WO2010050619A1 - 高強度鋼製加工品及びその製造方法、並びにディーゼルエンジン用燃料噴射管及びコモンレールの製造方法 - Google Patents

高強度鋼製加工品及びその製造方法、並びにディーゼルエンジン用燃料噴射管及びコモンレールの製造方法 Download PDF

Info

Publication number
WO2010050619A1
WO2010050619A1 PCT/JP2009/068941 JP2009068941W WO2010050619A1 WO 2010050619 A1 WO2010050619 A1 WO 2010050619A1 JP 2009068941 W JP2009068941 W JP 2009068941W WO 2010050619 A1 WO2010050619 A1 WO 2010050619A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
temperature
strength
temperature range
diesel engine
Prior art date
Application number
PCT/JP2009/068941
Other languages
English (en)
French (fr)
Inventor
公一 杉本
祥平 佐藤
輝久 高橋
五朗 荒井
Original Assignee
臼井国際産業株式会社
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臼井国際産業株式会社, 国立大学法人信州大学 filed Critical 臼井国際産業株式会社
Priority to US12/998,498 priority Critical patent/US8585835B2/en
Priority to CN200980143601.5A priority patent/CN102203310B/zh
Priority to KR1020117009880A priority patent/KR101286864B1/ko
Priority to EP09823725.8A priority patent/EP2365103A4/en
Publication of WO2010050619A1 publication Critical patent/WO2010050619A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength steel processed product excellent in hardenability and a method for manufacturing the same, and a method for manufacturing a fuel injection pipe for a diesel engine and a common rail excellent in strength, impact resistance, and internal pressure fatigue resistance, More specifically, a high-strength high-strength low-alloy TRIP steel (TBF steel) consisting mainly of lath-shaped bainitic ferrite, retained austenite, and martensite and having high yield strength and tensile strength.
  • TBF steel high-strength high-strength low-alloy TRIP steel
  • the present invention relates to a high-strength steel processed product, a high-strength forged product, a high-pressure fuel injection pipe, a common rail for an accumulator fuel injection system mounted on a diesel engine, and a manufacturing method thereof.
  • the “high-strength forged product” of the present invention typically includes, for example, a near net shape forged product, and further forges a primary forged product as well as a primary forged product (cold, warm forged, etc.) ), Precision forged products such as secondary forged products and tertiary forged products, final products obtained by processing the forged products into complex shapes, common rails for accumulator fuel injection systems mounted on diesel engines, etc. Are all included.
  • Forged products in industrial technical fields such as automobiles, electrical machinery, and machines are generally manufactured by performing various forgings (processing) at different heating temperatures and then tempering treatments (heat treatments) such as quenching and tempering.
  • forgings processing temperature 1100-1300 ° C
  • warm are used for crankshafts, connecting rods, transmission gears, common rails for accumulator fuel injection systems mounted on diesel engines, etc.
  • Forged products pressurizing temperature 600 to 800 ° C.
  • cold forged products pressurized at room temperature
  • Patent Document 1 the tensile strength is 600 MPa by adopting a unique heat treatment in which both annealing and forging are performed at a two-phase temperature range of ferrite and austenite and then austempering is performed at a predetermined temperature.
  • Patent Document 2 a technique related to a method for producing a high-strength forged product excellent in the balance between elongation and strength-drawing characteristics is disclosed in Patent Document 2, after making tempered bainite or martensite separately.
  • a high-strength forged product with excellent balance between elongation and strength-drawing characteristics by adopting a method in which both annealing and forging are performed at a two-phase temperature range of ferrite and austenite, followed by austempering at a predetermined temperature. Further, in Patent Document 3, after heating to the temperature range of the two-phase region, forging is performed in the two-phase region. By performing the austempering, it is possible to reduce the temperature at the time of forging, it is able to produce with a workability and excellent stretch flangeability high strength forgings techniques are disclosed.
  • the problems described below may occur. Since the forged product generates heat according to its processing rate, the part temperature during forging may vary depending on the part. For example, when forging is performed at a high temperature (near Ac3 point), if the processing rate is high, the calorific value increases, and coalescence and growth of austenite occur. Therefore, coarse residual austenite is generated after heat treatment, It is conceivable to deteriorate the characteristics (problems at high temperature forging). On the other hand, when forging is performed on the low temperature side (near Ac1 point), since a sufficient calorific value cannot be secured if the processing rate is low, a large amount of unstable retained austenite is generated.
  • Patent Document 4 one or more of Nb, Ti, and V are added at the time of hot-rolled steel material, and an appropriate amount of Al is added, and annealing is generally performed at a two-phase temperature of ferrite and austenite.
  • a heat treatment of austempering at a predetermined temperature after performing both forging it has an excellent balance of elongation and strength-drawing characteristics regardless of forging temperature and forging rate, and tensile strength of 600 MPa or more
  • Patent Document 4 is excellent in that it has a special effect that cannot be obtained by the techniques disclosed in Patent Documents 1 to 3, and its ultra-high strength low alloy TRIP steel (TBF steel) is It is expected to contribute greatly by reducing the weight of automobile bodies and ensuring collision safety.
  • this ultra-high strength low alloy TRIP steel (TBF steel) has finer yield strength and tensile strength because fine bainite ferrite and square ferrite coexist in the matrix with the lath structure of bainite ferrite. High hardenability is required to obtain a complete TBF steel to achieve.
  • the ultra-high strength low alloy TRIP steel (TBF steel) having such high hardenability is in an undeveloped state.
  • the present invention has been made in view of the above situation, and is excellent in strength-toughness balance and stability of retained austenite by controlling the component addition amount of the chemical composition irrespective of the forging temperature and the forging rate.
  • the present inventors have a high strength steel excellent in hardenability, having a microstructure of a microstructure having excellent strength-toughness balance and high stability of retained austenite, regardless of forging temperature, forging rate, etc.
  • a matrix structure of bainite ferrite and / or martensite The effect of hot forging and the subsequent isothermal transformation holding process (FIT process) on the microstructure and mechanical properties of the TBF steel has been studied through specific experiments. investigated.
  • the matrix structure is mainly composed of lath-shaped bainitic ferrite, and includes a small amount of granular bainitic ferrite and polygonal ferrite.
  • High hardenability ultra-high strength low alloy with a microstructure of microstructure consisting of fine retained austenite and martensite, excellent balance of strength and toughness, high yield stress and tensile strength It has been found that TRIP steel (TBF steel) can be obtained.
  • the high-strength steel processed product with excellent hardenability according to the present invention has C: 0.1 to 0.7%, Si: 2.5% or less (not including 0%), Mn: 0.5 ⁇ 3%, Al: 1.5% or less, Nb, Ti, V, one or more of 0.01 to 0.3% in total, Cr: 2.0% or less (excluding 0%) ), Mo: 0.5% or less (excluding 0%), Ni: 2.0% or less, Cr, Mo, Ni or more, and 0.7 to 3.0% in total
  • the carbon equivalent (Ceq) defined by the following formula 1 is 0.75% or more and 0.90% or less, and the balance is Fe and unavoidable impurities, and the metal structure is a lath-shaped bainitic ferrite.
  • polygonal ferrite and granular bainitic Fe It is characterized by containing 20% or less of lite in total, and the second phase structure satisfies 5-30% of retained austenite and 5% or less of martensite.
  • the high-strength steel processed product excellent in hardenability may further contain 0.005% or less (excluding 0%) of B as another element.
  • Forged products are examples of the high-strength steel processed products with excellent hardenability.
  • high pressure fuel piping is mentioned as said processed goods.
  • the high-pressure fuel pipe include a high-strength diesel engine fuel injection pipe excellent in impact resistance and internal pressure fatigue characteristics, or a diesel engine common rail excellent in high strength, impact resistance and internal pressure fatigue characteristics. It is done.
  • the method for producing the high-strength steel processed product according to the present invention uses a steel material satisfying the above component composition, and holds the steel material in a temperature range of Ac3 point or higher for a predetermined time, preferably 1 second or more, After performing plastic working in the temperature range, it is cooled to 300 to 450 ° C. (preferably 325 to 425 ° C.) at a predetermined average cooling rate, preferably an average cooling rate of 1 ° C./s or more, and 100 Including a step of holding for 2,000 seconds (preferably 1000 seconds).
  • the present invention uses a steel material satisfying the above component composition as a method for producing the fuel injection pipe for a diesel engine, a step of heating and holding at a temperature of 1200 ° C. or higher, a step of performing a hot extrusion process, and After holding at a temperature range of Ac3 or higher for a predetermined time, preferably 1 second or longer, and performing warm extrusion in the temperature range, 300 ° C at a predetermined average cooling rate, preferably an average cooling rate of 1 ° C / s or higher.
  • the present invention uses a steel material satisfying the above component composition as a method for producing the diesel engine common rail, a process of heating and holding at a temperature of 1200 ° C. or higher, a process of performing hot extrusion, and an Ac3 point. After holding for a predetermined time in the above temperature range, preferably 1 second or more, and performing warm extrusion in the temperature range, 300 to 450 at a predetermined average cooling rate, preferably an average cooling rate of 1 ° C./s or higher.
  • the present invention is characterized by sequentially performing processing, tube drawing processing that is rolled in the radial direction and / or tube axis direction, cutting processing, machining processing, and assembly processing.
  • the matrix phase structure is mainly composed of lath-shaped bainitic ferrite and a small amount of granular bainitic ferrite.
  • High hardenability ultra-high strength low alloy TRIP with polygonal ferrite, second phase structure consisting of fine retained austenite and martensite, and having a microstructure of microstructure and excellent balance between strength and toughness By obtaining steel (TBF steel), regardless of heating temperature, processing rate (forging rate, rolling rate, etc.), etc., high strength steel processed products with excellent hardenability, high strength and impact resistance Special And it can provide an excellent fuel injection pipe and common rail diesel engine resistance pressure fatigue.
  • Example 1 of the present invention Steel type No. 1 in Example 1 of the present invention. It is a figure which shows the CCT curve of 1 test steel. Similarly, steel type No. of the comparative example in Example 1. It is a figure which shows the CCT curve of 5 test steel. Similarly, the steel type No. 1 in Example 1 of the present invention. 1, 2, 3, and the steel types of comparative examples. It is a figure which compares and shows the relationship between the yield strength (YS) and Charpy impact absorption value (CIAV) of the test steels of 4, 5, and 6. Similarly, the steel type No. 1 in Example 1 of the present invention. 1, 2, 3, and the steel types of comparative examples.
  • the contents of Cr, Mo, and Ni are defined as the above values in order to improve the hardenability for the reasons described below. That is, Cr, Mo, and Ni are not only effective elements for strengthening steel but also effective for stabilizing retained austenite and securing a predetermined amount, and also effective for improving the hardenability of steel. However, in order to sufficiently exhibit the effect of improving hardenability, Cr: 2.0% or less (not including 0%), Mo: 0.5% or less (not including 0%), Ni: 2 It is necessary to contain 0.7 to 3.0% in total of 2 or more of 0.0% or less.
  • the steel material contains one or more of Nb, Ti, and V in a total amount of 0.01 to 0.3%. This is achieved by adopting a heat treatment in which austenite treatment is performed at a predetermined temperature after annealing at austenite single phase region and two-layer region temperature of ferrite and austenite, and further performing plastic working such as forging. This is to easily ensure the metal structure defined in the above, and thus desired characteristics.
  • ⁇ Matrix structure 50% or more of lath-shaped bainitic ferrite and 20% or less in total of polygonal ferrite and granular bainitic ferrite Strength and impact resistance of processed products made of high-strength steel with excellent hardenability
  • the volume ratio of the lath-shaped bainitic ferrite needs to be 50% or more. The reason why the volume fractions of polygonal ferrite and granular bainitic ferrite are set to 20% or less in total is that the toughness is lowered when it exceeds 20%.
  • Second phase structure 5-30% retained austenite and 5% or less martensite
  • the processed product of the present invention comprises the lath bainitic ferrite, polygonal ferrite, and granular bainitic ferrite as the parent phase structure.
  • residual austenite and martensite are included as the metal structure as the second phase structure.
  • retained austenite is effective in improving the total elongation, and also effective in improving the impact resistance by becoming crack resistance due to plasticity-induced martensite transformation, but the volume ratio of the retained austenite is If it is less than 5%, the above-mentioned effect cannot be exhibited sufficiently. On the other hand, if it exceeds 30%, the C concentration in the retained austenite becomes low, resulting in unstable retained austenite.
  • the volume ratio of retained austenite was set to 5 to 30%. Further, since martensite becomes a starting point of fracture at the interface with the matrix, the volume ratio of martensite to the entire structure is set to 5% or less (preferably 1 to 3% or less).
  • C 0.1-0.7%
  • C is an essential element for securing high strength and securing retained austenite. More specifically, it is effective to secure C in austenite and leave stable retained austenite even at room temperature to improve ductility and impact resistance, but if it is less than 0.1%, the effect is sufficiently obtained. On the other hand, if it is added in excess of 0.7%, the amount of retained austenite increases and C tends to concentrate in the retained austenite, so that high ductility and impact resistance can be obtained. However, if it exceeds 0.7%, not only the effect is saturated, but also defects due to center segregation or the like occur and the impact resistance is deteriorated, so the upper limit is limited to 0.7%.
  • Si is an oxide-generating element, if it is excessively contained, the impact resistance is deteriorated, so the addition amount is set to 2.5% or less.
  • the steel product of the present invention is premised on the addition of Al that exhibits the same effect as Si, but from the viewpoint of solid solution strengthening due to the addition of Si and an increase in the amount of retained austenite produced, it is 0.5% or more. You may make it contain.
  • Mn is an element necessary for stabilizing austenite and obtaining a specified amount of retained austenite. In order to effectively exhibit such an action, it is necessary to add 0.5% or more (preferably 0.7% or more, more preferably 1% or more). However, if excessively added, adverse effects such as slab cracking occur, so the content was made 3% or less. Preferably it is 2.5% or less, More preferably, it is 2% or less.
  • Al is an element that suppresses the precipitation of carbides like Si, but Al has a stronger ferrite stability than Si, so when Al is added, the start of transformation is when Si is added. It becomes faster, and C tends to be concentrated in austenite even in extremely short time holding (forging, etc.). Therefore, when Al is added, austenite can be further stabilized. As a result, the C concentration distribution of the generated austenite shifts to a high concentration side, and the amount of residual austenite to be generated increases and is high. Shows impact characteristics. However, addition exceeding 1.5% raises the Ac3 transformation point of steel and is not preferable in actual operation, so the upper limit was defined as 1.5%. In addition, Preferably it is 0.05%.
  • B is an element effective for improving the hardenability of steel like Cr, Mo, etc., but to increase the hardenability without reducing delayed fracture strength and to keep costs low. Is preferably 0.005% or less.
  • the carbon equivalent defined by the above formula is further limited to 0.75% or more and 0.90% or less. This is important for further ensuring the metal structure and improving the balance between strength and toughness. That is, if the carbon equivalent (Ceq) is less than 0.75%, the crystal grains cannot be sufficiently refined, and it becomes difficult to secure 50% or more of the lath bainitic ferrite that is the matrix structure, On the other hand, if it exceeds 0.90%, the hardenability becomes excessive, the yield stress and the tensile strength become excessively high, and the effect of improving toughness cannot be obtained.
  • the method for producing a processed product made of high-strength steel uses a steel material that satisfies the above component composition, and holds the steel material in a temperature range of Ac3 point or higher for a predetermined time, preferably 1 second or more. After performing plastic working in the region, it is cooled to 300 to 450 ° C. (preferably 325 to 425 ° C.) at a predetermined average cooling rate, preferably an average cooling rate of 1 ° C./s or more. The step of holding for 2 seconds (preferably 1000 seconds) is included.
  • the reason for defining the heat treatment condition is as follows.
  • the steel material is held in the temperature range of Ac3 point or higher for 1 second or longer by setting the heating temperature to a temperature ranging from the two-phase region to the austenite single-phase region. Because it can be obtained. This is because if the heating temperature is less than the Ac3 point, fine lath bainitic ferrite and the second phase structure are not satisfactorily precipitated.
  • the holding time in the above temperature range is preferably set to 1 second or longer because, for example, when high-frequency heating is used as the heating means, the temperature can be instantaneously maintained in the temperature range of the Ac3 point or higher.
  • the upper limit is not particularly limited, but is about 30 minutes considering productivity.
  • plastic processing examples include forging, extrusion, drilling, or pipe forming by roll forming, but the conditions in these processing are not particularly limited, and may be performed by a commonly performed method.
  • cooling is performed to a predetermined average cooling rate, preferably 300 ° C. to 450 ° C. (preferably 325 to 425 ° C.) at an average cooling rate of 1 ° C./s or more.
  • a predetermined average cooling rate preferably 300 ° C. to 450 ° C. (preferably 325 to 425 ° C.) at an average cooling rate of 1 ° C./s or more.
  • the preferable average cooling rate is set to 1 ° C./s or more in order to suppress the formation of pearlite.
  • the austempering temperature is set to 300 to 450 ° C. (preferably 325 to 425 ° C.). When the temperature is less than 300 ° C., the diffusion of C is slow, and a specified amount of retained austenite cannot be obtained.
  • the austempering time was set to 100 to 2000 seconds. If less than 100 seconds, the concentration of C was insufficient and a predetermined amount of retained austenite was not generated, and unstable retained austenite transformed into martensite. On the other hand, if it exceeds 2000 seconds, the generated retained austenite is decomposed. The time is preferably 100 to 1000 seconds.
  • the present invention also defines a method for manufacturing a fuel injection pipe for a diesel engine and a common rail for a diesel engine by adopting the above manufacturing conditions.
  • a method for producing a fuel injection pipe for a diesel engine a steel material satisfying the above component composition is used, a step of heating and holding at a temperature of 1200 ° C. or higher, a step of performing a hot extrusion process, and an Ac3 point or higher After holding at a temperature range for a predetermined time, preferably 1 second or more, and performing warm extrusion in the temperature range, a predetermined average cooling rate, preferably 300 ° C. to 450 ° C.
  • a method for producing a common rail for a diesel engine substantially the same conditions as in the method for producing a fuel injection pipe for a diesel engine are adopted, and a steel material satisfying a specified composition is used and heated to a temperature of 1200 ° C. or higher.
  • the step of holding, the step of performing the hot extrusion process, and the predetermined average cooling rate after holding for a predetermined time in the temperature range of Ac3 point or more, preferably 1 second or more, and performing the warm extrusion process in the temperature range Preferably, it is cooled to 300 to 450 ° C.
  • the temperature may be cooled to a temperature range of Ac3 or higher, but the cooling method is not particularly limited. Further, it is desirable that the cooling to room temperature after the step of holding for 100 to 2000 seconds is performed promptly. Furthermore, in the method for manufacturing a common rail for a diesel engine, after hot extrusion is performed, drilling is performed in the tube axis direction by a gun drilling method, but the cooling method is not particularly limited.
  • Examples of steel materials used in the above production method include billets and hot rolled round bars, etc., but these can be processed as hot after melting the steel that satisfies the target components as usual and making it into a slab. Or what was obtained by performing hot processing after heating once again after cooling to room temperature may be used.
  • steel types No. 1 having the component compositions shown in Table 1 were used.
  • Steel slabs 1 to 6 (units in the table are% by mass, balance Fe and inevitable impurities) are manufactured by continuous casting, reheated to 1250 ° C, hot rolled, pickled Thereafter, it was machined to produce a forging test piece comprising a square bar having a thickness of 20 mm, a length of 80 mm, and a width of 32 mm from a steel bar having a diameter of 32 mm and a length of 80 mm.
  • each forging test piece is heated for at least 1 second at the forging temperature shown in Table 2 according to the type of each test steel, and forged using a die heated to the same temperature as the heating temperature of each test piece.
  • steel type No. of this example shows the microstructure (micrograph) of the steel No. 1 after hot forging heat treatment (the green phase mainly represents a matrix of lath-shaped bainitic ferrite (LBF), and the red phase represents retained austenite ( ⁇ ). Is shown.)
  • Yield strength YS, tensile strength TS, and elongation EI were measured using a JIS14B test piece (parallel portion length 20 mm, width 6 mm, thickness 1.2 mm) collected from the forged material. The test conditions are 25 ° C. and a crosshead speed of 1 mm / min.
  • Charpy impact test (toughness) The Charpy impact absorption value CIAV was measured using a JIS No. 5B test piece (width 2.5 mm) collected from the forged material. The test conditions are 25 ° C. and 5 m / s.
  • the volume ratio (space factor) of the structure in each forging material is as follows: the forging material is made of nital, and an optical microscope (magnification 400 times or 1000 times) by repeller corrosion, and a scanning electron microscope (SEM: magnification 1000 times or 4000 times). ) Observation, measurement of residual austenite amount by saturation magnetization method (heat treatment, Vol I. 136, (1996), P. 322), measurement of C concentration in austenite by X-ray, transmission electron microscope (TEM: magnification 10,000 times), step Tissue analysis by FE / SEM-EBSP with an interval of 100 nm was performed to identify the tissue. Table 2 shows the volume fraction of the structure and the mechanical properties of the various forged steel materials thus obtained.
  • ⁇ R -Residual austenite properties
  • the residual austenite initial volume fraction (f ⁇ o) and residual austenite initial carbon concentration (C ⁇ o) of each forged material were measured by the following x-ray diffraction method.
  • ⁇ Retained austenite initial volume fraction (f ⁇ o)> 5-peak method (200) ⁇ , (220) ⁇ , (311) ⁇ (200) ⁇ , (211) ⁇ ⁇ Residual austenite initial carbon concentration (C ⁇ o)> From (200) ⁇ , (220) ⁇ , (311) ⁇ diffraction plane peaks, measurement of lattice constant of ⁇ C ⁇ (a ⁇ 3.578 ⁇ 0.000Si ⁇ 0.00095Mn ⁇ 0.0006Cr ⁇ 0.0056Al ⁇ -0 .0051Nb ⁇ -0.0220N ⁇ ) /0.033
  • steel grade No. Examples 1 to 3 are examples in which a forged part having a predetermined structure was manufactured by a manufacturing method defined in the present invention using steel types satisfying the scope of the present invention.
  • This steel type No. The steels of the present invention shown in 1-3 are, for example, steel types No.
  • the metal structure (1) is entirely composed of lath bainitic ferrite (LBF), and a small amount of granular bainitic ferrite (GBF) and polygonal.
  • LAF lath bainitic ferrite
  • GBF granular bainitic ferrite
  • the second phase structure containing ferrite (PF) is composed of fine retained austenite ( ⁇ ) and martensite, the stability of retained austenite is high, and the structure is remarkably refined by hot forging.
  • this steel type No. The forged parts of the steels of the present invention shown in 1 to 3 all have a very high balance between strength and toughness, are excellent in yield stress, tensile strength and elongation properties, and also have excellent impact properties (see FIGS. 3 and 4). ).
  • the excellent toughness of the steel of the present invention is that the hardenability is improved especially by adding Cr, Mo and Ni, a large amount of stable retained austenite characteristics, and the refinement of the structure by forging (laser bainitic ferrite and fineness). It is thought that this is due to a mixed phase structure of residual austenite in a granular and film form.
  • the requirements specified in the present invention in particular the content of Cr, Mo, Ni for enhancing the hardenability, the securing of the metal structure, and the carbon equivalent that is important in increasing the balance of strength-toughness.
  • no. 4 is a basic steel (0.4% C-1.5% Si-1.5% Mn-0.5% Al-0.05Nb), proeutectoid ferrite is precipitated, bainite transformation is not sufficient, The hardenability decreased due to the low Cr content.
  • No. 5 is No.5.
  • the billet made of the steel of the present invention having the components shown in 1 is heated and held at a temperature of 1200 ° C. and subjected to hot extrusion, then cooled to 940 ° C., held at that temperature for 1 second or longer and a predetermined warm
  • a round bar is formed by extruding, the round bar is cooled to 325 ° C. at a cooling rate of 4 ° C./s, held in the temperature range for 1800 seconds, then cooled to room temperature at a predetermined cooling rate, and then a gun drill.
  • the billet made of the present invention having the components shown in No. 2 was heated and held at a temperature of 1250 ° C. and subjected to hot extrusion, cooled to room temperature, then drilled in the direction of the tube axis by gun drilling, and then 950 After holding at a temperature of 0 ° C. for 1 second or more and then performing hot roll forming, it was cooled to 375 ° C. at a cooling rate of 2 ° C./s and subjected to an austemper treatment for holding at that temperature for 1000 seconds.
  • the product dimensions are set to an outer diameter of 8.0 mm, an inner diameter of 3.0 mm, and a wall thickness of 2.5 mm, and then cutting, terminal processing and bending are performed to obtain a steel pipe for a fuel injection pipe. Obtained.
  • the billet made of the steel of the present invention having the components shown in 1 is heated and held at a temperature of 1200 ° C., cooled to room temperature, then drilled in the direction of the tube axis by a gun drilling method, and then heated to 930 ° C. After holding for 1 second or more, hot roll forming was performed, followed by cooling to 325 ° C. at a cooling rate of 5 ° C./s, holding at that temperature for 1750 seconds, and then cooling to room temperature.
  • the billet made of the present invention having the components shown in No. 2 was heated and held at a temperature of 1250 ° C. and subjected to hot extrusion, cooled to room temperature, then drilled in the direction of the tube axis by gun drilling, and then 950 After heating to °C and holding at that temperature for 1 second or more, hot roll forming is applied, followed by cooling to 400 °C at a cooling rate of 8 °C / s and holding at that temperature for 210 seconds to austemper treatment Was given.
  • the tube is cold-drawn to obtain a steel pipe for a fuel injection pipe after the product dimensions are set to an outer diameter of 8.0 mm, an inner diameter of 3.0 mm, and a wall thickness of 2.5 mm, followed by cutting, terminal processing and bending. It was.
  • Example 7
  • the billet made of the present invention having the components shown in 2 is heated and held at a temperature of 1200 ° C., cooled to room temperature, cooled to 425 ° C. at a cooling rate of 3 ° C./s, and held at that temperature for 220 seconds. And cooled to room temperature. After that, after extending the tube to make the product dimensions 8.0 mm in outer diameter, 3.0 mm in inner diameter, and 2.5 mm in thickness, cutting, terminal processing and bending were performed to obtain a steel pipe for a fuel injection pipe. .
  • the tube is cold drilled in the direction of the tube axis by a gun drilling method, and then the raw tube is heated at a temperature of 1200 ° C. Then, it was held at a temperature of 930 ° C. for 1 second or longer, then cooled to 450 ° C. at a cooling rate of 4 ° C./s, held at that temperature for 100 seconds, and subjected to austempering treatment. Thereafter, the tube is cold-drawn to have an outer diameter of 30 mm, an inner diameter of 8 mm, and a wall thickness of 11 mm.
  • the pipe is cut and machined, such as drilling a conical sheet surface and a ⁇ 3 mm branch hole on the outer peripheral surface.
  • a common rail was obtained by assembling a retainer having a screw sleeve on the periphery of the hole.
  • the billet made of the present invention having the components shown in No. 2 is subjected to hot extrusion, then cold drilled in the direction of the tube axis by a gun drilling method, and then cold-drawn to give an outer diameter of 30 mm.
  • the inner diameter is 8 mm
  • the wall thickness is 12 mm
  • the tube is cut into a predetermined length and machined, and then the tube is heated to a temperature of 1200 ° C., and then held at a temperature of 950 ° C. for 1 second or more. Subsequently, it was cooled to 300 ° C. at a cooling rate of 1 ° C./s and held at the temperature for 2000 seconds to perform austempering treatment. After that, it was assembled and a common rail was obtained.
  • the billet made of the present invention having the components shown in No. 3 is heated to a temperature of 1300 ° C. and subjected to perforation by the Mannesmann method, and then the raw tube is hot-rolled at a temperature of 1200 ° C.
  • the tube was drawn and then held at a temperature of 950 ° C. for 1 second or longer, then cooled to 350 ° C. at a cooling rate of 5 ° C./s and held at that temperature for 1200 seconds to perform an austempering treatment.
  • the tube is cold-drawn to obtain an outer diameter of 32 mm, an inner diameter of 8 mm, and a wall thickness of 12 mm, and then machining such as cutting of the tube, drilling of a conical sheet surface and a ⁇ 3 mm branch hole on the outer peripheral surface.
  • a common rail was obtained by assembling a retainer having a screw sleeve on the periphery of the branch hole.
  • the billet made of the steel of the present invention having the components shown in No. 3 is cold-rolled, then drilled in the direction of the tube axis by a gun drilling method, and then the raw tube is hot-roll formed at a temperature of 1200 ° C., and then 950 ° C. This temperature was maintained for 1 second or more, then cooled to 400 ° C. at a cooling rate of 8 ° C./s, and then held at this temperature for 500 seconds to perform austempering treatment. Thereafter, the tube was cold-drawn to obtain an outer diameter of 32 mm, an inner diameter of 8 mm, and a wall thickness of 12 mm. Further, cutting, machining, and assembly were sequentially performed to obtain a common rail.
  • the tube is cooled to room temperature, and a tube hole with an inner diameter of 8 mm is drilled in the tube axis direction by a long drilling method, an outer thread of M16 is processed on the outer periphery of the boss, a conical sheet surface is formed on the top of the boss, and ⁇ 3 mm A common rail was obtained by machining such as drilling of branch holes.
  • the fuel injection pipes of Examples 2 to 9 and the common rails of Examples 10 to 16 are subjected to internal pressure fatigue resistance by enclosing high-pressure water or high-pressure oil after performing the final process and performing auto-frettage processing. It is possible to further improve the characteristics.
  • the present invention includes Cr, Mo, Ni for improving hardenability, an appropriate amount of one or more of Nb, Ti, V for improving strength (fatigue strength) by refining crystal grains, and
  • the matrix structure is mainly composed of lath bainitic ferrite and a small amount of granular bainitic ferrite and polygonal High hardenability ultra high strength low alloy TRIP steel with ferrite, second phase structure consisting of fine retained austenite and martensite, and having a fine structure and excellent balance between strength and toughness ( TBF steel), high strength steel processed products with excellent hardenability, high strength and impact resistance, regardless of heating temperature, processing rate (forging rate, rolling rate, etc.), etc. It is possible to provide a fuel injection pipe and common rail excellent diesel engine resistance pressure fatigue.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

 強度一靭性のバランスに優れ、かつ残留オーステナイトの安定性が高い微細構造の金属組織を有する、焼入れ性に優れた高強度鋼製加工品の提供。Cr、Mo、Niの内2種類以上と、Nb、Ti、Vの内1種類又は2種類以上を適量含み、かつ炭素当量を適正値に設定することにより、母相組織が主にラス状ベイニティックフェライトからなり、かつ少量のグラニュラーベイニティックフェライトとポリゴナルフェライトを含み、第2相組織が微細な残留オーステナイトとマルテンサイトからなる、微細構造の金属組織を有する、超高強度低合金TRIP鋼からなることを特徴とする。

Description

高強度鋼製加工品及びその製造方法、並びにディーゼルエンジン用燃料噴射管及びコモンレールの製造方法
 本発明は、焼入性に優れた高強度鋼製加工品及びその製造方法、並びに高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管及びコモンレールの製造方法に係り、より詳しくは、主にラス状ベイニティックフェライトと、残留オーステナイト、並びにマルテンサイトからなり、高い降伏強度と引張り強度を有する高焼入性の超高強度低合金TRIP鋼(TBF鋼)からなる高強度鋼製加工品、高強度鍛造品、高圧燃料噴射管、ディーゼルエンジンに搭載される蓄圧式燃料噴射システム用コモンレールおよびそれらの製造方法に関するものである。
 なお、本発明の「高強度鍛造品」としては、例えば、ニアネットシェイプ鍛造品等が代表的に挙げられ、一次鍛造品のみならず、一次鍛造品を更に鍛造(冷間、温間鍛造等)して得られる二次鍛造品、三次鍛造品等の精密鍛造品、更に当該鍛造品を複雑な形状に加工して得られる最終製品、ディーゼルエンジンに搭載される蓄圧式燃料噴射システム用コモンレール等も全て包含される。
 自動車、電機、機械等の産業用技術分野における鍛造品は一般に、加熱温度が異なる種々の鍛造(加工)を行った後、焼入れ・焼戻し等の調質処理(熱処理)をして製造されており、例えば自動車を例に挙げると、クランクシャフト、コンロッド、トランスミッションギア、ディーゼルエンジンに搭載される蓄圧式燃料噴射システム用コモンレール等には、熱間鍛造品(加圧温度1100~1300℃)や温間鍛造品(加圧温度600~800℃)が、ピニオンギア、歯車、ステアリングシャフト、バルブリフター等には、冷間鍛造品(常温で加圧)がそれぞれ汎用されている。
 近年、自動車の車体の軽量化と衝突安全性を確保するため、残留オーステナイトの変態誘起塑性を伴う成形可能な超高強度低合金TRIP鋼(TBF鋼)の適用が検討されている。
 例えば、特許文献1には、概ねフェライトとオーステナイトの2相域温度にて焼鈍と鍛造の両方を行った後、所定温度でオーステンパー処理するという独自の熱処理を採用することによって、引張強度が600MPa級以上の高強度域において、伸び及び強度−絞り特性のバランスに優れた高強度鍛造品の製造方法に関する技術が、又、特許文献2には、焼戻しベイナイト又はマルテンサイトを作り分けた後、概ねフェライトとオーステナイトの2相域温度で焼鈍と鍛造の両方を行い、その後、所定温度でオーステンパー処理する方法を採用することにより、伸び、及び、強度−絞り特性のバランスに優れた高強度鍛造品を製造し得る技術が、更に、特許文献3には、2相域の温度範囲に加熱した後、該2相域で鍛造加工を行い、その後、規定のオーステンパー処理を施すことで、鍛造加工時の温度を低下できると共に、優れた伸びフランジ性と加工性を備えた高強度鍛造品を製造し得る技術が、開示されている。
 しかしながら、これらの方法で得られる鍛造品を作製する場合、以下に記載する問題が発生する可能性がある。
 鍛造品は、その加工率に応じて発熱するため、鍛造時の部品温度が部位によって変化する場合がある。例えば、高温(Ac3点付近)で鍛造を行った場合には、加工率が高いと発熱量も大きくなり、オーステナイト同士の合体・成長が発生するため、熱処理後に粗大な残留オーステナイトが生成し、衝撃特性を劣化させることが考えられる(高温鍛造時の問題点)。一方、低温側(Ac1点付近)で鍛造を行った場合には、加工率が低いと十分な発熱量が確保できないので、不安定な残留オーステナイトが大量に生成し、熱処理後、破壊の起点となる硬質なマルテンサイトが生成して衝撃特性を劣化させることが考えられる(低温鍛造時の問題点)。従って、鍛造品の温度や加工率が異なると、部分的に粗大な残留オーステナイトや不安定なオーステナイトが発生し易く、鍛造品全体として安定かつ優れた耐衝撃特性を得ることが難しい。
 一方、特許文献4には、熱延鋼材作製時にNb、Ti、Vの内の一種類あるいは2種類以上の添加、および適量のAl添加を行い、概ねフェライトとオーステナイトの2相域温度で焼鈍と鍛造の両方を行った後、所定温度でオーステンパー処理するという熱処理を採用することにより、鍛造温度、および鍛造加工率に依らず伸び、および強度−絞り特性のバランスに優れ、引張強度も600MPa以上の、耐衝撃特性に優れた鋼製高強度加工品、高圧燃料配管(特に、高強度かつ耐衝撃特性に優れた、ディーゼルエンジン用燃料噴射管及びディーゼルエンジン用コモンレール等)を製造し得る技術が開示されている。
 この特許文献4に開示されている発明は、前記特許文献1~3に開示されている技術では得られない格別の効果を奏する点で優れ、その超高強度低合金TRIP鋼(TBF鋼)は自動車の車体の軽量化と衝突安全性の確保により大きく寄与し得ることが期待される。しかしながら、この超高強度低合金TRIP鋼(TBF鋼)は、微粒状ベイナイトフェライトと角形フェライトが、マトリックスの中で、ベイナイトフェライトのラス構造と共に共存することから、更なる高い降伏強度と引張強度を達成するための完全なTBF鋼を得るためには、高い焼入れ性が必要である。これまで、この高い焼入れ性を有する超高強度低合金TRIP鋼(TBF鋼)は未開発の状況にあるのが現状である。
特開2004−292876号公報 特開2005−120397号公報 特開2004−285430号公報 特開2007−231353号公報
 本発明は、上記現状に鑑みてなされたもので、鍛造温度や鍛造加工率等に依らず、化学組成の成分添加量を制御することによって強度−靭性のバランスに優れ、かつ残留オーステナイトの安定性が高い微細構造の金属組織を有する、焼入性に優れた高強度鋼製加工品、高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管及びコモンレールを提供することを目的とするものである。
 本発明者らは、鍛造温度や鍛造加工率等に依らず、強度−靭性のバランスに優れ、かつ残留オーステナイトの安定性が高い微細構造の金属組織を有する、焼入性に優れた高強度鋼製加工品、高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管及びコモンレールの実現と、これらの製造方法を確立すべく、ベイナイトフェライト及び/又はマルテンサイトのマトリックス構造をもつ超高強度低合金TRIP鋼(TBF鋼)について、熱間鍛造とその後の等温変態保持プロセス(FITプロセス)の、当該TBF鋼の微細構造と機械的特性に及ぼす効果を、具体的な実験により検討した。
 その結果、焼入れ性向上のためにCr、Mo、Niの内2種類以上を、結晶粒の微細化による強度(疲労強度)向上のためにNb、Ti、Vの内1種類又は2種類以上を適量含み、かつ炭素当量(Ceq)を適正値に設定することにより、母相組織が主にラス状ベイニティックフェライトからなり、かつ少量のグラニュラーベイニティックフェライトとポリゴナルフェライトを含み、第2相組織が微細な残留オーステナイトとマルテンサイトからなる、微細構造の金属組織を有し、かつ強度と靭性のバランスが優れ、更に降伏応力と引張強さも高い、高焼入性の超高強度低合金TRIP鋼(TBF鋼)が得られることを見出した。
 すなわち、本発明に係る焼入れ性に優れた高強度鋼製加工品は、C:0.1~0.7%、Si:2.5%以下(0%を含まない)、Mn:0.5~3%、Al:1.5%以下、Nb、Ti、Vの内1種類又は2種類以上を合計で0.01~0.3%、Cr:2.0%以下(0%を含まない)、Mo:0.5%以下(0%を含まない)、Ni:2.0%以下、Cr、Mo、Niの内2種類以上を合計で0.7~3.0%、を含有し、かつ下記式1により規定される炭素当量(Ceq)が0.75%以上0.90%以下で、残部Fe及び不可避的不純物からなり、金属組織は、母相組織がラス状ベイニティックフェライトを50%以上(全組織に対する体積率、組織について以下同じ)と、ポリゴナルフェライト及びグラニュラーベイニティックフェライトを合計で20%以下を含有し、第2相組織が残留オーステナイトを5~30%、マルテンサイトを5%以下、を満たすことを特徴とするものである。
[式1]
 Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
 前記焼入れ性に優れた高強度鋼製加工品は、更に、他の元素として、Bを0.005%以下(0%を含まない)含んでいてもよい。
 前記焼入れ性に優れた高強度鋼製加工品として鍛造品が挙げられる。又、前記加工品として高圧燃料配管が挙げられる。前記高圧燃料配管としては、高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管、又は、高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用コモンレールが挙げられる。
 又、本発明に係る上記高強度鋼製加工品を製造する方法は、上記成分組成を満たす鋼材を使用し、該鋼材をAc3点以上の温度域で所定時間、好ましくは1秒以上保持し、該温度域で塑性加工を施した後、所定の平均冷却速度、好ましくは1℃/s以上の平均冷却速度で300~450℃(好ましくは325~425℃)まで冷却し、該温度域で100~2000秒(好ましくは1000秒)保持する工程を含むことを特徴とするものである。
 又、本発明は、上記ディーゼルエンジン用燃料噴射管を製造する方法として、上記成分組成を満たす鋼材を使用し、1200℃以上の温度に加熱保持する工程、熱間押出加工を施す工程、及び、Ac3点以上の温度域で所定時間、好ましくは1秒以上保持し、該温度域で温間押出加工を施した後、所定の平均冷却速度、好ましくは1℃/s以上の平均冷却速度で300~450℃(好ましくは325~425℃)まで冷却し、該温度域で100~2000秒(好ましくは1000秒)保持する工程を経た後、常温まで冷却し、その後、ガンドリル加工法による管軸方向の穿孔加工、径方向及び/又は管軸方向に圧延する伸管加工、切断加工、端末加工、及び、曲げ加工を順次行うことを特徴とするものである。
 更に、本発明は、上記ディーゼルエンジン用コモンレールを製造する方法として、上記成分組成を満たす鋼材を使用し、1200℃以上の温度に加熱保持する工程、熱間押出加工を施す工程、及び、Ac3点以上の温度域で所定時間、好ましくは1秒以上保持し、該温度域で温間押出加工を施した後、所定の平均冷却速度、好ましくは1℃/s以上の平均冷却速度で300~450℃(好ましくは325~425℃)まで冷却し、該温度域で100~2000秒(好ましくは1000秒)保持する工程を経た後、常温まで冷却し、その後、ガンドリル加工法による管軸方向の穿孔加工、径方向及び/又は管軸方向に圧延する伸管加工、切断加工、機械加工、及び、組立加工を順次行うことを特徴とするものである。
 本発明は、焼入れ性向上のためにCr、Mo、Niの内2種類以上を、結晶粒の微細化による強度(疲労強度)向上のためにNb、Ti、Vの内1種類又は2種類以上を適量含み、かつ炭素当量を適正値に設定した鋼材を用い、所定の熱処理を採用することにより、母相組織が主にラス状ベイニティックフェライトからなり、かつ少量のグラニュラーベイニティックフェライトとポリゴナルフェライトを含み、第2相組織が微細な残留オーステナイトとマルテンサイトからなる、微細構造の金属組織を有し、かつ強度と靭性のバランスが優れた高焼入性の超高強度低合金TRIP鋼(TBF鋼)が得られることにより、加熱温度や、加工率(鍛造加工率や圧延加工率等)等によらず、焼入性に優れた高強度鋼製加工品、高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管及びコモンレールを提供できる。
本発明の実施例1における鋼種No.1の供試鋼のCCT曲線を示す図である。 同じく実施例1における比較例の鋼種No.5の供試鋼のCCT曲線を示す図である。 同じく本発明の実施例1における鋼種No.1、2、3、と比較例の鋼種No.4、5、6の供試鋼の降伏強度(YS)とシャルピー衝撃吸収値(CIAV)の関係を比較して示す図である。 同じく本発明の実施例1における鋼種No.1、2、3、と比較例の鋼種No.4、5、6の供試鋼の引張強度(TS)とシャルピー衝撃吸収値(CIAV)の関係を比較して示す図である。 同じく本発明の実施例1における鋼種No.1の供試鋼の熱間鍛造熱処理後の金属組織(顕微鏡写真)を示す図である。
 LBF;ラス状ベイニティックフェライト
 PF;ポリゴナルフェライト
 GBF;グラニュラーベイニティックフェライト
 γ;残留オーステナイト
 本発明において、焼入れ性を高めるためにCr、Mo、Niの含有量を前記の値に規定したのは、以下に記載する理由による。
 すなわち、Cr、Mo、Niは、鋼の強化元素として有用であると共に、残留オーステナイトの安定化や所定量の確保に有効な元素であるのみならず、鋼の焼入れ性の向上にも有効な元素であるが、焼入れ性の向上効果を十分に発揮させるためにはCr:2.0%以下(0%を含まない)、Mo:0.5%以下(0%を含まない)、Ni:2.0%以下の内2種類以上を合計で0.7~3.0%含有させる必要がある。その理由は、Cr、Mo、Niのうち2種類上の合計含有量が0.7%未満では、焼入れ性の向上効果を十分に発揮させることができず、他方、3.0%を超えるとベイナイト変態温度が下がりベイニティックヘライトが析出しにくくなり、マルテンサイト相になって硬くかつ脆くなり焼入れ性が高くなり過ぎるためである。
 又、本発明では、結晶粒のさらなる微細化をはかるために、鋼材にNb、Ti、Vの内1種類又は2種類以上を合計で0.01~0.3%含有させる。これは、オーステナイト単相域及び概ねフェライトとオーステナイトの2層域温度で焼鈍、更には鍛造等の塑性加工の両方を行った後、所定温度でオーステンパー処理するという熱処理を採用することにより、下記に規定する金属組織、ひいては所望の特性を容易に確保するためである。
・母相組織:ラス状ベイニティックフェライトが50%以上と、ポリゴナルフェライト及びグラニュラーベイニティックフェライトが合計で20%以下
 焼入性に優れた高強度鋼製加工品の強度かつ耐衝撃特性及び耐内圧疲労特性、並びに強度−靭性のバランスを向上させるためには、ラス状ベイニティックフェライトの体積率を50%以上とする必要がある。なお、ポリゴナルフェライト及びグラニュラーベイニティックフェライトの体積率を合計で20%以下としたのは、20%を超えると靭性が低下するためである。
・第2相組織:残留オーステナイトが5~30%、マルテンサイトが5%以下
 本発明の加工品は、母相組織として前記ラス状ベイニティックフェライトと、ポリゴナルフェライト及びグラニュラーベイニティックフェライトを含むと共に、第2相組織として残留オーステナイト、マルテンサイトを金属組織として含む。このうち、残留オーステナイトは、全伸びの向上に有効であり、又、塑性誘起マルテンサイト変態によるき裂抵抗となることで耐衝撃特性の向上にも有効であるが、該残留オーステナイトの体積率が5%未満では、前記効果を十分発揮することができず、他方、30%を超えると残留オーステナイト中のC濃度が低くなり、不安定な残留オーステナイトとなるので、前記効果を十分発揮することができないため、残留オーステナイトの体積率を5~30%とした。又、マルテンサイトは、母相との界面において破壊の起点となるため、全組織に対するマルテンサイトの体積率は5%以下(好ましくは1~3%以下)とした。
 本発明において、上記金属組織を確実に形成すると共に、引張特性、靭性等の機械的特性を効率よく高めるためには、その他の成分を下記の通り制御する必要がある。
 ・C:0.1~0.7%
 Cは高強度を確保し、かつ、残留オーステナイトを確保するために必須の元素である。より詳しくは、オーステナイト中のCを確保し、室温でも安定した残留オーステナイトを残存させて、延性及び耐衝撃特性を高めるのに有効であるが、0.1%未満ではその効果が十分に得られず、他方、0.7%を超えて過剰に添加すると残留オーステナイト量が増加すると共に、残留オーステナイトにCが濃化し易くなるので、高い延性および耐衝撃特性が得られる。しかし、0.7%を超えると、その効果が飽和するのみならず、中心偏析等による欠陥等が発生し、耐衝撃特性を劣化するため、上限を0.7%に限定した。
・Si:2.5%以下(0%を含まない)
 Siは酸化物生成元素であるので、過剰に含まれると耐衝撃特性を劣化させるため添加量を2.5%以下とした。なお、本発明鋼製品は、Siと同様の作用を発揮するAlの添加を前提としているが、Siの添加による固溶強化、および残留オーステナイトの生成量増加という観点からは、0.5%以上含有させてもよい。
・Mn:0.5~3%
 Mnは、オーステナイトを安定化し、規定量の残留オーステナイトを得るために必要な元素である。この様な作用を有効に発揮させるためには、0.5%以上(好ましくは0.7%以上、より好ましくは1%以上)添加することが必要である。しかし、過剰に添加すると、鋳片割れが生じるなどの悪影響が出るので、3%以下とした。好ましくは2.5%以下、より好ましくは2%以下である。
・Al:1.5%以下
 AlはSiと同様に炭化物の析出を抑制する元素であるが、AlはSiよりもフェライト安定能が強いので、Al添加の場合には変態開始がSi添加の場合よりも速くなり、極短時間の保持(鍛造等)においてもオーステナイト中にCが濃化されやすい。そのため、Al添加を行った場合には、オーステナイトをより安定化させることができ、結果として生成したオーステナイトのC濃度分布が高濃度側にシフトする上、生成する残留オーステナイト量が多くなって、高い衝撃特性を示すようになる。しかしながら、1.5%を超える添加は、鋼のAc3変態点を上昇させ、実操業上好ましくないので、上限を1.5%に規定した。なお、好ましくは0.05%である。
・B:0.005%以下
 BはCr、Mo等と同様に鋼の焼入れ性の向上に有効な元素であるが、遅れ破壊強度を低下させずに焼入れ性を高め、コストを低く抑えるためには、0.005%以下が好ましい。
 本発明においては更に、前記式により規定される炭素当量を0.75%以上0.90%以下に限定する。これは、上記金属組織の確保と、強度−靭性のバランスをより高める上で重要である。すなわち、炭素当量(Ceq)が0.75%未満では結晶粒の微細化を十分にはかることができず、母相組織であるラス状ベイニティックフェライトを50%以上確保することが困難となり、他方、0.90%を超えると、焼入れ性が過大となって、降伏応力と引張強さが過度に高くなり、靭性の改善効果が得られないためである。
 次に、本発明の高強度鋼製加工品の製造方法は、上記成分組成を満たす鋼材を使用し、該鋼材をAc3点以上の温度域で所定時間、好ましくは1秒以上保持し、該温度域で塑性加工を施した後、所定の平均冷却速度、好ましくは1℃/s以上の平均冷却速度で300~450℃(好ましくは325~425℃)まで冷却し、該温度域で100~2000秒(好ましくは1000秒)保持する工程を含むことを特徴とするものであるが、該熱処理条件を規定したのは以下に示す理由による。
 まず、鋼材をAc3点以上の温度域で1秒以上保持するのは、加熱温度を概ね2相域~オーステナイト単相域温度とすることにより微細なラス状ベイニティックフェライト及び第2相組織を得ることができるからである。なお、加熱温度がAc3点未満では、微細なラス状ベイニティックフェライト及び第2相組織が満足に析出しないためである。又、上記温度域での保持時間としては、加熱手段に例えば高周波加熱を採用した場合には瞬時にAc3点以上の温度域に保持できるので、好ましくは1秒以上とした。なお、その上限は特に限定されないが、生産性を考慮すると約30分程度である。
 上記塑性加工としては、鍛造加工、押出加工、穿孔加工、又はロール成形による伸管加工が挙げられるが、これらの加工における条件は、特に限定されず、通常行われている方法で行えばよい。
 次に、本発明では上記塑性加工後、所定の平均冷却速度、好ましくは1℃/s以上の平均冷却速度で300~450℃(好ましくは325~425℃)まで冷却し、当該温度域で100~2000秒保持(オーステンパー処理)するが、好ましい平均冷却速度を1℃/s以上としたのは、パーライトの生成を抑制するためである。又、オーステンパー処理温度を300~450℃(好ましくは325~425℃)としたのは、300℃未満ではCの拡散が遅く、規定量の残留オーステナイトが得られず、他方、450℃を超えると、セメンタイトが析出するのでオーステナイト中へのC濃化が生じず、規定量の残留オーステナイトが得られないためである。更に、オーステンパー処理時間を100~2000秒としたのは、100秒未満ではCの濃化が不十分で所定量の残留オーステナイトが生成せず、不安定な残留オーステナイトがマルテンサイトへと変態してしまい、他方、2000秒を超えると生成した残留オーステナイトが分解してしまうためである。なお、好ましくは、100~1000秒である。
 本発明は、上記製造条件を採用して、ディーゼルエンジン用燃料噴射管及びディーゼルエンジン用コモンレールを製造する方法も規定する。
 ディーゼルエンジン用燃料噴射管を製造する方法しては、前記の成分組成を満たす鋼材を使用し、1200℃以上の温度に加熱保持する工程、熱間押出加工を施す工程、及び、Ac3点以上の温度域で所定時間、好ましくは1秒以上保持し、該温度域で温間押出加工を施した後、所定の平均冷却速度、好ましくは1℃/s以上の平均冷却速度で300~450℃(好ましくは325~425℃)まで冷却し、該温度域で100~2000秒保持する工程を経た後、常温まで冷却し、その後、ガンドリル加工法による管軸方向の穿孔加工、径方向及び/又は管軸方向に圧延する伸管加工、切断加工、端末加工、及び、曲げ加工を順次行う方法を採用することができる。
 又、ディーゼルエンジン用コモンレールを製造する方法としては、上記ディーゼルエンジン用燃料噴射管の製造方法とほぼ同様の条件を採用し、規定の成分組成を満たす鋼材を使用し、1200℃以上の温度に加熱保持する工程、熱間押出加工を施す工程、及び、Ac3点以上の温度域で所定時間、好ましくは1秒以上保持し、該温度域で温間押出加工を施した後、所定の平均冷却速度、好ましくは1℃/s以上の平均冷却速度で300~450℃(好ましくは325~425℃)まで冷却し、該温度域で100~2000秒保持する工程を経た後、常温まで冷却し、その後、ガンドリル加工法による管軸方向の穿孔加工、径方向及び/又は管軸方向に圧延する伸管加工、切断加工、機械加工、及び、組立加工を順次行う方法を採用することができる。
 上記ディーゼルエンジン用燃料噴射管及びディーゼルエンジン用コモンレールを製造する方法において、熱間押出加工を施した後、Ac3点以上の温度域まで冷却する場合があるが、該冷却方法は特に限定されない。又、100~2000秒保持する工程を経た後、常温までの冷却は、速やかに冷却することが望ましい。更に、ディーゼルエンジン用コモンレールの製造方法において、熱間押出加工を施した後、ガンドリル加工法により管軸方向に穿孔するが、該冷却方法は特に限定されない。
 上記製造方法に用いる鋼材としては、ビレットや熱延丸棒等が挙げられるが、これらは常法通りに目的成分を満足する鋼を溶製し、スラブとした後、熱間のまま加工するか、又は一旦室温まで冷却したものを再度加熱した後に熱間加工を行って得られたものを用いればよい。
 以下、実施例に基づいて本発明をより具体的に説明する。ただし、本発明は下記実施例によって制限を受けるものではなく、趣旨を逸脱しない範囲で変更・実施することは、全て本発明の技術的範囲に含まれる。
実施例1
 まず、表1に記載の成分組成からなる鋼種No.1~6の供試鋼スラブ(表中の単位は質量%であり、残部Fe及び不可避的不純物)を連続鋳造により製造し、それぞれ1250℃域まで再加熱後、熱間圧延を行い、酸洗後、機械加工して、直径32mm、長さ80mmの棒鋼から、厚さ20mm、長さ80mm、幅32mmの角棒からなる鍛造用試験片を作製した。
 次に、各供試鋼の種類に応じて各鍛造用試験片を表2に示す鍛造温度で1秒以上加熱し、それぞれの試験片の加熱温度と同じ温度に加熱した金型を用いて鍛造加工を行い、10~70%の圧縮鍛造歪みを付与した。その後、表2に示すオーステンパー温度まで1℃/sの平均冷却速度で冷却した後、表2に示す時間にわたって等温変態保持するオーステンパー処理を行った。
 このようにして得られた各鍛造材につき、引張強度(TS)、降伏強度(YS)、伸び(EI)、シャルピー衝撃値(CIV)、及び、各組織の体積率(占積率)を下記要領でそれぞれ測定した。又、本実施例における各供試鋼のうち、代表例として鋼種No.1と鋼種No.5のCCT曲線(F:フェライト、B:ベイナイト、M:マルテンサイト)をそれぞれ図1、図2に、同じく各供試鋼の強度・靭性バランスを図3(降伏強度)、図4(引張強度)に、それぞれ示す。更に、本実施例の鋼種No.1~3のうち、代表例として鋼種No.1の鋼の熱間鍛造熱処理後の金属組織(顕微鏡写真)を図5(緑色の相は主にラス状のベイニティックフェライト(LBF)のマトリックスを表し、赤色の相は残留オーステナイト(γ)を示す。)に示す。
・降伏強度、引張強度、及び、伸びの測定:
 上記鍛造材より採取したJIS14B号試験片(平行部長さ20mm、幅6mm、厚さ1.2mm)を用いて、降伏強度YS、引張強度TS、伸びEIを測定した。なお、試験条件は、25℃、クロスヘッド速度1mm/minである。
・シャルピー衝撃試験(靭性):
 上記鍛造材より採取したJIS5B号試験片(幅2.5mm)を用いて、シャルピー衝撃吸収値CIAVを測定した。なお、試験条件は、25℃、5m/sである。
・組織の観察:
 各鍛造材中の組織の体積率(占積率)は、鍛造材をナイタール、及びレペラ腐食による光学顕微鏡(倍率400倍若しくは1000倍)、及び走査型電子顕微鏡(SEM:倍率1000倍若しくは4000倍)観察、飽和磁化法(熱処理,VolI.136,(1996),P.322)による残留オーステナイト量測定、X線によるオーステナイト中のC濃度測定、透過型電子顕微鏡(TEM:倍率10000倍)、ステップ間隔100nmによるFE/SEM−EBSPによる組織解析を実施し、組織を同定した。このようにして得られた各種鍛造鋼材について調べた組織の体積率、及び力学特性を表2に併せて示す。
・残留オーステナイト特性(γR):
 各鍛造材の残留オーステナイト初期体積率(fγo)、残留オーステナイト初期炭素濃度(Cγo)は、下記×線回折法により測定した。
 〈残留オーステナイト初期体積率(fγo)〉
  5ピーク法(200)γ、(220)γ、(311)γ
       (200)α、(211)α
 〈残留オーステナイト初期炭素濃度(Cγo)〉
  (200)γ、(220)γ、(311)γ回折面ピークから、γの格子定数測定
   Cγ=(aγ−3.578−0.000Siγ−0.00095Mnγ−0.0006Cr−0.0056Alγ−0.0051Nbγ−0.0220Nγ)/0.033
 これらの結果より、以下のように考察することができる。
 まず、鋼種No.1~3は、いずれも本発明の範囲を満足する鋼種を用い、本発明で規定する製法によって所定の組織を備えた鍛造部品を製造した例である。 この鋼種No.1~3に示す本発明鋼は、例えば鋼種No.1の金属組織(顕微鏡写真)を図5に示すように、全て母相組織が主にラス状ベイニティックフェライト(LBF)とからなり、かつ少量のグラニュラーベイニティックフェライト(GBF)とポリゴナルフェライト(PF)を含み、第2相組織が微細な残留オーステナイト(γ)とマルテンサイトからなり、残留オーステナイトの安定性が高く、かつ熱間鍛造により、組織は著しく微細化することがわかる。又、この鋼種No.1~3に示す本発明鋼の鍛造部品は、全て強度と靭性のバランスが非常に高く、降伏応力と引張強度及び伸び特性に優れ、かつ、衝撃特性も優れている(図3、図4参照)。この本発明鋼における優れた靭性は、特にCr、Mo及びNi添加による焼入れ性の向上と、多量かつ安定な残留オーステナイト特性と、鍛造処理による組織の微細化(ラス状ベイニティックフェライトと、微細な粒状及びフィルム状の残留オーステナイトの混相組織)によるものと考えられる。更に、鋼種No.1~3のうち、代表例として示した鋼種No.1のCCT曲線から、鋼種No.1に示す本発明鋼のマルテンサイトは開始温度が約320℃であり、ベイナイト変態開始ノーズが長時間領域にシフトすることがわかる。なお、鋼種No.2、3のCCT曲線は省略したが、この鋼種No.2、3のマルテンサイトの開始温度は共に約420℃であり、鋼種No.1と同様に、ベイナイト変態開始ノーズは長時間領域にシフトすることも明らかとなった。
 これに対し、本発明で特定する要件、特に焼入れ性を高めるためのCr、Mo、Niの含有量と、金属組織の確保と、強度−靭性のバランスをより高める上で重要である炭素当量を満足しない下記比較例はそれぞれ、以下の不具合を有している。
 まず、No.4は基本鋼(0.4%C−1.5%Si−1.5%Mn−0.5%Al−0.05Nb)であり、初析フェライトが析出し、ベイナイト変態が十分でなく、Crの含有量が少ないため焼入れ性が低下した。
 No.5はNo.1の本発明鋼よりCrが0.5%高いだけで、本発明で規定する成分組成をほぼ満足するCr−Mo鋼であるが、炭素当量が本発明の範囲の上限を上回っているため、図2に示す当該鋼のCCT曲線から明らかのように、CCT曲線のフェライトとベイナイト変態の開始時間がかなり長時間に移動し、結果的に焼入れ性が高くなり過ぎ、降伏応力と引張強さが過度に高くなり、靭性の改善効果が得られなかった。
 No.6は本発明で規定する成分組成をほぼ満足するCr鋼を用いた例であるが、Mo量が本発明鋼より少ないため焼入れ性が低下した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
実施例2
 表1の鋼種No.1に示す成分を有する本発明鋼製のビレットを1200℃の温度に加熱保持して熱間押出加工を施した後、940℃まで冷却し、当該温度に1秒間以上保持して所定の温間押出し加工を施して丸棒とし、該丸棒を4℃/sの冷却速度で325℃まで冷却し、該温度域に1800秒保持した後、所定の冷却速度で常温まで冷却し、しかる後ガンドリル加工にて管軸方向に穿孔して燃料噴射管用素管とし、該素管に所定の伸管加工を施して製品寸法が外径8.0mm、内径3.0mm、肉厚2.5mmの燃料噴射管用鋼管を得、これを所望長さに切断加工し、次いでナット等のねじ部品を挿入した後に接続頭部をプレス成形する端末加工を施し、更に曲げ加工を施して燃料噴射管を得た。
実施例3
 表1の鋼種No.2に示す成分を有する本発明鋼製のビレットを1250℃の温度に加熱保持して熱間押出加工を施した後、常温まで冷却し、その後ガンドリル加工法により管軸方向に穿孔し、次いで950℃の温度に1秒間以上保持してから熱間ロール成形加工を施した後、2℃/sの冷却速度で375℃まで冷却し、該温度で1000秒間保持するオーステンパー処理を施した。更に、冷間で伸管加工を施して製品寸法が外径8.0mm、内径3.0mm、肉厚2.5mmとした後、切断加工、端末加工及び曲げ加工を施して燃料噴射管用鋼管を得た。
実施例4
 表1の鋼種No.3に示す成分を有する本発明鋼製の棒鋼を用いて温間でマンネスマン方式により管軸方向に穿孔した後、1000℃まで加熱し、当該温度で1秒間以上保持した後、熱間押出成形を行い、その後1℃/sの冷却速度で350℃まで冷却し、該温度に950秒間保持し、次いで常温まで冷却した。その後伸管加工を施して製品寸法が外径6.35mm、内径2.35mm、肉厚2mmとした後、切断加工、端末加工及び曲げ加工を施して燃料噴射管用鋼管を得た。
実施例5
 表1の鋼種No.1に示す成分を有する本発明鋼製のビレットを1200℃の温度に加熱保持した後、常温まで冷却し、その後ガンドリル加工法により管軸方向に穿孔し、次いで930℃まで加熱し、当該温度に1秒間以上保持した後、熱間ロール成形加工を施し、続いて5℃/sの冷却速度で325℃まで冷却し、該温度で1750秒間保持し、その後常温まで冷却した。次いで、伸管加工を施して製品寸法が外径8.0mm、内径3.0mm、肉厚2.5mmとした後、切断加工、端末加工及び曲げ加工を施して燃料噴射管用鋼管を得た。
実施例6
 表1の鋼種No.2に示す成分を有する本発明鋼製のビレットを1250℃の温度に加熱保持して熱間押出加工を施した後、常温まで冷却し、その後ガンドリル加工法により管軸方向に穿孔し、次いで950℃まで加熱し、当該温度に1秒間以上保持した後、熱間ロール成形加工を施し、続いて8℃/sの冷却速度で400℃まで冷却し、該温度に210秒間保持してオーステンパー処理を施した。その後冷間で伸管加工を施して製品寸法が外径8.0mm、内径3.0mm、肉厚2.5mmとした後、切断加工、端末加工及び曲げ加工を施して燃料噴射管用鋼管を得た。
実施例7
 表1の鋼種No.3に示す成分を有する本発明鋼製の鋼管に温間ロール成形加工を施した後、1250℃の温度に加熱保持し、次いで980℃の温度に1秒以上保持した後、熱間押出加工を施し、その後2℃/sの冷却速度で325℃まで冷却し、該温度に1700秒間保持した後、常温まで冷却した。しかる後、伸管加工を施して製品寸法が外径8.0mm、内径3.0mm、肉厚2.5mmとした後、切断加工、端末加工及び曲げ加工を施して燃料噴射管用鋼管を得た。
実施例8
 表1の鋼種No.1に示す成分を有する本発明鋼製の棒鋼を用いてガンドリル加工法により管軸方向に穿孔した後、940℃まで加熱し、該温度に1秒間保持した後、10℃/sの冷却速度で425℃まで冷却し、該温度に220秒間保持した後、常温まで冷却した。しかる後、伸管加工を施して製品寸法が外径8.0mm、内径3.0mm、肉厚2.5mmとした後、切断加工、端末加工及び曲げ加工を施して燃料噴射管用鋼管を得た。
実施例9
 表1の鋼種No.2に示す成分を有する本発明鋼製のビレットを1200℃の温度に加熱保持した後、常温まで冷却し、3℃/sの冷却速度で425℃まで冷却し、該温度に220秒間保持した後、常温まで冷却した。しかる後、伸管加工を施して製品寸法が外径8.0mm、内径3.0mm、肉厚2.5mmとした後、切断加工、端末加工及び曲げ加工を施して燃料噴射管用鋼管を得た。
実施例10
 表1の鋼種No.1に示す成分を有する本発明鋼製のビレットを用いて熱間押出加工を施した後、冷間でガンドリル加工法により管軸方向に穿孔し、次いで、該素管を1200℃の温度で熱間ロール成形し、その後930℃の温度に1秒間以上保持し、続いて4℃/sの冷却速度で450℃まで冷却し、該温度で100秒間保持してオーステンパー処理を施した。その後、冷間で伸管加工を施して外径30mm、内径8mm、肉厚11mmとし、当該管に切断加工、外周面に円錐状のシート面及びφ3mmの分岐孔の穿孔等の機械加工、分岐孔の周縁にねじスリーブを有するリテーナの組立て加工等を施してコモンレールを得た。
実施例11
 表1の鋼種No.2に示す成分を有する本発明鋼製のビレットに熱間で押出加工を施し、次いで冷間でガンドリル加工法により管軸方向に穿孔し、その後冷間で伸管加工を施して外径30mm、内径8mm、肉厚12mmとし、該管を所定の長さに切断し、機械加工を施した後、当該管を1200℃の温度に加熱し、その後、950℃の温度に1秒間以上保持し、続いて1℃/sの冷却速度で300℃まで冷却し、該温度で2000秒間保持してオーステンパー処理を施した。しかる後、組立て加工を施してコモンレールを得た。
実施例12
 表1の鋼種No.3に示す成分を有する本発明鋼製のビレットを1300℃の温度に加熱し、マンネスマン方式による穿孔加工を施した後、該素管を1200℃の温度で熱間ロール成形し、その後冷間で伸管加工を施し、次いで950℃の温度に1秒間以上保持した後、5℃/sの冷却速度で350℃まで冷却し、該温度に1200秒間保持してオーステンパー処理を施した。その後、冷間で伸管加工を施して外径32mm、内径8mm、肉厚12mmとした後、当該管に切断加工、外周面に円錐状のシート面及びφ3mmの分岐孔の穿孔等の機械加工、分岐孔の周縁にねじスリーブを有するリテーナの組立て加工等を施してコモンレールを得た。
実施例13
 表1の鋼種No.3に示す成分を有する本発明鋼製のビレットに冷間圧延を施し、次いでガンドリル加工法により管軸方向に穿孔し、その後該素管を1200℃の温度で熱間ロール成形し、次いで950℃の温度に1秒間以上保持し、続いて8℃/sの冷却速度で400℃まで冷却した後、該温度に500秒間保持してオーステンパー処理を施した。しかる後、冷間で伸管加工を施して外径32mm、内径8mm、肉厚12mmとし、更に切断加工、機械加工、及び組立て加工を順次施してコモンレールを得た。
実施例14
 表1の鋼種No.1に示す成分を有する本発明鋼製の鋼素材を所望長さに切断後、温間で粗型鍛造し、これを1200℃の温度に加熱後、1200℃の温度に1秒以上保持してから、本体部の外径が32mmで、φ18mmのボス部を多数有する形状に熱間鍛造し、その後9℃/sの冷却速度で450℃まで冷却し、該温度に1200秒間保持してオーステンパー処理を施した。その後、常温に冷却してロングドリル加工法により内径9mmの管孔を管軸方向に穿孔し、ボス部外周にM16の外ねじの加工、ボス部頂部に円錐状のシート面の形成、φ3mmの分岐孔の穿孔等の機械加工を施してコモンレールを得た。
実施例15
 表1の鋼種No.2に示す成分を有する本発明鋼製の鋼素材を1200℃の温度に加熱後鍛造加工を施し、次いで950℃の温度に1秒以上保持した後、本体部の外径が32mmで、φ18mmのボス部を多数有する形状に熱間鍛造し、その後7℃/sの冷却速度で425℃まで冷却し、該温度に200秒間保持してオーステンパー処理を施した。その後、常温に冷却してロングドリル加工法により内径9mmの管孔を管軸方向に穿孔し、ボス部外周にM16の外ねじの加工、ボス部頂部に円錐状のシート面の形成、φ3mmの分岐孔の穿孔等の機械加工を施してコモンレールを得た。
実施例16
 表1の鋼種No.3に示す成分を有する本発明鋼製の鋼素材を1200℃の温度に加熱後、熱間押出加工を行ってから所望長さに切断し、次いで950℃の温度に1秒以上保持した後、本体部の外径が32mmで、φ18mmのボス部を多数有する形状に熱間鍛造し、その後6℃/sの冷却速度で350℃まで冷却し、該温度に950秒間保持してオーステンパー処理を施した。その後、常温に冷却してロングドリル加工法により内径8mmの管孔を管軸方向に穿孔し、ボス部外周にM16の外ねじの加工、ボス部頂部に円錐状のシート面の形成、φ3mmの分岐孔の穿孔等の機械加工を施してコモンレールを得た。
 上記実施例2~9の各燃料噴射管と、実施例10~16の各コモンレールをそれぞれ内圧繰返し疲労試験機にかけて内圧疲労限界を調べた結果、燃料噴射管及びコモンレールは全て、2500Barを超える内圧を1000万回以上繰返して加えても破損することがなく、より優れた耐内圧疲労特性を示した。
 なお、上記実施例2~9の各燃料噴射管と、実施例10~16の各コモンレールは、最終工程実施後に高圧水又は高圧油を封入してオートフレッテージ処理を実施することにより耐内圧疲労特性を更に向上させることが可能である。
 本発明は、焼入れ性向上のためにCr、Mo、Niを、結晶粒の微細化による強度(疲労強度)向上のためにNb、Ti、Vの内1種類又は2種類以上を適量含み、かつ炭素当量(Ceq)を適正値に設定した鋼材を用い、所定の熱処理を採用することにより、母相組織が主にラス状ベイニティックフェライトからなり、かつ少量のグラニュラーベイニティックフェライトとポリゴナルフェライトを含み、第2相組織が微細な残留オーステナイトとマルテンサイトからなる、微細構造の金属組織を有し、かつ強度と靭性のバランスが優れた高焼入性の超高強度低合金TRIP鋼(TBF鋼)が得られることにより、加熱温度や、加工率(鍛造加工率や圧延加工率等)等によらず、焼入性に優れた高強度鋼製加工品、高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管及びコモンレールを提供することができる。

Claims (11)

  1.  C:0.1~0.7%、Si:2.5%以下(0%を含まない)、Mn:0.5~3%、Al:1.5%以下、Nb、Ti、Vの内1種類又は2種類以上を合計で0.01~0.3%、Cr:2.0%以下(0%を含まない)、Mo:0.5%以下(0%を含まない)、Ni:2.0%以下、Cr、Mo、Niの内2種類以上を合計で0.7~3.0%、を含有し、かつ下記式により規定される炭素当量(Ceq)が0.75%以上0.90%以下で、残部Fe及び不可避的不純物からなり、金属組織は、母相組織がラス状ベイニティックフェライトを50%以上(全組織に対する体積率、組織について以下同じ)と、ポリゴナルフェライト及びグラニュラーベイニティックフェライトを合計で20%以下を含有し、第2相組織が残留オーステナイトを5~30%、マルテンサイトを5%以下、を満たすことを特徴とする焼入性に優れた高強度鋼製加工品。
     記
     Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
  2.  更に、Bを0.005%以下(0%を含まない)含有する請求項1に記載の焼入性に優れた高強度鋼製加工品。
  3.  前記加工品が鍛造品である請求項1又は2に記載の焼入性に優れた高強度鋼製加工品。
  4.  前記加工品が高圧燃料配管である請求項1又は2に記載の焼入性に優れた高強度鋼製加工品。
  5.  前記高圧燃料配管が、高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管、又は、高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用コモンレールである請求項4に記載の焼入性に優れた高強度鋼製加工品。
  6.  請求項1~5のいずれかに記載の高強度鋼製加工品を製造する方法であって、請求項1又は2に記載の成分組成を満たす鋼材を使用し、該鋼材をAc3点以上の温度域で所定時間保持し、該温度域で塑性加工を施した後、所定の平均冷却速度で300~450℃(好ましくは325~425℃)まで冷却し、該温度域で100~2000秒保持する工程を含むことを特徴とする焼入性に優れた高強度鋼製加工品の製造方法。
  7.  前記Ac3点以上の温度域での保持時間を1秒以上、前記平均冷却速度を1℃/s以上とすることを特徴とする請求項6に記載の焼入性に優れた高強度鋼製加工品の製造方法。
  8.  請求項5に記載のディーゼルエンジン用燃料噴射管を製造する方法であって、請求項1又は2に記載の成分組成を満たす鋼材を使用し、1200℃以上の温度に加熱保持する工程、熱間押出加工を施す工程、及び、Ac3点以上の温度域で所定時間保持し、該温度域で温間押出加工を施した後、所定の平均冷却速度で300~450℃(好ましくは325~425℃)まで冷却し、該温度域で100~2000秒保持する工程を経た後、常温まで冷却し、その後、ガンドリル加工法による管軸方向の穿孔加工、径方向及び/又は管軸方向に圧延する伸管加工、切断加工、端末加工、及び、曲げ加工を順次行うことを特徴とする高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管の製造方法。
  9.  前記Ac3点以上の温度域での保持時間を1秒以上、前記平均冷却速度を1℃/s以上とすることを特徴とする請求項8に記載の高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管の製造方法。
  10.  請求項5に記載のディーゼルエンジン用コモンレールを製造する方法であって、請求項1又は2に記載の成分組成を満たす鋼材を使用し、1200℃以上の温度に加熱保持する工程、熱間押出加工を施す工程、及び、Ac3点以上の温度域で所定時間保持し、該温度域で温間押出加工を施した後、所定の平均冷却速度で300~450℃(好ましくは325~425℃)まで冷却し、該温度域で100~2000秒保持する工程を経た後、常温まで冷却し、その後、ガンドリル加工法による管軸方向の穿孔加工、径方向及び/又は管軸方向に圧延する伸管加工、切断加工、機械加工、及び、組立加工を順次行うことを特徴とする高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用コモンレールの製造方法。
  11.  前記Ac3点以上の温度域での保持時間を1秒以上、前記平均冷却速度を1℃/s以上とすることを特徴とする請求項10に記載の高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用コモンレールの製造方法。
PCT/JP2009/068941 2008-10-31 2009-10-29 高強度鋼製加工品及びその製造方法、並びにディーゼルエンジン用燃料噴射管及びコモンレールの製造方法 WO2010050619A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/998,498 US8585835B2 (en) 2008-10-31 2009-10-29 High-strength steel machined product and method for manufacturing the same, and method for manufacturing diesel engine fuel injection pipe and common rail
CN200980143601.5A CN102203310B (zh) 2008-10-31 2009-10-29 高强度钢制加工品及其制造方法、以及柴油机用燃料喷射管及共轨的制造方法
KR1020117009880A KR101286864B1 (ko) 2008-10-31 2009-10-29 고강도 강제 가공품 및 그 제조 방법과, 디젤 엔진용 연료 분사관 및 커먼 레일의 제조 방법
EP09823725.8A EP2365103A4 (en) 2008-10-31 2009-10-29 HIGH-FIXED STEEL MACHINED PRODUCT AND METHOD OF MANUFACTURING THEREFOR AND METHOD FOR PRODUCING DIESEL ENGINE FUEL INJECTION PIPE AND COMMON RAIL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008282598A JP5483859B2 (ja) 2008-10-31 2008-10-31 焼入性に優れた高強度鋼製加工品及びその製造方法、並びに高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管及びコモンレールの製造方法
JP2008-282598 2008-10-31

Publications (1)

Publication Number Publication Date
WO2010050619A1 true WO2010050619A1 (ja) 2010-05-06

Family

ID=42128974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068941 WO2010050619A1 (ja) 2008-10-31 2009-10-29 高強度鋼製加工品及びその製造方法、並びにディーゼルエンジン用燃料噴射管及びコモンレールの製造方法

Country Status (6)

Country Link
US (1) US8585835B2 (ja)
EP (1) EP2365103A4 (ja)
JP (1) JP5483859B2 (ja)
KR (1) KR101286864B1 (ja)
CN (1) CN102203310B (ja)
WO (1) WO2010050619A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836908A (zh) * 2018-03-23 2020-10-27 安赛乐米塔尔公司 贝氏体钢的锻造部件及其制造方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5711955B2 (ja) * 2010-12-16 2015-05-07 臼井国際産業株式会社 切欠き疲労強度に優れた高強度鋼製加工品及びその製造方法
JP5251970B2 (ja) * 2010-12-20 2013-07-31 株式会社デンソー 燃料供給ポンプ
JP5910168B2 (ja) 2011-09-15 2016-04-27 臼井国際産業株式会社 Trip型2相マルテンサイト鋼及びその製造方法とそのtrip型2相マルテンサイト鋼を用いた超高強度鋼製加工品
AT512792B1 (de) * 2012-09-11 2013-11-15 Voestalpine Schienen Gmbh Verfahren zur Herstellung von bainitischen Schienenstählen
ES2729562T3 (es) * 2012-09-14 2019-11-04 Mannesmann Prec Tubes Gmbh Aleación de acero para un acero de baja aleación con alta resistencia
DE102012221607A1 (de) * 2012-11-27 2014-05-28 Robert Bosch Gmbh Metallischer Werkstoff
CN103194669B (zh) * 2013-04-12 2015-06-10 莱芜钢铁集团有限公司 一种提高低碳硅锰系冷轧相变诱发塑性钢强塑性的方法
RU2552796C2 (ru) * 2013-07-10 2015-06-10 Открытое акционерное общество "Синарский трубный завод" (ОАО "СинТЗ") Бурильная труба высокопрочная
JP6100156B2 (ja) * 2013-12-19 2017-03-22 株式会社神戸製鋼所 鍛鋼品用高強度鋼及び鍛鋼品
MX2016011092A (es) * 2014-02-25 2017-04-06 Usui Kokusai Sangyo Kk Tubo de acero para tuberia de inyeccion de combustible y tuberia de inyeccion de combustible utilizando el mismo.
JP6070617B2 (ja) * 2014-04-03 2017-02-01 Jfeスチール株式会社 耐内圧疲労特性に優れた燃料噴射管用継目無鋼管
CN104141095B (zh) * 2014-08-13 2016-10-05 山东金马工业集团股份有限公司 发动机高压共轨锻件
JP6789611B2 (ja) * 2015-01-22 2020-11-25 臼井国際産業株式会社 ガソリン直噴用フューエルレールの製造方法
JP6782060B2 (ja) * 2015-01-22 2020-11-11 臼井国際産業株式会社 フューエルレールの製造方法
GB2535782A (en) * 2015-02-27 2016-08-31 Skf Ab Bearing Steel
JP6004144B1 (ja) * 2015-03-06 2016-10-05 Jfeスチール株式会社 高強度電縫鋼管およびその製造方法
US11203793B2 (en) 2015-06-17 2021-12-21 Usui Co., Ltd. Steel pipe for fuel injection pipe and method for producing the same
DE102015212868A1 (de) * 2015-07-09 2017-01-12 Hirschvogel Umformtechnik Gmbh Innendruckbelastetes Bauteil
PL234098B1 (pl) * 2016-06-27 2020-01-31 Arcelormittal Poland Spolka Akcyjna Stal wielofazowa zwłaszcza do produkcji szyn normalnotorowych
KR102226684B1 (ko) * 2016-09-13 2021-03-12 닛폰세이테츠 가부시키가이샤 강판
DE102017205018A1 (de) * 2017-03-24 2018-09-27 Robert Bosch Gmbh Verfahren zur Herstellung einer Drosselstelle in einem Bauteil, insbesondere in einem Kraftstoffinjektor sowie Kraftstoffinjektor selbst
WO2018215813A1 (en) 2017-05-22 2018-11-29 Arcelormittal Method for producing a steel part and corresponding steel part
HUE061197T2 (hu) * 2018-11-30 2023-05-28 Arcelormittal Hidegen hengerelt, lágyított acéllemez nagy lyuktágulási aránnyal, és eljárás elõállítására
CN113423516B (zh) * 2019-02-13 2023-06-02 日本制铁株式会社 燃料喷射管用钢管及使用其的燃料喷射管
CN113453812B (zh) * 2019-02-13 2023-06-16 日本制铁株式会社 燃料喷射管用钢管及使用其的燃料喷射管
CN110578094A (zh) * 2019-10-18 2019-12-17 山东钢铁集团日照有限公司 一种1.0GPa级冷轧TRIP-BF钢的制备方法
DE102019216523A1 (de) * 2019-10-28 2021-04-29 Robert Bosch Gmbh Komponente, insbesondere Brennstoffleitung oder Brennstoffverteiler, und Brennstoffeinspritzanlage
CN115261704B (zh) * 2022-07-29 2023-01-24 攀钢集团攀枝花钢铁研究院有限公司 中等强度热轧贝氏体钢轨制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285430A (ja) 2003-03-24 2004-10-14 Nomura Kogyo Kk 鍛造品の製造方法
JP2004292876A (ja) 2003-03-26 2004-10-21 Kobe Steel Ltd 絞り特性に優れた高強度鍛造部品、及びその製造方法
JP2005120397A (ja) 2003-10-14 2005-05-12 Kobe Steel Ltd 絞り特性に優れた高強度鍛造部品
JP2007231353A (ja) 2006-02-28 2007-09-13 Kobe Steel Ltd 耐衝撃特性と強度−延性バランスに優れた鋼製高強度加工品およびその製造方法、並びに高強度かつ耐衝撃特性および耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管およびコモンレールの製造方法
JP2007291416A (ja) * 2006-04-20 2007-11-08 Usui Kokusai Sangyo Kaisha Ltd 自動車高圧配管用高張力鋼管
JP2008056956A (ja) * 2006-08-29 2008-03-13 Nippon Steel Corp 表層細粒鋼部品とその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744733B1 (fr) * 1996-02-08 1998-04-24 Ascometal Sa Acier pour la fabrication de piece forgee et procede de fabrication d'une piece forgee
AT407057B (de) * 1996-12-19 2000-12-27 Voest Alpine Schienen Gmbh Profiliertes walzgut und verfahren zu dessen herstellung
JP4068950B2 (ja) * 2002-12-06 2008-03-26 株式会社神戸製鋼所 温間加工による伸び及び伸びフランジ性に優れた高強度鋼板、温間加工方法、及び温間加工された高強度部材または高強度部品
US7314532B2 (en) 2003-03-26 2008-01-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength forged parts having high reduction of area and method for producing same
JP4091894B2 (ja) * 2003-04-14 2008-05-28 新日本製鐵株式会社 耐水素脆化、溶接性、穴拡げ性および延性に優れた高強度薄鋼板およびその製造方法
JP4716358B2 (ja) * 2005-03-30 2011-07-06 株式会社神戸製鋼所 強度と加工性のバランスに優れた高強度冷延鋼板およびめっき鋼板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285430A (ja) 2003-03-24 2004-10-14 Nomura Kogyo Kk 鍛造品の製造方法
JP2004292876A (ja) 2003-03-26 2004-10-21 Kobe Steel Ltd 絞り特性に優れた高強度鍛造部品、及びその製造方法
JP2005120397A (ja) 2003-10-14 2005-05-12 Kobe Steel Ltd 絞り特性に優れた高強度鍛造部品
JP2007231353A (ja) 2006-02-28 2007-09-13 Kobe Steel Ltd 耐衝撃特性と強度−延性バランスに優れた鋼製高強度加工品およびその製造方法、並びに高強度かつ耐衝撃特性および耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管およびコモンレールの製造方法
JP2007291416A (ja) * 2006-04-20 2007-11-08 Usui Kokusai Sangyo Kaisha Ltd 自動車高圧配管用高張力鋼管
JP2008056956A (ja) * 2006-08-29 2008-03-13 Nippon Steel Corp 表層細粒鋼部品とその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HEAT TREATMENT, vol. 1, no. 136, 1996, pages 322
See also references of EP2365103A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836908A (zh) * 2018-03-23 2020-10-27 安赛乐米塔尔公司 贝氏体钢的锻造部件及其制造方法

Also Published As

Publication number Publication date
KR20110063581A (ko) 2011-06-10
KR101286864B1 (ko) 2013-07-17
CN102203310A (zh) 2011-09-28
US8585835B2 (en) 2013-11-19
CN102203310B (zh) 2014-07-02
US20110209803A1 (en) 2011-09-01
EP2365103A4 (en) 2013-12-25
JP5483859B2 (ja) 2014-05-07
EP2365103A1 (en) 2011-09-14
JP2010106353A (ja) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5483859B2 (ja) 焼入性に優れた高強度鋼製加工品及びその製造方法、並びに高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管及びコモンレールの製造方法
JP5910168B2 (ja) Trip型2相マルテンサイト鋼及びその製造方法とそのtrip型2相マルテンサイト鋼を用いた超高強度鋼製加工品
JP4974331B2 (ja) 耐衝撃特性と強度−延性バランスに優れた鋼製高強度加工品およびその製造方法、並びに高強度かつ耐衝撃特性および耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管およびコモンレールの製造方法
CN110678569B (zh) 高强度钢板及其制造方法
KR101540507B1 (ko) 연성 및 내지연 파괴 특성이 우수한 초고강도 냉연 강판 및 그 제조 방법
EP0924312B1 (en) Method for manufacturing super fine granular steel pipe
EP3631021B1 (en) Method for producing a steel part and corresponding steel part
JP5489540B2 (ja) 超高強度鋼製加工品及びその製造方法
US8795450B2 (en) Manufacturing method for a steel pipe for fuel injection pipe
JP2008019453A (ja) 加工性に優れ、かつ熱処理後の強度靭性に優れた熱延薄鋼板およびその製造方法
JP5711955B2 (ja) 切欠き疲労強度に優れた高強度鋼製加工品及びその製造方法
JP5778903B2 (ja) 切欠き疲労強度に優れた高強度鋼製加工品の製造方法
JP2023531248A (ja) 鋼組成物から高強度鋼管を製造する方法およびその鋼管から作られる構成部品
Resiak et al. New bainitic steels for high strength components for automotive parts

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143601.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12998498

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009823725

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117009880

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3648/CHENP/2011

Country of ref document: IN