21 a;21 b) soweit verschoben wurde, dass der zugehörige Sender (20a;20b) innerhalb einer definierten Randzone des Messvolumens V des Sensors (2) liegt;
G) Entscheiden, ob das mindestens eine und durch den Schritt F) ermittelte Objekt (21 a;21b) ein obligatorisches Objekt (21a) oder ein fakultatives Objekt (21 b) ist, mittels eines zweiten Komperators (24);
H) Abgabe eines Steuersignals vom zweiten Komperator (24) an die Steuerung (11 ) der Schwenk-Neige-Vorrichtung (10) falls unter Schritt G) entschieden wurde, dass das unter Schritt F) ermittelte Objekt (21a;21 b) ein obligatorisches Objekt (21 a) ist; und I) Nachführen des Sensors (2) mittels der Schwenk-Neige-Vorrichtung (10), wobei die Antriebsvorrichtungen (5;6) der Schwenk-Neige-Vorrichtung (10) durch die Steuerung
(11 ) gesteuert werden.
2. Vorrichtung (1) zur kontrollierten Bewegung eines longitudinalen, eine Längsachse 3 und ein Messvolumen V aufweisenden Sensors (2) mit
A) mindestens zwei nebeneinander auf der Längsachse (3) angeordneten Empfängern (13) mit einem räumlich definierten Empfangsbereich für elektromagnetische oder akustische Signale, welche von mit Objekten (21a;21 b) verbundenen Sendern (20a;20b) abgegeben werden;
B) einer mit dem Sensor (2) verbundenen Schwenk-Neige-Vorrichtung (10) mit zwei quer zueinander stehenden Drehachsen (7;8), wobei die erste Drehachse (7) parallel oder koaxial zur Längsachse (3) steht, und einer Antriebsvorrichtung (5;6) pro Drehachse (7;8) ;
C) einer Steuerung (11), mittels welcher die Antriebsvorrichtungen (5;6) der Schwenk- Neige-Vorrichtung (10) bezüglich der Rotationsbewegungen um die zwei Drehachsen (7;8) steuerbar sind;
D) einem Datenspeicher (23), worin i) senderspezifische Signale voneinander unterscheidbar speicherbar sind; ii) das Messvolumen V des Sensors (2) speicherbar ist; und
E) einem ersten Komperator (22), mittels welchem gemessene Orte von mit Objekten (21a;21b) verbundenden Sendern (20a;20b) mit dem im Datenspeicher (23) gespeicherten Messvolumen V des Sensors (2) vergleichbar sind, dadurch gekennzeichnet, dass
F) ein zweiter Komperator (24) vorgesehen ist, mittels welchem die Sender (20a;20b) in mindestens zwei bezüglich der senderspezifischen Signale unterscheidbare Klassen einteilbar sind.
3. Vorrichtung (1 ) nach Anspruch 2, dadurch gekennzeichnet, dass sie an einem chirurgischen Instrument oder an einem Organ eines Patienten befestigbare, als Sender (20a;20b) geeignete erste und zweite Referenzelemente (9a;9b) mit je mindestens drei elektromagnetische oder akustische Wellen emittierenden ersten und zweiten Markern (14a; 14b) umfasst.
4. Vorrichtung (1) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Empfänger (13) optoelektronische Kameras sind.
5. Vorrichtung (1 ) nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die geometrische Anordnung der ersten Marker (14a) am ersten Referenzelement (9a) von der geometrischen Anordnung der zweiten Marker (14b) am zweiten Referenzelement (9b) verschieden ist.
6. Vorrichtung (1) nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die ersten und zweiten Marker (14a; 14b) nacheinander zu unterschiedlichen Zeitpunkten und in sehr schneller Abfolge zur kurzzeitigen Abgabe von elektromagnetischen Wellen aktiviert werden.
7. Vorrichtung (1) nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass jede Kamera einen eine optische Achse (17a; 17b) aufweisenden kegelförmigen Empfangsbereich hat, wobei sich die zwei Empfangsbereiche schneiden und die Schnittmenge der zwei kegelförmigen Empfangsbereiche das Messvolumen V bildet, dessen Schwerpunkt mittels der Schwenk-Neige-Vorrichtung (10) auf einem Kugelausschnitt verschiebbar ist.
8. Vorrichtung (1) nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass die Schwenk-Neige-Vorrichtung (10) für jede der zwei Drehachsen (7;8) eine separate Antriebsvorrichtung (5;6) umfasst.
9. Vorrichtung (1) nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass der Sensor (2) um einen Winkel innerhalb von -25° und +25° um die erste Drehachse
(7) drehbar ist.
10. Vorrichtung (1 ) nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass der Sensor (2) um einen Winkel innerhalb von -90° und +90° um die zweite Drehachse
(8) drehbar ist.
PCT/CH2004/000060 2004-02-05 2004-02-05 Vorrichtung zur kontrollierten bewegung einer kamera WO2005076033A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CH2004/000060 WO2005076033A1 (de) 2004-02-05 2004-02-05 Vorrichtung zur kontrollierten bewegung einer kamera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH2004/000060 WO2005076033A1 (de) 2004-02-05 2004-02-05 Vorrichtung zur kontrollierten bewegung einer kamera

Publications (1)

Publication Number Publication Date
WO2005076033A1 true WO2005076033A1 (de) 2005-08-18

Family

ID=34832034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2004/000060 WO2005076033A1 (de) 2004-02-05 2004-02-05 Vorrichtung zur kontrollierten bewegung einer kamera

Country Status (1)

Country Link
WO (1) WO2005076033A1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541966A (ja) * 2005-06-09 2008-11-27 アイエフイー インダストリエレ フォーシュング ウント エントヴィックルング ゲーエムベーハー 物体の空間位置そして/または空間方位の非接触決定及び測定用システムと方法、特に医療器具に関するパターン又は構造体を含む特に医療器具の較正及び試験方法
WO2010052155A1 (de) * 2008-11-05 2010-05-14 Siemens Aktiengesellschaft Verfahren zum betreiben eines medizinischen navigationssystems und medizinisches navigationssystem
DE102010013499A1 (de) * 2010-03-31 2011-10-06 Siemens Aktiengesellschaft Verfahren zur Ausrichtung einer stereoskopischen Bildgebungseinrichtung eines optischen Trackingssystems, Trackingsystem und medizinisches Behandlungssystem
WO2012152592A1 (de) * 2011-05-07 2012-11-15 Hieronimi, Benedikt System zur auswertung von identifikationsmarken, identifikationsmarken und deren verwendung
WO2013104420A1 (en) * 2012-01-12 2013-07-18 Brainlab Ag Method and system for medical tracking using a plurality of camera positions
EP3025665A1 (de) * 2014-11-26 2016-06-01 MASMEC S.p.A. Computergestütztes system zum führen eines chirurgischen/diagnostischen instruments im körper eines patienten
EP3025666A1 (de) * 2014-11-26 2016-06-01 MASMEC S.p.A. Computergestütztes system zum führen eines chirurgischen/diagnostischen instruments im körper eines patienten
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US10105149B2 (en) 2013-03-15 2018-10-23 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US10219811B2 (en) 2011-06-27 2019-03-05 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
WO2019209725A1 (en) * 2018-04-23 2019-10-31 Mako Surgical Corp. System, method and software program for aiding in positioning of a camera relative to objects in a surgical environment
CN111904596A (zh) * 2020-06-09 2020-11-10 武汉联影智融医疗科技有限公司 导航调节机构及具有其的手术机器人系统
US11116574B2 (en) 2006-06-16 2021-09-14 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
US11911117B2 (en) 2011-06-27 2024-02-27 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020149681A1 (en) * 2001-03-28 2002-10-17 Kahn Richard Oliver Automatic image capture
US6529765B1 (en) * 1998-04-21 2003-03-04 Neutar L.L.C. Instrumented and actuated guidance fixture for sterotactic surgery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529765B1 (en) * 1998-04-21 2003-03-04 Neutar L.L.C. Instrumented and actuated guidance fixture for sterotactic surgery
US20020149681A1 (en) * 2001-03-28 2002-10-17 Kahn Richard Oliver Automatic image capture

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2377484A1 (de) * 2005-06-09 2011-10-19 Naviswiss AG Vorrichtung und Verfahren zum berührungslosen Ermitteln und Vermessen einer Raumposition und/oder einer Raumorientierung von Körpern, Verfahren zum Kalibrieren und zum Prüfen von insbesondere medizinischen Werkzeugen sowie Muster auf oder Strukturen an insbesondere medizinischen Werkzeugen
JP2008541966A (ja) * 2005-06-09 2008-11-27 アイエフイー インダストリエレ フォーシュング ウント エントヴィックルング ゲーエムベーハー 物体の空間位置そして/または空間方位の非接触決定及び測定用システムと方法、特に医療器具に関するパターン又は構造体を含む特に医療器具の較正及び試験方法
US8320612B2 (en) 2005-06-09 2012-11-27 Naviswiss Ag System and method for the contactless determination and measurement of a spatial position and/or a spatial orientation of bodies, method for the calibration and testing, in particular, medical tools as well as patterns or structures on, in particular, medical tools
US11116574B2 (en) 2006-06-16 2021-09-14 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
US11857265B2 (en) 2006-06-16 2024-01-02 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
US20110251625A1 (en) * 2008-11-05 2011-10-13 Clemens Bulitta Medical navigation system and method for the operation thereof
WO2010052155A1 (de) * 2008-11-05 2010-05-14 Siemens Aktiengesellschaft Verfahren zum betreiben eines medizinischen navigationssystems und medizinisches navigationssystem
DE102010013499B4 (de) * 2010-03-31 2017-04-13 Siemens Healthcare Gmbh Verfahren zur Ausrichtung einer stereoskopischen Bildgebungseinrichtung eines optischen Trackingssystems, Trackingsystem und medizinisches Behandlungssystem
DE102010013499A1 (de) * 2010-03-31 2011-10-06 Siemens Aktiengesellschaft Verfahren zur Ausrichtung einer stereoskopischen Bildgebungseinrichtung eines optischen Trackingssystems, Trackingsystem und medizinisches Behandlungssystem
WO2012152592A1 (de) * 2011-05-07 2012-11-15 Hieronimi, Benedikt System zur auswertung von identifikationsmarken, identifikationsmarken und deren verwendung
CN103649775A (zh) * 2011-05-07 2014-03-19 贝内迪克特·希罗尼米 用于评估识别标记的系统、识别标记及其用途
US8985438B2 (en) 2011-05-07 2015-03-24 Benedikt Hieronimi System for evaluating identification marks and use thereof
CN103649775B (zh) * 2011-05-07 2016-05-18 贝内迪克特·希罗尼米 用于评估识别标记的系统、识别标记及其用途
US11911117B2 (en) 2011-06-27 2024-02-27 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US10080617B2 (en) 2011-06-27 2018-09-25 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US10219811B2 (en) 2011-06-27 2019-03-05 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US10231787B2 (en) 2012-01-12 2019-03-19 Brainlab Ag Method and system for medical tracking using a plurality of camera positions
WO2013104420A1 (en) * 2012-01-12 2013-07-18 Brainlab Ag Method and system for medical tracking using a plurality of camera positions
US10105149B2 (en) 2013-03-15 2018-10-23 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
EP3025666A1 (de) * 2014-11-26 2016-06-01 MASMEC S.p.A. Computergestütztes system zum führen eines chirurgischen/diagnostischen instruments im körper eines patienten
EP3025665A1 (de) * 2014-11-26 2016-06-01 MASMEC S.p.A. Computergestütztes system zum führen eines chirurgischen/diagnostischen instruments im körper eines patienten
WO2019209725A1 (en) * 2018-04-23 2019-10-31 Mako Surgical Corp. System, method and software program for aiding in positioning of a camera relative to objects in a surgical environment
US11166781B2 (en) 2018-04-23 2021-11-09 Mako Surgical Corp. System, method and software program for aiding in positioning of a camera relative to objects in a surgical environment
US11864957B2 (en) 2018-04-23 2024-01-09 Mako Surgical Corp. System, method and software program for aiding in positioning of objects in a surgical environment
CN111904596A (zh) * 2020-06-09 2020-11-10 武汉联影智融医疗科技有限公司 导航调节机构及具有其的手术机器人系统

Similar Documents

Publication Publication Date Title
DE102008016146B4 (de) Operations-Assistenz-System zur Führung eines chirurgischen Hilfsinstrumentes
WO2005076033A1 (de) Vorrichtung zur kontrollierten bewegung einer kamera
EP1728482B1 (de) Selbsteinstellendes Operationslampensystem
EP3166312B1 (de) Vorrichtung und verfahren zum justieren und/oder kalibrieren eines multi-kamera moduls sowie verwendung einer solchen vorrichtung
DE102005062582B4 (de) Abbilduingssystem und Verfahren zur Anfertigung von Röntgen- und optischen Bildern
DE19506197A1 (de) Verfahren und Vorrichtung zur Ortsbestimmung eines Körperteils
EP0422331A2 (de) Operationsleuchte mit verstellbarer Halterung
DE102005026654A1 (de) Vorrichtung und Verfahren zur berührungslosen Vermessung der Geometrie, Raumposition und Raumorientierung von Körpern
DE10349590A1 (de) Vermessungsinstrument
DE102018208203B4 (de) Targetkörper, Anordnung mit Targetkörper und Verfahren zum Ermitteln einer Position und/oder einer Ausrichtung eines Targetkörpers
WO2016134911A1 (de) Medizinisches instrumentarium und verfahren
DE102005047895B4 (de) Verfahren und Einrichtung zur Bestimmung der Lage eines Gegenstandes
EP1354564A1 (de) Marker für ein Instrument und Verfahren zur Lokalisation eines Markers
DE112019000575T5 (de) Modulare objektivbaugruppe mit beweglichem laserstrahl
WO2009050057A1 (de) Markier- und/oder nivelliervorrichtung sowie verfahren
DE102006003569A1 (de) Positionsbestimmungssystem
EP3910314B1 (de) Verfahren und vorrichtung zur analyse der wechselwirkung zwischen einer oberfläche einer probe und einer flüssigkeit
DE10246147A1 (de) Mehrkamera-Trackingsystem
DE19750004A1 (de) Vorrichtung zur Positionierung eines Patienten auf einer verstellbaren Unterlage
WO2014075699A1 (de) Röntgenologischer arbeitsplatz
CH690707A5 (de) Marker zur Positionserfassung mit elektrischen bzw. elektronischen Licht-Sendeelementen
EP3278059B1 (de) System und verfahren zum ermitteln der relativen verlagerung zweier körper zueinander
EP3438525B1 (de) Beleuchtungsvorrichtung für simulationsanordnung für kraftfahrzeugunfälle
WO2006042569A1 (de) Prüfanlage zur zerstörungsfreien materialprüfung
WO2005032391A1 (de) Knochenfester lokator und optisches navigationssystem

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase