WO2010050241A1 - トリクロロシランの製造方法および利用方法 - Google Patents
トリクロロシランの製造方法および利用方法 Download PDFInfo
- Publication number
- WO2010050241A1 WO2010050241A1 PCT/JP2009/005804 JP2009005804W WO2010050241A1 WO 2010050241 A1 WO2010050241 A1 WO 2010050241A1 JP 2009005804 W JP2009005804 W JP 2009005804W WO 2010050241 A1 WO2010050241 A1 WO 2010050241A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling
- reaction
- trichlorosilane
- reaction gas
- temperature
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/08—Compounds containing halogen
- C01B33/107—Halogenated silanes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/021—Preparation
- C01B33/027—Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
- C01B33/03—Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/08—Compounds containing halogen
- C01B33/107—Halogenated silanes
- C01B33/1071—Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/08—Compounds containing halogen
- C01B33/107—Halogenated silanes
- C01B33/10778—Purification
Definitions
- the present invention relates to a method for producing trichlorosilane, which is excellent in the effect of recovering trichlorosilane, in a method for producing trichlorosilane by reacting silicon tetrachloride with hydrogen to convert to trichlorosilane.
- High-purity polycrystalline silicon is obtained by, for example, trichlorosilane (referred to as SiHCl 3 : TCS), silicon tetrachloride (referred to as SiCl 4 : STC), and hydrogen as raw materials, and hydrogen reduction of trichlorosilane represented by the following formula [1] It can be produced by a reaction, a thermal decomposition reaction of trichlorosilane represented by the following formula [2].
- the trichlorosilane used as the raw material for the above production method is obtained by reacting metal silicon with hydrogen chloride to produce crude trichlorosilane, which is purified by distillation. Further, trichlorosilane can be produced by a hydrogenation conversion reaction represented by the following formula [3] using silicon tetrachloride recovered by distillation separation from the exhaust gas of the polycrystalline silicon production reaction.
- a conversion reaction apparatus (conversion furnace) described in Patent Document 1 is known.
- This conversion reaction apparatus includes a reaction chamber having a double chamber of an outer chamber and an inner chamber surrounded by a heating element and formed by two concentrically arranged tubes, and heat exchange disposed at the lower portion of the reaction chamber.
- a vessel is provided.
- a source gas supply line for supplying hydrogen and silicon tetrachloride to the reaction chamber via the heat exchanger is connected to a discharge line for discharging the reaction product gas from the reaction chamber.
- the supply gas supplied to the reaction chamber is preheated by transferring heat from the reaction product gas discharged from the reaction chamber, and the discharged reaction product gas is cooled. ing.
- Patent Document 2 discloses that a reaction product gas containing trichlorosilane and hydrogen chloride is obtained by introducing silicon tetrachloride and hydrogen into a reaction chamber and performing a conversion reaction at a temperature of 600 ° C. to 1200 ° C. ing.
- an apparatus for producing trichlorosilane there has been proposed an apparatus equipped with a cooling means for rapidly cooling the reaction product gas derived from the reaction chamber at a cooling rate that reaches, for example, 300 ° C. or less within 1 second. Yes.
- the reaction product gas is cooled by exchanging heat with the supplied raw material gas in the heat exchanger at the lower part of the reaction chamber.
- the reverse reaction of the above reaction formula [3] occurs in which trichlorosilane reacts with hydrogen chloride and decomposes into silicon tetrachloride (STC) and hydrogen.
- STC silicon tetrachloride
- the rate of reverse reaction cannot be sufficiently suppressed because the cooling rate is slow, and there is a disadvantage that the conversion rate to trichlorosilane is reduced.
- the reverse reaction of the above reaction formula [3] is performed by quenching in an extremely short time of 1 second or less to a temperature range of 300 ° C. or less where the reverse reaction hardly occurs. Can be suppressed.
- SiCl 2 diichlorosilylene contained in the reaction gas reacts with SiCl 4 to form a polymer. Is known to be a by-product. This SiCl 2 is produced in a large amount at a high temperature in the conversion reaction, particularly prominently generated at a temperature exceeding 1200 ° C., and contained in the reaction gas extracted from the conversion furnace.
- the polymer is a general term for higher-order chlorosilanes containing two or more silicon atoms such as Si 2 Cl 6 (chlorodisilane), Si 3 Cl 8 (chlorotrisilane), Si 2 H 2 Cl 4 and the like. .
- the reaction gas extracted from the conversion furnace has a high temperature of 1000 ° C. or higher, and when it is rapidly cooled, it is difficult to appropriately control the cooling rate in a high temperature region of 600 ° C. or higher where trichlorosilane is easily decomposed. . For this reason, conventionally, priority was given to increasing the recovery rate of trichlorosilane, and cooling was performed at an excessive cooling rate.
- the present invention aims to solve the above-described conventional problems, and effectively suppresses the decomposition of trichlorosilane and the production of polymer in the process of cooling the gas produced by the conversion reaction, thereby reducing the burden of the polymer removal work. And the manufacturing method of trichlorosilane with the high recovery rate of trichlorosilane is provided.
- a method for producing trichlorosilane by cooling a reaction gas and recovering trichlorosilane A reaction gas generation step of generating a reaction gas containing trichlorosilane, dichlorosilylene, hydrogen chloride, and a higher order silane compound by converting a raw material silicon tetrachloride and hydrogen at a temperature of 1000 ° C. or higher and 1900 ° C. or lower.
- a first A cooling step of cooling the reaction gas extracted from the conversion furnace after the reaction gas generation step to 600 ° C. or more within 0.01 seconds and 500 ° C.
- a process for producing trichlorosilane comprising: [A2] The method for producing trichlorosilane according to [A1] above, wherein in the first A cooling step, the ultimate cooling temperature of the reaction gas is 100 ° C. or higher and 500 ° C. or lower.
- [A3] The method for producing trichlorosilane according to [A1] or [A2] above, wherein the reaction gas is maintained at 550 ° C. or higher and 800 ° C. or lower in the intermediate reaction step.
- [A4] The reaction gas is cooled in the first A cooling step so that the ultimate cooling temperature is 100 ° C. or more and 500 ° C. or less, and the cooled reaction gas is heated to a temperature of 550 ° C. or more and 800 ° C. or less in the intermediate reaction step.
- [A5] A method of using trichlorosilane, wherein trichlorosilane recovered by the method described in any one of [A1] to [A4] is used as a part of a raw material for producing polycrystalline silicon.
- first, trichlorosilane, dichlorosilylene, hydrogen chloride, and higher order silane are produced by subjecting raw material silicon tetrachloride and hydrogen to a conversion reaction at a temperature of 1000 ° C. or higher and 1900 ° C. or lower.
- a reaction gas containing the compound is generated.
- the reaction gas extracted from the conversion furnace is cooled to 600 ° C. or more within 0.01 seconds from the start of cooling and to 500 ° C. or less within 2 seconds, preferably the ultimate cooling temperature is 100 ° C. or more and less than 500 ° C. (1A cooling process).
- decomposition of trichlorosilane contained in the reaction gas (reverse reaction of the above formula [3]) can be effectively suppressed.
- the rapidly cooled reaction gas is added in the intermediate reaction step to a temperature range of 500 ° C. or higher and 950 ° C. or lower, preferably 550 ° C. or higher and 800 ° C. or lower for 0.01 second or longer. Hold for 5 seconds or less.
- the polymer contained in the reaction gas is sufficiently decomposed.
- the upper limit of the holding temperature in the intermediate reaction step is limited to 950 ° C. or lower, preferably 800 ° C. or lower, the holding temperature is sufficiently lower than the cooling start temperature (approximately 1000 ° C. or higher) in the first A cooling step, Therefore, there is little decomposition of trichlorosilane in the reaction gas.
- the reaction gas obtained by decomposing the polymer in the intermediate reaction step is finally cooled to less than 500 ° C. in the second cooling step to recover trichlorosilane.
- the 2nd aspect of this invention is related with the manufacturing method of the trichlorosilane which solved the said subject by having the following structures.
- a method for producing trichlorosilane in which a reaction gas is cooled to recover trichlorosilane, A reaction gas generation step of generating a reaction gas containing trichlorosilane, dichlorosilylene, hydrogen chloride, and a higher order silane compound by converting a raw material silicon tetrachloride and hydrogen at a temperature of 1000 ° C. or higher and 1900 ° C. or lower; A first B cooling step of cooling the reaction gas extracted from the conversion furnace after the reaction gas generation step to less than 600 ° C.
- a second cooling step for cooling to less than A process for producing trichlorosilane comprising: [B2] The method for producing trichlorosilane as described in [B1] above, wherein in the first B cooling step, the ultimate cooling temperature of the reaction gas is 100 ° C. or higher and 500 ° C. or lower.
- [B3] The method for producing trichlorosilane according to [B1] or [B2], wherein the reaction gas is maintained at 550 ° C. or higher and 800 ° C. or lower in the intermediate reaction step.
- the reaction gas is cooled in the first B cooling step so that the ultimate cooling temperature is 100 ° C. or more and 500 ° C. or less, and the cooled reaction gas is heated to a temperature of 550 ° C. or more and 800 ° C. or less in the intermediate reaction step.
- [B5] A method for using trichlorosilane, wherein trichlorosilane recovered by the method described in any one of [B1] to [B4] is used as a part of a raw material for producing polycrystalline silicon.
- first, trichlorosilane, dichlorosilylene, hydrogen chloride, and higher order silane are produced by converting the raw material silicon tetrachloride and hydrogen at a temperature of 1000 ° C. or higher and 1900 ° C. or lower.
- a reaction gas containing the compound is generated.
- the reaction gas extracted from the conversion furnace is cooled to less than 600 ° C. within a short time within 0.01 seconds, preferably so that the ultimate cooling temperature is not less than 100 ° C. and less than 500 ° C. (first B cooling step).
- decomposition of trichlorosilane contained in the reaction gas reverse reaction of the above formula [3]
- a polymer is generated by quenching the reaction gas.
- the rapidly cooled reaction gas is maintained in the temperature range of 500 ° C. or more and 950 ° C. or less, preferably 550 ° C. or more and 800 ° C. or less in the intermediate reaction step for a period of 0.01 seconds or more and 5 seconds or less. .
- the polymer contained in the reaction gas is sufficiently decomposed.
- the upper limit of the holding temperature in the intermediate reaction step is limited to 950 ° C. or lower, preferably 800 ° C. or lower, the holding temperature is sufficiently lower than the cooling start temperature (approximately 1000 ° C. or higher) in the 1B cooling step, Therefore, there is little decomposition of trichlorosilane in the reaction gas.
- the reaction gas obtained by decomposing the polymer in the intermediate reaction step is finally cooled to less than 500 ° C. in the second cooling step to recover trichlorosilane.
- the decomposition of trichlorosilane and the production of polymer contained in the reaction gas are suppressed through the 1A cooling step and the intermediate reaction step, or the 1B cooling step and the intermediate reaction step, so that a high recovery rate is achieved. Can recover trichlorosilane.
- the reaction gas after the second cooling does not substantially contain a polymer, troubles such as pipe adhesion can be reduced, and the soundness of the apparatus can be maintained.
- Production process diagram from the production of polycrystalline silicon to the conversion reaction The graph which shows the relationship of the product gas with the reaction temperature in a conversion reaction.
- the conceptual diagram of a cooling process The graph which shows the temperature change of Example A2.
- the conceptual diagram of a cooling process The graph which shows the temperature change of Example B2. 1 is a schematic perspective view of a polycrystalline silicon reactor. Cross section of conversion.
- a reaction containing trichlorosilane, dichlorosilylene, hydrogen chloride, and a higher order silane compound is carried out by converting the raw material silicon tetrachloride and hydrogen at a temperature of 1000 ° C. or higher and 1900 ° C. or lower.
- gas is generated and the reaction gas is cooled to recover trichlorosilane.
- the method for producing trichlorosilane according to the present invention includes a first A cooling step of cooling to 600 ° C. or more within 0.01 seconds and 500 ° C.
- the polycrystalline silicon reactor 10 includes a base 71 constituting a furnace bottom and a bell-shaped bell jar 72.
- the base 71 is provided with a jet nozzle 73 for supplying the raw material gas, a gas discharge port 74 for discharging the exhaust gas after reaction, and a silicon core assembly 75.
- the raw material gas contacting the surface of the red hot silicon core assembly 75 (about 800 ° C.
- the gas discharged from the polycrystalline silicon reactor 10 includes unreacted trichlorosilane (TCS) and hydrogen, as well as by-produced hydrogen chloride (HCl), silicon tetrachloride (STC), dichlorosilane, hexachlorodisilane, and the like. Of chlorosilanes.
- the exhaust gas containing these chlorosilanes is guided to the cooler 11 and cooled to around ⁇ 60 ° C. (for example, ⁇ 65 ° C. to ⁇ 55 ° C.) to be condensed and liquefied.
- the hydrogen remaining in a gaseous state without being liquefied is separated, supplied to the polycrystalline silicon reactor 10 again as a part of the raw material gas through a purification process, and reused.
- TCS trichlorosilane
- silicon tetrachloride STC
- This silicon tetrachloride is introduced into the conversion furnace 13 together with hydrogen, and trichlorosilane (TCS) is generated by a conversion reaction represented by the following formula [3] at a temperature of 1000 ° C. or higher and 1900 ° C. or lower.
- the reaction gas containing TCS is introduced into the condensation step 15 through the cooling step 14, and TCS is recovered.
- the recovered TCS is returned to the polycrystalline silicon manufacturing process and reused as a raw material for manufacturing polycrystalline silicon.
- FIG. 8 shows a sectional view of the conversion furnace 13.
- a supply port 81 provided in the lower side wall surface for introducing the supply gas
- an exhaust pipe 82 provided in the center of the upper surface for discharging the reaction gas after the conversion reaction.
- the cylindrical heater 83 is provided so as to surround the exhaust pipe 82
- the cylindrical partition wall 84 is provided so as to surround the heater 83.
- An opening 85 is provided in the upper part of the partition wall 84 along the circumference of the partition wall 84 to form a flow path for guiding the supply gas from the supply port 81 to the exhaust pipe 82.
- the supplied raw material silicon tetrachloride may contain disilanes, or the disilanes may be removed.
- the conversion furnace 13 is heated to 1000 ° C. or more and 1900 ° C. or less, and the supplied raw material gas undergoes a conversion reaction to generate a reaction gas containing trichlorosilane, dichlorosilylene, hydrogen chloride, and a higher silane compound.
- the heating temperature of the conversion furnace 13 is less than 1000 ° C., there are disadvantages that the conversion rate and the conversion speed are reduced and the apparatus is large. Moreover, when the heating temperature of the conversion furnace 13 exceeds 1900 degreeC, a conversion rate will not improve and it is uneconomical as production equipment.
- FIG. 2 shows an example (equilibrium value) of the composition of the reaction product gas with respect to the reaction temperature in the conversion reaction.
- the gas generated by the conversion reaction contains unreacted H 2 , SiCl 4 , and by-products such as HCl, SiCl 2 , and a polymer together with the target trichlorosilane.
- the reaction temperature of the conversion reaction is preferably higher.
- the reaction temperature is more preferably set to 1100 ° C. or higher at which the conversion to SiHCl 3 is near the maximum value and the conversion to SiCl 2 is also remarkable.
- the higher the reaction temperature of the conversion reaction the higher the reaction rate of trichlorosilane decomposition (reverse reaction of the above reaction formula [3]) in the subsequent 1A cooling step.
- the reaction temperature of the first conversion reaction is preferably 1300 ° C. or lower. From the above, the reaction temperature in the conversion reaction step is more preferably 1100 ° C. or higher and 1300 ° C. or lower.
- FIG. 3 An example of the cooling step 14 is shown in FIG. 3, and the change in the cooling temperature of the reaction gas is shown in FIG.
- the reaction gas extracted from the conversion furnace 13 is introduced into the first cooler 121 that performs the first A cooling process.
- the first cooler 121 is cooled to 600 ° C. or more within 0.01 seconds from the start of cooling and to 500 ° C. or less within 2 seconds.
- the reaction gas after the 1A cooling step is introduced into the intermediate cooler 122 that performs the intermediate reaction step, and is held in a temperature range of 500 ° C. or more and 950 ° C. or less for 0.01 seconds or more and 5 seconds or less.
- the reaction gas after the intermediate reaction step is introduced into the second cooler 123 that performs the second cooling step, and after being cooled to less than 500 ° C., is sent to the trichlorosilane distillation separation step 15.
- cooling is performed at a cooling rate that sufficiently suppresses decomposition of trichlorosilane (reverse reaction of the above reaction formula [3]). Specifically, the cooling is performed at 600 ° C. or more within 0.01 seconds from the start of cooling and 500 ° C. or less within 2 seconds.
- the reaction gas having a temperature of 600 ° C. or more is cooled to 100 ° C. or more and 500 ° C. or less for 0.01 seconds or more and 2 seconds or less within 0.01 seconds from the start of cooling. More preferably, the temperature of 0.01 seconds from the start of cooling is 50 ° C. or more lower than the reaction temperature in the conversion reaction and 600 ° C. or more.
- the decomposition of trichlorosilane (reverse reaction of the above formula [3]) contained in the reaction gas can be sufficiently suppressed even on a mass production scale, and the cooling condition is not excessive.
- the production of the polymer can be suppressed to a small amount.
- the reaction gas is cooled to 600 ° C. or more within 0.01 seconds from the start of cooling and to 500 ° C. or less within 2 seconds, so that decomposition of trichlorosilane in the reaction gas and generation of a polymer can be achieved. It is suppressed.
- the amount of polymer produced by the cooling rate (polymer production rate) is about 0.1% to about 2%.
- the polymer production rate (mol% -Si) is the ratio of silicon contained in the produced polymer to the raw material silicon tetrachloride (SiCl 4 ) (Si / SiCl 4 in the polymer).
- the cooling rate is made faster than the above conditions, that is, when the reaction gas is cooled to less than 600 ° C. within less than 0.01 seconds from the start of cooling, the decomposition of trichlorosilane is suppressed, but the polymer production rate is 2 There is a tendency to become about 3% to 3%, and there is a tendency that the load in the intermediate reaction process increases. Specifically, the reaction temperature and reaction time required to sufficiently decompose the polymer in the intermediate reaction step increase, so the amount of heat required for heating increases, and the reaction vessel in the intermediate reaction step tends to increase in size. Is seen. On the other hand, if the cooling rate of the first cooling is slower than the above conditions, the decomposition of trichlorosilane in the reaction gas proceeds and the recovery rate of trichlorosilane decreases, which is not preferable.
- the ultimate cooling temperature in the 1A cooling step is suitably 500 ° C. or less within 2 seconds, preferably 100 ° C. or more and 500 ° C. or less.
- the time to reach 500 ° C. or lower is longer than 2 seconds, decomposition of trichlorosilane contained in the reaction gas proceeds.
- cooling the reaction gas to less than 100 ° C. is not preferable because chlorosilanes in the reaction gas may be condensed or precipitated in the apparatus. If the temperature reached by cooling is 100 ° C. or higher, this condensation or precipitation is unlikely to occur, and the reaction gas can be handled as a gas.
- the reaction gas after the first cooling is introduced into an intermediate cooler 122 in which an intermediate reaction step is performed, and the temperature ranges from 500 ° C. to 950 ° C., preferably from 550 ° C. to 800 ° C. for 0.01 seconds or more and Hold for 5 seconds or less.
- the reaction gas after the first cooling in the above temperature range, the polymer generated in the first cooling can be decomposed while suppressing the decomposition of trichlorosilane.
- the arrival time from the 1A cooling step to the temperature of the intermediate reaction step is not particularly limited, but is preferably about 0.01 seconds or more and 3 seconds or less for raising the temperature to a temperature suitable for the intermediate reaction step.
- the reaction gas is cooled to 600 ° C. or more within 0.01 seconds from the start of cooling and to 100 ° C. or more and 500 ° C. or less within 2 seconds (FIG. 4).
- the ultimate cooling temperature is 300 ° C.).
- the cooling temperature is slightly increased and maintained in a temperature range of 550 ° C. or higher and 800 ° C. or lower (550 ° C. in FIG. 4) to advance the decomposition reaction of the polymer generated in the first A cooling step. Can do.
- disassembly of a trichlorosilane is suppressed in this temperature range, content of a trichlorosilane does not reduce substantially.
- the 1A cooling process is a rapid cooling process from a conversion reaction temperature of 1000 ° C. or higher, whereas the cooling from the intermediate reaction process does not require a severe cooling rate like the 1A cooling process, Control of the cooling temperature is easy.
- the holding temperature in the intermediate reaction step is less than 500 ° C.
- the polymer decomposition reaction is very slow, and the produced polymer cannot be reduced.
- this temperature exceeds 950 ° C.
- the decomposition reaction rate of trichlorosilane increases, and the content of trichlorosilane in the reaction gas decreases.
- the holding temperature exceeds 950 ° C.
- the amount of dichlorosilylene (SiCl 2 ) that forms the polymer increases, so that the polymer is generated again during the second cooling.
- the holding temperature in the intermediate reaction step exceeds 950 ° C., the amount of heat for heating to this temperature increases, which is uneconomical.
- the time during which the reaction gas is maintained in the above temperature range is 0.01 seconds or more and 5 seconds or less. If the holding time is less than 0.01 seconds, the polymer is not sufficiently decomposed. On the other hand, if the holding time exceeds 5 seconds, the amount of polymer decomposition does not change. .
- the preferable temperature range of the intermediate reaction step is 550 ° C. or higher and 800 ° C. or lower. In this temperature range, the polymer decomposition reaction proceeds in about 0.02 seconds to about 3 seconds, so that the equipment for the intermediate reaction process can be made relatively small and the temperature and reaction time can be easily controlled.
- the reaction gas after the first cooling is kept in the above temperature range for the above time, so that the polymer produced in the first A cooling step reacts with hydrogen chloride in the reaction gas to react with trichlorosilane or silicon tetrachloride. Disassembled into Therefore, the amount of polymer can be reduced by the intermediate reaction step.
- At least one of silicon tetrachloride (SiCl 4 ) and hydrogen may be introduced into the first cooler 121.
- SiCl 4 silicon tetrachloride
- hydrogen may be introduced into the first cooler 121.
- the amount of SiCl 4 and H 2 introduced into the 1A cooling step is such that the molar ratio is 0.01 or more and 10 or less when the molar amount of SiCl 4 supplied in the conversion reaction is 1. preferable.
- the molar ratio of the introduction amount is less than 0.01, the increase amount of trichlorosilane by introduction is small, and even if it is supplied in excess of 10, the increase amount of trichlorosilane is not greatly changed, which is uneconomical.
- Introducing hydrogen chloride into the intercooler 122 in the intermediate reaction step can further promote the production of trichlorosilane by polymer decomposition.
- the amount of hydrogen chloride to be introduced is preferably in the range of 0.01 or more and 10 or less when the molar amount of SiCl 4 supplied in the conversion reaction is 1. If the molar ratio of the introduction amount is less than 0.01, the effect on the decomposition reaction of the polymer due to the introduction is small, and even if it is supplied in excess of 10, the effect on the decomposition reaction is not increased, which is uneconomical.
- the reaction between hydrogen chloride and the polymer is promoted, and the remaining polymer is slightly lost and one of the decomposition products is lost. It is possible to generate trichlorosilane, which is one of them, and increase the recovery rate of trichlorosilane.
- Second aspect In the method for producing trichlorosilane of the present invention, a reaction containing trichlorosilane, dichlorosilylene, hydrogen chloride, and a higher order silane compound is carried out by converting the raw material silicon tetrachloride and hydrogen at a temperature of 1000 ° C. or higher and 1900 ° C. or lower. In this method, gas is generated and the reaction gas is cooled to recover trichlorosilane.
- the method for producing trichlorosilane according to the present invention includes a first B cooling step for cooling the reaction gas extracted from the converter to less than 600 ° C. within 0.01 seconds, and a reaction gas after the first B cooling step.
- the gas discharged from the polycrystalline silicon reactor 10 used in the polycrystalline silicon manufacturing process includes unreacted trichlorosilane (TCS) and hydrogen, as well as by-produced hydrogen chloride (HCl) and silicon tetrachloride (STC). Chlorosilanes such as dichlorosilane and hexachlorodisilane.
- the exhaust gas containing these chlorosilanes is treated by the same method as the exhaust gas treatment step of the first aspect.
- reaction gas generation process A feed gas containing raw material silicon tetrachloride and hydrogen obtained by distilling and separating the exhaust gas in the exhaust gas treatment step is introduced into the conversion furnace 13.
- the supplied raw material silicon tetrachloride may contain disilanes, or the disilanes may be removed.
- the conversion furnace 13 is heated to 1000 ° C. or more and 1900 ° C. or less, and the supplied raw material gas undergoes a conversion reaction to generate a reaction gas containing trichlorosilane, dichlorosilylene, hydrogen chloride, and a higher silane compound.
- the heating temperature of the conversion furnace 13 is less than 1000 ° C., there are disadvantages that the conversion rate and the conversion speed are reduced and the apparatus is large. Moreover, when the heating temperature of the conversion furnace 13 exceeds 1900 degreeC, a conversion rate will not improve and it is uneconomical as production equipment.
- an example (equilibrium value) of the composition of the reaction product gas with respect to the reaction temperature is shown in FIG. 2 as in the first embodiment.
- the reaction temperature of the conversion reaction is preferably higher.
- the reaction temperature is more preferably set to 1100 ° C. or higher at which the conversion to SiHCl 3 is near the maximum value and the conversion to SiCl 2 is also remarkable.
- the reaction temperature of the first conversion reaction is preferably 1300 ° C.
- the reaction temperature in the conversion reaction step is more preferably 1100 ° C. or higher and 1300 ° C. or lower.
- FIG. 5 An example of the cooling process 14 is shown in FIG. 5, and the change in the cooling temperature of the reaction gas is shown in FIG.
- the reaction gas extracted from the conversion furnace 13 is introduced into the first cooler 221 that performs the 1B cooling step, and is cooled to below 600 ° C. within 0.01 seconds.
- the reaction gas after the 1B cooling step is introduced into the intermediate cooler 222 that performs the intermediate reaction step, and is held in a temperature range of 500 ° C. or more and 950 ° C. or less for 0.01 seconds or more and 5 seconds or less.
- the reaction gas after the intermediate reaction step is introduced into the second cooler 223 that performs the second cooling step, and after being cooled to less than 500 ° C., is sent to the trichlorosilane distillation separation step 15.
- cooling is performed at a cooling rate that sufficiently suppresses decomposition of trichlorosilane (reverse reaction of the above reaction formula [3]). Specifically, it is cooled to less than 600 ° C. within 0.01 seconds. At that time, the cooling is preferably performed so that the ultimate cooling temperature is 100 ° C. or more and 500 ° C. or less. If it cools on these conditions, decomposition
- the polymer production rate in the reaction gas in the 1B cooling step is approximately 0.5% to 3%.
- the ultimate cooling temperature in the 1B cooling step is preferably 100 ° C. or higher. Cooling to below 100 ° C. is not preferable because chlorosilanes in the reaction gas may be condensed or precipitated in the apparatus. If the temperature reached by cooling is 100 ° C. or higher, this condensation or precipitation is unlikely to occur, and the reaction gas can be handled as a gas. In addition, when a part of reaction gas condenses in the 1B cooling process, when introducing this into an intermediate reaction process, it is preferable to supply after preheating and gasifying.
- the reaction gas after the 1B cooling step is introduced into the intermediate cooler 222 in which the intermediate reaction step is performed, and the temperature is 500 ° C. or higher and 950 ° C. or lower, preferably 550 ° C. or higher and 800 ° C. or lower for 0.01 seconds or longer. And hold for 5 seconds or less.
- the arrival time from the 1B cooling step to the temperature of the intermediate reaction step is not particularly limited, but is preferably about 0.01 seconds or more and about 3 seconds or less in order to increase the temperature to a temperature suitable for the intermediate reaction step.
- the reaction gas is cooled to a cooling lower limit temperature (an ultimate cooling temperature) of 100 ° C. or more and 500 ° C. or less (an ultimate cooling temperature of 300 ° C. in FIG. 5).
- the decomposition temperature of the polymer produced in the 1B cooling step is advanced by slightly increasing the cooling temperature and maintaining it in a temperature range of 550 ° C. or higher and 800 ° C. or lower (550 ° C. in FIG. 5). Can do.
- disassembly of a trichlorosilane is suppressed in this temperature range, content of a trichlorosilane does not reduce substantially.
- the 1B cooling process is a rapid quenching process from a conversion reaction temperature of 1000 ° C. or higher, whereas the cooling from the intermediate reaction process does not require a severe cooling rate like the 1B cooling process, Control of the cooling temperature is easy.
- the holding temperature in the intermediate reaction step is less than 500 ° C.
- the polymer decomposition reaction is very slow, and the produced polymer cannot be reduced.
- this temperature exceeds 950 ° C.
- the decomposition reaction rate of trichlorosilane increases, and the content of trichlorosilane in the reaction gas decreases.
- the holding temperature exceeds 950 ° C.
- the amount of dichlorosilylene (SiCl 2 ) that forms the polymer increases, so that the polymer is generated again during the second cooling.
- the intermediate reaction temperature exceeds 950 ° C., the amount of heat for heating to this temperature increases, which is uneconomical.
- the time during which the reaction gas is maintained in the above temperature range is 0.01 seconds or more and 5 seconds or less. If the holding time is less than 0.01 seconds, the polymer is not sufficiently decomposed. On the other hand, if the holding time exceeds 5 seconds, the amount of polymer decomposition does not change. .
- the preferable temperature range of the intermediate reaction step is 550 ° C. or higher and 800 ° C. or lower. In this temperature range, the polymer decomposition reaction proceeds in about 0.02 seconds to about 4 seconds, so that the equipment for the intermediate reaction process can be made relatively small and the temperature and reaction time can be easily controlled.
- the polymer produced in the first B cooling step reacts with hydrogen chloride in the reaction gas to form trichlorosilane or silicon tetrachloride. Since it decomposes, the amount of polymer can be reduced.
- At least one of silicon tetrachloride (SiCl 4 ) and hydrogen may be introduced into the first cooler 221.
- SiCl 4 silicon tetrachloride
- hydrogen may be introduced into the first cooler 221.
- the amount of SiCl 4 and H 2 introduced into the 1B cooling step is such that the molar ratio is in the range of 0.01 to 10 when the molar amount of SiCl 4 supplied in the conversion reaction is 1. preferable.
- the molar ratio of the introduction amount is less than 0.01, the increase amount of trichlorosilane by introduction is small, and even if it is supplied in excess of 10, the increase amount of trichlorosilane is not greatly changed, which is uneconomical.
- the amount of hydrogen chloride to be introduced is preferably in the range of 0.01 or more and 10 or less when the molar amount of SiCl 4 supplied in the conversion reaction is 1. If the molar ratio of the introduction amount is less than 0.01, the effect on the decomposition reaction of the polymer due to the introduction is small, and even if it is supplied in excess of 10, the effect on the decomposition reaction is not increased, which is uneconomical.
- the reaction between hydrogen chloride and the polymer is promoted, and the remaining polymer is slightly lost and one of the decomposition products is lost. It is possible to generate trichlorosilane, which is one of them, and increase the recovery rate of trichlorosilane.
- the conversion rate of SiHCl 3 (mol% -Si) in Table 1 is the production rate of trichlorosilane to the raw material silicon tetrachloride (SiCl 4 ) (SiHCl 3 / SiCl 4 ), and the rate of polymer formation (mol% -Si) Is the ratio of silicon contained in the produced polymer to the raw material silicon tetrachloride (SiCl 4 ) (Si / SiCl 4 in the polymer).
- Table 1 shows the conversion rate and polymer production rate of trichlorosilane contained in the reaction gas after the first cooling step, and the conversion rate and polymer production rate of trichlorosilane contained in the reaction gas after the second cooling step. .
- Examples A12 to A15 The conversion reaction was performed under the same conditions as in Example A1 except that the cooling conditions of the first A cooling step were set as shown in Table 1, and the product gas after the reaction was introduced into the first cooler and cooled.
- Table 1 shows the reaction gas temperature, cooling attainment temperature (cooling lower limit temperature), and cooling lower limit temperature at 0.01 seconds from the start of cooling.
- the reaction gas after the 1A cooling step was introduced into the intercooler, and the cooling temperature was slightly increased to maintain the temperature and time shown in Table 1.
- the reaction gas after the intermediate reaction step was introduced into the second cooler, and the cooling temperature was lowered again to cool to 200 ° C. within 0.3 seconds.
- Table 1 shows the conversion rate and polymer production rate of trichlorosilane contained in the reaction gas after the first cooling step, and the conversion rate and polymer production rate of trichlorosilane contained in the reaction gas after the second cooling step. .
- Example A6 The conversion reaction was performed under the same conditions as in Example A1 except that the cooling conditions of the first A cooling step were set as shown in Table 1, and the product gas after the reaction was introduced into the first cooler and cooled.
- Table 1 shows the reaction gas temperature, cooling attainment temperature (cooling lower limit temperature), and cooling lower limit temperature at 0.01 seconds from the start of cooling.
- the reaction gas after the 1A cooling step was introduced into the intercooler, and the cooling temperature was slightly increased to maintain the temperature and time shown in Table 1.
- the reaction gas after the intermediate reaction step was introduced into the second cooler, and the cooling temperature was lowered again to cool to 200 ° C. within 0.3 seconds.
- Table 1 shows the conversion rate and polymer production rate of trichlorosilane contained in the reaction gas after the first cooling step, and the conversion rate and polymer production rate of trichlorosilane contained in the reaction gas after the second cooling step. .
- the conversion rate of trichlorosilane is 23% or more, but the production rate of the polymer is 0.2% or less. That is, trichlorosilane is efficiently recovered, and the amount of polymer is greatly reduced, thereby greatly reducing the burden of removing the polymer adhering to the facility.
- Comparative Example A1 is an example in which the ultimate cooling temperature in the 1A cooling step is too low, and the conversion rate of trichlorosilane is similar to Example A1, but the polymer production rate is 0.5%. More polymer is produced than Example A1.
- Comparative Example A2 is an example in which the holding temperature in the intermediate reaction step is too high, the conversion rate of trichlorosilane is low, and the polymer production rate is also high.
- Comparative Example A3 is an example in which the holding temperature in the intermediate reaction step is low and the holding time is long, and the conversion rate of trichlorosilane is close to Example A1, but the polymer production rate is high.
- Comparative Example A4 is an example in which the cooling rate in the 1A cooling process is slow (500 ° C. in 2.4 seconds) and the intermediate reaction process is not performed, and 200 in the second cooling process directly after the 1A cooling process. Cooled to ° C. For this reason, although the conversion rate to the polymer was kept low, the conversion rate of trichlorosilane was as low as 20%.
- Example B2 Examples according to the method of the second aspect of the present invention are shown below together with comparative examples. These results are shown in Table 2. Moreover, the change of the cooling temperature of Example B2 is shown in FIG.
- the conversion rate of SiHCl 3 (mol% -Si) in Table 2 is the production rate of trichlorosilane to the raw material silicon tetrachloride (SiCl 4 ) (SiHCl 3 / SiCl 4 ), and the polymer production rate (mol% -Si) Is the ratio of silicon contained in the produced polymer to the raw material silicon tetrachloride (SiCl 4 ) (Si / SiCl 4 in the polymer).
- the product gas after the reaction was introduced into the first cooler and cooled to 300 ° C.
- Table 2 shows the reaction gas temperature and the cooling attainment temperature at 0.01 seconds from the start of cooling.
- the reaction gas after the 1B cooling step was introduced into the intercooler, and the cooling temperature was slightly raised and maintained at the temperature and time shown in Table 2.
- the reaction gas after the intermediate reaction step was introduced into the second cooler, and the cooling temperature was lowered again to cool to 200 ° C. within 0.3 seconds.
- Table 2 shows the amounts of trichlorosilane and polymer contained in the reaction gas after the second cooling step.
- Examples B6 to B9 The conversion reaction was performed under the same conditions as in Example B1 except that the conversion reaction temperature was 1100 ° C., and the product gas after the reaction was introduced into the first cooler and cooled to 300 ° C. Table 2 shows the reaction gas temperature and the cooling attainment temperature at 0.01 seconds from the start of cooling. The reaction gas after the 1B cooling step was introduced into the intercooler, and the cooling temperature was slightly raised and maintained at the temperature and time shown in Table 2. The reaction gas after the intermediate reaction step was introduced into the second cooler and cooled under the same conditions as in Example B1. Table 2 shows the amounts of trichlorosilane and polymer contained in the reaction gas after the second cooling step.
- Examples B10 to B12 The conversion reaction was carried out under the same conditions as in Example B1 except that the conversion reaction temperature was set to 1100 ° C., and the resulting product gas was introduced into the first cooler and cooled to 500 ° C. or 100 ° C. Table 2 shows the reaction gas temperature and the cooling attainment temperature at 0.01 seconds from the start of cooling. The reaction gas after the 1B cooling step was introduced into the intercooler, and the cooling temperature was slightly raised and maintained at the temperature and time shown in Table 2. The reaction gas after the intermediate reaction step was introduced into the second cooler and cooled under the same conditions as in Example B1. Table 2 shows the amounts of trichlorosilane and polymer contained in the reaction gas after the second cooling step.
- the conversion rate of trichlorosilane is 21% or more, but the production rate of the polymer is 0.4% or less. That is, trichlorosilane is efficiently recovered, and the amount of polymer is greatly reduced, thereby greatly reducing the burden of removing the polymer adhering to the facility.
- Comparative Examples B1 to B5 the conversion rate of trichlorosilane is similar to that in Examples B1 to B12, but the polymer production rate is 1.4% or more.
- those without the intermediate reaction step have a polymer production rate of 1.7 to 2.8%, which is significantly higher than that of Examples B1 to B12. .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
このトリクロロシランの製造方法は、反応ガスを冷却してトリクロロシランを回収するトリクロロシランの製造方法である。このトリクロロシランの製造方法では、まず原料の四塩化珪素と水素とを1000℃以上且つ1900℃以下の温度で転換反応させて、トリクロロシラン、ジクロロシリレン、塩化水素、および高次シラン化合物を含む反応ガスを生成させる、次に、転換炉から抜き出した反応ガスを、冷却開始から0.01秒以内に600℃以上であって2秒以内に500℃以下に冷却する。次に、反応ガスを500℃以上且つ950℃以下の温度範囲に0.01秒以上且つ5秒以下の時間保持する。更に、反応ガスを500℃未満に冷却する。
Description
本発明は、四塩化珪素と水素を反応させてトリクロロシランに転換するトリクロロシランの製造方法において、トリクロロシランの回収効果に優れたトリクロロシランの製造方法に関する。
本願は、2008年10月30日に、日本に出願された特願2008-280591号、2008年10月30日に、日本に出願された特願2008-280592号及びに基づき優先権を主張し、その内容をここに援用する。
本願は、2008年10月30日に、日本に出願された特願2008-280591号、2008年10月30日に、日本に出願された特願2008-280592号及びに基づき優先権を主張し、その内容をここに援用する。
高純度多結晶シリコンは、例えばトリクロロシラン(SiHCl3:TCSと云う)、四塩化珪素(SiCl4:STCと云う)、および水素を原料とし、次式[1]に示されるトリクロロシランの水素還元反応、次式[2]に示されるトリクロロシランの熱分解反応によって製造することができる。
SiHCl3+H2 → Si+3HCl ・・・[1]
4SiHCl3→ Si+3SiCl4+2H2 ・・・[2]
4SiHCl3→ Si+3SiCl4+2H2 ・・・[2]
上記製造方法の原料となるトリクロロシランは、金属シリコンに塩化水素を反応させて粗トリクロロシランを製造し、これを蒸留精製して得られる。また、多結晶シリコンの生成反応の排ガスから蒸留分離して回収した四塩化珪素を原料とし、次式[3]に示す水素付加の転換反応によってトリクロロシランを生成させることができる。
SiCl4+H2 → SiHCl3+HCl ・・・[3]
このトリクロロシランを製造する装置として、特許文献1に記載されている転換反応装置(転化炉)が知られている。この転換反応装置には、発熱体に囲まれ、同心配置の2つの管によって形成された外室と内室の二重室を有する反応室と、この反応室の下部に配置されている熱交換器が設けられている。そして、前記熱交換器を介して反応室に水素と四塩化珪素とを供給する原料ガス供給管路と、反応室から反応生成ガスを排出する排出管路とが接続している。上記熱交換器において、反応室に供給される供給ガスが、反応室から排出される反応生成ガスから熱を伝達されて予熱されると共に、排出される反応生成ガスの冷却が行われるようになっている。
また、特許文献2には、四塩化珪素と水素を反応室に導入して600℃~1200℃の温度で転換反応させることによってトリクロロシランと塩化水素とを含む反応生成ガスを得ることが開示されている。そして、トリクロロシランの製造装置としては、反応室から導出された上記反応生成ガスを、例えば1秒以内に300℃以下にまで達するような冷却速度で急冷する冷却手段を備えたものが提案されている。
ところで、特許文献1に記載のトリクロロシランの製造装置では、反応室下部の熱交換器において、供給された原料ガスと熱交換することによって反応生成ガスの冷却が行われる。しかし、反応生成ガスを冷却する過程で、トリクロロシランが塩化水素と反応して四塩化珪素(STC)と水素に分解する上記反応式[3]の逆反応が生じる。従来のような熱交換器による冷却では、冷却速度が遅いため上記逆反応の発生を十分に抑えることはできず、トリクロロシランへの転換率が低下すると云う不都合があった。
また、特許文献2に記載されているように、上記逆反応がほとんど生じなくなる300℃以下の温度範囲まで1秒以下の極端に短い時間で急冷することによって、上記反応式[3]の逆反応を抑制することが可能である。しかし、このような極端に短い時間で急冷した場合には、冷却過程において、次式[4]に示すように、反応ガス中に含まれるSiCl2(ジクロロシリレン)がSiCl4と反応してポリマーが副生することが知られている。このSiCl2は、転換反応において高温下で多く生成し、特に1200℃を超える温度下で顕著に生成され、転換炉から抜き出した反応ガスに含まれている。
SiCl2+SiCl4 → Si2Cl6 ・・・[4]
なお、ポリマーとは、Si2Cl6(クロロジシラン)、Si3Cl8(クロロトリシラン)、Si2H2Cl4などのように、シリコン2原子以上を含む高次クロロシラン類の総称である。
このように、極端に短い時間で急冷した場合には、冷却中のトリクロロシランの分解(式[3]の逆反応)が抑制されて、トリクロロシランの減少量が少なくなるが、ポリマーの生成量が増加し、冷却工程後の配管などにポリマーが堆積する、などの不具合が生じる。一方、冷却速度が遅い場合には、ポリマーの生成量が低減するものの、トリクロロシランの分解が進行してトリクロロシランの回収率が低下する。
このように、転換炉から抜き出した反応ガスは、適切な冷却速度にコントロールする必要がある。しかしながら、転換炉から抜き出した反応ガスは1000℃以上の高温度であり、これを急冷する場合、トリクロロシランが分解しやすい600℃以上の高温度域での冷却速度を適切にコントロールすることは難しい。このため、従来はトリクロロシランの回収率を高めることを優先して、過剰な冷却速度で冷却していた。
そのため、トリクロロシランの回収率は高いが、ポリマーの発生を抑制することができず、配管に付着したポリマー除去作業の負担が大きいと云う問題がある。とくに装置の大型化に伴い冷却速度には分布が生じるため、ガス全体の冷却速度を適切にコントロールすることが困難になり、局部的に冷却速度が極端に大きくなる場合がある。このためポリマーの発生を十分抑えることが難しくなる。
本発明は、従来の上記課題を解決することを目的とし、転換反応によって生成したガスを冷却する工程において、トリクロロシランの分解とポリマーの生成を効果的に抑制し、ポリマー除去作業の負担が少なく、しかもトリクロロシランの回収率が高いトリクロロシランの製造方法を提供する。
本発明の第1の態様は、以下の構成を有することによって上記課題を解決したトリクロロシランの製造方法に関する。
〔A1〕反応ガスを冷却してトリクロロシランを回収するトリクロロシランの製造方法であって、
原料の四塩化珪素と水素とを1000℃以上且つ1900℃以下の温度で転換反応させて、トリクロロシラン、ジクロロシリレン、塩化水素、および高次シラン化合物を含む反応ガスを生成させる、反応ガス生成工程、
前記反応ガス生成工程後の転換炉から抜き出した反応ガスを、冷却開始から0.01秒以内に600℃以上であって2秒以内に500℃以下に冷却する第1A冷却工程、
前記第1A冷却工程後の、反応ガスを500℃以上且つ950℃以下の温度範囲に0.01秒以上且つ5秒以下の時間保持する中間反応工程、及び
前記中間反応工程後の、反応ガスを500℃未満に冷却する第2冷却工程、
を有することを特徴とするトリクロロシランの製造方法。
〔A2〕前記第1A冷却工程において、反応ガスの到達冷却温度が100℃以上且つ500℃以下である上記[A1]に記載するトリクロロシランの製造方法。
〔A3〕前記中間反応工程において、反応ガスを550℃以上且つ800℃以下に保持する上記[A1]または上記[A2]に記載するトリクロロシランの製造方法。
〔A4〕前記第1A冷却工程で反応ガスを到達冷却温度が100℃以上且つ500℃以下となるように冷却し、冷却した反応ガスを前記中間反応工程で550℃以上且つ800℃以下の温度に保持する上記[A1]~上記[A3]の何れかに記載するトリクロロシランの製造方法。
〔A5〕上記[A1]~上記[A4]の何れかに記載する方法によって回収したトリクロロシランを多結晶シリコンの製造原料の一部に用いるトリクロロシランの利用方法。
〔A1〕反応ガスを冷却してトリクロロシランを回収するトリクロロシランの製造方法であって、
原料の四塩化珪素と水素とを1000℃以上且つ1900℃以下の温度で転換反応させて、トリクロロシラン、ジクロロシリレン、塩化水素、および高次シラン化合物を含む反応ガスを生成させる、反応ガス生成工程、
前記反応ガス生成工程後の転換炉から抜き出した反応ガスを、冷却開始から0.01秒以内に600℃以上であって2秒以内に500℃以下に冷却する第1A冷却工程、
前記第1A冷却工程後の、反応ガスを500℃以上且つ950℃以下の温度範囲に0.01秒以上且つ5秒以下の時間保持する中間反応工程、及び
前記中間反応工程後の、反応ガスを500℃未満に冷却する第2冷却工程、
を有することを特徴とするトリクロロシランの製造方法。
〔A2〕前記第1A冷却工程において、反応ガスの到達冷却温度が100℃以上且つ500℃以下である上記[A1]に記載するトリクロロシランの製造方法。
〔A3〕前記中間反応工程において、反応ガスを550℃以上且つ800℃以下に保持する上記[A1]または上記[A2]に記載するトリクロロシランの製造方法。
〔A4〕前記第1A冷却工程で反応ガスを到達冷却温度が100℃以上且つ500℃以下となるように冷却し、冷却した反応ガスを前記中間反応工程で550℃以上且つ800℃以下の温度に保持する上記[A1]~上記[A3]の何れかに記載するトリクロロシランの製造方法。
〔A5〕上記[A1]~上記[A4]の何れかに記載する方法によって回収したトリクロロシランを多結晶シリコンの製造原料の一部に用いるトリクロロシランの利用方法。
本発明の第1の態様における製造方法では、まず、原料の四塩化珪素と水素とを1000℃以上且つ1900℃以下の温度で転換反応させてトリクロロシラン、ジクロロシリレン、塩化水素、および高次シラン化合物を含む反応ガスを生成させる。その後、転換炉から抜き出した反応ガスを冷却開始から0.01秒以内に600℃以上であって、2秒以内に500℃以下に冷却し、好ましくは到達冷却温度が100℃以上且つ500℃未満となるように冷却する(第1A冷却工程)。この冷却方法によれば、反応ガスに含まれているトリクロロシランの分解(上記式[3]の逆反応)を効果的に抑制することができる。
上記第1A冷却工程では、反応ガスの急冷によってポリマーが少量生成する。しかし、本発明の第1の態様では、急冷した反応ガスを、中間反応工程において、500℃以上且つ950℃以下、好ましくは、550℃以上且つ800℃以下の温度範囲に、0.01秒以上且つ5秒間以下の時間、保持する。この中間反応工程により、反応ガスに含まれるポリマーが十分に分解する。一方、中間反応工程において保持温度の上限を950℃以下、好ましくは800℃以下に制限しているので、保持温度は第1A冷却工程の冷却開始温度(概ね1000℃以上)よりも十分に低く、従って、反応ガス中のトリクロロシランの分解も少ない。
本発明の第1の態様では、中間反応工程によってポリマーを分解した反応ガスを、第2冷却工程において最終的に500℃未満に冷却してトリクロロシランを回収する。
本発明の第2の態様は、以下の構成を有することによって上記課題を解決したトリクロロシランの製造方法に関する。
〔B1〕反応ガスを冷却してトリクロロシランを回収するトリクロロシランの製造方法であって、
原料の四塩化珪素と水素とを1000℃以上且つ1900℃以下の温度で転換反応させてトリクロロシラン、ジクロロシリレン、塩化水素、および高次シラン化合物を含む反応ガスを生成させる、反応ガス生成工程、
前記反応ガス生成工程後の転換炉から抜き出した反応ガスを0.01秒以内に600℃未満に冷却する第1B冷却工程、
前記第1B冷却工程後の反応ガスを500℃以上且つ950℃以下の温度範囲に0.01秒以上且つ5秒以下の時間保持する中間反応工程、及び
前記中間反応工程後の反応ガスを500℃未満に冷却する第2冷却工程、
を有することを特徴とするトリクロロシランの製造方法。
〔B2〕前記第1B冷却工程において、反応ガスの到達冷却温度が100℃以上且つ500℃以下である上記[B1]に記載するトリクロロシランの製造方法。
〔B3〕前記中間反応工程において、反応ガスを550℃以上且つ800℃以下に保持する上記[B1]または上記[B2]に記載するトリクロロシランの製造方法。
〔B4〕前記第1B冷却工程で反応ガスを到達冷却温度が100℃以上且つ500℃以下となるように冷却し、冷却した反応ガスを前記中間反応工程で550℃以上且つ800℃以下の温度に保持する上記[B1]~上記[B3]の何れかに記載するトリクロロシランの製造方法。
〔B5〕上記[B1]~上記[B4]の何れかに記載する方法によって回収したトリクロロシランを多結晶シリコンの製造原料の一部に用いるトリクロロシランの利用方法。
〔B1〕反応ガスを冷却してトリクロロシランを回収するトリクロロシランの製造方法であって、
原料の四塩化珪素と水素とを1000℃以上且つ1900℃以下の温度で転換反応させてトリクロロシラン、ジクロロシリレン、塩化水素、および高次シラン化合物を含む反応ガスを生成させる、反応ガス生成工程、
前記反応ガス生成工程後の転換炉から抜き出した反応ガスを0.01秒以内に600℃未満に冷却する第1B冷却工程、
前記第1B冷却工程後の反応ガスを500℃以上且つ950℃以下の温度範囲に0.01秒以上且つ5秒以下の時間保持する中間反応工程、及び
前記中間反応工程後の反応ガスを500℃未満に冷却する第2冷却工程、
を有することを特徴とするトリクロロシランの製造方法。
〔B2〕前記第1B冷却工程において、反応ガスの到達冷却温度が100℃以上且つ500℃以下である上記[B1]に記載するトリクロロシランの製造方法。
〔B3〕前記中間反応工程において、反応ガスを550℃以上且つ800℃以下に保持する上記[B1]または上記[B2]に記載するトリクロロシランの製造方法。
〔B4〕前記第1B冷却工程で反応ガスを到達冷却温度が100℃以上且つ500℃以下となるように冷却し、冷却した反応ガスを前記中間反応工程で550℃以上且つ800℃以下の温度に保持する上記[B1]~上記[B3]の何れかに記載するトリクロロシランの製造方法。
〔B5〕上記[B1]~上記[B4]の何れかに記載する方法によって回収したトリクロロシランを多結晶シリコンの製造原料の一部に用いるトリクロロシランの利用方法。
本発明の第2の態様における製造方法では、まず、原料の四塩化珪素と水素とを1000℃以上且つ1900℃以下の温度で転換反応させてトリクロロシラン、ジクロロシリレン、塩化水素、および高次シラン化合物を含む反応ガスを生成させる。その後、転換炉から抜き出した反応ガスを0.01秒以内の短時間に600℃未満で、好ましくは到達冷却温度が100℃以上~500℃未満となるように冷却する(第1B冷却工程)。この冷却方法によれば、反応ガスに含まれているトリクロロシランの分解(上記式[3]の逆反応)を効果的に抑制することができる。
上記第1B冷却工程では、反応ガスの急冷によってポリマーが生成する。しかし、急冷した反応ガスを、中間反応工程において、500℃以上且つ950℃以下、好ましくは、550℃以上且つ800℃以下に温度範囲に、0.01秒以上且つ5秒間以下の時間、保持する。この中間反応工程により、反応ガスに含まれるポリマーが十分に分解する。一方、中間反応工程において保持温度の上限を950℃以下、好ましくは800℃以下に制限しているので、保持温度は第1B冷却工程の冷却開始温度(概ね1000℃以上)よりも十分に低く、従って、反応ガス中のトリクロロシランの分解も少ない。
本発明の第1の態様では、中間反応工程によってポリマーを分解した反応ガスを、第2冷却工程において最終的に500℃未満に冷却してトリクロロシランを回収する。
本発明の製造方法では、第1A冷却工程および中間反応工程、又は第1B冷却工程および中間反応工程、を通じて反応ガスに含まれるトリクロロシランの分解とポリマーの生成が抑制されているので、高い回収率でトリクロロシランを回収することができる。また、第2冷却後の反応ガスは実質的にポリマーを含まないので、配管付着などのトラブルを軽減することができ、装置の健全性を維持することができる。
以下、本発明に係るトリクロロシランの製造方法について、実施形態に基づいて具体的に説明する。
第1の態様:
本発明のトリクロロシランの製造方法は、原料の四塩化珪素と水素とを1000℃以上且つ1900℃以下の温度で転換反応させてトリクロロシラン、ジクロロシリレン、塩化水素、および高次シラン化合物を含む反応ガスを生成させ、この反応ガスを冷却してトリクロロシランを回収する方法である。本発明のトリクロロシランの製造方法は、第1の態様において、冷却開始から0.01秒以内に600℃以上であって2秒以内に500℃以下に冷却する第1A冷却工程と、第1A冷却工程後の反応ガスを500℃以上且つ950℃以下の温度範囲に0.01秒以上且つ5秒以下の時間保持する中間反応工程と、中間反応工程後の反応ガスを500℃未満に冷却する第2冷却工程を有することを特徴とする。
本発明のトリクロロシランの製造方法は、原料の四塩化珪素と水素とを1000℃以上且つ1900℃以下の温度で転換反応させてトリクロロシラン、ジクロロシリレン、塩化水素、および高次シラン化合物を含む反応ガスを生成させ、この反応ガスを冷却してトリクロロシランを回収する方法である。本発明のトリクロロシランの製造方法は、第1の態様において、冷却開始から0.01秒以内に600℃以上であって2秒以内に500℃以下に冷却する第1A冷却工程と、第1A冷却工程後の反応ガスを500℃以上且つ950℃以下の温度範囲に0.01秒以上且つ5秒以下の時間保持する中間反応工程と、中間反応工程後の反応ガスを500℃未満に冷却する第2冷却工程を有することを特徴とする。
〔多結晶シリコン製造工程〕
多結晶シリコン製造工程と転換反応を図1に示す。図1に示す多結晶シリコン製造工程において、原料のトリクロロシラン(TCS)、水素、及び四塩化珪素(STC)によるガスが多結晶シリコン反応炉10に導入される。図7に示されるように、多結晶シリコン反応炉10は、炉底を構成する基台71と、釣鐘状ベルジャ72とを具備している。基台71には、上記原料ガスを供給する噴出ノズル73と、反応後の排ガスを排出するガス排出口74と、シリコン芯棒組み立て体75が設置されている。赤熱したシリコン芯棒組み立て体75(約800℃~1200℃)の表面に接触した上記原料ガスが下記反応[1][2]に従って反応し、生成したシリコンがシリコン芯棒組み立て体75の表面に析出し、次第に径の太い多結晶シリコン棒に成長する。
SiHCl3+H2 → Si+3HCl ・・・[1]
4SiHCl3→ Si+3SiCl4+2H2 ・・・[2]
多結晶シリコン製造工程と転換反応を図1に示す。図1に示す多結晶シリコン製造工程において、原料のトリクロロシラン(TCS)、水素、及び四塩化珪素(STC)によるガスが多結晶シリコン反応炉10に導入される。図7に示されるように、多結晶シリコン反応炉10は、炉底を構成する基台71と、釣鐘状ベルジャ72とを具備している。基台71には、上記原料ガスを供給する噴出ノズル73と、反応後の排ガスを排出するガス排出口74と、シリコン芯棒組み立て体75が設置されている。赤熱したシリコン芯棒組み立て体75(約800℃~1200℃)の表面に接触した上記原料ガスが下記反応[1][2]に従って反応し、生成したシリコンがシリコン芯棒組み立て体75の表面に析出し、次第に径の太い多結晶シリコン棒に成長する。
SiHCl3+H2 → Si+3HCl ・・・[1]
4SiHCl3→ Si+3SiCl4+2H2 ・・・[2]
〔排ガス処理工程〕
上記多結晶シリコン反応炉10から排出されるガスには、未反応のトリクロロシラン(TCS)および水素と共に、副生した塩化水素(HCl)、および四塩化珪素(STC)、ジクロロシラン、ヘキサクロロジシランなどのクロロシラン類が含まれる。これらのクロロシラン類を含む排ガスは冷却器11に導かれ、-60℃付近(例えば-65℃~-55℃)に冷却して凝縮液化される。ここで液化せずにガス状のまま残る水素は分離され、精製工程を経て原料ガスの一部として再び多結晶シリコン反応炉10に供給され再利用される。
上記多結晶シリコン反応炉10から排出されるガスには、未反応のトリクロロシラン(TCS)および水素と共に、副生した塩化水素(HCl)、および四塩化珪素(STC)、ジクロロシラン、ヘキサクロロジシランなどのクロロシラン類が含まれる。これらのクロロシラン類を含む排ガスは冷却器11に導かれ、-60℃付近(例えば-65℃~-55℃)に冷却して凝縮液化される。ここで液化せずにガス状のまま残る水素は分離され、精製工程を経て原料ガスの一部として再び多結晶シリコン反応炉10に供給され再利用される。
冷却器11で液化されたクロロシラン類を含む凝縮液は蒸留工程12に導入され、トリクロロシラン(TCS)が蒸留分離され、回収したTCSは多結晶シリコンの製造プロセスに戻して再利用される。
次いで、四塩化珪素(STC)が蒸留分離される。この四塩化珪素は水素と共に転換炉13に導入され、1000℃以上且つ1900℃以下の温度下で、下記式[3]に示す転換反応によってトリクロロシラン(TCS)が生成される。
SiCl4+H2 → SiHCl3+HCl ・・・[3]
このTCSを含む反応ガスは冷却工程14を経て凝縮工程15に導入され、TCSが回収される。回収したTCSは多結晶シリコンの製造プロセスに戻され、多結晶シリコンの製造原料として再利用される。
SiCl4+H2 → SiHCl3+HCl ・・・[3]
このTCSを含む反応ガスは冷却工程14を経て凝縮工程15に導入され、TCSが回収される。回収したTCSは多結晶シリコンの製造プロセスに戻され、多結晶シリコンの製造原料として再利用される。
〔反応ガス生成工程〕
原料の四塩化珪素と水素を含む供給ガスは転換炉13に導入される。図8に転換炉13の断面図を示す。例えば円筒状の転換炉13には、上記供給ガスを導入するために下部側壁面に設けられた供給口81、転換反応後の反応ガスを排出するために上面中央部に設けられた排気管82、排気管82を囲むように設けられた円筒状のヒータ83、及びヒータ83を囲むように設けられた円筒状の仕切り壁84から構成されている。仕切り壁84の上部には仕切り壁84の円周に沿って開口部85が設けられ、上記供給ガスを供給口81から排気管82まで導く流路を形成している。供給される原料の四塩化珪素にはジシラン類を含んでも良いし、またジシラン類を取り除いても良い。転換炉13は1000℃以上且つ1900℃以下に加熱され、供給された原料ガスが転換反応してトリクロロシラン、ジクロロシリレン、塩化水素および高次シラン化合物を含む反応ガスが生成される。
原料の四塩化珪素と水素を含む供給ガスは転換炉13に導入される。図8に転換炉13の断面図を示す。例えば円筒状の転換炉13には、上記供給ガスを導入するために下部側壁面に設けられた供給口81、転換反応後の反応ガスを排出するために上面中央部に設けられた排気管82、排気管82を囲むように設けられた円筒状のヒータ83、及びヒータ83を囲むように設けられた円筒状の仕切り壁84から構成されている。仕切り壁84の上部には仕切り壁84の円周に沿って開口部85が設けられ、上記供給ガスを供給口81から排気管82まで導く流路を形成している。供給される原料の四塩化珪素にはジシラン類を含んでも良いし、またジシラン類を取り除いても良い。転換炉13は1000℃以上且つ1900℃以下に加熱され、供給された原料ガスが転換反応してトリクロロシラン、ジクロロシリレン、塩化水素および高次シラン化合物を含む反応ガスが生成される。
転換炉13の加熱温度が1000℃未満であると、転換率や転換速度が小さくなると共に装置が大型になる不都合がある。また、転換炉13の加熱温度が1900℃を超えると転換率は向上せず、生産設備として不経済である。
転換反応において、反応温度に対する反応生成ガスの組成の一例(平衡値)を図2に示す。図示するように、転換反応によって生成するガスには、目的物であるトリクロロシランと共に、未反応のH2、SiCl4、およびHCl、SiCl2、ポリマーなどの副生物が含まれている。
図2のグラフに示すように、転換反応におけるSiCl4の転換量(SiCl4の減少変化量)は温度とともに増加するため、転換反応の反応温度は高い方が好ましい。特に反応温度を、SiHCl3への転換が最大値付近となり、さらにSiCl2への転換も顕著となる1100℃以上とすることがより好ましい。一方、転換反応の反応温度が高い程、その後に続く第1A冷却工程でのトリクロロシランの分解(上記反応式[3]の逆反応)の反応速度も大きくなる。このため、転換反応の反応温度が高い場合、第1A冷却工程でのトリクロロシランの分解抑制効果が小さくなる。つまり、転換反応工程で高いSiCl4の転換量を得たとしても、第1A冷却工程、第2冷却工程を経て最終的に得られるSiCl4の転換量はそれ程大きくはならない。従って、第1A冷却工程での急冷効果を十分に発揮させて冷却後の高いSiCl4転換量を得るためには、最初の転換反応の反応温度は1300℃以下が好ましい。以上のことから、転換反応工程の反応温度は1100℃以上且つ1300℃以下がより好ましい。
〔冷却工程〕
冷却工程14の一例を図3に示し、反応ガスの冷却温度の変化を図4に示す。図示するように、転換炉13から抜き出された反応ガスは第1A冷却工程を行う第1冷却器121に導入される。第1冷却器121では、冷却開始から0.01秒以内に600℃以上であって2秒以内に500℃以下に冷却される。第1A冷却工程後の反応ガスは中間反応工程を行う中間冷却器122に導入され、500℃以上且つ950℃以下の温度範囲に0.01秒以上且つ5秒間以下の時間保持される。次いで、中間反応工程後の反応ガスは第2冷却工程を行う第2冷却器123に導入され、500℃未満に冷却された後にトリクロロシランの蒸留分離工程15に送られる。
冷却工程14の一例を図3に示し、反応ガスの冷却温度の変化を図4に示す。図示するように、転換炉13から抜き出された反応ガスは第1A冷却工程を行う第1冷却器121に導入される。第1冷却器121では、冷却開始から0.01秒以内に600℃以上であって2秒以内に500℃以下に冷却される。第1A冷却工程後の反応ガスは中間反応工程を行う中間冷却器122に導入され、500℃以上且つ950℃以下の温度範囲に0.01秒以上且つ5秒間以下の時間保持される。次いで、中間反応工程後の反応ガスは第2冷却工程を行う第2冷却器123に導入され、500℃未満に冷却された後にトリクロロシランの蒸留分離工程15に送られる。
〔第1A冷却工程〕
第1A冷却工程ではトリクロロシランの分解(上記反応式[3]の逆反応)を十分に抑制する冷却速度で冷却する。具体的には、冷却開始から0.01秒以内に600℃以上であって2秒以内に500℃以下に冷却する。好ましくは、冷却開始から0.01秒以内は600℃以上の温度を有する反応ガスを、0.01秒以上且つ2秒以下の間に、100℃以上且つ500℃以下に冷却する。より好ましくは、冷却開始から0.01秒の温度が、転換反応における反応温度より50℃以上低く、且つ600℃以上である。この条件下で冷却すれば、量産規模においても反応ガスに含まれているトリクロロシランの分解(上記式[3]の逆反応)を十分に抑制することができ、しかも過度な冷却条件とならずポリマーの生成を少量に抑えることができる。
第1A冷却工程ではトリクロロシランの分解(上記反応式[3]の逆反応)を十分に抑制する冷却速度で冷却する。具体的には、冷却開始から0.01秒以内に600℃以上であって2秒以内に500℃以下に冷却する。好ましくは、冷却開始から0.01秒以内は600℃以上の温度を有する反応ガスを、0.01秒以上且つ2秒以下の間に、100℃以上且つ500℃以下に冷却する。より好ましくは、冷却開始から0.01秒の温度が、転換反応における反応温度より50℃以上低く、且つ600℃以上である。この条件下で冷却すれば、量産規模においても反応ガスに含まれているトリクロロシランの分解(上記式[3]の逆反応)を十分に抑制することができ、しかも過度な冷却条件とならずポリマーの生成を少量に抑えることができる。
第1A冷却工程において、反応ガスを冷却開始から0.01秒以内は600℃以上であって2秒以内に500℃以下に冷却することによって、反応ガス中のトリクロロシランの分解とポリマーの生成が抑制される。上記冷却速度によって生じるポリマーの量(ポリマー生成率)は0.1%以上且つ2%以下程度である。ポリマー生成率(mol%‐Si)は原料の四塩化珪素(SiCl4)に対する生成したポリマーに含まれるシリコンの割合(ポリマー中Si/SiCl4)である。
冷却の速度を上記条件よりも速めた場合、すなわち反応ガスを冷却開始から0.01秒未満の時間内に600℃未満まで冷却すると、トリクロロシランの分解は抑制されるものの、ポリマー生成率が2%~3%程度になる傾向があり、中間反応工程での負荷が増加する傾向がみられる。具体的には、中間反応工程でポリマーを十分に分解するために必要な反応温度や反応時間が増大するため、加熱に必要な熱量が大きくなり、また中間反応工程の反応容器が大型化する傾向がみられる。一方、第1冷却の冷却速度が上記条件よりも遅いと、反応ガス中のトリクロロシランの分解が進行し、トリクロロシランの回収率が低下するので好ましくない。
第1A冷却工程の到達冷却温度は、2秒以内に500℃以下が適当であり、100℃以上且つ500℃以下が好ましい。500℃以下に到達する時間が2秒より長いと反応ガスに含まるトリクロロシランの分解が進行する。また、反応ガスを100℃未満まで冷却すると反応ガス中のクロロシラン類が装置内に凝縮したり析出することがあるので好ましくない。冷却到達温度が100℃以上であればこの凝縮や析出が生じ難く、反応ガスを気体のままハンドリングすることができる。なお、第1A冷却工程において反応ガスの一部が凝縮した場合には、これを中間反応工程に導入する際には予熱してガス化した後に供給することが好ましい。
〔中間反応工程〕
第1冷却後の反応ガスを中間反応工程が行われる中間冷却器122に導入し、500℃以上且つ950℃以下、好ましくは、550℃以上且つ800℃以下の温度範囲に0.01秒以上且つ5秒以下の時間保持する。第1冷却後の反応ガスを上記温度範囲に保持することによって、トリクロロシランの分解を抑制しつつ、第1冷却において生成したポリマーを分解することができる。第1A冷却工程から中間反応工程の温度までの到達時間は特に限定しないが、中間反応工程に適した温度への昇温のために0.01秒以上且つ3秒以下程度であることが好ましい。
第1冷却後の反応ガスを中間反応工程が行われる中間冷却器122に導入し、500℃以上且つ950℃以下、好ましくは、550℃以上且つ800℃以下の温度範囲に0.01秒以上且つ5秒以下の時間保持する。第1冷却後の反応ガスを上記温度範囲に保持することによって、トリクロロシランの分解を抑制しつつ、第1冷却において生成したポリマーを分解することができる。第1A冷却工程から中間反応工程の温度までの到達時間は特に限定しないが、中間反応工程に適した温度への昇温のために0.01秒以上且つ3秒以下程度であることが好ましい。
図4に示すように、例えばまず、第1A冷却工程において、反応ガスを冷却開始から0.01秒以内は600℃以上であって2秒以内に100℃以上且つ500℃以下に冷却する(図4では到達冷却温度300℃)。その後、中間反応工程において、冷却温度をやや高めて550℃以上且つ800℃以下の温度範囲(図4では550℃)に保持することによって、第1A冷却工程において生成したポリマーの分解反応を進めることができる。また、この温度範囲ではトリクロロシランの分解が抑制されるので、トリクロロシランの含有量が実質的に減少しない。
さらに、第1A冷却工程は1000℃以上の転換反応温度からの短時間の急冷工程であるのに対して、中間反応工程からの冷却は第1A冷却工程のような厳しい冷却速度を必要とせず、冷却温度のコントロールが容易である。
中間反応工程の保持温度が500℃未満では、ポリマーの分解反応が非常に遅く、生成したポリマーを減少させることができない。一方、この温度が950℃を超えると、トリクロロシランの分解反応速度が大きくなり、反応ガス中のトリクロロシラン含有量が減少する。更に、保持温度が950℃を超えると、ポリマーを生成させるジクロロシリレン(SiCl2)の量が増加するため、第2冷却時にポリマーを再び発生させることになる。さらに、中間反応工程の保持温度が950℃を上回ると、この温度に加熱するための熱量が大きくなり不経済である。
中間反応工程において、反応ガスを上記温度範囲に保持する時間は0.01秒以上且つ5秒以下である。この保持時間が0.01秒未満ではポリマーの分解が十分に行われず、一方、保持時間が5秒を越えてもポリマーの分解量は変化せず、むしろ装置が大型化するため不経済である。
中間反応工程の好ましい温度範囲は550℃以上且つ800℃以下である。この温度範囲では、ポリマーの分解反応が約0.02秒~約3秒で進行するため、中間反応工程の設備が比較的小型化できるとともに温度や反応時間のコントロールも容易になる。
中間反応工程においては、第1冷却後の反応ガスを上記温度範囲に上記時間保持することによって、第1A冷却工程において生成したポリマーは反応ガス中の塩化水素と反応してトリクロロシランや四塩化珪素に分解する。従って、中間反応工程によって、ポリマー量を低減することができる。
〔第2冷却工程〕
中間反応工程後の反応ガスは第2冷却工程が行われる第2冷却器123に導入され、500℃未満に再び冷却された後にトリクロロシランの蒸留分離工程15に送られる。
中間反応工程後の反応ガスは第2冷却工程が行われる第2冷却器123に導入され、500℃未満に再び冷却された後にトリクロロシランの蒸留分離工程15に送られる。
〔ガスの導入〕
第1A冷却工程において、第1冷却器121に四塩化珪素(SiCl4)および水素の少なくとも一方を導入するとよい。第1A冷却工程で反応ガス中のSiCl4濃度およびH2濃度を高めることによって、冷却初期にトリクロロシランの生成を促し、トリクロロシランの分解を抑制することができる。
第1A冷却工程において、第1冷却器121に四塩化珪素(SiCl4)および水素の少なくとも一方を導入するとよい。第1A冷却工程で反応ガス中のSiCl4濃度およびH2濃度を高めることによって、冷却初期にトリクロロシランの生成を促し、トリクロロシランの分解を抑制することができる。
第1A冷却工程に導入するSiCl4およびH2の導入量は、転換反応において供給するSiCl4のモル量を1とした場合、いずれもモル比が0.01以上10以下の範囲であることが好ましい。導入量のモル比が0.01未満では、導入によるトリクロロシランの増加量が小さく、10を超えて供給しても、トリクロロシランの増加量に大きな変化はなく不経済である。
中間反応工程において、塩化水素を中間冷却器122に導入することによって、ポリマーの分解によるトリクロロシランの生成をさらに促進することができる。導入する塩化水素量は、転換反応において供給するSiCl4のモル量を1とした場合、モル比が0.01以上且つ10以下の範囲であることが好ましい。導入量のモル比が0.01未満では、導入によるポリマーの分解反応への効果が小さく、10を超えて供給しても分解反応への効果は大きくならず不経済である。
第2冷却工程において、350℃以上の温度域で、反応ガスに塩化水素を混合することによって、塩化水素とポリマーとの反応を促進させ、わずかに残留するポリマーを消失させると共に分解生成物の一つであるトリクロロシランを生成させ、トリクロロシランの回収率を高めることできる。
第2の態様:
本発明のトリクロロシランの製造方法は、原料の四塩化珪素と水素とを1000℃以上且つ1900℃以下の温度で転換反応させてトリクロロシラン、ジクロロシリレン、塩化水素、および高次シラン化合物を含む反応ガスを生成させ、この反応ガスを冷却してトリクロロシランを回収する方法である。本発明のトリクロロシランの製造方法は、第1の態様において、転換炉から抜き出した反応ガスを0.01秒以内に600℃未満に冷却する第1B冷却工程と、第1B冷却工程後の反応ガスを500℃以上且つ950℃以下の温度範囲に0.01秒以上且つ5秒以下の時間保持する中間反応工程と、中間反応工程後の反応ガスを500℃未満に冷却する第2冷却工程を有することを特徴とする。
本発明のトリクロロシランの製造方法は、原料の四塩化珪素と水素とを1000℃以上且つ1900℃以下の温度で転換反応させてトリクロロシラン、ジクロロシリレン、塩化水素、および高次シラン化合物を含む反応ガスを生成させ、この反応ガスを冷却してトリクロロシランを回収する方法である。本発明のトリクロロシランの製造方法は、第1の態様において、転換炉から抜き出した反応ガスを0.01秒以内に600℃未満に冷却する第1B冷却工程と、第1B冷却工程後の反応ガスを500℃以上且つ950℃以下の温度範囲に0.01秒以上且つ5秒以下の時間保持する中間反応工程と、中間反応工程後の反応ガスを500℃未満に冷却する第2冷却工程を有することを特徴とする。
〔多結晶シリコン製造工程〕
多結晶シリコン製造工程と転換反応を図1に示す。第2の態様の多結晶シリコン製造工程は、第1の態様の多結晶シリコン製造工程と同様に行われる。
多結晶シリコン製造工程と転換反応を図1に示す。第2の態様の多結晶シリコン製造工程は、第1の態様の多結晶シリコン製造工程と同様に行われる。
〔排ガス処理工程〕
多結晶シリコン製造工程で用いた多結晶シリコン反応炉10から排出されるガスには、未反応のトリクロロシラン(TCS)および水素と共に、副生した塩化水素(HCl)、および四塩化珪素(STC)、ジクロロシラン、ヘキサクロロジシランなどのクロロシラン類が含まれる。これらのクロロシラン類を含む排ガスは、第1の態様の排ガス処理工程と同様の方法で処理される。
多結晶シリコン製造工程で用いた多結晶シリコン反応炉10から排出されるガスには、未反応のトリクロロシラン(TCS)および水素と共に、副生した塩化水素(HCl)、および四塩化珪素(STC)、ジクロロシラン、ヘキサクロロジシランなどのクロロシラン類が含まれる。これらのクロロシラン類を含む排ガスは、第1の態様の排ガス処理工程と同様の方法で処理される。
〔反応ガス生成工程〕
排ガス処理工程にて排ガスを蒸留分離して得た原料の四塩化珪素と水素を含む供給ガスは転換炉13に導入される。供給される原料の四塩化珪素にはジシラン類を含んでも良いし、またジシラン類を取り除いても良い。転換炉13は1000℃以上且つ1900℃以下に加熱され、供給された原料ガスが転換反応してトリクロロシラン、ジクロロシリレン、塩化水素および高次シラン化合物を含む反応ガスが生成される。
排ガス処理工程にて排ガスを蒸留分離して得た原料の四塩化珪素と水素を含む供給ガスは転換炉13に導入される。供給される原料の四塩化珪素にはジシラン類を含んでも良いし、またジシラン類を取り除いても良い。転換炉13は1000℃以上且つ1900℃以下に加熱され、供給された原料ガスが転換反応してトリクロロシラン、ジクロロシリレン、塩化水素および高次シラン化合物を含む反応ガスが生成される。
転換炉13の加熱温度が1000℃未満であると、転換率や転換速度が小さくなると共に装置が大型になる不都合がある。また、転換炉13の加熱温度が1900℃を超えると転換率は向上せず、生産設備として不経済である。
また、第2の態様の転換反応において、反応温度に対する反応生成ガスの組成の一例(平衡値)は、第1の態様と同様に図2に示される。
図2のグラフに示すように、転換反応におけるSiCl4の転換量(SiCl4の減少変化量)は温度とともに増加するため、転換反応の反応温度は高い方が好ましい。特に反応温度を、SiHCl3への転換が最大値付近となり、さらにSiCl2への転換も顕著となる1100℃以上とすることがより好ましい。一方、転換反応の反応温度が高い程、その後に続く第1B冷却工程でのトリクロロシランの分解(上記反応式[3]の逆反応)の反応速度も大きくなる。このため、転換反応の反応温度が高い場合、第1B冷却工程でのトリクロロシランの分解抑制効果が小さくなる。つまり、転換反応工程で高いSiCl4の転換量を得たとしても、第1B冷却工程、第2冷却工程を経て最終的に得られるSiCl4の転換量はそれ程大きくはならない。従って、第1B冷却工程での急冷効果を十分に発揮させて冷却後の高いSiCl4転換量を得るためには、最初の転換反応の反応温度は1300℃以下が好ましい。以上のことから、転換反応工程の反応温度は1100℃以上且つ1300℃以下がより好ましい。
図2のグラフに示すように、転換反応におけるSiCl4の転換量(SiCl4の減少変化量)は温度とともに増加するため、転換反応の反応温度は高い方が好ましい。特に反応温度を、SiHCl3への転換が最大値付近となり、さらにSiCl2への転換も顕著となる1100℃以上とすることがより好ましい。一方、転換反応の反応温度が高い程、その後に続く第1B冷却工程でのトリクロロシランの分解(上記反応式[3]の逆反応)の反応速度も大きくなる。このため、転換反応の反応温度が高い場合、第1B冷却工程でのトリクロロシランの分解抑制効果が小さくなる。つまり、転換反応工程で高いSiCl4の転換量を得たとしても、第1B冷却工程、第2冷却工程を経て最終的に得られるSiCl4の転換量はそれ程大きくはならない。従って、第1B冷却工程での急冷効果を十分に発揮させて冷却後の高いSiCl4転換量を得るためには、最初の転換反応の反応温度は1300℃以下が好ましい。以上のことから、転換反応工程の反応温度は1100℃以上且つ1300℃以下がより好ましい。
〔冷却工程〕
冷却工程14の一例を図5に示し、反応ガスの冷却温度の変化を図6に示す。図示するように、転換炉13から抜き出された反応ガスは第1B冷却工程を行う第1冷却器221に導入され、0.01秒以内に600℃未満に冷却される。第1B冷却工程後の反応ガスは中間反応工程を行う中間冷却器222に導入され、500℃以上且つ950℃以下の温度範囲に0.01秒以上且つ5秒間以下の時間保持される。次いで、中間反応工程後の反応ガスは第2冷却工程を行う第2冷却器223に導入され、500℃未満に冷却された後にトリクロロシランの蒸留分離工程15に送られる。
冷却工程14の一例を図5に示し、反応ガスの冷却温度の変化を図6に示す。図示するように、転換炉13から抜き出された反応ガスは第1B冷却工程を行う第1冷却器221に導入され、0.01秒以内に600℃未満に冷却される。第1B冷却工程後の反応ガスは中間反応工程を行う中間冷却器222に導入され、500℃以上且つ950℃以下の温度範囲に0.01秒以上且つ5秒間以下の時間保持される。次いで、中間反応工程後の反応ガスは第2冷却工程を行う第2冷却器223に導入され、500℃未満に冷却された後にトリクロロシランの蒸留分離工程15に送られる。
〔第1B冷却工程〕
第1B冷却工程ではトリクロロシランの分解(上記反応式[3]の逆反応)を十分に抑制する冷却速度で冷却する。具体的には、0.01秒以内に600℃未満に冷却する。その際好ましくは、到達冷却温度が100℃以上且つ500℃以下となるように冷却する。この条件下で冷却すれば、量産規模においても反応ガスに含まれているトリクロロシランの分解(上記式[3]の逆反応)を抑制することができる。第1B冷却工程における反応ガス中のポリマー生成率は概ね0.5%以上且つ3%以下程度である。
第1B冷却工程ではトリクロロシランの分解(上記反応式[3]の逆反応)を十分に抑制する冷却速度で冷却する。具体的には、0.01秒以内に600℃未満に冷却する。その際好ましくは、到達冷却温度が100℃以上且つ500℃以下となるように冷却する。この条件下で冷却すれば、量産規模においても反応ガスに含まれているトリクロロシランの分解(上記式[3]の逆反応)を抑制することができる。第1B冷却工程における反応ガス中のポリマー生成率は概ね0.5%以上且つ3%以下程度である。
第1B冷却工程の到達冷却温度は100℃以上が好ましい。100℃未満まで冷却すると、反応ガス中のクロロシラン類が装置内に凝縮したり、析出することがあるので好ましくない。冷却到達温度が100℃以上であれば、この凝縮や析出が生じ難く、反応ガスを気体のままハンドリングできる。なお、第1B冷却工程において反応ガスの一部が凝縮した場合には、これを中間反応工程に導入する際には予熱してガス化した後に供給することが好ましい。
第1B冷却工程において、600℃未満に冷却するのに要する時間が0.01秒より長いと、反応ガスに含まれるトリクロロシランの分解が進む傾向がある。
〔中間反応工程〕
第1B冷却工程後の反応ガスを中間反応工程が行われる中間冷却器222に導入し、500℃以上且つ950℃以下、好ましくは、550℃以上且つ800℃以下の温度範囲で0.01秒以上且つ5秒以下の時間保持する。第1冷却後の反応ガスを上記温度範囲に保持することによって、トリクロロシランの分解を抑制しつつ、第1冷却において生成したポリマーを分解することができる。第1B冷却工程から中間反応工程の温度までの到達時間は特に限定しないが、中間反応工程に適した温度への昇温のために0.01秒以上且つ3秒以下程度であることが好ましい。
第1B冷却工程後の反応ガスを中間反応工程が行われる中間冷却器222に導入し、500℃以上且つ950℃以下、好ましくは、550℃以上且つ800℃以下の温度範囲で0.01秒以上且つ5秒以下の時間保持する。第1冷却後の反応ガスを上記温度範囲に保持することによって、トリクロロシランの分解を抑制しつつ、第1冷却において生成したポリマーを分解することができる。第1B冷却工程から中間反応工程の温度までの到達時間は特に限定しないが、中間反応工程に適した温度への昇温のために0.01秒以上且つ3秒以下程度であることが好ましい。
図6に示すように、例えば、第1B冷却工程において反応ガスを冷却下限温度(到達冷却温度)100℃以上且つ500℃以下に冷却する(図5では到達冷却温度300℃)。その後、中間反応工程において、冷却温度をやや高めて550℃以上且つ800℃以下の温度範囲(図5では550℃)に保持することによって、第1B冷却工程において生成したポリマーの分解反応を進めることができる。また、この温度範囲ではトリクロロシランの分解が抑制されるので、トリクロロシランの含有量が実質的に減少しない。
さらに、第1B冷却工程は1000℃以上の転換反応温度からの短時間の急冷工程であるのに対して、中間反応工程からの冷却は第1B冷却工程のような厳しい冷却速度を必要とせず、冷却温度のコントロールが容易である。
中間反応工程の保持温度が500℃未満では、ポリマーの分解反応が非常に遅く、生成したポリマーを減少させることができない。一方、この温度が950℃を超えると、トリクロロシランの分解反応速度が大きくなり、反応ガス中のトリクロロシラン含有量が減少する。更に、保持温度が950℃を超えると、ポリマーを生成させるジクロロシリレン(SiCl2)の量が増加するため、第2冷却時にポリマーを再び発生させることになる。さらに、中間反応温度が950℃を上回ると、この温度に加熱するための熱量が大きくなり不経済である。
中間反応工程において、反応ガスを上記温度範囲に保持する時間は0.01秒以上且つ5秒以下である。この保持時間が0.01秒未満ではポリマーの分解が十分に行われず、一方、保持時間が5秒を越えてもポリマーの分解量は変化せず、むしろ装置が大型化するため不経済である。
中間反応工程の好ましい温度範囲は550℃以上且つ800℃以下である。この温度範囲ではポリマーの分解反応が約0.02秒~約4秒で進行するため、中間反応工程の設備が比較的小型化できるとともに温度や反応時間のコントロールも容易になる。
中間反応工程において、第1冷却後の反応ガスを上記温度範囲に上記時間保持することによって、第1B冷却工程において生成したポリマーは反応ガス中の塩化水素と反応してトリクロロシランや四塩化珪素に分解するので、ポリマー量を低減することができる。
〔第2冷却工程〕
中間反応工程後の反応ガスは第2冷却工程が行われる第2冷却器223に導入され、500℃未満に再び冷却された後にトリクロロシランの蒸留分離工程15に送られる。
中間反応工程後の反応ガスは第2冷却工程が行われる第2冷却器223に導入され、500℃未満に再び冷却された後にトリクロロシランの蒸留分離工程15に送られる。
〔ガスの導入〕
第1B冷却工程において、第1冷却器221に四塩化珪素(SiCl4)および水素の少なくとも一方を導入するとよい。第1B冷却工程で反応ガス中のSiCl4濃度およびH2濃度を高めることによって、冷却初期にトリクロロシランの生成を促し、トリクロロシランの分解を抑制することができる。
第1B冷却工程において、第1冷却器221に四塩化珪素(SiCl4)および水素の少なくとも一方を導入するとよい。第1B冷却工程で反応ガス中のSiCl4濃度およびH2濃度を高めることによって、冷却初期にトリクロロシランの生成を促し、トリクロロシランの分解を抑制することができる。
第1B冷却工程に導入するSiCl4およびH2の導入量は、転換反応において供給するSiCl4のモル量を1とした場合、いずれもモル比が0.01以上10以下の範囲であることが好ましい。導入量のモル比が0.01未満では、導入によるトリクロロシランの増加量が小さく、10を超えて供給してもトリクロロシランの増加量に大きな変化はなく不経済である。
中間反応工程において、塩化水素を中間冷却器222に導入することによって、ポリマーの分解によるトリクロロシランの生成をさらに促進することができる。導入する塩化水素量は、転換反応において供給するSiCl4のモル量を1とした場合、モル比が0.01以上且つ10以下の範囲であることが好ましい。導入量のモル比が0.01未満では、導入によるポリマーの分解反応への効果が小さく、10を超えて供給しても分解反応への効果は大きくならず不経済である。
第2冷却工程において、350℃以上の温度域で、反応ガスに塩化水素を混合することによって、塩化水素とポリマーとの反応を促進させ、わずかに残留するポリマーを消失させると共に分解生成物の一つであるトリクロロシランを生成させ、トリクロロシランの回収率を高めることできる。
以下に本発明の第1の態様の方法による、実施例を比較例と共に示す。これらの結果を表1に示した。なお、表1のSiHCl3転換率(mol%‐Si)は原料の四塩化珪素(SiCl4)に対するトリクロロシランの生成割合(SiHCl3/SiCl4)であり、ポリマー生成率(mol%‐Si)は原料の四塩化珪素(SiCl4)に対する生成したポリマーに含まれるシリコンの割合(ポリマー中Si/SiCl4)である。
〔実施例A1~A11〕
水素と四塩化珪素の混合ガス(H2とSiCl4のモル比2.0、H2/SiCl4=2.0)の混合ガスを原料に使用し、転換炉に原料ガスを導入し、1100℃にて反応させた。反応後の生成ガスを第1冷却器に導入して300℃まで冷却した。冷却開始から0.01秒での反応ガス温度、および冷却到達温度(冷却下限温度)、冷却下限温度に到達時間を表1に示した。この第1A冷却工程後の反応ガスを中間冷却器に導入して、冷却温度をやや上げて表1に示す温度および時間に保持した。中間反応工程後の反応ガスを第2冷却器に導入し、再び冷却温度を下げて200℃まで0.3秒以内に冷却した。第1A冷却工程後の反応ガスに含まれるトリクロロシランンの転換率およびポリマーの生成率、第2冷却工程後の反応ガスに含まれるトリクロロシランの転換率およびポリマーの生成率を表1に示した。
水素と四塩化珪素の混合ガス(H2とSiCl4のモル比2.0、H2/SiCl4=2.0)の混合ガスを原料に使用し、転換炉に原料ガスを導入し、1100℃にて反応させた。反応後の生成ガスを第1冷却器に導入して300℃まで冷却した。冷却開始から0.01秒での反応ガス温度、および冷却到達温度(冷却下限温度)、冷却下限温度に到達時間を表1に示した。この第1A冷却工程後の反応ガスを中間冷却器に導入して、冷却温度をやや上げて表1に示す温度および時間に保持した。中間反応工程後の反応ガスを第2冷却器に導入し、再び冷却温度を下げて200℃まで0.3秒以内に冷却した。第1A冷却工程後の反応ガスに含まれるトリクロロシランンの転換率およびポリマーの生成率、第2冷却工程後の反応ガスに含まれるトリクロロシランの転換率およびポリマーの生成率を表1に示した。
〔実施例A12~A15〕
第1A冷却工程の冷却条件を表1に示すように設定した以外は実施例A1と同様の条件下で転換反応を行い、反応後の生成ガスを第1冷却器に導入して冷却した。冷却開始から0.01秒での反応ガス温度および冷却到達温度(冷却下限温度)、冷却下限温度に到達時間を表1に示した。この第1A冷却工程後の反応ガスを中間冷却器に導入して、冷却温度をやや上げて表1に示す温度および時間に保持した。中間反応工程後の反応ガスを第2冷却器に導入し、再び冷却温度を下げて200℃まで0.3秒以内に冷却した。第1A冷却工程後の反応ガスに含まれるトリクロロシランンの転換率およびポリマーの生成率、第2冷却工程後の反応ガスに含まれるトリクロロシランの転換率およびポリマーの生成率を表1に示した。
第1A冷却工程の冷却条件を表1に示すように設定した以外は実施例A1と同様の条件下で転換反応を行い、反応後の生成ガスを第1冷却器に導入して冷却した。冷却開始から0.01秒での反応ガス温度および冷却到達温度(冷却下限温度)、冷却下限温度に到達時間を表1に示した。この第1A冷却工程後の反応ガスを中間冷却器に導入して、冷却温度をやや上げて表1に示す温度および時間に保持した。中間反応工程後の反応ガスを第2冷却器に導入し、再び冷却温度を下げて200℃まで0.3秒以内に冷却した。第1A冷却工程後の反応ガスに含まれるトリクロロシランンの転換率およびポリマーの生成率、第2冷却工程後の反応ガスに含まれるトリクロロシランの転換率およびポリマーの生成率を表1に示した。
〔比較例A1~A6〕
第1A冷却工程の冷却条件を表1に示すように設定した以外は実施例A1と同様の条件下で転換反応を行い、反応後の生成ガスを第1冷却器に導入して冷却した。冷却開始から0.01秒での反応ガス温度および冷却到達温度(冷却下限温度)、冷却下限温度に到達時間を表1に示した。この第1A冷却工程後の反応ガスを中間冷却器に導入して、冷却温度をやや上げて表1に示す温度および時間に保持した。中間反応工程後の反応ガスを第2冷却器に導入し、再び冷却温度を下げて200℃まで0.3秒以内に冷却した。第1A冷却工程後の反応ガスに含まれるトリクロロシランンの転換率およびポリマーの生成率、第2冷却工程後の反応ガスに含まれるトリクロロシランの転換率およびポリマーの生成率を表1に示した。
第1A冷却工程の冷却条件を表1に示すように設定した以外は実施例A1と同様の条件下で転換反応を行い、反応後の生成ガスを第1冷却器に導入して冷却した。冷却開始から0.01秒での反応ガス温度および冷却到達温度(冷却下限温度)、冷却下限温度に到達時間を表1に示した。この第1A冷却工程後の反応ガスを中間冷却器に導入して、冷却温度をやや上げて表1に示す温度および時間に保持した。中間反応工程後の反応ガスを第2冷却器に導入し、再び冷却温度を下げて200℃まで0.3秒以内に冷却した。第1A冷却工程後の反応ガスに含まれるトリクロロシランンの転換率およびポリマーの生成率、第2冷却工程後の反応ガスに含まれるトリクロロシランの転換率およびポリマーの生成率を表1に示した。
表1に示すように、実施例A1~A15は何れも、トリクロロシランの転換率が23%以上であるが、ポリマーの生成率は0.2%以下である。つまり、トリクロロシランが効率よく回収されており、且つポリマー量を大幅に少なくして、設備に付着するポリマーを除去する負担を格段に軽減している。
一方、比較例A1は、第1A冷却工程の到達冷却温度が低過ぎる例であり、トリクロロシランの転換率は実施例A1と同程度であるが、ポリマーの生成率は0.5%であり、実施例A1よりもポリマーが多く生成される。
比較例A2は、中間反応工程の保持温度が高過ぎる例であり、トリクロロシランの転換率が低く、かつポリマー生成率も高い。
比較例A3は、中間反応工程の保持温度が低く、保持時間が長い例であり、トリクロロシランの転換率は実施例A1に近いが、ポリマーの生成率が高い。
比較例A4は第1A冷却工程での冷却速度が遅い場合(2.4秒で500℃)で、かつ中間反応工程を行わない例であり、第1A冷却工程の後に直接第2冷却工程で200℃まで冷却した。このためポリマーへの転換率は低く抑えられたものの、トリクロロシランの転換率が20%と低い。
比較例A2は、中間反応工程の保持温度が高過ぎる例であり、トリクロロシランの転換率が低く、かつポリマー生成率も高い。
比較例A3は、中間反応工程の保持温度が低く、保持時間が長い例であり、トリクロロシランの転換率は実施例A1に近いが、ポリマーの生成率が高い。
比較例A4は第1A冷却工程での冷却速度が遅い場合(2.4秒で500℃)で、かつ中間反応工程を行わない例であり、第1A冷却工程の後に直接第2冷却工程で200℃まで冷却した。このためポリマーへの転換率は低く抑えられたものの、トリクロロシランの転換率が20%と低い。
以下に本発明の第2の態様の方法による、実施例を比較例と共に示す。これらの結果を表2に示した。また、実施例B2の冷却温度の変化を図6に示した。なお、表2のSiHCl3転換率(mol%‐Si)は原料の四塩化珪素(SiCl4)に対するトリクロロシランの生成割合(SiHCl3/SiCl4)であり、ポリマー生成率(mol%‐Si)は原料の四塩化珪素(SiCl4)に対する生成したポリマーに含まれるシリコンの割合(ポリマー中Si/SiCl4)である。
〔実施例B1~B5〕
水素と四塩化珪素の混合ガス(H2とSiCl4のモル比2.0、H2/SiCl4=2.0)を原料に使用し、転換炉に原料ガスを導入し、1040℃にて反応させた。反応後の生成ガスを第1冷却器に導入して300℃まで冷却した。冷却開始から0.01秒での反応ガス温度および冷却到達温度を表2に示した。この第1B冷却工程後の反応ガスを中間冷却器に導入して、冷却温度をやや上げて表2に示す温度および時間に保持した。中間反応工程後の反応ガスを第2冷却器に導入し、再び冷却温度を下げて200℃まで0.3秒以内に冷却した。第2冷却工程後の反応ガスに含まれるトリクロロシランおよびポリマーの量を表2に示した。
水素と四塩化珪素の混合ガス(H2とSiCl4のモル比2.0、H2/SiCl4=2.0)を原料に使用し、転換炉に原料ガスを導入し、1040℃にて反応させた。反応後の生成ガスを第1冷却器に導入して300℃まで冷却した。冷却開始から0.01秒での反応ガス温度および冷却到達温度を表2に示した。この第1B冷却工程後の反応ガスを中間冷却器に導入して、冷却温度をやや上げて表2に示す温度および時間に保持した。中間反応工程後の反応ガスを第2冷却器に導入し、再び冷却温度を下げて200℃まで0.3秒以内に冷却した。第2冷却工程後の反応ガスに含まれるトリクロロシランおよびポリマーの量を表2に示した。
〔実施例B6~B9〕
転換反応温度を1100℃にした以外は実施例B1と同様の条件下で転換反応を行い、反応後の生成ガスを第1冷却器に導入して300℃まで冷却した。冷却開始から0.01秒での反応ガス温度および冷却到達温度を表2に示した。この第1B冷却工程後の反応ガスを中間冷却器に導入して、冷却温度をやや上げて表2に示す温度および時間に保持した。中間反応工程後の反応ガスを第2冷却器に導入し、実施例B1と同様の条件下で冷却した。第2冷却工程後の反応ガスに含まれるトリクロロシランおよびポリマーの量を表2に示した。
転換反応温度を1100℃にした以外は実施例B1と同様の条件下で転換反応を行い、反応後の生成ガスを第1冷却器に導入して300℃まで冷却した。冷却開始から0.01秒での反応ガス温度および冷却到達温度を表2に示した。この第1B冷却工程後の反応ガスを中間冷却器に導入して、冷却温度をやや上げて表2に示す温度および時間に保持した。中間反応工程後の反応ガスを第2冷却器に導入し、実施例B1と同様の条件下で冷却した。第2冷却工程後の反応ガスに含まれるトリクロロシランおよびポリマーの量を表2に示した。
〔実施例B10~B12〕
転換反応温度を1100℃にした以外は実施例B1と同様の条件下で転換反応を行い、反後の生成ガスを第1冷却器に導入して500℃または100℃まで冷却した。冷却開始から0.01秒での反応ガス温度および冷却到達温度を表2に示した。この第1B冷却工程後の反応ガスを中間冷却器に導入して、冷却温度をやや上げて表2に示す温度および時間に保持した。中間反応工程後の反応ガスを第2冷却器に導入し、実施例B1と同様の条件下で冷却した。第2冷却工程後の反応ガスに含まれるトリクロロシランおよびポリマーの量を表2に示した。
転換反応温度を1100℃にした以外は実施例B1と同様の条件下で転換反応を行い、反後の生成ガスを第1冷却器に導入して500℃または100℃まで冷却した。冷却開始から0.01秒での反応ガス温度および冷却到達温度を表2に示した。この第1B冷却工程後の反応ガスを中間冷却器に導入して、冷却温度をやや上げて表2に示す温度および時間に保持した。中間反応工程後の反応ガスを第2冷却器に導入し、実施例B1と同様の条件下で冷却した。第2冷却工程後の反応ガスに含まれるトリクロロシランおよびポリマーの量を表2に示した。
〔比較例B1~B2〕
中間反応工程を行わない以外は実施例B1と同様の条件下で転換反応および第1B冷却工程を行った(比較例B1)。中間反応工程の保持温度および保持時間を表2に示すようにした以外は実施例B1と同様の条件下で転換反応および第1B冷却工程を行った(比較例B2)。
中間反応工程を行わない以外は実施例B1と同様の条件下で転換反応および第1B冷却工程を行った(比較例B1)。中間反応工程の保持温度および保持時間を表2に示すようにした以外は実施例B1と同様の条件下で転換反応および第1B冷却工程を行った(比較例B2)。
〔比較例B3~B5〕
中間反応工程を行わない以外は実施例B6と同様の条件下で転換反応および第1B冷却工程を行った(比較例B3)。中間反応工程の保持温度および保持時間を表2に示すようにした以外は実施例B6と同様の条件下で転換反応および第1B冷却工程を行った(比較例B4)。
中間反応工程を行わない以外は実施例B11と同様の条件下で転換反応および第1B冷却工程を行った(比較例B5)。
中間反応工程を行わない以外は実施例B6と同様の条件下で転換反応および第1B冷却工程を行った(比較例B3)。中間反応工程の保持温度および保持時間を表2に示すようにした以外は実施例B6と同様の条件下で転換反応および第1B冷却工程を行った(比較例B4)。
中間反応工程を行わない以外は実施例B11と同様の条件下で転換反応および第1B冷却工程を行った(比較例B5)。
表2に示すように、実施例B1~B12は何れも、トリクロロシランの転換率が21%以上であるが、ポリマーの生成率は0.4%以下である。つまり、トリクロロシランが効率よく回収されており、且つポリマー量を大幅に少なくして、設備に付着するポリマーを除去する負担を格段に軽減している。
一方、比較例B1~B5は、トリクロロシランの転換率は実施例B1~B12と同程度であるが、ポリマーの生成率は1.4%以上である。特に中間反応工程を行わないものは(比較例B1、B3、B5)ポリマーの生成率は1.7~2.8%であり、実施例B1~B12に比べてポリマーの生成率が格段に高い。
10 反応炉
11 冷却器
12 蒸留工程
13 転換炉
14 冷却工程
15 TCS蒸留分離工程
121、221 第1冷却器
122、222 中間冷却器
123、223 第2冷却器。
11 冷却器
12 蒸留工程
13 転換炉
14 冷却工程
15 TCS蒸留分離工程
121、221 第1冷却器
122、222 中間冷却器
123、223 第2冷却器。
Claims (10)
- 反応ガスを冷却してトリクロロシランを回収するトリクロロシランの製造方法であって、
原料の四塩化珪素と水素とを1000℃以上且つ1900℃以下の温度で転換反応させてトリクロロシラン、ジクロロシリレン、塩化水素、および高次シラン化合物を含む反応ガスを生成させる、反応ガス生成工程、
前記反応ガス生成工程後の転換炉から抜き出した反応ガスを、冷却開始から0.01秒以内に600℃以上であって2秒以内に500℃以下に冷却する第1A冷却工程、
前記第1A冷却工程後の反応ガスを500℃以上且つ950℃以下の温度範囲に0.01秒以上且つ5秒以下の時間保持する中間反応工程、及び
前記中間反応工程後の反応ガスを500℃未満に冷却する第2冷却工程、
を有することを特徴とするトリクロロシランの製造方法。 - 前記第1A冷却工程において、反応ガスの到達冷却温度が100℃以上且つ500℃以下である請求項1に記載するトリクロロシランの製造方法。
- 前記中間反応工程において、反応ガスを550℃以上且つ800℃以下に保持する請求項1に記載するトリクロロシランの製造方法。
- 前記第1A冷却工程で反応ガスを到達冷却温度が100℃以上且つ500℃以下となるように冷却し、冷却した反応ガスを前記中間反応工程で550℃以上且つ800℃以下の温度に保持する請求項1に記載するトリクロロシランの製造方法。
- 請求項1に記載する方法によって回収したトリクロロシランを多結晶シリコンの製造原料の一部に用いるトリクロロシランの利用方法。
- 反応ガスを冷却してトリクロロシランを回収するトリクロロシランの製造方法であって、
原料の四塩化珪素と水素とを1000℃以上且つ1900℃以下の温度で転換反応させてトリクロロシラン、ジクロロシリレン、塩化水素、および高次シラン化合物を含む反応ガスを生成させる、反応ガス生成工程、
前記反応ガス生成工程後の転換炉から抜き出した反応ガスを0.01秒以内に600℃未満に冷却する第1B冷却工程、
前記第1B冷却工程後の反応ガスを500℃以上且つ950℃以下の温度範囲に0.01秒以上且つ5秒以下の時間保持する中間反応工程、及び
前記中間反応工程後の反応ガスを500℃未満に冷却する第2冷却工程、
を有することを特徴とするトリクロロシランの製造方法。 - 前記第1B冷却工程において、反応ガスの到達冷却温度が100℃以上且つ500℃以下である請求項6に記載するトリクロロシランの製造方法。
- 前記中間反応工程において、反応ガスを550℃以上且つ800℃以下に保持する請求項6に記載するトリクロロシランの製造方法。
- 第1B冷却工程で反応ガスを到達冷却温度が100℃以上且つ500℃以下となるように冷却し、冷却した反応ガスを前記中間反応工程で550℃以上且つ800℃以下の温度に保持する請求項6に記載するトリクロロシランの製造方法。
- 請求項6に記載する方法によって回収したトリクロロシランを多結晶シリコンの製造原料の一部に用いるトリクロロシランの利用方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980143120.4A CN102196995B (zh) | 2008-10-30 | 2009-10-30 | 三氯硅烷的制备方法及利用方法 |
US13/095,997 US8168152B2 (en) | 2008-10-30 | 2011-04-28 | Method for producing trichlorosilane and method for utilizing trichlorosilane |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008280591A JP5333725B2 (ja) | 2008-10-30 | 2008-10-30 | トリクロロシランの製造方法および利用方法 |
JP2008-280591 | 2008-10-30 | ||
JP2008-280592 | 2008-10-30 | ||
JP2008280592 | 2008-10-30 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/095,997 Continuation-In-Part US8168152B2 (en) | 2008-10-30 | 2011-04-28 | Method for producing trichlorosilane and method for utilizing trichlorosilane |
US13/095,997 Continuation US8168152B2 (en) | 2008-10-30 | 2011-04-28 | Method for producing trichlorosilane and method for utilizing trichlorosilane |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010050241A1 true WO2010050241A1 (ja) | 2010-05-06 |
Family
ID=42128612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/005804 WO2010050241A1 (ja) | 2008-10-30 | 2009-10-30 | トリクロロシランの製造方法および利用方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8168152B2 (ja) |
CN (1) | CN102196995B (ja) |
TW (1) | TW201031591A (ja) |
WO (1) | WO2010050241A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012218941A1 (de) | 2012-10-17 | 2014-04-17 | Wacker Chemie Ag | Reaktor und Verfahren zur endothermen Gasphasenreaktion in einem Reaktor |
DE102012223784A1 (de) | 2012-12-19 | 2014-06-26 | Wacker Chemie Ag | Verfahren zur Konvertierung von Siliciumtetrachlorid in Trichlorsilan |
RU2714070C1 (ru) * | 2016-07-06 | 2020-02-11 | АйЭйчАй КОРПОРЕЙШН | Способ получения кремниевого композиционного материала и устройство для получения кремниевого композиционного материала |
CN112573522B (zh) * | 2020-12-14 | 2022-07-26 | 亚洲硅业(青海)股份有限公司 | 硅基电子特气的制备方法及硅基电子特气的生产系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57156318A (en) * | 1981-03-16 | 1982-09-27 | Koujiyundo Silicon Kk | Production of trichlorosilane |
JPS6163519A (ja) * | 1984-09-04 | 1986-04-01 | Denki Kagaku Kogyo Kk | モノシラン製造法 |
JP2008156209A (ja) * | 2006-11-30 | 2008-07-10 | Mitsubishi Materials Corp | トリクロロシランの製造方法およびトリクロロシランの製造装置 |
JP2009007240A (ja) * | 2007-05-25 | 2009-01-15 | Mitsubishi Materials Corp | トリクロロシランの製造方法と製造装置および多結晶シリコンの製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE795913A (fr) * | 1972-02-26 | 1973-06-18 | Degussa | Procede de preparation de chlorosilanes |
US4217334A (en) * | 1972-02-26 | 1980-08-12 | Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler | Process for the production of chlorosilanes |
JPS5738524A (en) | 1980-08-19 | 1982-03-03 | Omron Tateisi Electronics Co | Method of producing reed relay |
DE3809784C1 (ja) * | 1988-03-23 | 1989-07-13 | Huels Ag, 4370 Marl, De | |
US5906799A (en) * | 1992-06-01 | 1999-05-25 | Hemlock Semiconductor Corporation | Chlorosilane and hydrogen reactor |
DE102005005044A1 (de) | 2005-02-03 | 2006-08-10 | Consortium für elektrochemische Industrie GmbH | Verfahren zur Herstellung von Trichlorsilan mittels thermischer Hydrierung von Siliciumtetrachlorid |
JP5601438B2 (ja) * | 2006-11-07 | 2014-10-08 | 三菱マテリアル株式会社 | トリクロロシランの製造方法およびトリクロロシラン製造装置 |
-
2009
- 2009-10-29 TW TW098136694A patent/TW201031591A/zh unknown
- 2009-10-30 WO PCT/JP2009/005804 patent/WO2010050241A1/ja active Application Filing
- 2009-10-30 CN CN200980143120.4A patent/CN102196995B/zh active Active
-
2011
- 2011-04-28 US US13/095,997 patent/US8168152B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57156318A (en) * | 1981-03-16 | 1982-09-27 | Koujiyundo Silicon Kk | Production of trichlorosilane |
JPS6163519A (ja) * | 1984-09-04 | 1986-04-01 | Denki Kagaku Kogyo Kk | モノシラン製造法 |
JP2008156209A (ja) * | 2006-11-30 | 2008-07-10 | Mitsubishi Materials Corp | トリクロロシランの製造方法およびトリクロロシランの製造装置 |
JP2009007240A (ja) * | 2007-05-25 | 2009-01-15 | Mitsubishi Materials Corp | トリクロロシランの製造方法と製造装置および多結晶シリコンの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201031591A (en) | 2010-09-01 |
CN102196995A (zh) | 2011-09-21 |
CN102196995B (zh) | 2016-03-02 |
US8168152B2 (en) | 2012-05-01 |
US20110200512A1 (en) | 2011-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5397580B2 (ja) | トリクロロシランの製造方法と製造装置および多結晶シリコンの製造方法 | |
JP5601438B2 (ja) | トリクロロシランの製造方法およびトリクロロシラン製造装置 | |
KR101400481B1 (ko) | 트리클로로실란의 제조 방법 및 트리클로로실란의 제조 장치 | |
JP5311014B2 (ja) | 転換反応ガスの分離回収方法。 | |
TWI436946B (zh) | 多晶矽之製造方法以及多晶矽製造設備 | |
WO2003040036A1 (fr) | Procede de production de silicium | |
JP5637866B2 (ja) | 多結晶シリコンの製造法 | |
JP4714196B2 (ja) | トリクロロシランの製造方法および多結晶シリコンの製造方法 | |
JP2007526203A (ja) | シリコンの製造方法 | |
JP2006321675A (ja) | シリコンの製造方法 | |
JPS6228083B2 (ja) | ||
KR101644239B1 (ko) | 트리클로로실란 제조방법 | |
WO2010050241A1 (ja) | トリクロロシランの製造方法および利用方法 | |
JP5392488B2 (ja) | トリクロロシランの製造方法および用途 | |
JP5333725B2 (ja) | トリクロロシランの製造方法および利用方法 | |
JP4780271B2 (ja) | 多結晶シリコンの製造方法 | |
JP5573852B2 (ja) | 不活性ガスを用いたベンディングシステムによるホウ素化合物量を低減した多結晶シリコンの製造装置および製造方法 | |
JP5321827B2 (ja) | 多結晶シリコンの製造方法および製造装置 | |
JP2006176357A (ja) | ヘキサクロロジシランの製造方法 | |
JP2000178018A (ja) | 多結晶シリコンの製造方法および高純度シリカの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980143120.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09823354 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09823354 Country of ref document: EP Kind code of ref document: A1 |