WO2010050047A1 - プロジェクタ及びその制御方法 - Google Patents

プロジェクタ及びその制御方法 Download PDF

Info

Publication number
WO2010050047A1
WO2010050047A1 PCT/JP2008/069891 JP2008069891W WO2010050047A1 WO 2010050047 A1 WO2010050047 A1 WO 2010050047A1 JP 2008069891 W JP2008069891 W JP 2008069891W WO 2010050047 A1 WO2010050047 A1 WO 2010050047A1
Authority
WO
WIPO (PCT)
Prior art keywords
projector
zoom lens
light
transmission window
light transmission
Prior art date
Application number
PCT/JP2008/069891
Other languages
English (en)
French (fr)
Inventor
加藤 厚志
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to PCT/JP2008/069891 priority Critical patent/WO2010050047A1/ja
Priority to EP08877758.6A priority patent/EP2343596B1/en
Priority to JP2010535588A priority patent/JP5070614B2/ja
Priority to CN2008801318211A priority patent/CN102203670B/zh
Priority to US12/998,467 priority patent/US8690357B2/en
Publication of WO2010050047A1 publication Critical patent/WO2010050047A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics

Definitions

  • the present invention relates to a projector used for a laser light source and a control method thereof.
  • laser light sources are promising alongside LEDs.
  • everyone recognizes the high potential of a laser light source as a light source a projector using the laser light source has not yet been put to practical use.
  • the reason for this is that various regulations are required due to the characteristics of laser beams as well as the fact that inexpensive semiconductor lasers emitting green light have not been put into practical use.
  • a beam-scan projector that scans a laser beam horizontally and vertically using a MEMS scanner or the like to display an image can be reduced in size as compared with existing projectors.
  • safety standards stipulated in the international laser safety standard IEC60825 must be observed.
  • the light output of the light source is restricted to be small. For this reason, it is considered difficult to achieve a brightness sufficient for practical use as a projector and a brightness equivalent to that of a conventional projector using a discharge lamp.
  • a safe illuminance is defined even when the laser beam is directly incident on the eye, and the definition varies depending on the condition of viewing the laser beam.
  • a front projection type projector that does not directly scan a laser beam is known (for example, JP 2008-58454 A).
  • This type irradiates laser light onto a two-dimensional micro display such as a liquid crystal light valve or DMD (digital mirror device), and enlarges and projects an image displayed on the micro display using an optical system such as a projection lens. It is.
  • This type of projector is considered to be able to realize a projector with higher brightness than the beam scan type.
  • the size of the light beam passing through the lens at the most exit side of the projection lens, that is, the lens closest to the human being, is the average of the pupil of the human eye It can be considered that the size is larger than ⁇ 7 mm. Therefore, what is necessary is just to discuss the safety of the power of the laser beam that can enter this ⁇ 7 mm. Therefore, it is only necessary to match the calculated AEL (Accessible Emission Limit) with the safety class that the projector wants to satisfy.
  • AEL Accessible Emission Limit
  • a zoom lens is often mounted as a projection lens from the viewpoint of user convenience and product superiority.
  • the projection screen on the screen can be adjusted to the size of the screen by changing the zoom magnification of the zoom lens.
  • the setting state of the focal length f of the zoom lens that can minimize the projection distance to the screen when projecting a screen of a predetermined size is referred to as “wide”, and the same screen size as in the wide mode is projected.
  • the setting state of the focal length f of the zoom lens that can maximize the projection distance to the screen is called “tele”.
  • the zoom lens of a projector changes the position and angle of light rays that pass through the light exit surface of the lens in the process of changing from wide to tele. Therefore, the region of the light exit surface of the lens that appears to be light (the area of the portion through which the laser beam passes) changes with the magnification adjustment of the zoom lens.
  • the size of this area is larger in the wide area and smaller in the “tele” area (see FIG. 1).
  • An example of the purpose is to realize a projector that can perform light output design on the wide side of the zoom lens where the highest brightness can be aimed at, and can ensure safety over the entire zooming region of the zoom lens. It is also an object to make the light output of the projector the same over the entire zooming region of the zoom lens.
  • the present invention relates to a projector that enlarges and projects a light beam from a light source.
  • the present invention provides a projector in which the energy density in the light beam region appearing on the light exit surface of the zoom lens is equal to or less than a predetermined safe value over the entire zooming region of the zoom lens.
  • the projector includes a light transmission window that is disposed in front of the light exit surface of the zoom lens so as to be movable along the optical axis. Further, the projector has control means for controlling the position of the light transmission window so that the light flux region appearing on the outer surface of the light transmission window does not change according to the change in the focal length of the zoom lens.
  • the present invention uses a two-dimensional microdisplay such as a liquid crystal panel or DMD as an image modulation device, and irradiates the image modulation device with light of red (R), green (G), or blue (B) color light
  • the present invention relates to a projector that performs enlarged projection using a projection lens.
  • the present invention is directed to a projector in which the light source is a solid light source such as an LED or a laser light source and the projection lens has a zoom function.
  • the light source to be used is not limited to this, and can be replaced with another light source that can achieve the object of the present invention.
  • the laser beam safety standards (IEC60825, JIS C6802, etc.) must be observed, and practically sufficient and higher brightness within an acceptable safety class. Achieving this is the key to product competitiveness.
  • the laser was used as the light source.
  • the safety concept of the front projector was shown as follows.
  • the beam diameter of the laser beam of the light source is enlarged according to the size of the micro display by an integrator optical system such as a fly-eye lens or a rod lens, and irradiated to the micro display. Since the path of the illumination light after the micro display is the same as that of the discharge lamp-based projector, the light beam expanded corresponding to the micro display can be regarded as the light source. Therefore, if the power density when this luminous flux passes through the projection lens is obtained and the value is equal to or less than the AEL (exposure limit) of a predetermined safety class, it can be considered safe. Furthermore, the radiation duration that the laser poses a hazard is set to 0.25 sec or more.
  • the case where a human being is most dangerous with respect to a laser projector is a case where an eye is brought in front of a projection lens that is an exit of the projection light of the projector.
  • the area of the laser beam region that appears on the projection lens surface closest to the screen may be larger than the diameter ⁇ 7 mm of the human pupil.
  • the manufacturer needs to design the laser output of the light source so that the value of the laser power density (W / mm ⁇ 2) (also called energy density) in the laser beam region satisfies the safety class standard. Become.
  • the zoom lens has a longest focal length f (that is, telephoto) and a zoom lens that has the shortest focal length f (that is, wide).
  • the size of the laser beam area (projection screen) that appears is different.
  • the zoom lens used in a front projection type projector such as a liquid crystal or DLP (registered trademark) is adjusted to wide and telephoto respectively, on the light exit surface of the lens closest to the screen in the zoom lens
  • the size of the laser beam region is larger in the wide area than in the tele (see FIGS. 1A and 1B).
  • the laser power density is changed by changing the size of the laser beam region on the light exit surface of the zoom lens in accordance with the adjustment of the focal length of the zoom lens, that is, the adjustment of the zoom magnification. Therefore, if the manufacturer does not take any measures, a safety problem will occur.
  • the laser beam region that appears on the light exit surface of the zoom lens is regarded as if there is a laser light source of that size. Therefore, the difference in the size of the laser beam region means that the laser power density (W / mm ⁇ 2) is different.
  • a predetermined laser safety class is assumed to be “class 1” for easy understanding of the story.
  • the output of the laser light source inside the device is determined so that the energy density determined by the size of the laser beam area on the light exit surface of the zoom lens is less than the class 1 standard. Otherwise, it will be legally problematic. Within that range, that is, within the class 1 range, if a laser with as large an output as possible is brought, the projected image finally obtained as a projector will have the highest brightness among the safety standards.
  • the size of the laser beam region on the light exit surface of the zoom lens is larger in wide. Therefore, with a light source having the same laser output, in other words, under a certain driving condition of the laser light source, the energy density (laser power density) in the laser beam region is smaller in the wide area than in the tele.
  • the energy density in the laser beam region in the tele direction is defined to be lower than the class 1 safety standard.
  • the wider person has more energy density in the safety class than the tele. In other words, the wide one is legally more bright, but the potential is not fully utilized.
  • a projection window made of a parallel flat plate having no refractive power is arranged movably along the optical axis before the light exit surface of the zoom lens.
  • the focus of the zoom lens is set so that the amount of energy of the laser beam from the laser light source is set constant and the laser beam region that appears on the outer surface of the projection window does not change when the focal length of the zoom lens is changed.
  • the position of the projection window is changed according to the change in distance. For example, the position of the parallel plate of the projection window is closest to the light exit surface of the zoom lens when it is wide, and is most distant when tele.
  • Such a method can be expected to provide a projector with high brightness over the entire magnification change region of the zoom lens. Further, it is possible to commercialize a front projection type laser projector that satisfies a predetermined safety class and has the highest performance (brightness) in that class.
  • FIG. 2 is a diagram for explaining the configuration of the first embodiment according to the present invention.
  • the projector according to this embodiment includes a laser light source 101, an image modulation device 105, a zoom lens 102, and a housing 104 that accommodates these.
  • the housing 104 has an opening through which the laser beam emitted from the zoom lens 102 goes out of the housing.
  • the opening is provided with a light transmission window 103 that is movable along the optical axis.
  • the light transmission window 103 is disposed with a predetermined space with respect to the light exit surface of the zoom lens 102, passes through the opening of the housing 104, goes out of the housing 104, or retracts into the housing 104. It is attached to the housing 104 so as to be sluggish.
  • the light transmission window 103 moves in conjunction with a change in the focal length of the zoom lens 102, that is, a change in zoom magnification.
  • a zoom position detection unit 107 that detects a zoom position according to a change in the focal length of the zoom lens 102 is provided, and a window position control unit that controls the position of the light transmission window 103 according to the detected zoom position. 108 is provided.
  • the zoom lens 102 a zoom lens used in a known projector may be used.
  • the zoom position here refers to a case where the focal length of the zoom lens 102 (projection distance or zoom magnification) is determined by moving a part of the internal lens group constituting the zoom lens 102 along the optical axis. It refers to the position of a part of the internal lens group.
  • a zoom ring that changes the zoom position by rotating around the central axis of the lens barrel is provided on the lens barrel of the zoom lens 102.
  • the zoom ring includes a lever exposed to the outside of the housing 104 so that a person can easily rotate the zoom ring.
  • a position sensor for detecting the rotation angle of the zoom ring which is such a zoom position changing means, is provided in the zoom lens 102 as the zoom position detecting unit 107.
  • the correspondence between the rotation angle of the zoom ring, the position of a part of the internal lens group of the zoom lens 102, and the focal length (projection distance to the screen or zoom magnification) determined by the position is obtained in advance. Then, the current zoom position corresponding to the projection distance from the screen or the zoom magnification can be determined from the rotation angle of the zoom ring detected by the position sensor.
  • the rotation range of the zoom ring in this case is limited.
  • the zoom lens 102 is in the state of the shortest focal length when the zoom ring is rotated to one end of the rotation range, that is, “wide”, and when it is rotated to the other end, the state of the longest focal length, that is, “telephoto”. "become.
  • the zoom ring may be rotated by an actuator such as a motor remotely operated from a position away from the projector. Further, regarding the zoom position changing means, another structure different from the zoom ring may be used.
  • a parallel plate made of a transparent material capable of transmitting a visible laser beam is suitable.
  • optical glass or plastic can be used for the parallel plate.
  • the thickness of the parallel plate is not particularly specified. In the unlikely event that the light transmitting window is damaged, it is dangerous to take measures to prevent damage by attaching a light transmitting film or the like to the flat plate portion of the light transmitting window 103. The damage includes not only destruction but also hole opening and cracking.
  • the light transmission window 103 has an outer shape like a tea tube lid.
  • the flat plate portion 103a of the light transmission window 103 is a portion of a parallel flat plate that is orthogonal to the optical axis and faces the light exit surface of the zoom lens 102, and is preferably made of a transparent member as described above.
  • the cylindrical side surface portion 103b surrounding the flat plate portion 103a is preferably made of an opaque member. If the cylindrical side surface portion 103b is made of a transparent member, light leaks from the side surface of the light transmission window 103 or is exposed to danger when the human pupil is brought close to the cylindrical side surface portion 103b. Because.
  • the outer shape of the light transmission window 103 is not limited to a cylindrical shape.
  • the outer shape may be a prismatic shape or other shapes. It is desirable to decide in consideration of the design of the housing 104. What is important is that light emitted from the zoom lens 102 is emitted from the light transmission window 103 without kicking, and light is not leaked from the side surface.
  • the laser light source 101 can use a semiconductor laser or a solid-state laser.
  • a laser light source that emits red or blue color light a relatively inexpensive semiconductor laser that is already produced in large quantities for DVD, Blu-ray, or the like is available.
  • a laser emitting green a laser light source obtained by wavelength conversion using an SHG (second harmonic generation) element can be used.
  • SHG second harmonic generation
  • an illumination optical system 106 for expanding a laser beam (laser beam) from the laser light source 101 according to the size of the image modulation device 105 is disposed.
  • the illumination optical system 106 is composed of a lens 106a, an integrator 106b, and a lens 106c in this order along the traveling direction of the laser beam.
  • the lenses 106a and 106c are convex lenses, and the integrator 106b is a fly-eye lens or a rod integrator.
  • the image modulation device 105 is a micro display that forms a two-dimensional image.
  • a transmissive liquid crystal light valve, DMD (digital mirror device), or LCOS (reflection liquid crystal element) is used.
  • An image formed by the two-dimensional image modulation device 105 is projected onto a screen (not shown) or a white wall by a zoom lens 102. At this time, it is allowed to go outside the housing 104 through the light transmission window 103. It is.
  • FIG. 2 the configuration diagram of FIG. 2 is shown as a schematic diagram. Therefore, only one laser light source, image modulation device, and the like are shown, but in reality, the configuration is complicated.
  • the optical system of the projector of the present invention is not limited to the number and layout of the illustrated optical components.
  • the position (zoom position) of a part of the internal lens system constituting the zoom lens 102 moves, and the focal length of the zoom lens 102 (projection distance to the screen) (Or zoom magnification) changes.
  • the light transmission window 103 moves in conjunction with such a change in the focal length of the zoom lens 102.
  • the light transmission window 103 moves in conjunction with the change of the focal length of the zoom lens 102 so that the size of the laser beam region 111 appearing on the outer surface of the portion 103a) becomes substantially equal (see FIGS. 4A and 4B). .
  • the position of the light transmission window 103 is controlled so that the size of the laser beam region appearing on the outer surface of the light transmission window 103 (flat plate portion 103a) does not change.
  • the zoom position information at that time is detected from the zoom position detector 107.
  • the position where the light transmission window 103 is moved can be known.
  • the size of the laser beam area on the outer surface of the light transmission window 103 becomes smaller as the zoom lens 102 is adjusted from wide to tele.
  • the size (area) of the laser beam region appearing on the outer surface of the light transmission window 103 can be accurately known in advance by performing optical simulation (optical path tracking) based on the specifications of the zoom lens 102.
  • the position of the light transmission window 103 where the size (area) of the laser beam region on the outer surface of the light transmission window 103 does not change is calculated in advance for every zoom position, It is stored in the window position control unit 108 and the like.
  • the AEL value [the laser power density (energy density) on the light transmission window 103 satisfies the safety class of the projector [
  • the output value [W] of the laser light source 101 is fixed so that W / mm ⁇ 2].
  • the zoom position detection unit 107 detects the zoom position of the zoom lens 102 to the wide side. Based on the detection result, the window position control unit 108 moves in the direction of arrow A in FIG. 2 so as to retract the light transmission window 103 into the housing 104. At this time, the size (area) of the laser beam region on the outer surface of the light transmission window 103 is substantially the same without increasing compared to before the zoom operation to wide.
  • the zoom lens 106 when the zoom lens 106 is set to be wide as an initial state and the zoom adjustment is performed from that state to the tele, the current zoom position is detected by the zoom position detection unit 107, and the detected current zoom position information is used. Then, the moving position of the light transmission window 103 is determined. Based on the detection result, the window position control unit 108 moves in the direction of arrow B in FIG. At this time, the size (area) of the laser beam region on the outer surface of the light transmission window 103 is substantially the same as before the zoom operation to telephoto, without decreasing.
  • the size of the light beam emitted from the projector that is, the laser beam area on the light transmission window 103 is always the same.
  • the energy density in the laser beam region on the outer surface of the light transmission window 103 can be maintained at a constant value equal to or lower than the AEL value regardless of the change in the focal length of the zoom lens 102. That is, it is possible to provide a projector that is safe and has a bright projected image over the entire magnification change region of the zoom lens.
  • the zoom lens 102 itself includes the movable light transmission window 103.
  • a structure is also possible.
  • a lens barrel structure having a light-transmissive parallel plate on the light exit side of the zoom lens 102 may be employed.
  • the operation of the light transmission window 103 is almost the same as in the first embodiment.
  • the moving mechanism of the light transmission window 103 can be designed as a cam mechanism of the zoom lens barrel, and there is an advantage that the assemblability of the entire apparatus can be improved.

Abstract

 安全で高輝度のプロジェクタを実現する。  光源101からの光束を画像変調デバイス105に照射し、画像変調デバイス105に形成される画像をズームレンズ102により拡大投射するプロジェクタである。このプロジェクタは、ズームレンズ102の光出射面の前方に光軸に沿って移動可能に配置された光透過窓103を有する。さらに当該プロジェクタは、ズームレンズ102の焦点距離の変更に従い、光透過窓103の外側面上に現れる光束領域が変わらないように光透過窓103の位置を制御する窓位置制御部108を有する。

Description

プロジェクタ及びその制御方法
 本発明は、レーザー光源に用いたプロジェクタ及びその制御方法に関する。
 プロジェクタについては、性能の向上および、小型化や低コスト化を目指して、放電ランプに替わる固体光源を使った商品の研究開発が盛んに行われている。例えば、LED光源を利用したリアプロTVやポケットプロジェクタが商用化されている。
 プロジェクタ用固体光源としては、LEDと並んでレーザー光源が有望視されている。レーザー光源は、光源としての潜在能力の高さは誰もが認めるところであるが、それを用いたプロジェクタの実用化にはまだ至っていない。その理由として、緑色を発光する安価な半導体レーザーが実用化されていないことはもとより、レーザービームがもつ特性から種々の規制が必要なことが挙げられる。
 例えば、レーザービームをMEMSスキャナなどを用いて、水平および垂直に走査して映像を表示するビームスキャン型のプロジェクタは、既存のプロジェクタと比して考えられないほどの小型化が図れる。しかし、国際レーザー安全規格IEC60825などに規定されている安全規格を遵守しなければならない。このIEC60825によるクラス分けにおいて、光源の光出力が小さく規制される。そのため、プロジェクタとして実用十分な明るさや、放電ランプを使った従来のプロジェクタと同等の明るさを実現することは難しいとされている。なお、各クラスではレーザービームが眼に直接入射しても安全な照度が規定され、レーザービームを見る条件により規定が異なっている。
 一方で、レーザービームを直接スキャンするのではないフロント投射型プロジェクタが知られている(例えば特開2008-58454号公報)。これは、液晶ライトバルブやDMD(デジタルミラーデバイス)などの2次元のマイクロディスプレイにレーザー光を照射し、そのマイクロディスプレイ上に表示される画像を投射レンズなどの光学系を用いて拡大投射するタイプである。
 このタイプのプロジェクタはビームスキャン型に対して、より高輝度なプロジェクタを実現できると考えられている。
 ところで、レーザー光源を用いたフロント投射型プロジェクタを使用する際、安全上で一番危険な状態は、人間の眼が投射レンズ(プロジェクションレンズ)に最接近したときと考えることができる。
 通常、1インチ以下程度のマイクロディスプレイが使われることが多いので、投射レンズの一番出口側、すなわち人間が一番近づく側のレンズを通過する光束の大きさは、人間の眼の瞳の平均サイズであるΦ7mmよりも大きくなると考えてよい。そのため、このΦ7mmに入りうるレーザー光束のパワーの安全性を議論すればよい。したがって、算出されるAEL(被曝放出限界(Accessible Emission Limit))と、プロジェクタとして満足したい安全クラスとの整合をつければよい。
 レーザー光源を使ったプロジェクタにおいて、特にフロント投射型のプロジェクタの場合には、ユーザーの使い勝手の良さや商品の優位性の観点から、投射レンズとしてズームレンズがしばしば搭載される。例えばスクリーンの大きさに見合ったプロジェクタ設置距離が十分にとれない場合、ズームレンズのズーム倍率を変えれば、スクリーンへの投影画面をスクリーンの大きさに合わせることができる。本明細書では、所定サイズの画面を投影するときにスクリーンとの投写距離を最短にできるようなズームレンズの焦点距離fの設定状態を“ワイド”と呼び、ワイド時と同じ画面サイズを投影するときにスクリーンとの投写距離を最長にできるようなズームレンズの焦点距離fの設定状態を“テレ”と呼ぶ。
 通常、プロジェクタのズームレンズは、ワイドからテレへの変更過程で、レンズの光出射面を通過する光線の位置と角度が変化する。したがって、前記レンズの光出射面の光って見える領域(レーザー光束が通過する部分の面積)はズームレンズの倍率調整とともに変化する。この領域の大きさはワイドの方が大きく、「テレ」の方が小さい(図1参照)。
 その結果、光源のレーザー出力が一定である条件下では、ワイドとテレとで安全性の違い、具体的にはAELの違いが発生する。
 人の眼に危険なのは、ワイドの方よりもレーザーパワー密度の高くなるテレの方である。そのため、テレの方で安全クラスを満足するAEL以下にレーザー出力を設計すれば、ズームレンズの変倍領域の全域に対して、その安全クラスを補償することができる。しかし、この対策では、AELに対して余裕があるワイドの方のポテンシャルが最大限に生かされていない。すなわち、ワイドの方は合法的にもっと高輝度になるのに、輝度を上げられない。
 本発明は、上記のような課題を解決することができるプロジェクタ及びその制御方法を提供することを目的とする。その目的の一例は、もっとも高輝度化が狙えるズームレンズワイド側で光出力設計を行うことができ、しかもズームレンズの変倍領域全域にわたり安全性を確保できるプロジェクタを実現することである。なおかつ、プロジェクタの光出力をズームレンズの変倍領域全域で同じにすることも目的である。
 本発明は、光源からの光束を拡大投射するプロジェクタに係わる。とりわけ本発明は、ズームレンズの変倍領域の全域にわたって、ズームレンズの光出射面上に現れる光束領域でのエネルギー密度が所定の安全値以下となるプロジェクタを提供する。
 そして本発明の一の態様によるプロジェクタは、ズームレンズの光出射面の前方に光軸に沿って移動可能に配置された光透過窓を有する。さらに当該プロジェクタは、ズームレンズの焦点距離の変更に従い、光透過窓の外側面上に現れる光束領域が変わらないように光透過窓の位置を制御する制御手段を有する。
プロジェクタのズームレンズの光出射面におけるレーザー光束領域の大きさ(ワイドとテレの状態)を説明するための図である。 本発明の第1の実施形態例の構成を説明するための図である。 図2に示した光透過窓の構成例を示す図である。 本発明の第1の実施形態例における光透過窓の動作に基づく当該窓上のレーザー光束領域の大きさを説明するための図である。
 以下、本発明の実施の形態について図面を参照して説明する。
 本発明は、液晶パネルやDMDなどの2次元のマイクロディスプレイを画像変調デバイスとして用い、この画像変調デバイスに赤(R),緑(G),青(B)の色光の光を照射して、投射レンズにより拡大投射を行うプロジェクタに関する。特に本発明では、光源がLEDやレーザー光源などの固体光源で、かつ投射レンズにズーム機能を備えたプロジェクタを対象にしている。また、以下においてはレーザー光源をプロジェクタ用光源に用いる場合を例にとって説明するが、使用する光源はこれに限定されず、本発明の目的を達成しうる別の光源に代替できる。
 まず、本発明の基本概念について詳述する。
 既存の放電ランプの代替としてレーザーをプロジェクタ用光源に用いる場合、レーザービームの安全基準(IEC60825やJIS C6802など)を遵守し、許容される安全クラスの中で、いかに実用十分で且つより高い輝度を達成できるかが、商品競争力の鍵である。2008年4月に開催された、社団法人レーザー学会主催の、レーザー技術特別セミナーにおいて講演された、「高出力赤色半導体レーザーとレーザープロジェクタ応用」(ソニー株式会社)の中では、レーザーを光源に用いたフロントプロジェクタの安全性の考え方が次のように示された。
 マイクロディスプレイ方式では、光源のレーザービームのビーム径が、フライアイレンズやロッドレンズなどのインテグレータ光学系でマイクロディスプレイの大きさ相応に拡大されてマイクロディスプレイに照射される。マイクロディスプレイ以降の照明光のたどる経路は、放電ランプベースのプロジェクタと同様であるので、このマイクロディスプレイ相応に拡大された光束が光源であると見なせる。したがって、この光束が投射レンズを通過するときのパワー密度を求めてその値が所定の安全クラスのAEL(被曝放出限界)値以下であれば安全と考えることができる。さらに、レーザーが危険を及ぼす放射持続時間は0.25sec以上と定めている。
 レーザープロジェクタに関して人間がもっとも危険となるケースは、眼をプロジェクタの投射光の出口である投射レンズの直前にもってきてしまった場合である。このとき、スクリーンに最も近い側の投射レンズ面に現れるレーザー光束領域の部分(投射レンズの光出射面上に光って見える部分)の面積が人間の瞳の直径Φ7mmよりも大きくなる場合がある。この場合には、そのレーザー光束領域におけるレーザーパワー密度(W/mm^2)(エネルギー密度ともいう)の値が安全クラス基準を満足するようにメーカーは光源のレーザー出力を設計することが必要になる。
 しかし、ズームレンズを備えたレーザープロジェクタの場合、ズームレンズの焦点距離fが最長の状態(すなわちテレ)と、ズームレンズの焦点距離fが最短の状態(すなわちワイド)ではズームレンズの光出射面に現れるレーザー光束領域(投影画面)の大きさが異なる。
 例えば、液晶やDLP(登録商標)などの方式のフロント投射型プロジェクタに使われているズームレンズをワイドとテレにそれぞれ調整したとき、ズームレンズにおける最もスクリーンに近い側にあるレンズの光出射面上の、レーザー光束領域の大きさは、ワイドの方がテレよりも大きい(図1(a)(b)参照)。
 なぜなら、ズームレンズの本質であるからである。当然、ワイドとテレの中間部分については、ワイドからテレに調整するのに従ってレンズ出射面上のレーザー光束領域の大きさが小さくなると考えて差し支えない。
 このように、ズームレンズの焦点距離の調整、すなわちズーム倍率の調整に伴って、ズームレンズの光出射面上のレーザー光束領域の大きさが変わることでレーザーパワー密度が変化する。したがって、メーカーが何らかの対策を講じておかないと、安全上の問題が起こることになる。
 ここで、ワイドとテレとでレンズの光出射面上のレーザー光束領域の大きさが違うとなぜ問題なのかを述べる。また、それを補償することによって得られる利益についても述べる。
 ズームレンズの光出射面上に現れるレーザー光束領域は、あたかもそこに、その大きさのレーザー光源があると見なされる。したがって、そのレーザー光束領域の大きさが違うということは、そこでのレーザーパワー密度(W/mm^2)が異なるということを意味する。ここでは、レーザー安全基準で定められるレーザークラスのうち、所定のレーザー安全クラスを、話を分かりやすくするために仮に“クラス1”とする。
 プロジェクタを設計する際は、ズームレンズの光出射面上のレーザー光束領域の大きさから決まるエネルギー密度がクラス1の基準以下になるように、装置内部のレーザー光源の出力を決めることになる。そうしないと法的に問題となるからである。その範囲内、つまりクラス1の範囲内で、できるだけ大きな出力のレーザーを持ってくれば、最終的にプロジェクタとして得られる投射像は安全規格の中で最高の輝度を有するものとなる。
 明るい画像を投射できるプロジェクタを実現するには、投射レンズの光出射面上のレーザー光束領域におけるエネルギー密度がクラス1の範囲内で最高となる出力を持つレーザー光源を使おうとするのが設計者の心理である。
 しかしながら、その場合に一つ問題が生じる。ワイドとテレとで比べると、ズームレンズの光出射面上のレーザー光束領域の大きさはワイドの方が大きい。そのため、同じレーザー出力の光源では、言い換えればレーザー光源が一定の駆動条件の下では、ワイドの方がテレよりも、前記レーザー光束領域におけるエネルギー密度(レーザーパワー密度)が小さくなる。
 したがって、仮にクラス1の安全基準をズームレンズの倍率変更範囲の全域にわたってクリアしようとすると、テレの方での、前記レーザー光束領域におけるエネルギー密度をクラス1の安全基準以下に規定することになる。この結果、ワイドの方はテレよりも安全クラス上のエネルギー密度の余裕が生まれる。つまり、ワイドの方は合法的にもっと高輝度になるのに、そのポテンシャルを最大限に生かしきれていないことになる。
 こうした問題は、ズームレンズの光出射面上のレーザー光束領域の大きさがズームレンズの焦点距離の変更に伴って変わることで起こっている。当該光出射面上に現れるレーザー光束領域の大きさが変わることは、ズームレンズの光出射面の位置が固定されていれば当然の現象である。
 そこで本発明の一例では、ズームレンズの光出射面の前に、投射窓という屈折力のない平行平板からなる投射窓が光軸に沿って移動可能に配置される。そして、レーザー光源からのレーザー光束のエネルギー量を一定に設定しておき、ズームレンズの焦点距離を変更した際にその投射窓の外側面に現れるレーザー光束領域が変わらないように、ズームレンズの焦点距離の変更に応じて前記投射窓の位置が変更される。例えば、ズームレンズの光出射面に対し投射窓の平行平板の位置はワイド時に最も近づけられ、テレ時に最も離される。
 こうした手法により、ズームレンズの倍率変更領域の全域にわたって高輝度なプロジェクタとなることが予想できる。また、所定の安全クラスを満足し、そのクラスで最高のパフォーマンス(輝度)となるフロント投射型のレーザープロジェクタを商品化することができる。
 (発明の実施の形態)
 以下、本発明に係るプロジェクタの実施形態例について図面を参照しながら説明する。
 図2は本発明による第1の実施形態の構成を説明するための図である。本実施形態のプロジェクタは、レーザー光源101と、画像変調デバイス105と、ズームレンズ102と、これらを収容する筐体104とを備える。
 筐体104は、ズームレンズ102から出射したレーザー光束が筐体外に出てゆくための開口部を有している。この開口部には、光軸に沿って移動可能な光透過窓103が設けられている。例えば光透過窓103は、ズームレンズ102の光出射面に対して所定の空間を空けて配置され、筐体104の開口部を通って筐体104の外部へ出たり筐体104の内部に引っ込んだりするように、筐体104に取り付けられている。
 さらに光透過窓103は、ズームレンズ102の焦点距離の変更、すなわちズーム倍率変更と連動して動く。
 ズームレンズ102の焦点距離の変更に応じたズーム位置を検出するズーム位置検出部107が備えられており、さらに、検出されたズーム位置に応じて光透過窓103の位置を制御する窓位置制御部108が備えられている。ズームレンズ102としては、周知技術のプロジェクタに利用されているズームレンズを使用すればよい。
 ここでいうズーム位置とは、ズームレンズ102を構成する内部レンズ群の一部を光軸に沿って移動させてズームレンズ102の焦点距離(スクリーンとの投写距離もしくはズーム倍率)を決める際の、当該内部レンズ群の一部の位置をいう。
 ズーム位置を検出する装置例を挙げると、ズームレンズ102の鏡筒に、鏡筒中心軸回りに回転することで前記ズーム位置を変更するズームリングが設けられる。該ズームリングは人が回転操作しやすいように筐体104の外側に露出するレバーを備える。このようなズーム位置変更手段であるズームリングの回転角を検出するポジションセンサーがズームレンズ102にズーム位置検出部107として設けられる。
 前記ズームリングの回転角と、ズームレンズ102の内部レンズ群の一部の位置と、当該位置で決まるズームレンズ102の焦点距離(スクリーンとの投写距離もしくはズーム倍率)との対応関係を予め求めておけば、該ポジションセンサーで検出される前記ズームリングの回転角度から、スクリーンとの投写距離もしくはズーム倍率に相当する現在のズーム位置が分かる。
 この場合のズームリングは回転範囲が制限されている。そしてズームレンズ102は、前記ズームリングを回転範囲の一方の端まで回転させると最短焦点距離の状態、すなわち“ワイド”になり、他方の端まで回転させると、最長焦点距離の状態、すなわち“テレ”になる。
 前記ズームリングの回転を人のレバー操作で行う例を示したが、前記ズームリングを、プロジェクタから離れた所から遠隔操作されるモータ等のアクチュエータにより回転させてもよい。またズーム位置変更手段に関しては上記ズームリングとは異なる別の構造が用いられてもよい。
 また、光透過窓103としては、可視光のレーザー光束を透過しうる透明な材料からなる平行平板が好適である。この平行平板には例えば光学ガラス、プラスチックなどを利用できる。その平行平板の厚みに特に指定されていない。万が一、この光透過窓が破損すると危険であるので、光透過窓103の平板部に光透過性のフィルムなどを貼り付けて破損を防ぐための対策を講じてもよい。破損とは、破壊のほか、穴開きや、ひび割れなども含む。
 光透過窓103は、図3に例示するように、外形が茶筒の蓋のような形を成している。光透過窓103の平板部103aは、光軸と直交し且つズームレンズ102の光出射面と対面する平行平板の部分であり、前述したように透明部材で構成されていることが好ましい。この平板部103aを囲む筒状の側面部103bは不透明部材から構成されていることが好ましい。筒状の側面部103bが仮に透明部材ができていると、光透過窓103の側面から光が漏れ出す、あるいは人間の瞳をその筒状の側面部103bに近づけたときに危険に曝されるからである。
 なお、光透過窓103の外形については円筒状に限定されるわけではない。この外形としては角柱状やその他の形でも構わない。筐体104のデザイン性を考慮して決めることが望ましい。重要なのは、ズームレンズ102から出た光を蹴ることなく光透過窓103から出射させ、かつ側面から光を漏らさないということである。
 レーザー光源101は半導体レーザーや固体レーザーなどを利用することができる。赤や青の色光を発するレーザー光源としては、DVDやブルーレイなどの為にすでに大量に生産されている半導体レーザーなら比較的安価なものが入手可能である。また、緑色を発するレーザーとしては、SHG(second harmonic generation)素子により波長変換により得られるレーザー光源を利用することが出来る。ただし、本発明はこれらに限定されない。
 さらに、レーザー光源101と画像変調デバイス105との間には、レーザー光源101からのレーザー光束(レーザービーム)を画像変調デバイス105の大きさ相応に拡大するための照明光学系106が配されている。照明光学系106は、レーザー光束の進行方向に沿ってレンズ106a、インテグレータ106b、およびレンズ106cの順番で構成されている。レンズ106a,106cは凸レンズであり、インテグレータ106bはフライアイレンズやロッドインテクグレータ等である。
 画像変調デバイス105は2次元画像を形成するマイクロディスプレイであり、例えば透過型の液晶ライトバルブや、DMD(デジタルミラーデバイス)あるいはLCOS(反射型液晶素子)などが用いられる。
 2次元画像変調デバイス105で形成された画像はズームレンズ102で、不図示のスクリーンや白い壁などに投影されるが、このとき光透過窓103を介して筐体104の外部に出ることが許される。
 なお、図2の構成図は、略図として示したものである。したがって、レーザー光源や画像変調デバイスなどが1つ示されているだけであるが、実際のところ、複雑な構成となっている。
 例えば、カラー画像が得られるプロジェクタを実現したいなら、光源にはRGBの3色の色光を発するレーザー光源が必要になる。この場合、独立した3色のレーザーモジュールで構成すれば、それらの色光を合成するためのフィルタなどの光学部品も必要になる。もちろん、画像変調デバイスについても、透過型と反射型のどちらを使用するかによって光学系のレイアウトも変わる。したがって、本発明のプロジェクタの光学系については図示した光学部品の数やレイアウトに限定されない。
 次に、本プロジェクタの動作について説明する。
 ユーザーが例えばズームレンズ102のズームリングをレバーで回転させると、ズームレンズ102を構成する内部レンズ系の一部の位置(ズーム位置)が移動してズームレンズ102の焦点距離(スクリーンとの投写距離もしくはズーム倍率)が変わる。
 光透過窓103は、このようなズームレンズ102の焦点距離の変更と連動して動く。
 ここで光透過窓103の動きについて詳述する。
 ズームレンズ102がワイドに設定されたときに光透過窓103(平板部103a)の外側面に現れるレーザー光束領域110の大きさと、ズームレンズ102がテレに設定されたときに光透過窓103(平板部103a)の外側面に現れるレーザー光束領域111の大きさとが略等しくなるように、ズームレンズ102の焦点距離変更と連動して光透過窓103が動く(図4(a)(b)参照)。ワイドとテレの間の変更過程においても、光透過窓103(平板部103a)の外側面に現れるレーザー光束領域の大きさが変わらないように、光透過窓103の位置を制御する。
 本実施形態例では、ズームレンズ102のズームリングに設けられたレバーをユーザーが操作すると、ズーム位置検出部107からそのときのズーム位置情報が検出される。
 このとき、そのズーム位置に基づき、光透過窓103を移動させる位置が分かるようになっている。
 詳述すると、仮に光透過窓103が動かない場合、ズームレンズ102がワイドからテレへ調整されるに従い、光透過窓103の外側面上のレーザー光束領域の大きさは小さくなっていく。本発明では、ズームレンズ102の焦点距離変更に伴うあらゆるズーム位置において光透過窓103の外側面上のレーザー光束領域の大きさ(面積)が変わらないように、光透過窓103の位置を制御したい。光透過窓103の外側面に現れるレーザー光束領域の大きさ(面積)は、ズームレンズ102の仕様をもとに光学シミュレーション(光路追跡)を行うことで予め正確に知ることができる。そこで、上記光学シミュレーション(光路追跡)を用い、あらゆるズーム位置に対し、光透過窓103の外側面上のレーザー光束領域の大きさ(面積)が変わらない光透過窓103の位置が予め計算され、窓位置制御部108等に記憶してある。
 この場合光透過窓103の外側面上のレーザー光束領域の大きさ(面積)も予め決められるので、光透過窓103上のレーザーパワー密度(エネルギー密度)がプロジェクタの安全クラスを満足するAEL値[W/mm^2]になるように、レーザー光源101の出力値[W]は固定されている。
 そして、例えばズームレンズ102をワイドの方に調節するためにズームリングのレバーを操作すると、現在のズーム位置がズーム位置検出部107で検出される。この検出結果に基づき、窓位置制御部108は光透過窓103を筐体104内に引っ込めるように図2中の矢印Aの方向に移動する。このとき、ワイドへのズーム操作前と比べて光透過窓103の外側面上のレーザー光束領域の大きさ(面積)は増大することなく略同じになる。
 一方、初期状態としてズームレンズ106がワイドに設定され、その状態からテレへズーム調整が実施されたときには、ズーム位置検出部107により現在のズーム位置が検出され、検出された現在のズーム位置情報から、光透過窓103の移動位置が判明する。この検出結果に基づき、窓位置制御部108は光透過窓103を筐体104内から繰り出すように図2中の矢印Bの方向に移動する。このとき、テレへのズーム操作前と比べて光透過窓103の外側面上のレーザー光束領域の大きさ(面積)は減少することなく略同じになる。
 以上の事により、ズームレンズ102のズームリングのレバー操作によりズーム位置が変わっても、プロジェクタを出射する光線、すなわち光透過窓103上のレーザー光束領域の大きさは、常に同等である。
 したがって本発明は、ズームレンズ102の焦点距離変更に関わらず、光透過窓103の外側面上のレーザー光束領域におけるエネルギー密度をAEL値と同じかそれ以下の一定値に保つことができる。つまり、ズームレンズの倍率変更領域全域にわたり安全で投射像の明るいプロジェクタを提供できる。
 (第1の実施形態の変形例)
 上記第1の実施形態例は種々の変更が容易である。
 例えば、上記実施形態例のようなプロジェクタの外観をなす筐体104の光出射出口に可動式の光透過窓103を設けるのではなく、ズームレンズ102自体に可動式の光透過窓103を備えた構造とすることも可能である。
 すなわち、ズームレンズ102の光が射出する側に、光透過性の平行平板を備えた鏡筒構造を採用すればよい。その光透過窓103の動作については第1の実施の形態とほぼ同じである。
 光透過窓103がズームレンズ102自体に組み付けられることにより、光透過窓103の移動機構をズームレンズ鏡筒のカム機構として設計できるので、装置全体の組み立て性が向上できるメリットがある。
 以上、各実施形態例を示して本願発明を説明したが、本願発明は上記の実施形態例に限定されるものではない。本願発明の形や細部には、本願発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。

Claims (13)

  1.  光源から出射した光束を拡大投射するズームレンズと、
     前記ズームレンズの光出射面の前方に光軸に沿って移動可能に配置された光透過窓と、
     前記ズームレンズの焦点距離の変更に従い、前記光透過窓の外側面上に現れる前記光束の領域が変わらないように前記光透過窓の位置を制御する制御手段と、
     を有するプロジェクタ。
  2.  前記光透過窓は、前記光軸と直交し且つ前記ズームレンズの光出射面と対面する平行平板からなる、請求項1に記載のプロジェクタ。
  3.  前記光透過窓は前記ズームレンズの鏡筒に組み込まれている、請求の範囲第1項又は第2項に記載のプロジェクタ。
  4.  前記光透過窓は、前記ズームレンズの焦点距離を最短に設定した場合に前記ズームレンズの光出射面に最も接近し、前記ズームレンズの焦点距離を最長に設定した場合に前記ズームレンズの光出射面から最も離れる、請求の範囲第1項から第3項のいずれか1項に記載のプロジェクタ。
  5.  前記ズームレンズの焦点距離を変更するための変更手段をさらに備えた請求の範囲第1項から第4項のいずれか1項に記載のプロジェクタ。
  6.  前記変更手段は、前記ズームレンズの鏡筒に回転可能に取り付けられ、回転することで内部レンズ群の一部を光軸に沿って移動させて前記ズームレンズの焦点距離を決めるズームリングであり、
     前記プロジェクタは、前記ズームリングの回転角に応じて、前記焦点距離を決める前記内部レンズ群の一部の位置を検出するズーム位置検出手段をさらに有する、請求の範囲第5項に記載のプロジェクタ。
  7.  前記光源がレーザー光源であり、
     前記プロジェクタは、該レーザー光源からのレーザー光束を画像変調デバイスに照射し、該画像変調デバイスに形成される画像を前記ズームレンズにより拡大投射する、請求の範囲第1項から第6項のいずれか1項に記載のプロジェクタ。
  8.  前記光透過窓の外側面上に現れる前記レーザー光束のエネルギー密度が、プロジェクタのレーザー安全クラスを満足する被曝放出限界値(AEL値)以下となっている、請求の範囲第7項に記載のプロジェクタ。
  9.  前記画像変調デバイスは、2次元画像を形成するマイクロディスプレイであり、透過型の液晶ライトバルブ、DMD(デジタルミラーデバイス)あるいはLCOS(反射型液晶素子)を用いられている、請求の範囲第7項又は第8項のいずれか1項に記載のプロジェクタ。
  10.  光源からの光束をズームレンズにより拡大投射するプロジェクタの制御方法であって、
     前記ズームレンズの光出射面の前方に光透過窓を光軸に沿って移動可能に配置し、
     前記ズームレンズの焦点距離の変更に従い、前記光透過窓の外側面上に現れる前記光束の領域が変わらないように前記光透過窓の位置を制御する、プロジェクタの制御方法。
  11.  前記光透過窓は、前記光軸と直交し且つ前記ズームレンズの光出射面と対面する平行平板からなる、請求の範囲第10項に記載のプロジェクタの制御方法。
  12.  前記光源がレーザー光源であり、
     前記プロジェクタは、該レーザー光源からのレーザー光束を画像変調デバイスに照射し、該画像変調デバイスに形成される画像を前記ズームレンズにより拡大投射する、請求の範囲第10項又は第11項に記載のプロジェクタの制御方法。
  13.  前記光透過窓の外側面上に現れる前記レーザー光束のエネルギー密度が、プロジェクタのレーザー安全クラスを満足する被曝放出限界値(AEL値)以下となる、請求の範囲第12項に記載のプロジェクタの制御方法。
PCT/JP2008/069891 2008-10-31 2008-10-31 プロジェクタ及びその制御方法 WO2010050047A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2008/069891 WO2010050047A1 (ja) 2008-10-31 2008-10-31 プロジェクタ及びその制御方法
EP08877758.6A EP2343596B1 (en) 2008-10-31 2008-10-31 Projector and its controlling method
JP2010535588A JP5070614B2 (ja) 2008-10-31 2008-10-31 プロジェクタ及びその制御方法
CN2008801318211A CN102203670B (zh) 2008-10-31 2008-10-31 投影仪及其控制方法
US12/998,467 US8690357B2 (en) 2008-10-31 2008-10-31 Projector having a light transmitting window movably disposed in-front of the zoom lens and a control method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/069891 WO2010050047A1 (ja) 2008-10-31 2008-10-31 プロジェクタ及びその制御方法

Publications (1)

Publication Number Publication Date
WO2010050047A1 true WO2010050047A1 (ja) 2010-05-06

Family

ID=42128425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/069891 WO2010050047A1 (ja) 2008-10-31 2008-10-31 プロジェクタ及びその制御方法

Country Status (5)

Country Link
US (1) US8690357B2 (ja)
EP (1) EP2343596B1 (ja)
JP (1) JP5070614B2 (ja)
CN (1) CN102203670B (ja)
WO (1) WO2010050047A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403617B (zh) * 2011-03-03 2015-09-02 Nec显示器解决方案株式会社 图像投影装置和控制光源的方法
CN102799053B (zh) * 2012-06-19 2014-11-05 苏州佳世达光电有限公司 一种投影仪及其梯形失真校正方法
JP6051649B2 (ja) * 2012-07-23 2016-12-27 セイコーエプソン株式会社 プロジェクターおよびその制御方法
US9958829B2 (en) * 2014-05-07 2018-05-01 International Business Machines Corporation Sensory holograms
CN108024101B (zh) * 2016-10-28 2020-10-27 中强光电股份有限公司 投影机以及焦距调整方法
CN112433327B (zh) * 2019-08-06 2022-12-20 三赢科技(深圳)有限公司 镜头模组及电子装置
CN110673293A (zh) * 2019-10-10 2020-01-10 青岛海信激光显示股份有限公司 投影装置及其变焦镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131323A (ja) * 2001-10-26 2003-05-09 Seiko Epson Corp プロジェクタ
JP2006227083A (ja) * 2005-02-15 2006-08-31 Sony Corp 画像表示装置および検知方法
JP2006330447A (ja) * 2005-05-27 2006-12-07 Mitsubishi Electric Corp フロントプロジェクタ装置
JP2006330379A (ja) * 2005-05-26 2006-12-07 Sony Corp 投射型表示装置
WO2006137548A1 (ja) * 2005-06-24 2006-12-28 Matsushita Electric Industrial Co., Ltd. 画像投射装置及び背面投写型ディスプレイ装置
JP2008058454A (ja) 2006-08-30 2008-03-13 Seiko Epson Corp プロジェクタ及びその制御方法
JP2008107528A (ja) * 2006-10-25 2008-05-08 Seiko Epson Corp プロジェクタ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825555A (en) 1994-09-19 1998-10-20 Asahi Kogaku Kogyo Kabushiki Kaisha Beam projecting apparatus
JP3721641B2 (ja) * 1996-07-10 2005-11-30 ソニー株式会社 映像投影装置
US5978051A (en) 1996-10-31 1999-11-02 In Focus Systems Inc Image projection system with variable display format
DE59712621D1 (de) * 1996-12-13 2006-05-24 Rolic Ag Zug Ferroelektrische Flüssigkristallzelle
CN1208654C (zh) 2000-12-07 2005-06-29 索尼公司 图像投影装置、投影镜像图形、激光驱动装置、摄影装置
JP2004004284A (ja) * 2002-05-31 2004-01-08 Canon Inc 投射型表示装置
DE602004025437D1 (de) * 2003-06-13 2010-03-25 Sony Corp Projektionsanzeigevorrichtung
TW200527920A (en) * 2003-12-15 2005-08-16 Koninkl Philips Electronics Nv Projector and method of projecting an image having multiple image sizes
US7309133B2 (en) * 2004-03-19 2007-12-18 Seiko Epson Corporation Projector and pattern image display method
CN101268402B (zh) * 2005-09-21 2010-08-18 松下电器产业株式会社 图像投射装置
WO2008056297A1 (en) * 2006-11-08 2008-05-15 Philips Intellectual Property & Standards Gmbh Laser projector with automatic security
KR20080060923A (ko) * 2006-12-27 2008-07-02 삼성전자주식회사 복수개의 레이저 광원에 공급되는 전원을 제어하기 위한레이저 프로젝터 및 그 방법
JP4692531B2 (ja) * 2007-09-13 2011-06-01 カシオ計算機株式会社 投影装置及び光測距方法。
JP2009086474A (ja) 2007-10-02 2009-04-23 Canon Inc 光学装置
US20090091730A1 (en) * 2007-10-03 2009-04-09 Nikon Corporation Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
JP4600488B2 (ja) * 2008-02-20 2010-12-15 カシオ計算機株式会社 投影装置及び測距方法。

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131323A (ja) * 2001-10-26 2003-05-09 Seiko Epson Corp プロジェクタ
JP2006227083A (ja) * 2005-02-15 2006-08-31 Sony Corp 画像表示装置および検知方法
JP2006330379A (ja) * 2005-05-26 2006-12-07 Sony Corp 投射型表示装置
JP2006330447A (ja) * 2005-05-27 2006-12-07 Mitsubishi Electric Corp フロントプロジェクタ装置
WO2006137548A1 (ja) * 2005-06-24 2006-12-28 Matsushita Electric Industrial Co., Ltd. 画像投射装置及び背面投写型ディスプレイ装置
JP2008058454A (ja) 2006-08-30 2008-03-13 Seiko Epson Corp プロジェクタ及びその制御方法
JP2008107528A (ja) * 2006-10-25 2008-05-08 Seiko Epson Corp プロジェクタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2343596A4

Also Published As

Publication number Publication date
CN102203670B (zh) 2012-10-10
JP5070614B2 (ja) 2012-11-14
US8690357B2 (en) 2014-04-08
EP2343596B1 (en) 2013-12-18
US20110199587A1 (en) 2011-08-18
EP2343596A4 (en) 2012-04-25
EP2343596A1 (en) 2011-07-13
JPWO2010050047A1 (ja) 2012-03-29
CN102203670A (zh) 2011-09-28

Similar Documents

Publication Publication Date Title
JP5669211B2 (ja) プロジェクタ及びその制御方法
JP5070614B2 (ja) プロジェクタ及びその制御方法
US7532259B2 (en) Dynamic aperture for a light processing system
US20140313489A1 (en) Visible and infrared light source for illumination system and projection device comprising the same
WO1998029773A1 (fr) Dispositif d'affichage d'image
WO2020091073A1 (ja) 投射レンズ及び投射装置
JP2004191987A (ja) 多機能プロジェクター
KR100441506B1 (ko) 영상투사장치
JP2005309337A (ja) 投映型画像表示装置
JP2008249747A (ja) インテグレータユニット
JP4957179B2 (ja) プロジェクタ
JP4557204B2 (ja) 投映型画像表示装置
JP2012181514A (ja) 投射型表示装置
JP2017032964A (ja) 光学系およびそれを用いた画像表示装置
JP2013064876A (ja) 画像表示装置
JP2010032946A (ja) 投写型表示装置
TWI479253B (zh) 光源系統及包含該光源系統之投影裝置
JP5959012B2 (ja) プロジェクタ及びその制御方法
JP2010217489A (ja) プロジェクター
JP2009020413A (ja) 照明光学系およびそれを用いた投射型表示装置
JP2010091772A (ja) 投写型表示装置
JP2022096931A (ja) 投射光学装置およびプロジェクター
JP6435543B2 (ja) レンズユニット、画像投影装置及び撮像装置
JP2007147965A (ja) プロジェクタ
JP5920002B2 (ja) フロントコンバーター、複合投写レンズ及びプロジェクター

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131821.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877758

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010535588

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12998467

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008877758

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE