WO2010050609A1 - 流体弁駆動機構 - Google Patents

流体弁駆動機構 Download PDF

Info

Publication number
WO2010050609A1
WO2010050609A1 PCT/JP2009/068857 JP2009068857W WO2010050609A1 WO 2010050609 A1 WO2010050609 A1 WO 2010050609A1 JP 2009068857 W JP2009068857 W JP 2009068857W WO 2010050609 A1 WO2010050609 A1 WO 2010050609A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
support portion
valve
drive mechanism
shaft
Prior art date
Application number
PCT/JP2009/068857
Other languages
English (en)
French (fr)
Inventor
玉井真史
下道秀和
布施等
Original Assignee
日本ムーグ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ムーグ株式会社 filed Critical 日本ムーグ株式会社
Priority to KR1020117011071A priority Critical patent/KR101204417B1/ko
Priority to CN2009801432654A priority patent/CN102203475B/zh
Publication of WO2010050609A1 publication Critical patent/WO2010050609A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/36Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/16Trip gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/047Actuating devices; Operating means; Releasing devices electric; magnetic using a motor characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/56Mechanical actuating means without stable intermediate position, e.g. with snap action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given

Definitions

  • the present invention relates to a valve control drive mechanism, and more particularly to an emergency safety device in a fuel supply flow control valve in a gas turbine facility.
  • Gas turbine technology is adopted as a core technology in LNG combined power generation (combined cycle), which is being rapidly introduced due to highly efficient power generation characteristics.
  • global warming countermeasures have been recognized as an important issue internationally.
  • High-efficiency power generation technology for thermal power generation with a large amount of carbon dioxide emissions has become increasingly recognized, and gas turbine temperature (combustion)
  • Technological development for further improvement in efficiency due to a rise in temperature) has been promoted, and in recent years, large-scale and highly efficient power generation equipment having a gas turbine temperature of 1500 ° C. has come into operation. Therefore, improvement of control reliability for the fuel fluid valve that controls the fuel supply to the gas turbine and realization of a reliable fail-safe function in an emergency are increasingly important issues.
  • FIG. 5 An example of a conventional fluid valve drive mechanism for controlling the fuel supply to the gas turbine is shown in FIG.
  • the apparatus has a valve box 508, a connecting frame 507, and a spring box 506 as fixed parts, and a hydraulic actuator 501 that is a drive unit is fixed to the upper part of the spring box 506.
  • a valve body 509 in the valve box 508 is connected to a hydraulic actuator 501 via a valve rod 510, a connecting rod 503, and an output shaft 502, and drives the output shaft 502 up and down by the oil pressure of a hydraulic supply unit (not shown).
  • the valve body 509 is moved up and down to adjust the opening of the valve.
  • the spring box 506 has a coil spring 504 whose upper end is fixed to the upper part of the spring box, and a lower end which is a free end of the coil spring 504 is fixed to the spring seat 505, and the spring seat 505 is connected to the connecting rod 503. Yes.
  • the coil spring 504 In an initial state where no oil pressure is applied, the coil spring 504 is compressed to a predetermined length so that the valve body 509 keeps the valve closed state pressed against the valve seat with a predetermined pressing force. It is configured.
  • the opening / closing operation of the valve is performed by raising the spring seat 505 and compressing the coil spring 504 via the output shaft 502 and the connecting rod 503 by the driving force of the hydraulic actuator 501.
  • WO 02/35123 is an operation device for a steam valve that is used in a steam turbine and opens and closes a valve body by moving the valve body back and forth, and is an emergency by releasing spring energy stored in a disc spring 21
  • a steam valve operating device that can be shut off is disclosed.
  • the apparatus includes a pressure accumulating device 7 including a disc spring 21 and a collet chuck 19, and a ram 49 of the driving unit 5 that engages with the collet chuck 19.
  • the collet chuck 19 is magnetized and fixed to the ram 49 by electromagnetic force generated by energizing the electromagnetic coil 13 in the ram 49, and the disc spring 21 in the collet chuck 19 is maintained in a compressed state. Open and close the valve.
  • the energization of the electromagnetic coil 13 in the ram 49 is stopped, the magnetism of the collet chuck 19 with the ram 49 is released, the pressure-accumulated disc spring 21 is released, and the valve body is moved via the valve stem 3.
  • valve stem 3 is not mechanically fixed directly to the ram 49 of the drive unit 5,
  • the valve rod 3 is connected to a movable actuator plate 67 arranged in a state in which the valve is movable in a sealed chamber filled with fluid.
  • the valve rod 3 is moved suddenly, it is divided into two by the movable actuator plate 67.
  • 2004/076899 relates to a valve displacement device, and relates to the opening / closing operation of the valve during normal operation by forward and backward movement of the valve rod 4 by the rotation of the driving devices 2 and 3 and the spring energy stored in the spring spring 14.
  • a valve displacement device that enables emergency shutoff by release.
  • a shaft having a screw structure connected to a drive device is screwed into the rear end of the extension link type cartridge 16, and a spring 14 whose rear end is fixed in the cartridge 16 is accommodated in the extension link type cartridge 16.
  • the tip of the spring 14 is connected to a flange connected to a valve stem connected to the valve body 23.
  • the flange is retracted and the spring 14 is compressed, and toggle mechanisms 10 and 11 are interposed between the front end of the flange and the front end of the cartridge 16 and maintained in an extended state by the latch pin 18.
  • the spring 14 is maintained in a compressed state by the toggle link.
  • the cartridges 16 are moved forward and backward by the rotation of the shafts 2 and 3 by the driving device, and the valves are opened and closed.
  • the power to the solenoid coil 27 is cut off, the latch pin 18 is pulled back by the pull-back spring, the toggle links 10 and 11 are bent and the spring 14 is extended, and the valve element is moved to the valve cutoff position by the spring energy.
  • Japanese Patent Application Laid-Open No. 08-232607 discloses a steam turbine valve that can be quickly operated in the closing direction in the event of an emergency shut-off.
  • the drive mechanism 14 that operates the valve body 24 includes an electric motor 16, an electromagnetic coupling 18, a ball screw 20, and an accumulator 28.
  • a bush 20 a constituting the ball screw 20 is connected to the electric motor 16 via the electromagnetic coupling 18, and a distal end portion of the rod 20 b constituting the ball screw 20 is connected to a base portion of the valve rod 22.
  • An accumulator 28 composed of a spring is incorporated between the flange portion 26 at the tip of the rod 20b and the bush 20a.
  • the valve is opened by driving the electric motor 16 and rotating the bush 20a via the electromagnetic coupling 18 to raise the rod 20c while accumulating the accumulator 28. In an emergency, the valve is opened and the pressure is accumulated by opening the electromagnetic coupling 18. Further, a steam turbine valve is disclosed in which the rod 20c is lowered while the bush 20a is rotated by the accumulator 28, and the valve is quickly shut off.
  • the present invention provides a fuel control valve for a gas turbine having a structure that is not easily affected by heat from a valve body that contacts a high-temperature fluid (fuel) flowing in the fuel control valve, and is a compact and simple structure, but in an emergency.
  • the present invention relates to a fluid valve drive mechanism having a highly reliable fail-safe function capable of urgently shutting off a valve body with a strong pressing force.
  • FIG. 1 is a schematic front view of a fluid valve driving mechanism according to a first embodiment.
  • FIG. 2 is a schematic side view of the fluid valve drive mechanism according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an initial state (state after emergency shut-off) of the fluid valve drive mechanism according to the first embodiment, and is a front schematic cross-sectional view seen from a cross-section 3-3 in FIG. 2.
  • FIG. 4 is a partially enlarged view showing the spring holding mechanism.
  • FIG. 5 is a diagram illustrating a state where the drive shaft is lowered to a predetermined position and the electromagnetic clutch is closed in the fluid valve drive mechanism according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating a normal valve operation state in which the electromagnetic clutch is operating in the fluid valve drive mechanism according to the first embodiment.
  • FIG. 7 is a partially enlarged cross-sectional view showing the shock absorbing mechanism.
  • FIG. 8 is an enlarged cross-sectional view showing the linear guide mechanism as seen from the cross section 8-8 in FIG.
  • FIG. 9 is a schematic front sectional view of the fluid valve drive mechanism according to the second embodiment.
  • FIG. 10 is an enlarged cross-sectional view of the support bearing of the drive shaft and the upper spring box portion in the fluid valve drive mechanism according to the second embodiment.
  • FIG. 11 is a schematic configuration diagram of a cumulative load detection unit in the fluid valve drive mechanism according to the second embodiment.
  • FIG. 12 is a schematic view showing an example of a fluid control valve used in a conventional gas turbine.
  • the present invention is a fluid valve drive mechanism for moving a valve body 12 of a fluid valve forward and backward with respect to a valve seat, the fluid valve drive mechanism having a drive means 1 and an emergency drive means, and the emergency drive means is , A spring unit (spring means) and an emergency release unit (spring holding means) 100, the spring unit comprising a spring 6, a sprung support part (upper spring box) 4, and an unsprung support part (lower spring box) 5.
  • the unsprung support portion 4 and the unsprung support portion 5 are composed of a spring 6, which is connected to the driving means 1, and the unsprung support portion 5 is connected to the valve body 12.
  • the emergency release unit 100 can fix the distance between the sprung support 4 and the unsprung support 5, and the driving means 1 raises and lowers the sprung support 4.
  • a fluid valve drive mechanism wherein the valve body 12 abuts against the valve seat, and the sprung support 4 and the spring
  • the spring 6 is compressed to a predetermined length by reducing the distance between the sprung support portion 4 and the unsprung support portion 5 from an initial state in which the spring 6 is compressed by a predetermined length from the free length between the support portions 5.
  • the distance between the sprung support portion 4 and the unsprung support portion 5 is fixed by the emergency release unit, and the driving means 1 is driven, whereby the sprung support portion 4 and the unsprung support portion are driven.
  • the valve body 12 While holding the spring 6 in a compressed state between the parts 5, the valve body 12 is raised and lowered to control the opening and closing of the valve.
  • the sprung support part 4 and the spring by the emergency release unit 100 The spacing between the lower support portions 5 is released, the spring 6 is extended from the compressed state, the valve body 12 is lowered via the unsprung support portion 5, and the valve body 12 is moved to the valve seat. By pressing, the fluid valve can be urgently driven to close. It is intended.
  • the emergency release unit 100 includes an on-axis support part fixed to the sprung support part 4 and an under-axis support fixed to the unsprung support part 5.
  • the emergency release unit shaft 104 extending through the portion, and the spring support capable of fixing the relative positions of the on-axis support portion, the under-axis support portion, and the emergency release unit shaft 104 to each other A part interval fixing means 101 is included.
  • the emergency release unit shaft 104 is a shaft 104 having a screw structure, and one of the on-axis support portion and the under-axis support portion is a nut 111.
  • the other of the on-axis support portion and the under-axis support portion is a support bearing 107, and the on-axis support portion and the shaft can be rotated while the shaft 104 is rotatable.
  • the spring support portion interval fixing means 101 is fixed to the other of the lower support portions in the axial direction of the shaft 104, and the spring support portion interval fixing means 101 is capable of relative rotation between the shaft 104 and the nut 111.
  • a rotation permission / inhibition control unit 101 that switches an impossible state, and a relative rotation between the shaft 104 and the nut 111 can change a distance between the sprung support portion 4 and the unsprung support portion 5.
  • the shaft 104 When the shaft 104 is rotatable, the sprung The shaft 104 and the nut 111 are relatively rotated by the pressing force by the driving device 1 or the spring reaction force of the spring 6 acting between the holding portion 4 and the unsprung support portion 5, and the spring The distance between the sprung support 4 and the unsprung support 5 is changed within the movable range of the upper support 4 and the unsprung support 5.
  • the shaft 104 having the screw structure is a ball screw shaft 104
  • the nut 111 is a ball screw nut 111.
  • the rotation availability control unit 101 is an electromagnetic clutch 101.
  • the emergency drive means further includes a linear motion guide means (linear guide) 200, and the linear motion guide means 200 moves forward and backward in the valve body 12.
  • the sprung support part 4 and the unsprung support part 5 are guided so as to slide smoothly with respect to the direction.
  • the emergency drive means further includes an impact buffering means 300 between the unsprung support portion 5 and the valve body 12, and the impact buffer means. 300, the rapid rise and fall of the valve body 12 is mitigated by the fluid resistance of the fluid 301 contained in 300.
  • the main frame 3 having the drive means 1 fixed and having the emergency drive means therein, a valve box including a valve body 12 and the main frame 3 It has a heat insulating frame 8 having a hollow structure therebetween, and further has a heat insulating connecting portion 7 between the heat insulating frame 8 and the main frame 3.
  • the drive means 1 is a direct drive means (hydraulic linear servo motor).
  • the drive means 1 is a rotation drive means (electric actuator, electric servo motor) 24, and a drive shaft 2 that rotates by the drive force of the rotation drive means.
  • the rotational drive means is an electric servo motor 24, and the fluid valve drive mechanism further comprises cumulative load evaluation means 400, and the cumulative load evaluation means.
  • Reference numeral 400 includes a rotation detection means (encoder) 401 that detects the rotation of the electric servomotor 24 and a drive current sensor 404 that detects a current that drives the electric servomotor 24, and is detected from the drive current sensor 404. The product of the motor thrust and the rotation speed is calculated and accumulated, and an alarm is issued when the accumulated value is larger than a predetermined value.
  • FIG. 1 and 2 are a schematic front view and a schematic side view of a fluid valve drive mechanism according to a first embodiment of the present invention.
  • FIG. 3 is a schematic front sectional view of the fluid valve drive mechanism as viewed from a cross section AA in FIG.
  • the fluid valve drive mechanism according to the first embodiment includes main components of the drive unit 1, the main frame 3, the heat insulating frame 8, the valve box 13, the coil spring 6, the upper spring box 4, the lower spring box 5, and the spring holding unit 100.
  • the drive unit 1 is fixed to the upper part of the main frame 3, and the drive unit 1 drives the valve body 12 in the valve box 13 in the vertical direction (direction in which the valve body moves forward and backward with respect to the valve seat). Supply.
  • the lower part of the main frame 3 is connected to the heat insulating frame 8 via the heat insulating connecting part 7, and the lower part of the heat insulating frame 8 is connected to the valve box 13.
  • the main frame 3 has an upper spring box 4 and a lower spring box 5, and a coil spring 6 is installed between the upper spring box 4 and the lower spring box 5.
  • the lower spring box 5 is connected to a valve rod 11 via a connecting rod 10, and the valve rod 11 is connected to a valve body 12 in the valve box 13.
  • the drive unit 1 is connected to the upper spring box 4 via the drive shaft 2.
  • FIG. 4 shows an enlarged cross-sectional view of the spring holding unit (emergency release unit) 100.
  • Each of the spring holding units 100 includes a support bearing 107 fixed to the upper spring box 4 via an upper bracket 106, and the support bearing 107 rotatably holds the ball screw shaft 104.
  • An electromagnetic clutch 101 is provided above the support bearing 107, and an upper end 112 of the ball screw shaft 104 is fixed to the armature 103 of the electromagnetic clutch 101.
  • the electromagnetic clutch 101 is fixed to an upper bracket 106 that is fixed to the upper spring box 4.
  • Each of the spring holding units 100 includes a ball screw nut 111 fixed to the lower spring box 5 via a lower bracket 110, and the nut 111 is screwed with a threaded portion 105 of the corresponding ball screw shaft 104.
  • the characteristic configuration of the first embodiment of the fluid valve driving mechanism according to the present invention will be described based on the operation of the fluid valve.
  • the initial state FIG. 3
  • the driving force by the drive unit 1 is not applied, the electromagnetic clutch 101 is not energized, the clutch 101 is in an open state, and the ball screw shaft 104 rotates with respect to the ball screw nut 111. It is possible.
  • the coil spring 6 is in the maximum length within the movable range of the upper spring box 4 and the lower spring box 5 in the main frame (the interval between the upper spring box 4 and the lower spring box 5 is shown in FIG. This is a state of length L1). Further, the valve body 12 is in a closed state in which the valve spring 12 is pressed against the valve seat by the coil spring 6 with a predetermined pressure. The drive unit 1 is driven from this initial state, the drive shaft 2 is moved downward, and the upper spring box 4 is pushed down. Since the valve body 12 is in contact with the valve seat and the lower spring box 5 cannot be lowered, the positions of the lower spring box 5, the connecting rod 10, and the valve rod 11 do not change, and the upper spring box 4 compresses the coil spring 6.
  • the ball screw shaft 104 is supported by the support bearing 107 and is fixed in the vertical direction (the axial direction of the ball screw shaft) while being rotatable with respect to the upper spring box 4, so that the upper spring box 4 is lowered. While the coil spring 6 is being compressed, the ball screw shaft 104 is rotated by the screw portion 105 engaged with the ball screw nut 111 fixed to the lower bracket 110 while the upper spring box 4 and the lower spring box 5 are rotated. The interval of is narrowed.
  • the drive unit 1 In such a state that the coil spring 6 is compressed and the elastic energy of the spring is kept high, the drive unit 1 is operated, and the distance between the upper spring box 4 and the lower spring box 5 is fixed to the length L2 The body 12 is moved up and down to control the opening of the fluid valve (FIG. 6).
  • the distance between the upper spring box 4 and the lower spring box 5 in a state where the coil spring 6 is compressed is maintained by the spring holding mechanism 100.
  • the spring reaction force of the coil spring 6 may be as strong as 8 tons in the case of a valve body having a diameter of 250 mm, for example.
  • the coil spring 6 is held in a compressed state, so that in an emergency, regardless of the position of the valve body 12, the coil spring 6 expands rapidly and rotates the ball screw shaft 104 while rotating the upper spring.
  • the distance between the box 4 and the lower spring box 5 is increased and the valve element 11 is pressed against the valve seat to urgently shut off the valve (FIG. 3).
  • the drive unit is operated with a force corresponding to the sum of the fluid force applied to the valve body and a spring reaction force much larger than that to expand and contract the coil spring.
  • the present invention it is possible to open and close the valve in the normal operation by operating the drive unit only with a force corresponding to the fluid force applied to the valve body, so that the drive required during the normal operation of the valve The steady load of the part is reduced, and the drive part can be made compact.
  • the spring holding unit (emergency release unit) 100 including the ball screw shaft 104 and the ball screw nut 111 is illustrated, but the present invention is not limited to this.
  • the same effect can be obtained by a shaft and nut having any screw structure, such as a roller screw shaft and a roller screw nut, or a trapezoidal screw shaft and a trapezoidal screw nut.
  • the emergency drive means having the coil spring 6 is exemplified, but the present invention is not limited to this, and any elasticity such as a disc spring, a leaf spring, an air spring, etc. It should be noted that a similar effect can be achieved by a spring element that can store energy.
  • the spring holding unit 100 has a structure in which the electromagnetic clutch 101 is fixed to the upper spring box 4 and the ball screw nut 111 is fixed to the lower spring box 5 side. The structure is not limited, and in the spring holding unit 100 having the electromagnetic clutch 101 on the lower spring box 5 side and the ball screw nut 111 on the upper spring box side and reversed in the vertical direction with this embodiment, Similar effects can be obtained.
  • the fluid valve drive mechanism of the present invention includes an impact buffer mechanism 300 (FIG. 7).
  • the shock buffering mechanism 300 is an oil damper and has a shock buffering pot 305 fixed to the main frame 3 or the heat insulating frame 8.
  • the shock buffering pot 305 is filled with oil 301 (viscous fluid) and connected.
  • the rod 10 is slidably connected to the shock absorbing pot 305 via an O-ring 304 (seal member).
  • a plate 302 having an orifice 303 is fixed to a portion of the connecting rod 10 located in the shock buffering pot 305.
  • the plate 302 moves up and down in the shock buffer pot 305 by opening and closing the valve, that is, by raising and lowering the connecting rod 10, the plate 302 receives fluid resistance through which the oil 301 passes through the orifice 303. Since the fluid resistance is proportional to the square of the flow velocity of the fluid passing through the orifice, the rapid lowering speed of the valve body 12 at the time of the emergency shutoff of the valve is relaxed by the plate 302 fixed to the connecting rod 10 and given to the valve. The risk of damage and breakage can be reduced.
  • the upper spring box 4 is also rapidly moved up by the spring reaction force of the coil spring 6.
  • the main frame 3 has an impact buffer 9 so that the upper end does not collide with the main frame 3 and damage the apparatus.
  • Simulation structure In an environment where the fuel temperature of the gas turbine can reach up to 280 ° C, to prevent the early deterioration of grease that is likely to deteriorate at high temperatures, suppressing the temperature rise of the valve drive mechanism is the maintainability of the device. It is extremely important to improve reliability and maintain reliable file safe function in emergency. For this reason, the valve box 13 of the conventional fluid control valve for gas turbine fuel is often provided with fins 511 for cooling the valve body (FIG. 12).
  • a heat insulating frame 8 having a hollow structure is configured to be interposed between the main frame 3 and the valve box 13, and a structure in which heat is not easily transferred from the valve box 13 to the main frame 3 side is adopted.
  • the connecting portion between the main frame 3 and the heat insulating frame 8 is provided with a heat insulating connecting portion 7 in order to reduce the heat transfer cross-sectional area, thereby increasing the heat resistance and making it difficult to transfer heat from the valve box 13 to the main frame 3 side (see FIG. 1, 2)
  • the functional reliability of the apparatus can be further improved by increasing the heat insulation effect.
  • the fluid valve drive mechanism of the present invention includes a linear guide (linear motion guide mechanism) mechanism 200.
  • FIG. 8 (BB cross section in FIG. 2) is a cross-sectional view showing the arrangement and structure of the linear guide mechanism 200.
  • the linear guide mechanism 200 is provided on the main frame 3 and extends in the axial direction (vertical direction) of the drive shaft 2, the upper slider 202 provided on the upper spring box 4, and the lower provided on the lower spring box 5. And a slider 203.
  • the slider engages with the rail, and generally has a steel ball 204 in the groove between the rail and the slider.
  • Each of the upper spring box 4 and the lower spring box 5 moves in the vertical direction (the valve body 12 in the main frame 3). Is guided so that it can slide smoothly in the forward and backward direction).
  • the spring reaction force of the coil spring 6 is held by the spring holding mechanism 100 on one side, but the rail 201 of the linear guide mechanism 200 is fixed to the strong main frame 3.
  • the spring reaction force may be as much as 8 tons, there is less deformation compared to the guide mechanism using a bush with a cylindrical support, and the moment load due to support on one side only Even if the upper spring box 4 and the lower spring box 5 work, the upper spring box 4 and the lower spring box 5 are not inclined with respect to the main frame 3 from a predetermined angle, and the linear guide mechanism 200 can realize a highly reliable emergency cutoff. Furthermore, the fluid valve drive mechanism of the present invention is normally operated in a state in which the space between the upper spring box 4 and the lower spring box 5 is fixed by the spring holding mechanism 100 while the coil spring 6 is compressed.
  • FIG. 9 shows a schematic front sectional view of a fluid valve drive mechanism that is Embodiment 2 of the present invention.
  • an electric actuator 24 that is a rotational drive means is used for the drive unit 1, and the drive shaft 2 of the drive unit 1 rotates without moving up and down.
  • the drive shaft 2 is fixed to the main frame 3 so as not to move in the vertical direction and to be rotatable by a main support bearing 21 and a nut 22 fixed to the main frame 3.
  • FIG. 10 shows an enlarged cross-sectional view of the support portion of the drive shaft 2.
  • the drive shaft 2 has a threaded portion 20 and is screwed into a drive shaft elevating nut 23 fixed to the upper spring box 4.
  • the drive shaft 2 rotates.
  • the drive shaft lifting nut 23 screwed with the screw portion 20 of the drive shaft 2 is pushed down, and the upper spring box 4 is lowered.
  • Other basic operations are the same as in the first embodiment, and the same effects of the invention as in the first embodiment can be obtained.
  • the electric servo motor 24 in the drive unit 1 it is possible to always control to the optimum drive current by detecting the angle of the rotor, and highly accurate positioning without step-out. Therefore, the opening degree of the fluid valve can be controlled with high accuracy.
  • the electric servo motor 24 has a driver 402, and the driver 402 generates an optimum rotating magnetic field that generates a maximum torque in accordance with the rotation angle of the rotor of the electric servo motor based on the position signal fed back from the encoder 401. Electric current is supplied to the electric servomotor 24 so that it occurs.
  • the driver 402 has a built-in motor drive current sensor 404 and monitors the drive current of the motor.
  • the mechanical cumulative load on the threaded portion 20 and the main support bearing 21 can be estimated by the product of thrust and rotational speed. Since the thrust is proportional to the motor current, the cumulative load calculation unit 405 built in the host controller 403 calculates the mechanical cumulative load that is the product of the motor current, the thrust calculated from the encoder 401, and the rotation speed, respectively. And accumulate. When the accumulated load calculation value exceeds a predetermined value, an alarm is displayed on the alarm display unit 407, so that even if there is a variation in the operating state of each device, it is appropriate depending on the operation results of the device. Can recognize proper maintenance timing.
  • the fluid valve drive mechanism illustrated in the embodiment has the two spring holding mechanisms 100
  • the present invention is not limited to this, and the same is achieved by having three or more spring holding mechanisms.
  • the three or more spring holding mechanisms are preferably arranged symmetrically with respect to the central axis of the drive shaft 2. Further, when the number of the spring holding mechanisms is increased, the holding force against the reaction force of the coil spring 6 required for one spring holding mechanism is reduced, so that the electromagnetic clutch, the support bearing, etc. can be made compact.
  • the fluid valve drive mechanism illustrated in the embodiment has two linear guide mechanisms 200
  • the present invention is not limited to this, and the same is achieved by having three or more linear guide mechanisms. Note that the following effects can be obtained.
  • the three or more linear guide mechanisms are preferably arranged symmetrically with respect to the central axis of the drive shaft 2.
  • the fluid valve drive mechanism illustrated in the embodiment has been described on the assumption that the valve is closed in an emergency, the present invention is not limited to this and opens the fluid valve in an emergency. It should be noted that the present invention can be applied to an operation in which it operates. When the valve is opened urgently in the event of an emergency, it is possible to prevent damage or breakage of the valve due to a collision with the valve case at the valve opening limit position by an impact buffering mechanism. Similar effects can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Safety Valves (AREA)

Abstract

流体弁駆動機構であって、駆動手段と緊急駆動手段を有し、該緊急駆動手段は、駆動手段と接続して昇降する上支持部と、弁体と連結する下支持部と、両支持部の間に配置されたばねと、上支持部と下支持部の間隔を固定可能な緊急解除ユニットからなり、弁体が弁座に当接し、上支持部と下支持部の間でばねが所定の長さ圧縮された初期状態から、駆動手段によって上支持部を下降させ、所定の長さまでばねを圧縮した後、緊急解除ユニットにより上支持部と下支持部の間隔を固定し、上支持部と下支持部の間でばねを圧縮した状態に保持したまま駆動手段によって弁体を昇降させて弁の開閉を制御し、緊急時には該緊急解除ユニットを開放し、ばねを伸張させて、該流体弁を緊急駆動する。

Description

流体弁駆動機構
 本発明は、弁制御用駆動機構に関し、特に、ガスタービン設備における燃料供給の流量制御弁における緊急安全装置に関する。
 ガスタービン技術は、高効率な発電特性により急速に導入が進められているLNG複合発電(コンバインドサイクル)において、中核技術として採用されている。地球温暖化対策が国際的に重要な課題として認識されてきている近年、炭酸ガス排出量が多い火力発電における高効率発電技術はますます重要性が認識されるようになり、ガスタービン温度(燃焼温度)の上昇による更なる高効率化の技術開発が進められ、近年ではガスタービン温度1500℃級の大型で高効率な発電設備も稼動するようになってきた。そのため、ガスタービンへの燃料供給を制御する燃料流体弁に対する制御の信頼性の向上、緊急時の確実なフェイルセーフ機能の実現は、ますます重要な課題となっている。
 ガスタービンへの燃料供給を制御する従来の流体弁駆動機構の例を図12に示す。該装置は、弁箱508、連結フレーム507、ばね箱506を固定部として有し、該ばね箱506の上部に駆動装置である油圧アクチュエータ501が固定されている。弁箱508内の弁体509は、弁棒510、連結棒503、出力軸502を介して、油圧アクチュータ501に連結され、図示しない油圧供給ユニットの油圧力により出力軸502を上下に駆動して弁体509を昇降させ、弁の開度を調節する。ばね箱506内にその上端をばね箱上部に固定されたコイルばね504を有し、コイルばね504の自由端である下端はばね座505に固定され、ばね座505は連結棒503と連結している。油圧力が作用していない初期状態において、弁体509が弁座に所定の押圧力で押圧した弁閉状態を維持するように、コイルばね504は所定の長さ圧縮された状態となるように構成されている。通常運転時には、油圧アクチュエータ501の駆動力により、出力軸502、連結棒503を介して、ばね座505を上昇させてコイルばね504を圧縮することにより、弁の開閉操作が行われる。油圧装置の故障により油圧力が遮断されると、コイルばね504のばね反力により、弁閉状態に強制的に復帰し、外部の駆動力によらず弁を遮断する、緊急遮断機構を有する。
 また、弁体を前後進させるタイプの流体弁における緊急遮断機構に関しては、以下のような従来技術が開示されている。
 国際公開第02/35123号公報は、特に蒸気タービンに使用され、弁体を前後進させて弁の開閉をする蒸気弁の操作装置であって、皿ばね21に蓄えられたばねエネルギーの解放による緊急遮断を可能とする蒸気弁の操作装置を開示している。該装置は、皿ばね21及びコレットチャック19からなる蓄圧装置7、コレットチャック19と係合する駆動部5のラム49を有する。該装置の通常の使用時には、ラム49内の電磁コイル13に通電することによる電磁力でコレットチャック19をラム49に磁着して固定しコレットチャック19内の皿ばね21を圧縮した状態で維持したまま、弁の開閉操作をする。非常時には、ラム49内の電磁コイル13の通電が停止し、コレットチャック19のラム49との磁着が解除され、蓄圧されていた皿ばね21が開放され、弁棒3を介して弁体が前進し、蒸気弁を緊急遮断する機構を有する。また、緊急遮断の際、弁ばねの急激な前進による弁体および弁座に与える衝撃エネルギーを緩和するため、弁棒3を駆動部5のラム49と機械的に直接固定せず、油等の流体が充填されている密閉室内に弁が動作する方向に可動な状態で配置された可動アクチュエータ板67に弁棒3を接続し、急激な弁棒3の移動時には、可動アクチュエータ板67で二分された密閉室間の流体移動の抵抗により、衝撃エネルギーを吸収することができる蒸気弁の操作装置が開示されている。
 国際公開第2004/076899号公報は、弁の変位装置に関し、駆動装置2,3の回転による弁棒4の前後進による通常運転時の弁の開閉操作と、スプリングばね14に蓄えられたばねエネルギーの解放による緊急遮断を可能とする弁の変位装置を開示している。該装置においては、駆動装置に接続したねじ構造を有するシャフトが、伸張リンク式カートリッジ16の後端に螺合し、伸張リンク式カートリッジ16内にはその後端がカートリッジ16内で固定されたばね14を有し、ばね14先端は、弁体23と接続する弁棒と接続しているフランジと接続している。変位装置の通常使用時には、フランジが後退してばね14が圧縮された状態であり、フランジ先端とカートリッジ16先端の間にはトグル機構10,11が介在して、ラッチピン18により伸長した状態で維持されたトグルリンクによりばね14を圧縮した状態に維持している。通常運転時は、ばね14が圧縮している状態のまま、駆動装置によるシャフト2,3の回転で、カートリッジ16が前後進し、弁を開閉する。非常時には、ソレノイドコイル27への電源が遮断されて引き戻しばねによりラッチピン18が引き戻され、トグルリンク10,11は屈曲してばね14が伸長し、ばねエネルギーにより弁体は弁遮断位置に移動する、という変位装置が記載されている。
 特開平08−232607号公報は、緊急遮断の際には速やかに閉鎖方向に作動させることが可能な蒸気タービン用バルブを開示している。該バルブにおいて、弁体24を作動させる駆動機構14は、電動機16、電磁継手18、ボールスクリュー20、アキュムレータ28で構成される。ボールスクリュー20を構成するブッシュ20aは電磁継手18を介して電動機16に接続され、ボールスクリュー20を構成するロッド20bの先端部は弁棒22の基部に接続される。該ロッド20bの先端のフランジ部26とブッシュ20aとの間にはばねで構成されるアキュムレータ28が組み込まれる。電動機16を駆動して電磁継手18を介してブッシュ20aを回転させ、アキュムレータ28を蓄圧しながらロッド20cを上昇させることによりバルブは開放され、緊急時には、電磁継手18を開放することにより、蓄圧されたアキュムレータ28によってブッシュ20aを回転させながらロッド20cを下降させ、バルブは急速に遮断される蒸気タービン用バルブが開示されている。
 本発明は、ガスタービンの燃料制御弁において、燃料制御弁内を流れる高温流体(燃料)に接触する弁体からの熱影響を受けにくい構造を有し、コンパクトで簡易な構造でありながら緊急時には強力な押圧力で弁体を緊急遮断できる信頼性の高いフェイルセーフ機能を有する、流体弁駆動機構に関する。
 図1は、実施例1に係る流体弁駆動機構の正面概略図である。
 図2は、実施例1に係る流体弁駆動機構の側面概略図である。
 図3は、実施例1に係る流体弁駆動機構の初期状態(緊急遮断後の状態)を示す概略図であり、図2の断面3−3から見た正面概略断面図である。
 図4は、ばね保持機構を示す部分拡大図である。
 図5は、実施例1に係る流体弁駆動機構において、駆動シャフトが所定位置まで下降し、電磁クラッチが閉じられた状態を示す図である。
 図6は、実施例1に係る流体弁駆動機構において、電磁クラッチが作動している通常弁操作の状態を示す概略図である。
 図7は、衝撃緩衝機構を示す部分拡大断面図である。
 図8は、リニアガイド機構を示し、図2の断面8−8から見た拡大断面図である。
 図9は、実施例2に係る流体弁駆動機構の正面概略断面図である。
 図10は、実施例2に係る流体弁駆動機構における、駆動シャフトのサポートベアリング、上ばね箱部分の拡大断面図である。
 図11は、実施例2に係る流体弁駆動機構における累積負荷検出ユニットの概略構成図である。
 図12は、従来のガスタービンで使用されていた流体制御弁の一例を示す概略図である。
 本発明は、流体弁の弁体12を弁座に対して前後進させる流体弁駆動機構であって、該流体弁駆動機構は、駆動手段1と緊急駆動手段を有し、該緊急駆動手段は、ばねユニット(ばね手段)と緊急解除ユニット(ばね保持手段)100を含み、該ばねユニットは、ばね6とばね上支持部(上ばね箱)4とばね下支持部(下ばね箱)5と、該ばね上支持部4と該ばね下支持部5の間に配置されたばね6から構成され、該ばね上支持部4は駆動手段1と接続し、該ばね下支持部5は弁体12に接続し、該緊急解除ユニット100は、該ばね上支持部4と該ばね下支持部5の間の間隔を固定することが可能であり、該駆動手段1は、該ばね上支持部4を昇降させる流体弁駆動機構であって、該弁体12が該弁座に当接し、該ばね上支持部4と該ばね下支持部5の間で該ばね6は自由長から所定長さだけ圧縮された初期状態から、該ばね上支持部4と該ばね下支持部5の間隔を狭めることにより所定の長さまで該ばね6を圧縮した後、該緊急解除ユニットにより該ばね上支持部4と該ばね下支持部5の間隔を固定し、該駆動手段1を駆動することにより、該ばね上支持部4と該ばね下支持部5の間で該ばね6を圧縮した状態に保持したまま、該弁体12を昇降させて弁の開閉を制御し、緊急時には、該緊急解除ユニット100による該ばね上支持部4と該ばね下支持部5の間の間隔の固定を解除し、該ばね6が圧縮状態から伸張し、該ばね下支持部5を介して該弁体12を下降させ、該弁体12を該弁座に押圧することにより、該流体弁を閉止するよう緊急駆動することを可能とする、というものである。
 本発明の流体弁駆動機構の更なる実施形態においては、該緊急解除ユニット100は、該ばね上支持部4に固定された軸上支持部及び該ばね下支持部5に固定された軸下支持部を貫通して延在する、緊急解除ユニット軸104と、該軸上支持部と該軸下支持部と該緊急解除ユニット軸104の相互間の相対的な位置を固定することができるばね支持部間隔固定手段101を含むことを特徴とする。
 本発明の流体弁駆動機構の更なる実施形態においては、該緊急解除ユニット軸104はねじ構造を有する軸104であり、該軸上支持部及び該軸下支持部の一方は、ナット111であって該軸104と螺合し、該軸上支持部及び該軸下支持部の他方は、サポートベアリング107であって、該軸104を回動可能な状態で、該軸上支持部及び該軸下支持部の該他方に対して、該軸104の軸方向において固定し、該ばね支持部間隔固定手段101は、該軸104と該ナット111の間の相対的な回動が可能な状態と不可能な状態を切り替える回動可否制御部101であり、該軸104と該ナット111との相対的な回動により、前記ばね上支持部4と前記ばね下支持部5の間隔が変更可能であり、該軸104が回動可能な状態では、該ばね上支持部4と該ばね下支持部5の間に働く、前記駆動装置1による押圧力又は前記ばね6のばね反力により、該軸104と該ナット111は相対的に回動させられ、該ばね上支持部4及び該ばね下支持部5の可動範囲内で、該ばね上支持部4と該ばね下支持部5の間隔が変更される、ことを特徴とする。
 本発明の流体弁駆動機構の更なる実施形態においては、前記ねじ構造を有する軸104はボールねじ軸104であり、前記ナット111はボールねじナット111であることを特徴とする。
 本発明の流体弁駆動機構の更なる実施形態においては、該回動可否制御部101は、電磁クラッチ101であることを特徴とする。
 本発明の流体弁駆動機構の更なる実施形態においては、該緊急駆動手段は、直動案内手段(リニアガイド)200をさらに含み、該直動案内手段200は、該弁体12が前後進する方向に対して、該ばね上支持部4と該ばね下支持部5が滑らかに摺動するよう案内することを特徴とする。
本発明の該流体弁駆動機構の更なる実施形態においては、該緊急駆動手段は、前記ばね下支持部5と前記弁体12の間に、衝撃緩衝手段300を更に有し、該衝撃緩衝手段300に含まれる流体301の流体抵抗により、急激な該弁体12の昇降を緩和する、ことを特徴とする。
 本発明の該流体弁駆動機構の更なる実施形態においては、前記駆動手段1を固定し内部に前記緊急駆動手段を有する主フレーム3と、弁体12を含む弁箱と該主フレーム3との間に中空構造を有する断熱フレーム8を有し、さらに、該断熱フレーム8と該主フレーム3との間に断熱接続部7をさらに有することを特徴とする。
 本発明の該流体弁駆動機構の更なる実施形態においては、前記駆動手段1は直動駆動手段(油圧リニアサーボモータ)であることを特徴とする。
 本発明の該流体弁駆動機構の更なる実施形態においては、該駆動手段1は、回転駆動手段(電動アクチュエータ、電動サーボモータ)24であり、該回転駆動手段の駆動力により回転する駆動シャフト2と前記ばね上支持部4との接続部に、回転直動変換機構(駆動シャフト昇降ナット)23を有し、該回転直動変換機構23は、駆動シャフト2の回転により、該ばね上支持部4を昇降させることを特徴とする。
 本発明の該流体弁駆動機構の更なる実施形態においては、該回転駆動手段は電動サーボモータ24であり、該流体弁駆動機構は、累積負荷評価手段400を更に有し、該累積負荷評価手段400は、該電動サーボモータ24の回転を検出する回転検出手段(エンコーダ)401と、該電動サーボモータ24を駆動する電流を検出する駆動電流センサ404を有し、該駆動電流センサ404から検出されるモータ推力と該回転数の積を算出して累積し、累積値が所定の値よりも大きい場合には、警報を発する、ことを特徴とする。
 以下、添付の図面を参照しながら、本発明に係る流体弁駆動機構を説明する。
 図1、2は、本発明に係る流体弁駆動機構の実施例1の正面概略図、側面概略図であり、図3は図2の断面A−Aから見た正面概略断面図を示す。
 実施例1の流体弁駆動機構は、駆動部1、主フレーム3、断熱フレーム8、弁箱13、コイルばね6、上ばね箱4、下ばね箱5、ばね保持ユニット100の主要な構成部を有する。
 主フレーム3の上部に駆動部1が固定され、駆動部1は、弁体12を弁箱13内で上下方向(弁体を弁座に対して前後進させる方向)に駆動するための駆動力を供給する。主フレーム3の下部は、断熱接続部7を介して断熱フレーム8に接続し、断熱フレーム8の下部は弁箱13に接続している。主フレーム3内には上ばね箱4および下ばね箱5を有し、上ばね箱4と下ばね箱5の間にはコイルばね6が設置されている。下ばね箱5は連結棒10を介して弁棒11に接続し、弁棒11は弁箱13内の弁体12に接続している。駆動部1は駆動シャフト2を介して上ばね箱4に接続されている。
 上ばね箱4と下ばね箱5は、コイルばね6の他に、上ばね箱4および下ばね箱5の外周で180度対称の位置関係で配置されている二つのばね保持ユニット100によって接続されている。
 図4に、ばね保持ユニット(緊急解除ユニット)100の拡大断面図を示す。ばね保持ユニット100のそれぞれは、上ブラケット106を介して上ばね箱4に固定されたサポートベアリング107を含み、サポートベアリング107は、ボールねじ軸104を回転可能に保持している。サポートベアリング107の上部に電磁クラッチ101を備え、ボールねじ軸104の上端112は、電磁クラッチ101のアーマチュア103に固定されている。電磁クラッチ101は、上ばね箱4に固定されている上ブラケット106に固定されている。ばね保持ユニット100のそれぞれは、下ブラケット110を介して下ばね箱5に固定されたボールねじナット111を含み、該ナット111は、それぞれ対応するボールねじ軸104のねじ部105と螺合している。
 以下、本発明に係る流体弁駆動機構の実施例1の特徴的構成を、流体弁の動作に基づいて説明する。
 初期状態(図3)では、駆動部1による駆動力は付与されず、電磁クラッチ101には通電されず、該クラッチ101は開放状態であり、ボールねじ軸104はボールねじナット111に対して回転可能な状態である。また、コイルばね6は、主フレーム内における上ばね箱4及び下ばね箱5の可動範囲内での最大長の状態である(上ばね箱4と下ばね箱5の間隔は、図3に示す長さL1の状態である)。また、弁体12はコイルばね6により所定の圧力で弁座に押圧された、弁の閉じた状態である。
 この初期状態から駆動部1を駆動し、駆動シャフト2を下方向に移動させ、上ばね箱4を押し下げる。弁体12は弁座に接触していて下ばね箱5は下降できないため、下ばね箱5、連結棒10、弁棒11の位置は変わらず、上ばね箱4はコイルばね6を圧縮しながら、所定位置まで下降する(図5)。ボールねじ軸104は、サポートベアリング107部分で、上ばね箱4に対して回転可能な状態で上下方向(ボールねじ軸の軸方向)に対して固定されているため、上ばね箱4が下降しながらコイルばね6を圧縮している間、下ブラケット110に固定されたボールねじナット111と係合しているねじ部105によって、ボールねじ軸104は回転しながら上ばね箱4と下ばね箱5の間隔が狭められる。
 上ばね箱4が所定位置まで下降すると、駆動部1による上ばね箱4の下降を停止し、電磁クラッチ101のステータ102の内部の電磁石に通電して、電磁力によってアーマチュア103をステータ102に固定し、ボールねじ軸104の回転を拘束することにより、コイルばね6の圧縮反力を保持して、上ばね箱4と下ばね箱5の間隔を長さL2(<L1)に固定する(図5)。
 このようにコイルばね6を圧縮してばねの弾性エネルギーを高く保持した状態で、駆動部1を作動させて、上ばね箱4と下ばね箱5の間隔を長さL2に固定したまま、弁体12を昇降させて流体弁の開度を制御する(図6)。
(電磁クラッチによるコイルばね圧縮維持機構)
 本発明においては、コイルばね6を圧縮した状態での上ばね箱4と下ばね箱5の間隔を、ばね保持機構100によって維持している。コイルばね6のバネ反力は、例えば、口径250mmの弁体の場合には8トンもの強大な力となる場合がある。上下方向に働くこのばね反力に抗する本発明のばね保持機構100では、ねじ部105のリードを10mm、ねじの効率を1と仮定した場合、ボールねじ軸104のねじ部105により、12.7kg・mという小さなトルクで8トンのバネ反力を保持することが可能となり、ばね反力を保持するために必要な装置を簡易化し、コンパクト化できるという利点を有する。
 駆動部1に異常が発生し、駆動部1による流体弁の制御ができなくなった場合には、緊急に流体弁を遮断することが必要である。その場合は、電磁クラッチ101への通電を停止して電磁クラッチを開放する。これにより、ボールねじ軸104は回転可能となる。正常運転中、コイルばね6は圧縮された状態で保持されているため、緊急時には、弁体12の位置に関わらず、コイルばね6は急速に伸張してボールねじ軸104を回転させながら上ばね箱4と下ばね箱5の間隔を押し広げ、弁体11を弁座に押圧して、弁を緊急遮断する(図3)。
 図12に例示した従来の流体弁駆動機構においては、弁体にかかる流体力とそれよりもはるかに大きなばね反力との和に相当する力で駆動部を操作して、コイルばねを伸縮させながら通常運転での弁の開閉操作をする必要があった。しかし、本発明の構成を採用することにより、弁体にかかる流体力に相当する力のみで駆動部を操作して通常運転での弁の開閉操作ができるため、弁の通常運転時に必要な駆動部の定常的な負荷が軽減され、駆動部をコンパクト化できるという効果を有する。
 尚、本実施例において例示した流体弁駆動機構においては、ボールねじ軸104とボールねじナット111を有するばね保持ユニット(緊急解除ユニット)100を例示したが、本発明はこれに限定されるものではなく、ローラーねじ軸とローラーねじナット、或いは、台形ねじ軸と台形ねじナットなど、あらゆるねじ構造を有する軸とナットによっても同様の効果を奏することができることに留意されたい。
 本実施例において例示した流体弁駆動機構においては、コイルばね6を有する緊急駆動手段を例示したが、本発明はこれに限定されるものではなく、皿ばね、板ばね、空気ばねなど、あらゆる弾性エネルギーを蓄積することができるばね要素によっても同様の効果を奏することができることに留意されたい。
 また、本実施例においては、ばね保持ユニット100は、上ばね箱4に電磁クラッチ101が固定され、下ばね箱5側にボールねじナット111が固定される構造を例示したが、本発明はこの構成に限定されることはなく、下ばね箱5側に電磁クラッチ101を有し、上ばね箱側にボールねじナット111を有する、本実施例と上下方向が逆転したばね保持ユニット100においても、同様の効果を得ることができる。
(衝撃緩衝機構)
 緊急遮断時に、電磁クラッチ101が開放され、急速にコイルばね6が伸張し弁体12が弁座に衝突すると、弁体12及び弁座を損傷、破損させるおそれがある。これを未然に防止するため、本発明の流体弁駆動機構は衝撃緩衝機構300を備える(図7)。衝撃緩衝機構300は、オイルダンパーであって、主フレーム3或いは断熱フレーム8に固定された衝撃緩衝ポット305を有し、衝撃緩衝ポット305の内部にはオイル301(粘性流体)が充填され、連結棒10はOリング304(シール部材)を介して衝撃緩衝ポット305に対して摺動可能に接続される。衝撃緩衝ポット305内に位置する連結棒10の部分にオリフィス303を有するプレート302が固定される。弁の開閉、すなわち、連結棒10の昇降により衝撃緩衝ポット305内でプレート302が昇降する際には、プレート302は、オイル301がオリフィス303を通過する流体抵抗を受ける。流体抵抗は、オリフィスを通過する流体の流速の二乗に比例するため、弁の緊急遮断時の弁体12の急速な下降速度は、連結棒10に固定されたプレート302により緩和され、弁に与える損傷、破損の危険を低減することができる。
 また、駆動部1の異常時、電力の緊急遮断により電磁クラッチ101が開放された場合には、コイルばね6のばね反力により上ばね箱4も急速に上昇移動するが、上ばね箱4の上端が主フレーム3に衝突して装置に損傷を与えることがないよう、主フレーム3には衝撃緩衝体9を有する。
(断熱構造)
 ガスタービンの燃料温度が最高280℃にも達することがある環境下において、高温で劣化しやすいグリス類の早期劣化を防止するため、弁駆動機構の温度上昇を抑制することは、装置のメンテナンス性を改善し緊急時の確実なファイルセーフ機能を信頼性維持するために、極めて重要である。そのため、従来のガスタービン燃料用の流体制御弁の弁箱13には、しばしば弁体を冷却するためのフィン511が備え付けられていた(図12)。このため、制御弁装置全体の高さが高くなり大型化する問題があった。本発明においては、中空構造を有する断熱フレーム8を主フレーム3と弁箱13の間に介在させるように構成し、弁箱13から主フレーム3側に伝熱しにくい構造を採用した。更に、主フレーム3と断熱フレーム8との連結部に、伝熱断面積を小さくするため断熱接続部7を備えて熱抵抗を上げ、弁箱13から主フレーム3側に伝熱しにくくし(図1、2)、断熱効果を高めることにより、装置の機能信頼性をさらに向上させることができる。
(リニアガイドによる信頼性の高いファイルセーフ機構)
 駆動部1の異常等、何らかの理由により流体弁の緊急閉鎖の必要が生じたときや、二つある電磁クラッチ101装置のいずれかに異常が発生した場合でも、確実な弁の遮断操作を可能とするため、本発明の流体弁駆動機構は、リニアガイド(直動案内機構)機構200を備える。図8(図2のB−B断面)は、リニアガイド機構200の配置と構造を示す断面図である。リニアガイド機構200は、主フレーム3に設けられ、駆動シャフト2の軸方向(上下方向)に延びるレール201と、上ばね箱4に設けられた上スライダ202、下ばね箱5に設けられた下スライダ203とからなる。スライダはレールと係合し、一般的にはレールとスライダの溝部に鋼球204を有し、上ばね箱4および下ばね箱5のそれぞれが、主フレーム3内で上下方向(該弁体12を前後進する方向)に滑らかに摺動可能となるよう直動案内する。電磁クラッチ101のいずれかに異常が発生した場合は、片側のばね保持機構100でコイルばね6のバネ反力を保持するが、リニアガイド機構200のレール201は強固な主フレーム3に固定されているので、バネ反力は8トンにもなる場合があるにも関わらず、円筒型の支柱によるブッシュ等を使用したガイド機構の場合に比べて変形も少なく、片側のみでの支持によるモーメント荷重が働いても上ばね箱4および下ばね箱5は主フレーム3に対して所定の角度から傾斜することはなく、リニアガイド機構200によって信頼性が高い緊急遮断を実現することができる。
 さらに、本発明の流体弁駆動機構は、コイルばね6を圧縮した状態のまま、ばね保持機構100により、上ばね箱4と下ばね箱5の間隔を固定した状態で通常運転される。従って、片側のばね保持機構100に異常が生じた場合でも、正常に動作している他方のばね保持機構100のみで確実にコイルばね6を圧縮状態に維持することが可能であり、必要時以外の弁の遮断操作を未然に防止することができるという効果も有する。
 図12に示した従来型のガスタービンの流体弁駆動機構においては、実施例1で記載したように、通常運転時においては、弁体にかかる流体力とそれよりもはるかに大きなばねの圧縮反力の和に相当する力で弁の開閉操作を行わなければならず、そのため、駆動部は通常運転時に定常的に大きな駆動力を必要とする。駆動装置の油圧アクチュエータから電動アクチュエータへの変更は、潜在的な油漏れの問題を回避し、油圧配管を配設することの煩雑さを回避することができるという、運用上及び設計上の大きな利点を有する。しかし、電動アクチェエータによって上記のような強大なコイルばねの圧縮反力に抗する必要駆動力を得るためには、電動アクチュエータ自体が巨大となるため、特に大型弁への適用においては現実的ではなく、実現が困難であった。しかし、本発明においては、通常運転時において、弁体にかかる流体力に相当する力のみで弁の開閉操作ができるため、定常的に必要な弁の開度調整のための駆動力は小さくなり、駆動部を電動アクチュエータで設計することを現実的なものとすることができるという格別な効果を有する。
 図9に本発明の実施例2である流体弁駆動機構の正面概略断面図を示す。図中において、実施例1で説明した部材と同じ部材については同一符号を用いて記載し、詳細な説明は省略する。
 本実施例においては、駆動部1に回転駆動手段である電動アクチュエータ24を使用し、駆動部1の駆動シャフト2は上下動せず、回転する。また、駆動シャフト2は、主フレーム3に固定された主サポートベアリング21とナット22によって、主フレーム3に対して上下方向には移動不能で、かつ、回転可能に固定されている。図10に駆動シャフト2の支持部分の拡大断面図を示す。駆動シャフト2はねじ部20を有し、上ばね箱4に固定された駆動シャフト昇降ナット23に螺合している。
 実施例1における流体弁の動作では、初期状態から駆動部1を駆動すると、駆動シャフト2が下降して上ばね箱4を下降させたが、実施例2においては、電動アクチュエータ1が駆動して駆動シャフト2が回転する。駆動シャフト2の回転により、駆動シャフト2のねじ部20と螺合している駆動シャフト昇降ナット23が押し下げられ、上ばね箱4を下降させる。その他の基本的な動作は実施例1と同様であり、実施例1と同様な発明の効果を得ることが可能となる。更に、実施例2においては、特に、駆動部1に電動サーボモータ24を使用することにより、ロータの角度を検出することにより常に最適な駆動電流に制御可能となり、脱調のない高精度な位置決めができるので、流体弁の開度を高精度に制御することが可能となる。
(ねじ部及びベアリング部の累積負荷検出)
 更に、駆動部1に電動サーボモータ24を使用する実施例2においては、電動サーボモータの特徴を利用し、ねじ部及びベアリング部の機械的な累積負荷の検出が可能となる。図11に示す累積負荷検出ユニットの概略構成図を参照しながら、累積負荷検出について説明する。
 本実施例2のように、駆動部1に電動アクチュエータを使用した場合、流体弁の開閉動作に使用されるねじ部20や主サポートベアリング21を正常に機能できる状態に維持することは、装置の信頼性を維持するために非常に重要である。
 電動サーボモータ24のロータの回転角度は内蔵されたエンコーダ(回転検出手段)401により検出される。電動サーボモータ24はドライバ402を有し、ドライバ402はエンコーダ401からフィードバックされた位置信号をもとに、電動サーボモータのロータの回転角度に応じて最大トルクを発生させる最適な回転磁界がステータに発生するように、電動サーボモータ24に電流を供給する。ドライバ402の上位である上位コントローラ403は、リニア位置センサ406からの弁体12の上下位置信号を監視しながら弁体12の上下位置を制御し、適切な流体流量に制御する。ドライバ402は、モータ駆動電流センサ404を内蔵し、モータの駆動電流をモニタする。
 一般に、ねじ部20と主サポートベアリング21への機械的な累積負荷は、推力と回転数の積で推定可能である。推力はモータ電流に比例するので、上位コントローラ403に内蔵された累積負荷演算部405において、モータ電流とエンコーダ401からそれぞれ算出される推力と回転数から、その積である機械的な累積負荷を演算し累積する。累積負荷演算値が所定の値を超えた場合には、アラーム表示部407に警報を表示することにより、装置ごとに稼動状態にばらつきがある場合であっても、装置の可動実績に応じた適切な整備タイミングを認知することができる。
 尚、実施例において例示した流体弁駆動機構は、二つのばね保持機構100を有しているが、本発明はこれに限定されることはなく、三以上のばね保持機構を有することによっても同様の効果を奏することができることに留意されたい。この場合、三以上のばね保持機構は、駆動シャフト2の中心軸に対して対称に配置されることが好ましい。また、ばね保持機構の数を増やすと、ばね保持機構一つに必要なコイルばね6の反力に対する保持力が減少するため、電磁クラッチ、サポートベアリング等のコンパクト化が可能となるというメリットを有する。
 さらに、実施例において例示した流体弁駆動機構は、二つのリニアガイド機構200を有しているが、本発明はこれに限定されることはなく、三以上のリニアガイド機構を有することによっても同様の効果を奏することができることに留意されたい。この場合、三以上のリニアガイド機構は、駆動シャフト2の中心軸に対して対称に配置されることが好ましい。
 また、実施例において例示した流体弁駆動機構は、非常時に弁を閉鎖する動作をすることを前提に記載したが、本発明はこれに限定されることはなく、非常時に、流体弁を開放する動作をする用途にも適用できることに留意されたい。非常時に弁を緊急開放する場合には、衝撃緩衝機構によって、弁体の開放限位置での弁箱への衝突等による弁の損傷・破損を未然に防止することが可能であり、実施例と同様の効果を奏することが可能である。
 尚、明細書中での本発明の説明においては、上下左右等の表現により方向を指定して発明を記載したが、これは明細書に添付した図面の記載に基づいて説明するための便宜的な記載であり、本発明の装置を設置する方向を規定するものではないことに留意されたい。
 この出願は、2008年10月31日に出願された日本国特許出願第2008−281612からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。

Claims (11)

  1. 流体弁の弁体を弁座に対して前後進させる流体弁駆動機構であって、該流体弁駆動機構は、駆動手段と、緊急駆動手段を有し、
     該緊急駆動手段は、ばねユニットと緊急解除ユニットを含み、
     該ばねユニットは、ばね上支持部とばね下支持部と、該ばね上支持部と該ばね下支持部の間に配置されたばねから構成され、該ばね上支持部は該駆動手段と接続し、該ばね下支持部は弁体と接続し、
     該緊急解除ユニットは、該ばね上支持部と該ばね下支持部の間の間隔を固定することが可能であり、
     該駆動手段は、該ばね上支持部を昇降させる、
    流体弁駆動機構であって、
     該弁体が弁座に当接し、該ばね上支持部と該ばね下支持部の間で該ばねは自由長から所定の長さだけ圧縮された初期状態から、該ばね上支持部と該ばね下支持部の間隔を狭めることにより所定の長さまで該ばねを圧縮した後、該緊急解除ユニットにより該ばね上支持部と該ばね下支持部の間隔を固定し、該駆動手段を駆動することにより、該ばね上支持部と該ばね下支持部の間で該ばねを圧縮した状態に保持したまま該弁体を昇降させて弁の開閉を制御し、
     緊急時には、該緊急解除ユニットによる該ばね上支持部と該ばね下支持部の間隔の固定を解除し、該ばねが圧縮状態から伸張し、該ばね下支持部を介して該弁体を下降させ、該弁体を該弁座に押圧することにより、該流体弁を閉止するよう緊急駆動する、
    流体弁駆動機構。
  2. 前記緊急解除ユニットは、
     前記ばね上支持部に固定された軸上支持部及び前記ばね下支持部に固定された軸下支持部を貫通して延在する、緊急解除ユニット軸と、
     該軸上支持部と該軸下支持部と該緊急解除ユニット軸の、相互間の相対的な位置を固定することができる、ばね支持部間隔固定手段と、
    を含む、請求項1に記載の流体弁駆動機構。
  3. 前記緊急解除ユニット軸は、ねじ構造を有する軸であり、
     前記軸上支持部及び前記軸下支持部の一方は、ナットであって、該ねじ構造を有する軸と螺合し、
     該軸上支持部及び該軸下支持部の他方は、サポートベアリングであって、該ねじ構造を有する軸を回動可能な状態で、該軸上支持部及び該軸下支持部の該他方に対して該ねじ構造を有する軸の軸方向において固定し、
     前記ばね支持部間隔固定手段は、該ねじ構造を有する軸と該ナットの間の相対的な回動が可能な状態と不可能な状態を切り替える、回動可否制御部であり、
     該ねじ構造を有する軸と該ナットとの相対的な回動により、前記ばね上支持部と前記ばね下支持部の間隔が変更可能であり、
     該ねじ構造を有する軸が回動可能な状態では、該ばね上支持部と該ばね下支持部の間に働く、前記駆動装置による押圧力又は前記ばねのばね反力により、該ねじ構造を有する軸と該ナットは相対的に回動させられ、該ばね上支持部及び該ばね下支持部の可動範囲内で、該ばね上支持部と該ばね下支持部の間隔が変更される、
     請求項2に記載の流体弁駆動機構。
  4. 前記ねじ構造を有する軸はボールねじ軸であり、前記ナットはボールねじナットである、請求項3に記載の流体弁駆動機構。
  5. 前記回動可否制御部は、電磁クラッチである、請求項3又は4に記載の流体弁駆動機構。
  6. 前記緊急駆動手段は直動案内手段をさらに含み、該直動案内手段は、該弁体が前後進する方向に、該ばね上支持部と該ばね下支持部が滑らかに摺動するように案内する、
     請求項1乃至5のいずれか1項に記載の流体弁駆動機構。
  7. 前記緊急駆動手段は、前記ばね下支持部と前記弁体の間に、衝撃緩衝手段を有し、
     該衝撃緩衝手段に含まれる流体の流体抵抗により、急速な該弁体の昇降を緩和する、
     請求項1乃至6のいずれか1項に記載の流体弁駆動機構。
  8. 前記駆動手段を固定し内部に前記緊急駆動手段を有する主フレームと、
     前記弁体を含む弁箱と該主フレームとの間に中空構造を有する断熱フレームと、
     該断熱フレームと該主フレームとの間に断熱接続部
    を有する請求項1乃至7のいずれか1項に記載の流体弁駆動機構。
  9. 前記駆動手段は直動駆動手段である、請求項1乃至8のいずれか1項に記載の流体弁駆動機構。
  10. 前記駆動手段は回転駆動手段であり、
     該回転駆動手段の駆動力により回転する駆動シャフトと前記ばね上支持部との接続部に、回転直動変換機構を有し、
     該回転直動変換機構は、駆動シャフトの回転により、該ばね上支持部を昇降させる、
     請求項1乃至8のいずれか1項に記載の流体弁駆動機構。
  11. 前記回転駆動手段は電動サーボモータであり、
     前記流体弁駆動機構は、累積負荷評価手段を更に有し、
     該累積負荷評価手段は、該電動サーボモータの回転を検出する回転検出手段と、該電動サーボモータを駆動する電流を検出する駆動電流センサを有し該駆動電流センサから検出されるモータ推力と該回転数の積を算出して累積し、累積値が所定の値よりも大きい場合には警報を発する、
     請求項10に記載の流体弁駆動機構。
PCT/JP2009/068857 2008-10-31 2009-10-28 流体弁駆動機構 WO2010050609A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117011071A KR101204417B1 (ko) 2008-10-31 2009-10-28 유체밸브 구동기구
CN2009801432654A CN102203475B (zh) 2008-10-31 2009-10-28 流体阀驱动机构

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-281612 2008-10-31
JP2008281612A JP4954964B2 (ja) 2008-10-31 2008-10-31 流体弁駆動機構

Publications (1)

Publication Number Publication Date
WO2010050609A1 true WO2010050609A1 (ja) 2010-05-06

Family

ID=42128968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068857 WO2010050609A1 (ja) 2008-10-31 2009-10-28 流体弁駆動機構

Country Status (4)

Country Link
JP (1) JP4954964B2 (ja)
KR (1) KR101204417B1 (ja)
CN (1) CN102203475B (ja)
WO (1) WO2010050609A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132560A (ja) * 2010-12-20 2012-07-12 Alstom Technology Ltd 高温蒸気弁
CN103742711A (zh) * 2013-11-29 2014-04-23 成都欧浦特控制阀门有限公司 用于控制阀的调整高度的分离式支架
WO2019012256A1 (en) * 2017-07-14 2019-01-17 Bifold Fluidpower Limited INTEGRATED SAFETY VALVE ACTUATOR
EP3851721A4 (en) * 2018-09-11 2022-06-22 Moog Japan Ltd. ELECTRICALLY DRIVEN ACTUATOR FOR OPENING AND CLOSING A VALVE AND METHOD FOR DRIVING ELECTRICALLY DRIVEN ACTUATOR FOR OPENING AND CLOSE VALVE

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5863362B2 (ja) * 2011-09-28 2016-02-16 三菱重工コンプレッサ株式会社 蒸気タービン
JP6033404B2 (ja) * 2013-03-22 2016-11-30 三菱重工コンプレッサ株式会社 蒸気タービン
JP6222599B2 (ja) * 2013-08-30 2017-11-01 三菱重工コンプレッサ株式会社 調整弁駆動機構、蒸気タービン
JPWO2017104035A1 (ja) * 2015-12-17 2018-03-29 三菱重工コンプレッサ株式会社 主塞止弁及びそれを備えた蒸気タービン
CN110030411A (zh) * 2019-05-07 2019-07-19 吴江市东吴机械有限责任公司 具有位置指示器防碰坏结构的安全阀
EP4067712A4 (en) 2019-11-25 2023-12-27 M-System Co.,Ltd ACTUATOR AND FLUID CONTROL DEVICE
JP7360156B2 (ja) 2019-11-29 2023-10-12 株式会社フジキン バルブ装置、流量制御装置及び分流装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266788U (ja) * 1988-07-25 1990-05-21
DE19516054A1 (de) * 1994-05-11 1995-11-16 Kromschroeder Ag G Steuerbares Ventil
JPH08232607A (ja) * 1994-12-24 1996-09-10 Abb Patent Gmbh 蒸気タービン用バルブ
JP2004515722A (ja) * 2000-10-20 2004-05-27 シーメンス アクチエンゲゼルシヤフト 弁の操作装置
JP2005083504A (ja) * 2003-09-09 2005-03-31 Kansai Electric Power Co Inc:The 電動弁装置の保守管理システム
JP2006510863A (ja) * 2003-02-25 2006-03-30 モーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 変位装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85108777B (zh) * 1985-12-03 1988-11-30 丑毅 自动驱动节流阀
CN2367860Y (zh) * 1998-11-02 2000-03-08 金湖机械厂 液压驱动安全阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266788U (ja) * 1988-07-25 1990-05-21
DE19516054A1 (de) * 1994-05-11 1995-11-16 Kromschroeder Ag G Steuerbares Ventil
JPH08232607A (ja) * 1994-12-24 1996-09-10 Abb Patent Gmbh 蒸気タービン用バルブ
JP2004515722A (ja) * 2000-10-20 2004-05-27 シーメンス アクチエンゲゼルシヤフト 弁の操作装置
JP2006510863A (ja) * 2003-02-25 2006-03-30 モーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 変位装置
JP2005083504A (ja) * 2003-09-09 2005-03-31 Kansai Electric Power Co Inc:The 電動弁装置の保守管理システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132560A (ja) * 2010-12-20 2012-07-12 Alstom Technology Ltd 高温蒸気弁
US9091363B2 (en) 2010-12-20 2015-07-28 Alstom Technology Ltd. High temperature steam valve
CN103742711A (zh) * 2013-11-29 2014-04-23 成都欧浦特控制阀门有限公司 用于控制阀的调整高度的分离式支架
WO2019012256A1 (en) * 2017-07-14 2019-01-17 Bifold Fluidpower Limited INTEGRATED SAFETY VALVE ACTUATOR
US11156307B2 (en) 2017-07-14 2021-10-26 Bifold Fluidpower Limited Failsafe valve actuator
EP3851721A4 (en) * 2018-09-11 2022-06-22 Moog Japan Ltd. ELECTRICALLY DRIVEN ACTUATOR FOR OPENING AND CLOSING A VALVE AND METHOD FOR DRIVING ELECTRICALLY DRIVEN ACTUATOR FOR OPENING AND CLOSE VALVE
US11680659B2 (en) 2018-09-11 2023-06-20 Moog Japan Ltd. Electrically driven actuator for opening and closing valve, and method for driving electrically driven actuator for opening and closing valve

Also Published As

Publication number Publication date
JP4954964B2 (ja) 2012-06-20
KR101204417B1 (ko) 2012-11-27
JP2010106999A (ja) 2010-05-13
CN102203475B (zh) 2013-01-16
KR20110090932A (ko) 2011-08-10
CN102203475A (zh) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4954964B2 (ja) 流体弁駆動機構
US8047766B2 (en) Electromechanical drive for actuating valves
JP4695995B2 (ja) 流路開閉用の水門駆動装置
CA2927092C (en) Drive of an emergency safety rod
WO2013047423A1 (ja) 蒸気タービン
EP3380753B1 (en) High speed shutdown device for electric actuator
BRPI0907947B1 (pt) acionador de válvula de comporta e método para mudança de uma válvula de comporta entre um modo de operação em estado uniforme e um modo de paralização por meio de um acionador de válvula de comporta
JP5603413B2 (ja) アクチュエータ及びその位置検出方法
JP2015048742A (ja) 調整弁駆動機構、蒸気タービン
JP2017160890A (ja) 蒸気タービン弁駆動装置
JP6577314B2 (ja) 蒸気タービン弁駆動装置及び蒸気タービン弁
KR20220027805A (ko) 선형 구동 시스템
CN111587339B (zh) 具有快速移动功能的阀驱动机构
JP4802117B2 (ja) 流路開閉用の負荷体駆動装置
KR20180016315A (ko) 부수적으로 이동 가능한 힘 저장부를 가지는 회전 조절기
CN108775439A (zh) 电动控制装置及阀门
US12018836B2 (en) Analog valve actuator, programmable controller, alarm system, and methods for their combined use
US20230287993A1 (en) Vacuum valve
KR20060036452A (ko) 발전소의 압력 유지 시스템용 압력 경감 장치
US20210071866A1 (en) Analog valve actuator, programmable controller, alarm system, and methods for their combined use
CN108138581B (zh) 用于控制阀和对应阀装置的方法
RU2253049C1 (ru) Пневматический привод со струйным двигателем для шаровых кранов с устройством регулирования максимального движущего момента
JPS5981591A (ja) 原子炉停止装置
JP2004239094A (ja) ガイドベーンの開閉装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143265.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117011071

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3657/CHENP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09823719

Country of ref document: EP

Kind code of ref document: A1