WO2010047410A1 - 内燃機関の廃熱回収システム - Google Patents

内燃機関の廃熱回収システム Download PDF

Info

Publication number
WO2010047410A1
WO2010047410A1 PCT/JP2009/068309 JP2009068309W WO2010047410A1 WO 2010047410 A1 WO2010047410 A1 WO 2010047410A1 JP 2009068309 W JP2009068309 W JP 2009068309W WO 2010047410 A1 WO2010047410 A1 WO 2010047410A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
pressure
transfer medium
heat transfer
Prior art date
Application number
PCT/JP2009/068309
Other languages
English (en)
French (fr)
Inventor
粕谷 潤一郎
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to EP09822104A priority Critical patent/EP2336537B1/en
Priority to US13/125,089 priority patent/US8544270B2/en
Publication of WO2010047410A1 publication Critical patent/WO2010047410A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/14Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled including at least one combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a waste heat recovery system for an internal combustion engine, and more particularly to a waste heat recovery system for an internal combustion engine suitable for a vehicle.
  • the waste heat recovery system of an internal combustion engine has a Rankine cycle circuit.
  • the Rankine cycle circuit has a circulation path for circulating the heat transfer medium, and a pump, a heat exchanger, an expander, and a condenser are sequentially inserted in the circulation path.
  • the heat transfer medium is heated using the heat released from the internal combustion engine, and the heated heat transfer medium is expanded by the expander.
  • power is output via the rotating shaft of the expander, and this power is used as regenerative energy.
  • the engine is assisted by regenerative energy.
  • the rotating shaft of the expander and the rotating shaft of the engine are connected via a transmission and a clutch, and the rotation of the rotating shaft of the expander is transmitted to the rotating shaft of the engine at a predetermined speed ratio.
  • the rotating shaft of the expander and the rotating shaft of the generator are connected, and regenerative energy is converted into electric power by the generator.
  • a working medium closing means and a valve mechanism are provided on the upstream side of the expander, respectively.
  • a bypass passage closing means is provided together with a working medium closing means.
  • the working medium closing means is first opened, and the bypass closing means is opened when the differential pressure between the inlet and outlet of the expander exceeds a set value.
  • the bypass closing means is first opened, and then the working medium closing means is closed when the differential pressure between the inlet and the outlet of the expander becomes a set value or less.
  • JP-A-57-99222 for example, claim 4, FIG. 1
  • JP 59-138707 for example, page 3, upper left column to lower left column, FIGS. 4 to 6)
  • JP 2006-170185 A for example, FIG. 1, paragraph numbers 0093 to 0096
  • the rotating shaft of the expander (expander shaft) and the rotating shaft of the engine (engine shaft) are connected via a transmission.
  • the gear ratio is constant, the rotation of the engine shaft is performed.
  • the rotational speed of the expander shaft also increases.
  • Patent Document 3 In the waste heat recovery system for an internal combustion engine disclosed in Patent Document 3, the valve mechanism is merely closed to stop the expander when it is determined that there is an abnormality.
  • the present invention has been made in view of the problems that none of Patent Documents 1 to 3 disclose, and provides a waste heat recovery system for an internal combustion engine in which the amount of regenerative energy transmitted to the internal combustion engine is increased with a simple structure. The purpose is to do.
  • the heat transfer medium is heated using heat generated in a pump and an internal combustion engine sequentially inserted in a circulation path of the heat transfer medium.
  • a Rankine cycle circuit having a heat exchanger, an expander, and a condenser for imparting a degree of superheat to the heat transfer medium, and power transmission means for transmitting the power of the rotating shaft of the expander to the rotating shaft of the internal combustion engine And a flow rate limiting valve that is inserted in an upstream portion of the expander in the circulation path that extends between the heat exchanger and the inlet of the expander, and that can limit the flow rate of the heat transfer medium in the upstream portion of the expander
  • a waste heat recovery system for an internal combustion engine comprising: a high-pressure sensor that detects a pressure of the heat transfer medium in the heat exchanger; and a control device that controls operations of the pump and the flow control valve.
  • Determination means for determining whether or not it is necessary to increase the pressure of the heat transfer medium in the heat exchanger based on the detected pressure, and the determination means determines the pressure in the heat exchanger.
  • the flow restriction valve is started to limit the flow rate of the heat transfer medium while the pump is operated.
  • the flow restriction valve is allowed to continue the restriction of the flow rate of the heat transfer medium until it is determined that it is not necessary to increase the pressure of the heat transfer medium in the heat exchanger, and then the restriction is terminated.
  • a waste heat recovery system for an internal combustion engine is provided (claim 1).
  • the determination means determines that the pressure of the heat transfer medium in the heat exchanger needs to be increased when the pressure detected by the high pressure sensor is less than a lower limit pressure, and the high pressure sensor When the detected pressure exceeds the upper limit pressure, it is determined that it is not necessary to increase the pressure of the heat transfer medium in the heat exchanger (claim 2).
  • the waste heat recovery system further includes a low-pressure sensor that detects a pressure of the heat transfer medium at an outlet of the expander, and the determination unit is configured by the high-pressure sensor with respect to the pressure detected by the low-pressure sensor.
  • the waste heat recovery system further includes a rotation speed detection unit that detects a rotation speed of the rotation shaft of the expander, and the determination unit has a rotation speed detected by the rotation speed detection unit equal to or higher than a set rotation speed. Only when it is, it is determined whether or not it is necessary to increase the pressure of the heat transfer medium in the heat exchanger (claim 4).
  • the waste heat recovery system further includes a tank that freely stores the heat transfer medium in and out of a portion of the circulation path that extends between the heat exchanger and the flow restriction valve.
  • the waste heat recovery system includes, as the heat exchanger, an evaporator that heats the heat transfer medium using cooling water of the internal combustion engine, and the evaporator as viewed in the flow direction of the heat transfer medium.
  • a superheater that is located downstream and heats the heat transfer medium using the exhaust gas of the internal combustion engine, and the tank and the superheater are integrally formed.
  • the waste heat recovery system further includes a second control device that controls an output of the internal combustion engine, and the second control device is configured such that the control device restricts the flow rate of the heat transfer medium by the flow rate restriction valve.
  • the output is decreased (claim 7).
  • the flow rate restriction valve is a flow rate adjustment valve capable of continuously changing a flow rate, and the control device continuously supplies the flow rate when the flow rate restriction valve ends the restriction of the flow rate of the heat transfer medium.
  • the flow regulating valve is actuated so as to increase continuously (Claim 8).
  • the waste heat recovery system includes a plurality of on-off valves arranged in parallel with each other in the circulation path as the flow restriction valve, and the control device restricts the flow rate of the heat transfer medium by the flow restriction valve.
  • the on-off valves are sequentially operated so that the flow rate increases stepwise (Claim 9).
  • the control device does not cause the flow rate restriction valve to restrict the flow rate of the heat transfer medium for a predetermined period after the pump is started (Claim 10).
  • the waste heat recovery system further includes bypass means for bypassing the flow restriction valve.
  • the power transmission means includes a one-way clutch that transmits power only in a direction from a rotation shaft of the expander to a rotation shaft of the internal combustion engine.
  • the power transmission means includes an electromagnetic clutch that connects the rotating shaft of the expander and the rotating shaft of the internal combustion engine in an intermittent manner, and the control device supplies a flow rate of the heat transfer medium to the flow rate limiting valve.
  • the connection between the rotating shaft of the expander and the rotating shaft of the internal combustion engine by the electromagnetic clutch is released (claim 13).
  • the control device continues the restriction while the internal combustion engine is exerting a braking force after the restriction of the flow rate of the heat transfer medium by the flow restriction valve is started (Claim 14). .
  • the discharge amount of the pump is variable, and the control device sets the discharge amount of the pump to zero or decreases when the flow restriction valve restricts the flow rate of the heat transfer medium ( Claim 15).
  • the power transmission means includes a flywheel.
  • the power transmission means includes a hydraulic device that converts the power of the rotating shaft of the expander into hydraulic pressure and rotates the rotating shaft of the internal combustion engine using the hydraulic pressure.
  • the hydraulic device uses a hydraulic pump that increases hydraulic pressure by the power of a rotating shaft of the expander, a hydraulic accumulator that stores hydraulic pressure, and a hydraulic pressure stored in the hydraulic accumulator to rotate the internal combustion engine.
  • the stored hydraulic pressure is increased (claim 18).
  • the apparatus is controlled by the control device and includes a fan for cooling the condenser, and the control device stops the fan when the flow restriction valve restricts the flow rate of the heat transfer medium ( Claim 19).
  • the control device controls the flow rate limiting valve. To increase the pressure of the heat transfer medium in the heat exchanger. Thereby, even when the rotational speed of the internal combustion engine is high, a decrease in the pressure of the heat transfer medium at the inlet of the expander is prevented, and a decrease in the output of the expander, that is, a decrease in the amount of regenerative energy is prevented. According to the waste heat recovery system for an internal combustion engine according to claim 2, the determination is performed accurately because the determination means adopts the set pressure as the determination reference.
  • the waste heat recovery system for an internal combustion engine determines whether or not it is necessary to increase the pressure of the heat transfer medium in the heat exchanger based on the set pressure ratio.
  • the amount of regenerative energy due to the increase in rotational speed is determined by the determination means only when the rotational speed of the rotating shaft of the expander is equal to or higher than the set rotational speed. Is accurately prevented.
  • the frequency of flow restriction by the flow restriction valve is reduced by the tank. The restriction on the flow rate causes a temporary decrease in the output of the expander, which is a disturbance for the rotational speed control of the internal combustion engine.
  • the rotational speed control of the internal combustion engine becomes stable.
  • the driver can drive without a sense of incongruity.
  • the reduction in the frequency of the flow rate restriction leads to a longer life of the flow rate control valve.
  • the enthalpy of the heat transfer medium is increased by being heated in the tank. Thereby, when the restriction
  • the waste heat recovery system for an internal combustion engine when the restriction of the flow rate of the heat transfer medium by the flow restriction valve ends, the engine output decreases, so that the rotational speed of the internal combustion engine is stabilized.
  • the waste heat recovery system for an internal combustion engine of claim 8 when the restriction of the flow rate of the heat transfer medium by the flow restriction valve is finished, the rotational speed of the internal combustion engine is stabilized by continuously increasing the flow rate. . Moreover, since the rotational speed of the rotating shaft of the expander is prevented from rapidly increasing, the load on the expander is reduced.
  • the internal combustion engine waste heat recovery system of claim 9 when the restriction of the flow rate of the heat transfer medium by the flow restriction valve ends, the rotational speed of the internal combustion engine is stabilized by increasing the flow rate stepwise. . Moreover, since the rotational speed of the rotating shaft of the expander is prevented from rapidly increasing, the load on the expander is reduced. According to the internal combustion engine waste heat recovery system of claim 10, even when the heat transfer medium is dispersed in the circulation path when the pump is started, the heat transfer medium is caused to flow into the pump via the expander. The heat transfer medium circulates in the circulation path at an early stage. That is, the time required from the start of the pump to the recovery of waste heat is shortened.
  • the flow restriction of the heat transfer medium is relaxed by the bypass means.
  • the rotational speed of the internal combustion engine is stabilized, and the time required from the start of the pump to the recovery of waste heat is shortened.
  • the waste heat recovery system for an internal combustion engine of the twelfth aspect when the flow rate is restricted by the flow restriction valve, the expander is prevented from becoming a load on the internal combustion engine.
  • the waste heat recovery system for an internal combustion engine of the thirteenth aspect when the flow rate is restricted by the flow restriction valve, the expander is prevented from becoming a load on the internal combustion engine.
  • the expander assists the internal combustion engine by executing the flow rate restriction of the heat transfer medium by the flow rate control valve while the internal combustion engine exhibits the braking force.
  • a reduction in the braking force of the internal combustion engine is prevented.
  • the expander becomes a load, the braking force of the internal combustion engine is increased.
  • the pressure of the heat transfer medium in the heat exchanger is further increased, and the output of the expander after the restriction is released is increased.
  • the waste heat recovery system for an internal combustion engine of claim 15 when the flow restriction valve restricts the flow rate of the heat transfer medium, the heat transfer medium in the heat exchanger is reduced by reducing the discharge amount of the pump.
  • the power consumption of the pump is reduced while sufficiently heating.
  • the power transmitted to the rotation shaft of the internal combustion engine is averaged by the flywheel, and the rotation speed of the internal combustion engine is stabilized.
  • the power transmitted to the rotation shaft of the internal combustion engine is averaged by the hydraulic device, and the rotation speed of the internal combustion engine is stabilized.
  • the waste heat recovery system for an internal combustion engine of claim 18 when the internal combustion engine is exerting a braking force, the amount of regenerative energy is further increased by storing the hydraulic pressure by the hydraulic motor.
  • the amount of regenerative energy further increases by stopping the fan.
  • FIG. 1 is a diagram schematically showing a waste heat recovery system for an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the pressure ratio and the amount of regenerative energy in the system of FIG.
  • FIG. 3 is a graph showing the relationship between the expander rotation speed and the pressure ratio in the system of FIG. 1 together with a comparative example.
  • FIG. 4 is a graph showing the relationship between the expander rotation speed and the amount of regenerative energy together with a comparative example in the system of FIG.
  • FIG. 5 is a graph showing the time change of the expander output, the pressure ratio, and the EVA input in the system of FIG.
  • FIG. 6 is a diagram illustrating an outline of a third heat exchanger according to a modification.
  • FIG. 1 is a diagram schematically showing a waste heat recovery system for an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the pressure ratio and the amount of regenerative energy in the
  • FIG. 7 is a diagram showing an outline of a flow restriction valve according to a modification.
  • FIG. 8 is a diagram showing an outline of a flow restriction valve according to a modification.
  • FIG. 9 is a diagram showing an outline of bypass means according to a modification.
  • FIG. 10 is a diagram showing an outline of power transmission means according to a modification.
  • FIG. 11 is a diagram illustrating an outline of a heat medium pump according to a modification.
  • FIG. 12 is a diagram showing an outline of power transmission means according to a modification.
  • FIG. 13 is a diagram showing an outline of power transmission means according to a modification.
  • FIG. 14 is a diagram showing an outline of power transmission means according to a modification.
  • FIG. 1 shows a schematic configuration of a waste heat recovery system for an internal combustion engine 100 according to an embodiment of the present invention.
  • the waste heat recovery system of the internal combustion engine 100 converts heat generated in the internal combustion engine 100 into energy (regenerative energy). Specifically, heat generated in the internal combustion engine 100 is supplied to the Rankine cycle circuit 300 via the cooling device 200 of the internal combustion engine 100, and is converted into rotational force by the Rankine cycle circuit 300. The rotational force is transmitted to the internal combustion engine 100 and assists the internal combustion engine 100.
  • the internal combustion engine 100 is, for example, a diesel engine of a vehicle, and light oil as fuel is supplied into a cylinder of the internal combustion engine 100 via an injector 102.
  • the injector 102 is controlled by the E / G control device 104.
  • a depression amount of an accelerator pedal (not shown) is input to the E / G control device 104, and the E / G control device 104 adjusts the fuel supply amount based on the depression amount.
  • the larger the depression amount, the larger the fuel supply amount, and the rotation speed of the rotation shaft 106 (internal combustion engine rotation speed) of the internal combustion engine 100 becomes faster.
  • the rotation shaft 106 of the internal combustion engine 100 is connected to wheels via a clutch, a transmission, and the like. Further, exhaust gas generated in the internal combustion engine 100 is released outside the vehicle through an exhaust pipe 108 connected to the internal combustion engine 100.
  • the cooling device 200 is provided in the vehicle to prevent the internal combustion engine 100 from being heated.
  • the cooling device 200 has a water circulation path 202 through which cooling water circulates.
  • a water pump 204 In the water circulation path 202, a water pump 204, an internal water path 206 of the internal combustion engine 100, and a radiator 208 are inserted in this order in the flow direction of the cooling water.
  • the cooling device 200 includes a bypass passage 210 that bypasses the radiator 208, and a downstream end of the bypass passage 210 is connected to the water circulation passage 202 via a three-way valve 212.
  • the three-way valve 212 has a function as a thermostat, and operates so that the cooling water flows through the bypass passage 210 when the temperature of the cooling water is below a certain level.
  • the Rankine cycle circuit 300 includes a heat medium circulation path 302 through which a heat transfer medium (heat medium) as a working fluid circulates.
  • a heat transfer medium for example, a fluorocarbon refrigerant (R-134a, R-152a, R1234yf, R-245fa), hydrocarbon, alcohol or the like can be used.
  • the heat medium circulation path 302 includes a heat medium pump 304, a low temperature part 306L of the first heat exchanger 306, a low temperature part 308L of the second heat exchanger 308, a low temperature part 310L of the third heat exchanger 310, and an expander 312.
  • the high temperature part 306H, the condenser 314, and the gas-liquid separator 316 of the first heat exchanger 306 are inserted in this order in the flow direction of the heat medium.
  • the 1st heat exchanger 306 is also called a regenerator, and heat exchange is performed between the high temperature part 306H and the low temperature part 306L. That is, in the first heat exchanger 306, the heat medium discharged from the heat medium pump 304 is heated by the heat medium expanded by the expander 312.
  • the second heat exchanger 308 is also referred to as an evaporator, and heat exchange is performed between the high temperature part 308H and the low temperature part 308L.
  • the second heat exchanger 308 uses the heat generated in the internal combustion engine 100 to heat and evaporate the heat medium.
  • the high temperature part 308 ⁇ / b> H of the second heat exchanger 308 is inserted in the water circulation path 202.
  • the third heat exchanger 310 is also called a superheater, and heat exchange is performed between the high temperature part 310H and the low temperature part 310L.
  • the third heat exchanger 310 heats the heat medium using the heat generated in the internal combustion engine 100, and gives a degree of superheat to the heat medium. Therefore, the high temperature part 310 ⁇ / b> H of the third heat exchanger 310 is inserted in the water circulation path 202.
  • a heater 214 is inserted in the water circulation path 202.
  • the heater 214 is attached to the exhaust pipe 108 and heats the cooling water using the heat of the exhaust gas.
  • the heater 214, the high temperature part 310 ⁇ / b> H of the third heat exchanger 310, and the high temperature part 308 ⁇ / b> H of the second heat exchanger 308 are provided in the portion of the water circulation path 202 that extends between the internal water path 206 and the radiator 208. They are inserted in this order in the flow direction.
  • the expander 312 converts the heat obtained by the heat medium in the second heat exchanger 308 and the third heat exchanger 310 into power by expanding the heat medium.
  • the power is output by the rotating shaft 318 of the expander 312 and transmitted to the rotating shaft 106 of the internal combustion engine 100 by the power transmission means.
  • the suction volume of the expander 312 is Vs
  • the discharge volume is Ve
  • the inlet pressure is Ps
  • the outlet pressure is Pe
  • the specific heat ratio of the heat medium is ⁇
  • Poisson's law (Ps / Pe) (Ve / Vs) ⁇ holds.
  • pulleys 400 and 402 and a belt 404 can be used as the power transmission means.
  • the pulleys 400 and 402 are attached to the rotary shafts 318 and 106, respectively, and the belt 404 is wound around the pulleys 400 and 402.
  • the waste heat recovery system of the internal combustion engine 100 includes a control device (R / C control device) 500 that controls the Rankine cycle circuit 300.
  • the R / C control device 500 can be configured by, for example, an ECU (electronic control device).
  • the R / C control device 500 controls the start and stop of the fan 319 for the heat medium pump 304 and the condenser 314, respectively, thereby controlling the start and stop of the Rankine cycle circuit 300.
  • the R / C control device 500 operates the pressure of the heat medium at the outlet of the low temperature part 310L of the third heat exchanger 310 during the operation of the heat medium pump 304, that is, the second heat exchanger 308 and the third heat. It has a judgment means which judges whether it is necessary to raise the pressure (evaporation pressure) of the heat medium in the exchanger 310.
  • the waste heat recovery system of the internal combustion engine 100 includes a sensor that provides information for making a determination to the determination unit, and a flow rate control valve that operates based on the determination result of the determination unit. More specifically, as the sensor, for example, two pressure gauges 502 and 504 can be used.
  • the pressure gauge 502 is attached to a portion of the heat medium circulation path 302 (hereinafter also referred to as an expander upstream portion) that extends between the outlet of the low temperature part 310L of the third heat exchanger 310 and the inlet of the expander 312 and expands. The pressure of the heat medium is detected in the upstream part of the machine.
  • Detecting the pressure is equivalent to detecting the pressure of the heat medium in the second heat exchanger 308 and the third heat exchanger 310 in the Rankine cycle circuit 300, that is, the high pressure PH. It is substantially equivalent to detecting the inlet pressure Ps of the expander 312 when 506 is open.
  • the pressure gauge 504 is attached to a portion of the heat medium circulation path 302 that extends between the outlet of the expander 312 and the condenser 314, and detects the pressure of the heat medium at the portion.
  • Detecting the pressure is equivalent to detecting the low pressure PL of the Rankine cycle circuit 300 and is equivalent to detecting the pressure Pe of the heat medium at the outlet of the expander 312.
  • the high pressure PH and the low pressure PL detected by the pressure gauges 502 and 504 are input to the R / C control device 500.
  • the determination means of the R / C control device 500 calculates a ratio PH / PL (hereinafter referred to as a pressure ratio Rc) of the high pressure PH with respect to the low pressure PL, and each of the calculated pressure ratios Rc is a preset lower limit pressure ratio. Compared with Rmin and upper limit pressure ratio Rmax.
  • the determination means determines that the high pressure PH needs to be increased when the pressure ratio Rc is less than the lower limit pressure ratio Rmin (Yes determination), and when the pressure ratio Rc exceeds the upper limit pressure ratio Rmax, It is determined (No determination) that there is no need to increase the high pressure PH.
  • a 2-port 2-position switching electromagnetic opening / closing valve 506 can be used as the flow restriction valve.
  • the electromagnetic opening / closing valve 506 is inserted in the evaporator upstream portion of the heat medium circulation path 302 and can open and close the portion.
  • the electromagnetic on-off valve 506 is located downstream of the pressure gauge 502 in the flow direction of the heat medium.
  • the opening / closing operation of the electromagnetic opening / closing valve 506 is controlled by the R / C control device 500.
  • the R / C control device 500 closes the electromagnetic opening / closing valve 506 when the determination means determines Yes.
  • the R / C control device 500 after closing the electromagnetic opening / closing valve 506, continues to close the electromagnetic opening / closing valve 506 until the determination means determines No, and then opens the electromagnetic opening / closing valve 506, even if it is short. .
  • the determination unit determines No
  • the R / C control device 500 opens the electromagnetic opening / closing valve 506.
  • the heat medium pump 304 remains operated until it is opened.
  • the waste heat recovery system of the internal combustion engine 100 includes a rotation speed meter 508 that detects the rotation speed (expansion machine rotation speed) of the rotation shaft 318 of the expander 312.
  • the expander rotational speed detected by the rotational speed meter 508 is input to the R / C control device 500. It is preferable that the R / C control device 500 does not perform the determination by the determination unit when the expander rotation speed is less than the preset minimum rotation speed Vmin. That is, it is preferable that the R / C control device 500 does not limit the flow rate of the heat medium by the electromagnetic on-off valve 506 when the expander rotation speed is less than the minimum rotation speed Vmin.
  • movement) of the waste-heat recovery system of the internal combustion engine 100 mentioned above is demonstrated.
  • the E / G control device 104 activates the internal combustion engine 100 and activates the water pump 204.
  • the R / C control device 500 starts the heat medium pump 304 at the same time as or after the water pump 204 starts. Then, the heat medium pump 304 sucks the low-temperature low-pressure liquid-phase heat medium and discharges the low-temperature high-pressure liquid-phase heat medium. The discharged heat medium is preliminarily heated by the first heat exchanger 306. Then, the heat medium is heated by the second heat exchanger 308 to evaporate, and is then heated by the third heat exchanger 310 to become a high temperature / high pressure gas phase heat medium having a superheat degree.
  • the high-temperature high-pressure gas-phase refrigerant is expanded by the expander 312 and becomes a high-temperature low-pressure gas-phase heat medium.
  • the high-temperature and low-pressure gas phase heat medium is cooled by the first heat exchanger 306 and then cooled and condensed by the condenser 314 to become a low-temperature and low-pressure liquid phase heat medium.
  • the low-temperature low-pressure liquid-phase heat medium is sucked into the heat medium pump 304 via the gas-liquid separator 316.
  • the heat medium works to the outside when passing through the expander 312, and the work is output as a rotational force through the rotation shaft 318.
  • the rotational force of the expander 312 is transmitted to the rotation shaft 106 of the internal combustion engine 100 through power transmission means.
  • heat generated in the internal combustion engine 100 is converted into regenerative energy by the Rankine cycle circuit 300, and the operation of the internal combustion engine 100 is performed by the regenerative energy.
  • the determination unit determines whether or not it is necessary to increase the high pressure PH in view of prevention of a decrease in the amount of regenerative energy at a predetermined interval. Repeat with.
  • the R / C control device 500 closes the electromagnetic opening / closing valve 506 when the determination result is Yes, and then opens the electromagnetic opening / closing valve 506 when the determination result is No. According to such an operation of the waste heat recovery system, even when the rotational speed of the internal combustion engine is high, the high pressure PH is prevented from decreasing and the inlet pressure Ps of the expander 312 is prevented from decreasing. As a result, a decrease in output of the expander 312, that is, a decrease in the amount of regenerative energy is prevented. Further, according to the above-described waste heat recovery system, whether or not the high pressure PH needs to be increased is accurately determined by the determination unit using the pressure ratio Rc as a determination criterion.
  • the determination is performed so that a larger amount of regenerative energy can be obtained.
  • the amount of regenerative energy depends on the pressure ratio Rc as schematically shown in FIG. 2, and reaches the maximum value Em when the pressure ratio Rc is the optimum value Rs. Therefore, if the pressure ratio Rc is the optimum value Rs or a value close thereto, the regenerative energy amount can be set to the maximum value Em or a value close thereto. Therefore, in the present embodiment, a lower limit pressure ratio Rmin smaller than the optimum value Rs and an upper limit pressure ratio Rmax larger than the optimum value Rs are set.
  • the optimum value Rs can be obtained by experiment.
  • the optimal value Rs is approximately 1.15 to 1.20 times the ideal pressure ratio Ri, and more specifically about 1.18 times, where (Ve / Vs) ⁇ is the ideal pressure ratio Ri. is there.
  • the lower limit pressure ratio Rmin is preferably set to a value of about 90% of the optimum value Rs. For this reason, the lower limit pressure ratio Rmin is preferably set in the range of 1.03 to 1.08 times the ideal pressure ratio Ri, and more preferably set to 1.06 times.
  • the upper limit pressure ratio Rmax may be the same value as the lower limit pressure ratio Rmin, but is preferably set to a value of about 110% of the optimum value Rs so that the electromagnetic on-off valve 506 does not frequently open and close.
  • the graph of FIG. 3 shows the relationship between the expander rotational speed and the pressure ratio Rc
  • the graph of FIG. 4 shows the relationship between the expander rotational speed and the amount of regenerative energy.
  • the plot of the example shows the result when the flow rate restriction is performed based on the determination result as described above
  • the plot of the comparative example shows the case where the flow rate restriction is not performed at all. Results are shown.
  • the amount of regenerative energy in FIG. 4 is a value obtained by subtracting the power consumption of the heat medium pump 304 and the fan 319 of the condenser 314 from the energy output from the expander 312.
  • the pressure ratio Rc is prevented from decreasing in the region where the rotational speed of the expander exceeds 1500 rpm, as compared with the comparative example.
  • the regenerative energy amount in the example is larger than that in the comparative example in the rotational speed region above about 2250 rpm.
  • the determination unit performs the determination when the expander rotation speed is equal to or higher than the minimum rotation speed Vmin.
  • the minimum rotation speed Vmin is set to, for example, 2250 rpm. It can be seen that it should be set. Thereby, the fall of the amount of regenerative energy by the raise of an expander rotational speed is prevented exactly.
  • FIG. 5 is a graph showing changes over time in the output of the expander 312, the pressure ratio Rc, and the EVA input when the rotation speed of the expander is 3000 rpm. In FIG. 5, the time range is from 0 to 15 seconds, but the same result is repeated with 15 seconds as one cycle.
  • FIG. 5 is a graph showing changes over time in the output of the expander 312, the pressure ratio Rc, and the EVA input when the rotation speed of the expander is 3000 rpm. In FIG. 5, the time range is from 0 to 15 seconds, but the same result is repeated with 15 seconds as one cycle.
  • the pressure ratio Rc gradually decreases immediately after the electromagnetic on-off valve 506 is opened, and increases when the electromagnetic on-off valve 506 is closed.
  • the output of the expander 312 increases rapidly immediately after the electromagnetic on-off valve 506 is opened, and then gradually decreases.
  • the output of the expander 312 rapidly decreases and becomes zero when the electromagnetic on-off valve 506 is closed.
  • the EVA input is the heat absorption amount of the heat medium in the second heat exchanger 308.
  • the EVA input starts to increase after a while after the electromagnetic on-off valve 506 is opened, and the increase rate decreases after 6 seconds.
  • the EVA input starts to decrease after a while after the electromagnetic on-off valve 506 is closed, and continues to decrease until the electromagnetic on-off valve 506 is opened.
  • the EVA input increases as the temperature difference between the cooling water and the heat medium in the second heat exchanger 308 increases.
  • FIG. 5 it can be seen that the lower the pressure ratio Rc is, the more the EVA input is, and the lowering of the pressure ratio Rc is accompanied by the lowering of the pressure and temperature of the heat medium in the second heat exchanger 308.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the heat medium discharged from the heat medium pump 304 is heated by the first heat exchanger 306, but the first heat exchanger 306 may be omitted.
  • the second heat exchanger 308 can provide a degree of superheat to the heat medium
  • the third heat exchanger 310 may be omitted. That is, if the heat medium is heated using the heat discharged from the internal combustion engine 100 and the degree of superheat can be imparted to the heat medium, there may be one heat exchanger or a plurality of heat exchangers. Good.
  • the determination unit only needs to make a determination based on at least the high pressure PH. .
  • the determination unit may determine based on only the high pressure PH. In this case, it is determined that the high pressure PH needs to be increased when the high pressure PH is less than a preset lower limit pressure, and the high pressure is exceeded when the high pressure PH exceeds a preset upper limit pressure. What is necessary is just to determine that it is not necessary to raise PH. Also in this case, the determination is made accurately.
  • map data representing the relationship among the pressure ratio Rc, the expander rotational speed, and the output of the expander 312 may be created in advance, and the determination unit may perform determination based on the map data. .
  • the frequency of flow restriction by the flow restriction valve is reduced by the tank.
  • the restriction on the flow rate causes a temporary decrease in the output of the expander, which is a disturbance for the rotational speed control of the internal combustion engine.
  • the frequency of such flow restriction By reducing the frequency of such flow restriction, the rotational speed of the internal combustion engine is stabilized. In the case of a vehicle, when the rotational speed is stabilized, the driver can drive without a sense of incongruity.
  • the reduction in the frequency of the flow rate restriction leads to a longer life of the flow rate control valve.
  • the tank 320 is formed integrally with the third heat exchanger 310 and constitutes a low temperature part 310L of the third heat exchanger 310.
  • the high temperature part 310H is wound around the outside of the tank 320, it may be provided inside the tank 320. In this case, the enthalpy of the heat medium is increased by being heated in the tank 320. Thereby, when the restriction
  • the E / G control device 104 decreases the amount of fuel supplied to the internal combustion engine 100 when the restriction of the flow rate of the heat transfer medium by the flow restriction valve ends.
  • the rotational speed of the internal combustion engine is stabilized by decreasing the output of the internal combustion engine itself as the flow rate restriction ends and the output of the expander 312 increases.
  • the flow rate of the heat transfer medium is continuously increased when the restriction of the flow rate of the heat transfer medium by the flow rate limiting valve ends. Thereby, the internal combustion engine rotational speed is stabilized. Further, since the expander rotation speed is prevented from rapidly increasing, the load applied to the expander 100 is reduced.
  • the opening degree of the electromagnetic on-off valve 506 may be continuously changed by duty ratio control.
  • a flow rate regulating valve 510 that can continuously change the flow rate may be used as a flow rate limiting valve as shown in FIG.
  • a plurality of electromagnetic on-off valves 506, 512, and 514 may be provided in parallel, and the electromagnetic on-off valves 506, 512, and 514 may be sequentially opened.
  • the flow rate restriction valve is not limited to the flow rate of the heat medium for a predetermined period after the heat medium pump 304 is activated. Thereby, at the time of cold start of the heat medium pump 304, even if the heat medium is dispersed in the heat medium circulation path 302, the heat medium is caused to flow into the heat medium pump 304 via the expander 312. The heat medium circulates in the heat medium circulation path 302 at an early stage.
  • bypass means for bypassing the flow restriction valve.
  • the bypass means can be configured by a bypass 516 that bypasses the flow control valve and a throttle 518 that reduces the flow rate of the bypass 516 compared to the circulation path 302.
  • the flow rate restriction of the heat medium is relaxed by the bypass means.
  • the restriction by the flow control valve ends, and the internal combustion engine rotational speed is stabilized when the flow rate of the heat medium is increased.
  • the power transmission means further includes a one-way clutch 406 as shown in FIG.
  • the one-way clutch 406 transmits the rotational force only in the direction from the rotation shaft 318 of the expander 312 to the rotation shaft 106 of the internal combustion engine 100.
  • the expander 312 is prevented from becoming a load on the internal combustion engine 100 when the flow rate is restricted by the flow restriction valve.
  • the power transmission means preferably includes an electromagnetic clutch 408.
  • the electromagnetic clutch 408 can connect the rotating shaft 318 of the expander 312 and the rotating shaft 106 of the internal combustion engine 100 so as to be intermittent.
  • the R / C control device 500 releases the connection between the rotation shaft 318 of the expander 312 and the rotation shaft 106 of the internal combustion engine 100 by the electromagnetic clutch 408 while the flow rate restriction valve restricts the flow rate of the heat medium. To do. This also prevents the expander 312 from becoming a load on the internal combustion engine 100.
  • the R / C control device 500 continues the restriction of the flow rate while the internal combustion engine 100 exerts the braking force after the restriction of the flow rate of the heat medium by the flow restriction valve is started. Is preferred.
  • the expander does not assist the internal combustion engine and the reduction of the braking force of the internal combustion engine is prevented. Is done. Further, by continuing the restriction of the flow rate, the high pressure PH is further increased, and the output of the expander 312 is increased after the restriction is released.
  • the R / C control device 500 restricts the flow rate of the heat medium when the flow restriction valve restricts the flow rate of the heat medium, the heat medium cannot flow beyond the capacity of the heat exchanger. It is preferable to reduce the discharge amount of the pump 304 for use. In this case, the power consumption of the heat medium pump 304 is reduced.
  • the R / C control device 500 may adjust the number of rotations of the heat medium pump 304, or may use a variable capacity pump 322 as the heat medium pump as shown in FIG. Good.
  • the power transmission means preferably includes a flywheel 410 as shown in FIG. In this case, the power transmitted to the rotating shaft 106 of the internal combustion engine 100 is averaged by the flywheel 410, and the rotational speed of the internal combustion engine is stabilized.
  • the power transmission means preferably includes the hydraulic device 600. As shown in FIG.
  • the hydraulic device 600 has an oil circulation path 602 for circulating oil, and the oil circulation path 602 includes a hydraulic pump 604, a high-pressure accumulator 606, a hydraulic motor 608, and a low-pressure accumulator 610. They are inserted in this order in the circulation direction.
  • the hydraulic pump 604 is driven by the rotating shaft 318 of the expander 312, and the hydraulic motor 608 supplies power to the rotating shaft 106 of the internal combustion engine 100 using hydraulic pressure.
  • the power transmitted to the rotating shaft 106 of the internal combustion engine 100 is averaged by the hydraulic device 600, and the rotational speed of the internal combustion engine is stabilized.
  • a hydraulic pump may be applied to the internal combustion engine 100 together with the hydraulic motor 608. As shown in FIG.
  • a hydraulic motor / pump 612 in which the hydraulic motor 608 and the hydraulic pump are integrally formed is applied. You may do it.
  • the hydraulic motor / pump 612 is a fluid machine that can be switched between functioning as a motor and functioning as a pump by external control. In this case, when the internal combustion engine 100 is exerting a braking force, the hydraulic motor / pump 612 is caused to function as a pump. When functioning as a pump, the oil flows in the reverse direction, and the hydraulic motor / pump 612 increases the hydraulic pressure stored in the high-pressure accumulator 606 while applying a load necessary for exerting the braking force to the internal combustion engine 100. .
  • the R / C control device 500 preferably stops the fan 319 when the flow restriction valve restricts the flow rate of the heat transfer medium. While the flow rate of the heat transfer medium is restricted, the regenerative energy amount is further increased by stopping the fan 319.
  • the present invention can provide a waste heat recovery system for an internal combustion engine in which the amount of regenerative energy transmitted to the internal combustion engine is increased with a simple structure, the present invention is used as a waste heat recovery system for an internal combustion engine suitable for a vehicle. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

 内燃機関に伝達される回生エネルギー量が簡易な構造で増大された内燃機関の廃熱回収システムを提供することを目的とする。  内燃機関の廃熱回収システムの制御装置は、少なくとも高圧センサによって検知された圧力に基づいて熱交換器での伝熱媒体の圧力を上昇させる必要があるか否かを判定する判定手段を有する。そして制御装置は、判定手段によって、熱交換器での圧力を上昇させる必要があると判定されたときに、ポンプを作動させたまま、流量制限弁(506)に伝熱媒体の流量の制限を開始させ、短くても判定手段によって熱交換機での圧力を上昇させる必要がないと判定されるまで流量制限弁に制限を続行させた後、制限を終了させる。

Description

内燃機関の廃熱回収システム
 本発明は、内燃機関の廃熱回収システムに係り、詳しくは、車両に好適な内燃機関の廃熱回収システムに関する。
 内燃機関の廃熱回収システムはランキンサイクル回路を有する。ランキンサイクル回路は、伝熱媒体を循環させる循環路を有し、循環路に、ポンプ、熱交換器、膨張機及び凝縮器が順次介挿されている。熱交換器では、内燃機関から放出された熱を利用して伝熱媒体が加熱され、加熱された伝熱媒体が、膨張機で膨張する。この際、膨張機の回転軸を介して、動力が出力され、この動力は、回生エネルギーとして利用される。
 例えば、特許文献1が開示する熱機関では、回生エネルギーによってエンジンが補助される。具体的には、膨張機の回転軸とエンジンの回転軸とが変速機及びクラッチを介して連結され、膨張機の回転軸の回転が、エンジンの回転軸に所定の変速比で伝達される。特許文献2及び特許文献3がそれぞれ開示するランキン機関及び内燃機関の廃熱回収システムでは、膨張機の回転軸と発電機の回転軸とが連結され、回生エネルギーが発電機によって電力に変換される。
 なお、特許文献2及び特許文献3では、膨張機の上流側に作動媒体閉塞手段及び弁機構がそれぞれ設けられている。具体的には、特許文献2のランキン機関では、作動媒体閉塞手段とともに、バイパス路閉塞手段が併設されている。ランキン機関の起動時には、まず作動媒体閉塞手段が開かれ、膨張機の入口と出口との差圧が設定値以上となったときバイパス閉塞手段が開かれる。ランキン機関の停止時には、まずバイパス閉塞手段が開かれてから、膨張機の入口と出口との差圧が設定値以下となった時点で作動媒体閉塞手段が閉じられる。これにより、安全性の高い起動、停止動作が可能になると考えられている。
 特許文献3の内燃機関の廃熱回収システムでは、発電機の制御信号が制御目標域を外れたときに異常ありと判定される。この場合、液ポンプが停止され、所定のスイッチング素子のみがオンにされ、そして、弁機構が閉じられて膨張機への作動流体の流入が完全に停止される。これにより、発電機の回転制御が不能となった場合でも、膨張機及び発電機を停止させることができると考えられている。
特開昭57−99222号公報(例えば、請求項4、図1) 特開昭59−138707号公報(例えば、3頁左上欄~左下欄、図4~6) 特開2006−170185号公報(例えば、図1、段落番号0093~0096)
 特許文献1の熱機関では、膨張機の回転軸(膨張機軸)とエンジンの回転軸(エンジン軸)とが変速機を介して連結されていたが、変速比が一定の場合、エンジン軸の回転速度が速くなると、膨張機軸の回転速度も速くなる。ここで、熱交換器則ち蒸発器において伝熱媒体が吸熱可能な熱量には限界があり、膨張機軸の回転速度が速くなっても、伝熱媒体の蒸発量は十分には増えない。このため、膨張機軸の回転速度の増大は、蒸発器での伝熱媒体の圧力低下を引き起こす。この結果として、膨張機入口での伝熱媒体の圧力が低下し、膨張機軸からの出力、則ち、回生エネルギー量が減少してしまう。
 また、膨張機の回転速度の変化を抑制すべく、変速機として、多段変速機若しくは連続可変の変速機を用いた場合、システムの構成が複雑になってしまう。なお、特許文献2及び3のランキン機関及び内燃機関の廃熱回収システムでは、エンジンとランキンサイクル回路の膨張機とが連結されておらず、上述した課題を見出すことはできない。
 また、特許文献2のランキン機関では、作動媒体閉塞手段は、バイパス閉塞手段とともに、起動時及び停止時に作動させられるに過ぎない。特許文献3の内燃機関の廃熱回収システムでは、弁機構は、異常有りと判定された場合に、膨張機を停止させるために閉作動させられるにすぎない。
 本発明は、特許文献1~3のいずれもが開示しない課題に鑑みてなされたもので、内燃機関に伝達される回生エネルギー量が簡易な構造で増大された内燃機関の廃熱回収システムを提供することを目的とする。
 上記の目的を達成するべく、本発明の一態様によれば、伝熱媒体の循環路に順次介挿された、ポンプ、内燃機関で発生した熱を利用して前記伝熱媒体を加熱することにより前記伝熱媒体に過熱度を付与する熱交換器、膨張機、及び、凝縮器を有するランキンサイクル回路と、前記膨張機の回転軸の動力を前記内燃機関の回転軸に伝達する動力伝達手段と、前記熱交換器と前記膨張機の入口との間を延びる前記循環路の膨張機上流部分に介挿され、前記膨張機上流部分での前記伝熱媒体の流量を制限可能な流量制限弁と、前記熱交換器での前記伝熱媒体の圧力を検知する高圧センサと、前記ポンプ及び前記流量制御弁の動作を制御する制御装置とを備える内燃機関の廃熱回収システムにおいて、前記制御装置は、少なくとも前記高圧センサによって検知された圧力に基づいて前記熱交換器での前記伝熱媒体の圧力を上昇させる必要があるか否かを判定する判定手段を有し、前記判定手段によって、前記熱交換器での前記伝熱媒体の圧力を上昇させる必要があると判定されたときに、前記ポンプを作動させたまま、前記流量制限弁に前記伝熱媒体の流量の制限を開始させ、短くても前記判定手段によって前記熱交換器での前記伝熱媒体の圧力を上昇させる必要がないと判定されるまで前記流量制限弁に前記伝熱媒体の流量の制限を続行させた後、前記制限を終了させることを特徴とする内燃機関の廃熱回収システムが提供される(請求項1)。
 好ましくは、前記判定手段は、前記高圧センサによって検知された圧力が下限圧力未満であるときに前記熱交換器での前記伝熱媒体の圧力を上昇させる必要があると判定し、前記高圧センサによって検知された圧力が上限圧力を超えているときに前記熱交換器での前記伝熱媒体の圧力を上昇させる必要がないと判定する(請求項2)。
 好ましくは、廃熱回収システムは、前記膨張機の出口での前記伝熱媒体の圧力を検知する低圧センサを更に備え、前記判定手段は、前記低圧センサによって検知された圧力に対する、前記高圧センサによって検知された圧力の比を圧力比としたとき、前記圧力比が下限圧力比未満であるときに前記熱交換器での前記伝熱媒体の圧力を上昇させる必要があると判定し、前記圧力比が上限圧力比を超えているときに前記熱交換器での前記伝熱媒体の圧力を上昇させる必要がないと判定する(請求項3)。
 好ましくは、廃熱回収システムは、前記膨張機の回転軸の回転速度を検知する回転速度検知手段を更に備え、前記判定手段は、前記回転速度検知手段によって検知された回転速度が設定回転速度以上であるときにのみ、前記熱交換器での前記伝熱媒体の圧力を上昇させる必要があるか否かの判定を行う(請求項4)。
 好ましくは、廃熱回収システムは、前記熱交換器と前記流量制限弁との間を延びる前記循環路の部分に、前記伝熱媒体を出入り自由に蓄えるタンクを更に備える(請求項5)。
 好ましくは、廃熱回収システムは、前記熱交換器として、前記内燃機関の冷却水を利用して前記伝熱媒体を加熱する蒸発器と、前記伝熱媒体の流動方向でみて前記蒸発器よりも下流に位置し、前記内燃機関の排気ガスを利用して前記伝熱媒体を加熱する過熱器とを備え、前記タンクと前記過熱器とは一体に形成されている(請求項6)。
 好ましくは、廃熱回収システムは、前記内燃機関の出力を制御する第2制御装置を更に備え、前記第2制御装置は、前記制御装置が前記流量制限弁による前記伝熱媒体の流量の制限を終了させるときに、前記出力を減少させる(請求項7)。
 好ましくは、前記流量制限弁は、流量を連続的に可変な流量調整弁であり、前記制御装置は、前記流量制限弁による前記伝熱媒体の流量の制限を終了させるときに、前記流量が連続的に増加するよう前記流量調整弁を作動させる(請求項8)。
 好ましくは、廃熱回収システムは、前記流量制限弁として、前記循環路に互いに並列に配置された複数の開閉弁を備え、前記制御装置は、前記流量制限弁による前記伝熱媒体の流量の制限を終了させるときに、前記流量が段階的に増加するよう前記開閉弁を順次作動させる(請求項9)。
 好ましくは、前記制御装置は、前記ポンプを起動させてから所定期間、前記流量制限弁に前記伝熱媒体の流量の制限を行わせない(請求項10)。
 好ましくは、廃熱回収システムは、前記流量制限弁をバイパスするバイパス手段を更に備える(請求項11)。
 好ましくは、前記動力伝達手段は、前記膨張機の回転軸から前記内燃機関の回転軸への方向でのみ動力を伝達するワンウェークラッチを含む(請求項12)。
 好ましくは、前記動力伝達手段は、前記膨張機の回転軸と前記内燃機関の回転軸とを断続可能に連結する電磁クラッチを含み、前記制御装置は、前記流量制限弁に前記伝熱媒体の流量を制限させている間、前記電磁クラッチによる前記膨張機の回転軸と前記内燃機関の回転軸との連結を解除する(請求項13)。
 好ましくは、前記制御装置は、前記流量制限弁による前記伝熱媒体の流量の制限が開始された後に前記内燃機関が制動力を発揮している間は、前記制限を続行させる(請求項14)。
 好ましくは、前記ポンプの吐出量は可変であり、前記制御装置は、前記流量制限弁が伝熱媒体の流量を制限しているときに、前記ポンプの吐出量をゼロとするか又は減少させる(請求項15)。
 好ましくは、前記動力伝達手段は、フライホイールを含む(請求項16)。好ましくは、前記動力伝達手段は、前記膨張機の回転軸の動力を油圧に変換し、当該油圧を利用して前記内燃機関の回転軸を回転させる油圧装置を含む(請求項17)。
 好ましくは、前記油圧装置は、前記膨張機の回転軸の動力で油圧を増大させる油圧ポンプと、油圧を蓄える油圧アキュムレータと、前記油圧アキュムレータに蓄えられた油圧を利用して、前記内燃機関の回転軸を回転させる油圧モータとを備え、前記内燃機関が制動力を発揮しているときに、当該制動力の発揮に必要な負荷を前記内燃機関に付与しながら、前記油圧モータにより前記油圧アキュムレータに蓄えられた油圧を増大させる(請求項18)。
 好ましくは、前記制御装置によって制御され、前記凝縮器を冷却するためのファンを備え、前記制御装置は、前記流量制限弁に前記伝熱媒体の流量を制限させるときに、前記ファンを停止させる(請求項19)。
 本発明の請求項1の内燃機関の廃熱回収システムによれば、判定手段が熱交換器での伝熱媒体の圧力を上昇させる必要があると判定したときに、制御装置が、流量制限弁を介して熱交換器での伝熱媒体の圧力を上昇させる。これにより、内燃機関の回転速度が速いときでも、膨張機の入口での伝熱媒体の圧力の低下が防止され、膨張機の出力低下、則ち、回生エネルギー量の低下が防止される。
 請求項2の内燃機関の廃熱回収システムによれば、判定手段が判定基準として設定圧力を採用したことにより、判定が的確に行われる。
 請求項3の内燃機関の廃熱回収システムによれば、判定手段が設定圧力比を基準とすることにより、熱交換器での伝熱媒体の圧力を上昇させる必要の有無が的確に判定される。
 請求項4の内燃機関の廃熱回収システムによれば、膨張機の回転軸の回転速度が設定回転速度以上であるときのみ、判定手段が判定を行うことにより、回転速度の上昇による回生エネルギー量の低下が的確に防止される。
 請求項5の内燃機関の廃熱回収システムによれば、タンクによって、流量制限弁による流量制限の頻度が低減される。流量制限は、膨張機の出力の一時的な減少を招き、内燃機関の回転速度制御にとっては外乱となる。かかる流量制限の頻度が低減されることにより、内燃機関の回転速度制御が安定になる。車両の場合、回転速度制御が安定になると、運転手が違和感なく運転することができる。また、流量制限の頻度が低減されることは、流量制御弁の長寿命化にも繋がる。
 請求項6の内燃機関の廃熱回収システムによれば、タンク内で加熱されることで、伝熱媒体のエンタルピが増大する。これにより、流量制限弁による制限が解除されたときに、膨張機の出力が更に増大する。
 請求項7の内燃機関の廃熱回収システムによれば、流量制限弁による伝熱媒体の流量の制限が終了するときに、エンジン出力が減少するため、内燃機関の回転速度が安定する。
 請求項8の内燃機関の廃熱回収システムによれば、流量制限弁による伝熱媒体の流量の制限が終了するときに、流量を連続的に増加させることにより、内燃機関の回転速度が安定する。また、膨張機の回転軸の回転速度が急激に上昇することが防止されるため、膨張機にかかる負荷が低減される。
 請求項9の内燃機関の廃熱回収システムによれば、流量制限弁による伝熱媒体の流量の制限が終了するときに、流量を段階的に増加させることにより、内燃機関の回転速度が安定する。また、膨張機の回転軸の回転速度が急激に上昇することが防止されるため、膨張機にかかる負荷が低減される。
 請求項10の内燃機関の廃熱回収システムによれば、ポンプの起動時、伝熱媒体が循環路内に分散していても、膨張機を経由して伝熱媒体がポンプに流入させられ、伝熱媒体が循環路内を早期に循環する。つまり、ポンプの起動から廃熱回収までに要する時間が短縮される。
 請求項11の内燃機関の廃熱回収システムによれば、バイパス手段によって、伝熱媒体の流量制限が緩和される。この結果として、内燃機関の回転速度が安定し、且つ、ポンプの起動から廃熱回収までに要する時間が短縮される。
 請求項12の内燃機関の廃熱回収システムによれば、流量制限弁によって流量が制限されているときに、膨張機が内燃機関の負荷となることが防止される。
 請求項13の内燃機関の廃熱回収システムによれば、流量制限弁によって流量が制限されているときに、膨張機が内燃機関の負荷となることが防止される。
 請求項14の内燃機関の廃熱回収システムによれば、内燃機関が制動力を発揮している間、流量制御弁による伝熱媒体の流量制限を実行することで、膨張機が内燃機関を補助せず、内燃機関の制動力の低下が防止される。逆に、膨張機が負荷となれば、内燃機関の制動力が増大される。また、流量の制限を続行することで、熱交換器での伝熱媒体の圧力が更に高められ、制限の解除後における膨張機の出力が増大する。
 請求項15の内燃機関の廃熱回収システムによれば、流量制限弁が伝熱媒体の流量を制限しているときに、前記ポンプの吐出量を減少させることにより、熱交換器において伝熱媒体を十分に加熱しながら、ポンプの消費動力が削減される。
 請求項16の内燃機関の廃熱回収システムによれば、フライホイールによって、内燃機関の回転軸に伝達される動力が平均化され、内燃機関の回転速度が安定する。
 請求項17の内燃機関の廃熱回収システムによれば、油圧装置によって、内燃機関の回転軸に伝達される動力が平均化され、内燃機関の回転速度が安定する。
 請求項18の内燃機関の廃熱回収システムによれば、内燃機関が制動力を発揮しているときに、油圧モータにより油圧を蓄えることで、回生エネルギー量が更に増大する。
 請求項19の内燃機関の廃熱回収システムによれば、ファンを停止させることで、回生エネルギー量が更に増大する。
 図1は、本発明の一実施形態に係る内燃機関の廃熱回収システムを概略的に示す図である。
 図2は、図1のシステムにおける、圧力比と回生エネルギー量との関係を示すグラフである。
 図3は、図1のシステムにおける、膨張機回転速度と圧力比との関係を比較例とともに示すグラフである。
 図4は、図1のシステムにおける、膨張機回転速度と回生エネルギー量との関係を比較例とともに示すグラフである。
 図5は、図1のシステムにおける、膨張機出力、圧力比及びエバ入力の時間変化を示すグラフである。
 図6は、変形例に係る第3熱交換器の概略を示す図である。
 図7は、変形例に係る流量制限弁の概略を示す図である。
 図8は、変形例に係る流量制限弁の概略を示す図である。
 図9は、変形例に係るバイパス手段の概略を示す図である。
 図10は、変形例に係る動力伝達手段の概略を示す図である。
 図11は、変形例に係る熱媒用ポンプの概略を示す図である。
 図12は、変形例に係る動力伝達手段の概略を示す図である。
 図13は、変形例に係る動力伝達手段の概略を示す図である。
 図14は、変形例に係る動力伝達手段の概略を示す図である。
 100  内燃機関
 304  熱媒用ポンプ(ポンプ)
 308  第2熱交換器(熱交換器)
 310  第3熱交換器(熱交換器)
 312  膨張機
 500  R/C制御装置(制御装置)
 502  圧力計(高圧センサ)
 506  電磁開閉弁(流量制限弁)
 以下に、本発明を実施するための形態について図面に基づいて具体的に説明する。
 図1は、本発明の一実施形態に係る内燃機関100の廃熱回収システムの概略構成を示している。
 内燃機関100の廃熱回収システムは、内燃機関100で発生した熱をエネルギー(回生エネルギー)に変換するものである。具体的には、内燃機関100で発生した熱は、内燃機関100の冷却装置200を介してランキンサイクル回路300に供給され、ランキンサイクル回路300にて回転力に変換される。回転力は、内燃機関100に伝達され、内燃機関100を補助する。
 内燃機関100は、例えば車両のディーゼルエンジンであり、内燃機関100のシリンダ内には、インジェクタ102を介して、燃料としての軽油が供給される。 インジェクタ102は、E/G制御装置104によって制御される。E/G制御装置104には、図示しないアクセルペダルの踏み込み量が入力され、踏み込み量に基づいて、E/G制御装置104は燃料の供給量を調整する。当然のことながら、踏み込み量が大きいほど、燃料供給量が多くなり、内燃機関100の回転軸106の回転速度(内燃機関回転速度)は速くなる。
 内燃機関100の回転軸106は、図示しないけれども、クラッチ及び変速機等を介して車輪に連結されている。また、内燃機関100で発生した排気ガスは、内燃機関100に連結された排気管108を通じて車外に放出される。冷却装置200は、内燃機関100の加熱を防止するため車両に設けられている。具体的には、冷却装置200は、冷却水が循環する水循環路202を有する。水循環路202には、水用ポンプ204、内燃機関100の内部水路206、及び、ラジエタ208が、冷却水の流動方向にてこの順序で介挿されている。また、冷却装置200は、ラジエタ208をバイパスするバイパス路210を有し、バイパス路210の下流端は、三方弁212を介して、水循環路202に連結されている。三方弁212は、サーモスタットとしての機能を有し、冷却水の温度が一定以下では、冷却水がバイパス路210を流れるように動作する。
 ランキンサイクル回路300は、作動流体としての伝熱媒体(熱媒)が循環する熱媒循環路302を有する。熱媒としては、例えばフロン系冷媒(R−134a,R−152a,R1234yf,R−245fa)、ハイドロカーボン、又は、アルコール等を用いることができる。熱媒循環路302には、熱媒用ポンプ304、第1熱交換器306の低温部306L、第2熱交換器308の低温部308L、第3熱交換器310の低温部310L、膨張機312、第1熱交換器306の高温部306H、凝縮器314、及び、気液分離器316が、熱媒の流動方向にてこの順序で介挿されている。
 第1熱交換器306は、再生器とも称され、その高温部306Hと低温部306Lとの間で熱交換が行われる。即ち、第1熱交換器306では、膨張機312で膨張した熱媒によって、熱媒用ポンプ304から吐出された熱媒が加熱される。第2熱交換器308は、蒸発器とも称され、その高温部308Hと低温部308Lとの間で熱交換が行われる。第2熱交換器308は、内燃機関100で発生した熱を利用して、熱媒を加熱・蒸発させる。そのために、第2熱交換器308の高温部308Hは、水循環路202に介挿されている。
 第3熱交換器310は、過熱器とも称され、その高温部310Hと低温部310Lとの間で熱交換が行われる。第3熱交換器310は、内燃機関100で発生した熱を利用して熱媒を加熱し、熱媒に過熱度を付与する。そのために、第3熱交換器310の高温部310Hは、水循環路202に介挿されている。ここで、内燃機関100で発生した熱をより効率的に利用するために、水循環路202には加熱器214が介挿されている。加熱器214は、排気管108に取り付けられ、排気ガスの熱を利用して冷却水を加熱する。加熱器214、第3熱交換器310の高温部310H、及び、第2熱交換器308の高温部308Hは、内部水路206とラジエタ208との間を延びる水循環路202の部分に、冷却水の流動方向にてこの順序で介挿されている。
 膨張機312は、熱媒を膨張させることにより、第2熱交換器308及び第3熱交換器310で熱媒が得た熱を動力に変換する。動力は、膨張機312の回転軸318によって出力され、動力伝達手段によって、内燃機関100の回転軸106に伝達される。なお、膨張機312の吸入容積をVs、吐出容積をVe、入口圧力をPs、出口圧力をPe、そして、熱媒の比熱比をγとすると、理想的な断熱膨張であれば、ポアソンの法則に基づいて、(Ps/Pe)=(Ve/Vs)γが成立する。
 動力伝達手段としては、例えばプーリ400,402及びベルト404を用いることができる。プーリ400,402は、回転軸318,106にそれぞれ取り付けられ、ベルト404がプーリ400,402に架け回される。また、内燃機関100の廃熱回収システムは、ランキンサイクル回路300を制御する
 制御装置(R/C制御装置)500を有する。R/C制御装置500は、例えばECU(電子制御装置)により構成することができる。R/C制御装置500は、熱媒用ポンプ304及び凝縮器314のためのファン319の起動及び停止をそれぞれ制御し、これによりランキンサイクル回路300の起動及び停止を制御する。また、R/C制御装置500は、熱媒用ポンプ304の作動中、第3熱交換器310の低温部310Lの出口での熱媒の圧力、すなわち、第2熱交換器308及び第3熱交換器310における熱媒の圧力(蒸発圧力)を上昇させる必要があるか否か判定する判定手段を有する。そして、内燃機関100の廃熱回収システムは、判定手段に対して、判定を行うための情報を提供するセンサと、判定手段の判定結果に基づいて動作する流量制御弁とを有する。
 より詳しくは、センサとしては、例えば、2つの圧力計502,504を用いることができる。圧力計502は、第3熱交換器310の低温部310Lの出口と膨張機312の入口との間を延びる熱媒循環路302の部分(以下、膨張機上流部分ともいう)に取り付けられ、膨張機上流部分で熱媒の圧力を検知する。当該圧力を検知することは、ランキンサイクル回路300における第2熱交換器308及び第3熱交換器310での熱媒の圧力、則ち高圧圧力PHを検知することに等しく、また、電磁開閉弁506が開いているときには膨張機312の入口の圧力Psを検知することに実質的に等しい。
 圧力計504は、膨張機312の出口と凝縮器314との間を延びる熱媒循環路302の部分に取り付けられ、当該部分で熱媒の圧力を検知する。当該圧力を検知することは、ランキンサイクル回路300の低圧圧力PLを検知することに等しく、膨張機312の出口での熱媒の圧力Peを検知することに等しい。 圧力計502,504でそれぞれ検知された高圧圧力PH及び低圧圧力PLは、R/C制御装置500に入力される。R/C制御装置500の判定手段は、低圧圧力PLに対する高圧圧力PHの比PH/PL(以下、圧力比Rcという)を演算し、演算された圧力比Rcをそれぞれ予め設定された下限圧力比Rmin及び上限圧力比Rmaxと比較する。そして、判定手段は、圧力比Rcが下限圧力比Rmin未満であるとき、高圧圧力PHを上昇させる必要が有ると判定(Yes判定)し、圧力比Rcが上限圧力比Rmaxを超えているとき、高圧圧力PHを上昇させる必要が無いと判定(No判定)する。
 流量制限弁としては、例えば2ポート2位置切換の電磁開閉弁506を用いることができる。電磁開閉弁506は、熱媒循環路302の蒸発器上流部分に介挿され、当該部分を開閉可能である。なお、電磁開閉弁506は、熱媒の流動方向にて、圧力計502よりも下流に位置している。電磁開閉弁506の開閉動作は、R/C制御装置500によって制御される。R/C制御装置500は、判定手段がYesと判定したときに、電磁開閉弁506を閉作動させる。R/C制御装置500は、電磁開閉弁506を閉作動させた後、短くても判定手段がNoと判定するまで電磁開閉弁506を閉作動させ続け、それから、電磁開閉弁506を開作動させる。本実施形態では、例えば、判定手段がNoと判定したとき、R/C制御装置500は、電磁開閉弁506を開作動させる。
 なお、R/C制御装置500が電磁開閉弁506を閉作動させた後、開作動させるまで、熱媒用ポンプ304は作動させられたままである。好ましくは、内燃機関100の廃熱回収システムは、膨張機312の回転軸318の回転速度(膨張機回転速度)を検知する回転速度計508を有する。回転速度計508によって検知された膨張機回転速度は、R/C制御装置500に入力される。R/C制御装置500は、膨張機回転速度が、予め設定された最小回転速度Vmin未満のときには、判定手段による判定を行わないのが好ましい。つまり、R/C制御装置500は、膨張機回転速度が、最小回転速度Vmin未満のときには、電磁開閉弁506による熱媒の流量制限を行わないのが好ましい。
 以下、上述した内燃機関100の廃熱回収システムの使用方法(動作)について説明する。E/G制御装置104は、乗員によって内燃機関100の起動が指示されると、内燃機関100を起動させるとともに、水用ポンプ204を起動する。すると循環水は、内燃機関100の内部流路206を通過するときに加熱され、更に、加熱器214を通過するときに加熱される。
 R/C制御装置500は、水用ポンプ204の起動と同時か又はその後に、熱媒用ポンプ304を起動する。すると、熱媒用ポンプ304は、低温低圧液相の熱媒を吸入し、低温高圧液相の熱媒を吐出する。吐出された熱媒は、第1熱交換器306で予備的に加熱される。それから、熱媒は、第
 2熱交換器308で加熱されて蒸発し、そして、第3熱交換器310で加熱されて過熱度を有する高温高圧気相の熱媒になる。高温高圧気相の冷媒は、膨張機312で膨張させられ、高温低圧気相の熱媒になる。
 高温低圧気相の熱媒は、第1熱交換器306で冷却されてから、凝縮器314で冷却されて凝縮し、低温低圧液相の熱媒になる。低温低圧液相の熱媒は、気液分離器316を経て熱媒用ポンプ304に吸入される。熱媒は、膨張機312を通過するときに外部に対して仕事をし、仕事は、回転軸318を介して回転力として出力される。膨張機312の回転力は、動力伝達手段を介して内燃機関100の回転軸106に伝達される。
 かくして、内燃機関100の廃熱回収システムによれば、その通常運転中、内燃機関100で発生した熱が、ランキンサイクル回路300によって回生エネルギーに変換され、そして、回生エネルギーにより内燃機関100の作動が補助される。そして、内燃機関100の廃熱回収システムによれば、通常運転中に、判定手段が、回生エネルギー量の低下防止を鑑みて、高圧圧力PHを上昇させる必要があるか否かの判定を所定間隔で繰り返し行う。R/C制御装置500は、判定結果がYes判定のときに、電磁開閉弁506を閉作動させ、この後、判定結果がNo判定になると、電磁開閉弁506を開作動させる。
 このような廃熱回収システムの動作によれば、内燃機関回転速度が速いときでも、高圧圧力PHの低下が防止され、膨張機312の入口圧力Psの低下が防止される。この結果として、膨張機312の出力低下、則ち、回生エネルギー量の低下が防止される。 また、上述した廃熱回収システムによれば、判定手段が圧力比Rcを判定基準とすることにより、高圧圧力PHを上昇させる必要の有無が的確に判定される。的確に判定されるとは、より多くの回生エネルギー量を得られるように判定が行われるということである。
 具体的には、回生エネルギー量は、図2に概略的に示したように圧力比Rcに依存し、圧力比Rcが最適値Rsであるときに、最大値Emになる。従って、圧力比Rcが最適値Rs又はその近傍値であれば、回生エネルギー量を最大値Em若しくはその近傍値にすることができる。 そこで、本実施形態では、最適値Rsよりも小さい下限圧力比Rminと、最適値Rsよりも大きい上限圧力比Rmaxとを設定している。圧力比Rcが下限圧力比Rminと上限圧力比Rmaxとの間の範囲内に入るよう、判定結果に基づいて流量が制限されることで、回生エネルギー量が最大値Em若しくはその近傍値になる。
 なお、最適値Rsは、実験によって求めることができる。最適値Rsは、(Ve/Vs)γを理想圧力比Riとすると、おおよそながら理想圧力比Riの1.15倍~1.20倍であり、より具体的には、約1.18倍である。 下限圧力比Rminは、最適値Rsの90%程度の値に設定されるのが好ましい。このため、下限圧力比Rminは、理想圧力比Riの1.03倍~1.08倍の範囲に設定されるのが好ましく、1.06倍に設定されるのがより好ましい。
 上限圧力比Rmaxは、下限圧力比Rminと同じ値であってもよいが、頻繁に電磁開閉弁506が開閉作動しないように、最適値Rsの110%程度の値に設定されるのが好ましい。ここで、図3のグラフは、膨張機回転速度と圧力比Rcとの関係を示し、図4のグラフは、膨張機回転速度と回生エネルギー量との関係を示している。図3及び図4の両方において、実施例のプロットは、上述したように判定結果に基づいて流量制限を行った場合の結果を示し、比較例のプロットは、流量制限を全く行わなかった場合の結果を示している。
 ただし、図3の実施例の圧力比Rcは、電磁開閉弁506が開いている期間の圧力比の平均値である。また、図4の回生エネルギー量は、膨張機312が出力したエネルギ−から、熱媒用ポンプ304及び凝縮器314のファン319の消費電力を差し引いた値である。 図3から明らかなように、実施例では、比較例に比べて、膨張機回転速度が1500rpmを超えた領域で、圧力比Rcの低下が防止されていることがわかる。
 そして、図4では、約2250rpmを境にして、これより上の回転速度領域で実施例の方が比較例よりも回生エネルギー量が多くなっている。上述した実施形態では、好ましい態様として、膨張機回転速度が最小回転速度Vmin以上であるときに判定手段が判定を行うとしたが、図4から、実施例では、最小回転速度Vminを例えば2250rpmに設定すればよいことがわかる。これにより、膨張機回転速度の上昇による回生エネルギー量の低下が的確に防止される。
 更に図5は、実施例における、膨張機回転速度が3000rpmであるときの膨張機312の出力、圧力比Rc及びエバ入力の時間変化を示すグラフである。図5では、時間の範囲が0秒~15秒までであるが、15秒を1周期としてほぼ同じ結果が繰り返される。図5から、電磁開閉弁506は11秒間開いた後、4秒間閉じられることがわかる。圧力比Rcは、電磁開閉弁506が開いた直後から徐々に減少し、電磁開閉弁506が閉じられると上昇する。膨張機312の出力は、電磁開閉弁506が開いた直後に急激に増大し、それから徐々に減少する。そして、膨張機312の出力は、電磁開閉弁506が閉じられると急激に減少し、ゼロになる。図5に示された15秒間の膨張機出力を平均すると、比較例の場合よりも高くなる。
 一方、エバ入力は、第2熱交換器308における熱媒の吸熱量である。エバ入力は、電磁開閉弁506が開いて少し経ってから増大し始め、6秒過ぎに増加率が低くなる。そしてエバ入力は、電磁開閉弁506が閉じて少し経ってから減少し初め、電磁開閉弁506が開いて少し経つまで減少し続ける。エバ入力は、第2熱交換器308における冷却水と熱媒との間の温度差が大きいほど多くなる。図5では、圧力比Rcが低いほどエバ入力は多くなっており、圧力比Rcの低下は、第2熱交換器308における熱媒の圧力及び温度の低下を伴っていることがわかる。
 本発明は上記した一実施形態に限定されることはなく、種々の変形が可能である。上述した一実施形態では、第1熱交換器306によって、熱媒用ポンプ304から吐出された熱媒を加熱したけれども、第1熱交換器306を省略してもよい。また、第2熱交換器308で熱媒に過熱度を付与することができれば、第3熱交換器310を省略してもよい。すなわち、内燃機関100から排出された熱を利用して熱媒を加熱し、熱媒に過熱度を付与することができれば、熱交換器は1つであってもよいし、複数であってもよい。
 上述した一実施形態では、圧力比Rcに基づいて、高圧圧力PHを上昇させる必要があるか否かを判定したけれども、判定手段は、少なくとも高圧圧力PHに基づいて、判定を行っていればよい。
 例えば、判定手段は、高圧圧力PHのみに基づいて判定を行ってもよい。この場合、高圧圧力PHが、予め設定された下限圧力未満であるときに高圧圧力PHを上昇させる必要があると判定し、高圧圧力PHが予め設定された上限圧力を超えているときに高圧圧力PHを上昇させる必要がないと判定すればよい。この場合も、判定が的確に行われる。
 また例えば、圧力比Rcと、膨張機回転速度と、膨張機312の出力との関係を表すマップデータを予め作成しておき、判定手段が、マップデータに基づいて判定を行うようにしてもよい。 上述した一実施形態では、熱媒循環路302の膨張機上流部分に、熱媒を出入り自由に蓄えるタンクを設けるのが好ましい。タンクによって、流量制限弁による流量制限の頻度が低減される。流量制限は、膨張機の出力の一時的な減少を招き、内燃機関の回転速度制御にとっては外乱となる。かかる流量制限の頻度が低減されることにより、内燃機関回転速度が安定する。車両の場合、回転速度が安定すると、運転手が違和感なく運転することができる。また、流量制限の頻度が低減されることは、流量制御弁の長寿命化にも繋がる。
 タンクとしては、図6に示したようなタンク320を用いるのが好ましい。このタンク320は、第3熱交換器310と一体に形成され、第3熱交換器310の低温部310Lを構成している。なお、高温部310Hは、タンク320の外側に巻回されているが、タンク320の内側に設けられていてもよい。この場合、タンク320内で加熱されることで、熱媒のエンタルピが増大する。これにより、流量制限弁による制限が解除されたときに、膨張機312の出力が更に増大する。
 上述した一実施形態では、流量制限弁による伝熱媒体の流量の制限が終了するときに、E/G制御装置104が、内燃機関100への燃料供給量を減少させるのが好ましい。この場合、流量制限が終了して膨張機312の出力が増大するのにあわせて、内燃機関自身の出力を低下させることで、内燃機関回転速度が安定する。上述した一実施形態では、流量制限弁による伝熱媒体の流量の制限が終了するときに、伝熱媒体の流量を連続的に増加させるのが好ましい。これにより、内燃機関回転速度が安定する。また、膨張機回転速度が急激に上昇することが防止されるため、膨張機100にかかる負荷が低減される。
 そのためには、例えば、電磁開閉弁506の開度を、デューティ比制御により連続的に変化させてもよい。あるいは、電磁開閉弁506に代えて、流量制限弁として、図7に示したように、流量を連続的に可変な流量調整弁510を用いても良い。流量を連続的に増加させることができない場合、流量制限弁による伝熱媒体の流量の制限が終了するときに、流量を段階的に増加させるのが好ましい。これにより、内燃機関回転速度が安定する。また、膨張機回転速度が急激に上昇することが防止されるため、膨張機312にかかる負荷が低減される。
 そのためには、例えば、電磁開閉弁506の開度を、デューティ比制御により段階的に変化させてもよい。あるいは、図8に示したように、複数の電磁開閉弁506,512,514を並列に設け、電磁開閉弁506,512,514を順々に開作動させてもよい。上述した一実施形態では、熱媒用ポンプ304を起動させてから所定期間、流量制限弁に熱媒の流量の制限を行わせないのが好ましい。これにより、熱媒用ポンプ304の冷間起動時、熱媒が熱媒循環路302内に分散していても、膨張機312を経由して熱媒が熱媒用ポンプ304に流入させられ、熱媒が熱媒循環路302内を早期に循環する。つまり、熱媒用ポンプ304の起動から廃熱回収までに要する時間が短縮される。
 上述した一実施形態では、流量制限弁をバイパスするバイパス手段を更に設けるのが好ましい。バイパス手段は、例えば図9に示したように、流量制御弁を迂回するバイパス路516及びバイパス路516の流量を循環路302に比べて減少させる絞り518によって構成することができる。この場合、流量制御弁によって、熱媒循環路302での熱媒の流量が制限されていたとしても、バイパス手段によって、熱媒の流量制限が緩和される。この結果として、流量制御弁による制限が終了し、熱媒の流量を増加させるときに、内燃機関回転速度が安定する。また、流量制御弁による制限がされていても、バイパス手段によって、膨張機312経由で熱媒用ポンプ304に熱媒が常時供給され、熱媒用ポンプ304の起動から廃熱回収までに要する時間が短縮される。
 上述した一実施形態では、図10に示したように、動力伝達手段がワンウェークラッチ406を更に含むのが好ましい。ワンウェークラッチ406は、膨張機312の回転軸318から内燃機関100の回転軸106への方向でのみ回転力を伝達する。この場合、流量制限弁によって流量が制限されているときに、膨張機312が内燃機関100の負荷となることが防止される。
 あるいは、動力伝達手段は、電磁クラッチ408を含むのが好ましい。電磁クラッチ408は、膨張機312の回転軸318と内燃機関100の回転軸106とを断続可能に連結可能である。この場合、R/C制御装置500は、流量制限弁に熱媒の流量を制限させている間、電磁クラッチ408による膨張機312の回転軸318と内燃機関100の回転軸106との連結を解除する。これによっても、膨張機312が内燃機関100の負荷となることが防止される。
 上述した一実施形態では、R/C制御装置500は、流量制限弁による熱媒の流量の制限が開始された後に内燃機関100が制動力を発揮している間は、流量の制限を続行させるのが好ましい。この場合、内燃機関100が制動力を発揮している間、流量制御弁による熱媒の流量制限を実行することで、膨張機が内燃機関を補助せず、内燃機関の制動力の低下が防止される。また、流量の制限を続行することで、高圧圧力PHが更に高くなり、制限の解除後における膨張機312の出力が増大する。
 上述した一実施形態では、R/C制御装置500が、流量制限弁が熱媒の流量を制限しているときに、熱交換器の容量以上には熱媒を流すことはできないので、熱媒用ポンプ304の吐出量を減少させるのが好ましい。この場合、熱媒用ポンプ304の消費動力が削減される。そのために、R/C制御装置500は、熱媒用ポンプ304の回転数を調整してもよく、あるいは、図11に示したように、熱媒用ポンプとして、容量可変ポンプ322を用いてもよい。
 上述した一実施形態では、動力伝達手段は、図12に示したように、フライホイール410を含むのが好ましい。この場合、フライホイール410によって、内燃機関100の回転軸106に伝達される動力が平均化され、内燃機関回転速度が安定する。 上述した一実施形態では、動力伝達手段は、油圧装置600を含むのが好ましい。油圧装置600は、図13に示したように、油を循環させる油循環路602を有し、油循環路602に、油圧ポンプ604、高圧アキュムレータ606、油圧モータ608及び低圧アキュムレータ610が、油の循環方向にてこの順序で介挿されている。油圧ポンプ604は、膨張機312の回転軸318によって駆動され、油圧モータ608が、油圧を利用して内燃機関100の回転軸106に動力を供給する。
 この場合、油圧装置600によって、内燃機関100の回転軸106に伝達される動力が平均化され、内燃機関回転速度が安定する。 油圧装置600では、油圧モータ608とともに油圧ポンプを内燃機関100に適用してもよく、図14に示したように、油圧モータ608と油圧ポンプとが一体に形成された油圧モータ・ポンプ612を適用しても良い。油圧モータ・ポンプ612は、外部からの制御により、モータとして機能するかポンプとして機能するかを切換可能な流体機械である。
 この場合、内燃機関100が制動力を発揮しているときに、油圧モータ・ポンプ612をポンプとして機能させる。ポンプとして機能しているとき、油は逆方向に流れ、油圧モータ・ポンプ612は、当該制動力の発揮に必要な負荷を内燃機関100に付与しながら高圧アキュムレータ606に蓄えられた油圧を増大させる。内燃機関100が制動力を発揮しているときに、高圧アキュムレータ606に油圧を蓄えることで、回生エネルギー量が更に増大する。
 上述した一実施形態では、R/C制御装置500は、流量制限弁に伝熱媒体の流量を制限させるときに、ファン319を停止させるのが好ましい。伝熱媒体の流量が制限されている間、ファン319を停止させることで、回生エネルギー量が更に増大する。 最後に、本発明は、車両に好適であるのは明かであるが、車両以外にも適用可能であるのは勿論である。
 本発明は、内燃機関に伝達される回生エネルギー量が簡易な構造で増大された内燃機関の廃熱回収システムを提供することができるので、車両に好適な内燃機関の廃熱回収システムにとして利用することができる。

Claims (19)

  1. 伝熱媒体の循環路に順次介挿された、ポンプ、内燃機関で発生した熱を利用して前記伝熱媒体を加熱することにより前記伝熱媒体に過熱度を付与する熱交換器、膨張機、及び、凝縮器を有するランキンサイクル回路と、
    前記膨張機の回転軸の動力を前記内燃機関の回転軸に伝達する動力伝達手段と、
    前記熱交換器と前記膨張機の入口との間を延びる前記循環路の膨張機上流部分に介挿され、前記膨張機上流部分での前記伝熱媒体の流量を制限可能な流量制限弁と、
     前記熱交換器での前記伝熱媒体の圧力を検知する高圧センサと、
    前記ポンプ及び前記流量制御弁の動作を制御する制御装置とを備える内燃機関の廃熱回収システムにおいて、
    前記制御装置は、少なくとも前記高圧センサによって検知された圧力に基づいて前記熱交換器での前記伝熱媒体の圧力を上昇させる必要があるか否かを判定する判定手段を有し、前記判定手段によって、前記熱交換器での前記伝熱媒体の圧力を上昇させる必要があると判定されたときに、前記ポンプを作動させたまま、前記流量制限弁に前記伝熱媒体の流量の制限を開始させ、
    短くても前記判定手段によって前記熱交換器での前記伝熱媒体の圧力を上昇させる必要がないと判定されるまで前記流量制限弁に前記伝熱媒体の流量の制限を続行させた後、前記制限を終了させることを特徴とする内燃機関の廃熱回収システム。
  2. 前記判定手段は、前記高圧センサによって検知された圧力が下限圧力未満であるときに前記熱交換器での前記伝熱媒体の圧力を上昇させる必要があると判定し、前記高圧センサによって検知された圧力が上限圧力を超えているときに前記熱交換器での前記伝熱媒体の圧力を上昇させる必要がないと判定することを特徴とする請求項1に記載の内燃機関の廃熱回収システム。
  3. 前記膨張機の出口での前記伝熱媒体の圧力を検知する低圧センサを更に備え、
    前記判定手段は、前記低圧センサによって検知された圧力に対する、前記高圧センサによって検知された圧力の比を圧力比としたとき、
    前記圧力比が下限圧力比未満であるときに前記熱交換器での前記伝熱媒体の圧力を上昇させる必要があると判定し、
    前記圧力比が上限圧力比を超えているときに前記熱交換器での前記伝熱媒体の圧力を上昇させる必要がないと判定することを特徴とする請求項1に記載の内燃機関の廃熱回収システム。
  4. 前記膨張機の回転軸の回転速度を検知する回転速度検知手段を更に備え、前記判定手段は、前記回転速度検知手段によって検知された回転速度が設定回転速度以上であるときにのみ、前記熱交換器での前記伝熱媒体の圧力を上昇させる必要があるか否かの判定を行うことを特徴とする請求項2又は3に記載の内燃機関の廃熱回収システム。
  5. 前記熱交換器と前記流量制限弁との間を延びる前記循環路の部分に、前記伝熱媒体を出入り自由に蓄えるタンクを更に備えることを特徴とする請求項1乃至4の何れかに記載の内燃機関の廃熱回収システム。
  6. 前記熱交換器として、前記内燃機関の冷却水を利用して前記伝熱媒体を加熱する蒸発器と、前記伝熱媒体の流動方向でみて前記蒸発器よりも下流に位置し、前記内燃機関の排気ガスを利用して前記伝熱媒体を加熱する過熱器とを備え、
    前記タンクと前記過熱器とは一体に形成されていることを特徴とする請求項1乃至5の何れかに記載の内燃機関の廃熱回収システム。
  7. 前記内燃機関の出力を制御する第2制御装置を更に備え、前記第2制御装置は、前記制御装置が前記流量制限弁による前記伝熱媒体の流量の制限を終了させるときに、前記出力を減少させることを特徴とする請求項1乃至6の何れかに記載の内燃機関の廃熱回収システム。
  8. 前記流量制限弁は、流量を連続的に可変な流量調整弁であり、前記制御装置は、前記流量制限弁による前記伝熱媒体の流量の制限を終了させるときに、前記流量が連続的に増加するよう前記流量調整弁を作動させることを特徴とする請求項1乃至6の何れかに記載の内燃機関の廃熱回収システム。
  9. 前記流量制限弁として、前記循環路に互いに並列に配置された複数の開閉弁を備え、 前記制御装置は、前記流量制限弁による前記伝熱媒体の流量の制限を終了させるときに、前記流量が段階的に増加するよう前記開閉弁を順次作動させることを特徴とする請求項1乃至6の何れかに記載の内燃機関の廃熱回収システム。
  10. 前記制御装置は、前記ポンプを起動させてから所定期間、前記流量制限弁に前記伝熱媒体の流量の制限を行わせないことを特徴とする請求項1乃至9の何れかに記載の内燃機関の廃熱回収システム。
  11. 前記流量制限弁をバイパスするバイパス手段を更に備えることを特徴とする請求項1乃至6の何れかに記載の内燃機関の廃熱回収システム。
  12. 前記動力伝達手段は、前記膨張機の回転軸から前記内燃機関の回転軸への方向でのみ動力を伝達するワンウェークラッチを含むことを特徴とする請求項1乃至11の何れかに記載の内燃機関の廃熱回収システム。
  13. 前記動力伝達手段は、前記膨張機の回転軸と前記内燃機関の回転軸とを断続可能に連結する電磁クラッチを含み、前記制御装置は、前記流量制限弁に前記伝熱媒体の流量を制限させている間、前記電磁クラッチによる前記膨張機の回転軸と前記内燃機関の回転軸との連結を解除することを特徴とする請求項1乃至11の何れかに記載の内燃機関の廃熱回収システム。
  14. 前記制御装置は、前記流量制限弁による前記伝熱媒体の流量の制限が開始された後に前記内燃機関が制動力を発揮している間は、前記制限を続行させることを特徴とする請求項1乃至13の何れかに記載の内燃機関の廃熱回収システム。
  15. 前記ポンプの吐出量は可変であり、前記制御装置は、前記流量制限弁が伝熱媒体の流量を制限しているときに、前記ポンプの吐出量をゼロにするか又は減少させることを特徴とする請求項1乃至14の何れかに記載の内燃機関の廃熱回収システム。
  16. 前記動力伝達手段は、フライホイールを含むことを特徴とする請求項1乃至15の何れかに記載の内燃機関の廃熱回収システム。
  17. 前記動力伝達手段は、前記膨張機の回転軸の動力を油圧に変換し、当該油圧を利用して前記内燃機関の回転軸を回転させる油圧装置を含むことを特徴とする請求項1乃至15の何れかに記載の内燃機関の廃熱回収システム。
  18. 前記油圧装置は、前記膨張機の回転軸の動力で油圧を増大させる油圧ポンプと、油圧を蓄える油圧アキュムレータと、前記油圧アキュムレータに蓄えられた油圧を利用して、前記内燃機関の回転軸を回転させる油圧モータとを備え、
    前記内燃機関が制動力を発揮しているときに、当該制動力の発揮に必要な負荷を前記内燃機関に付与しながら前記油圧モータにより前記油圧アキュムレータに蓄えられた油圧を増大させることを特徴とする請求項17に記載の内燃機関の廃熱回収システム。
  19. 前記制御装置によって制御され、前記凝縮器を冷却するためのファンを備え、前記制御装置は、前記流量制限弁に前記伝熱媒体の流量を制限させるときに、前記ファンを停止させることを特徴とする請求項1乃至18の何れかに記載の内燃機関の廃熱回収システム。
PCT/JP2009/068309 2008-10-20 2009-10-20 内燃機関の廃熱回収システム WO2010047410A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09822104A EP2336537B1 (en) 2008-10-20 2009-10-20 Waste heat recovery system of internal combustion engine
US13/125,089 US8544270B2 (en) 2008-10-20 2009-10-20 Waste heat recovery system of internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008269683A JP5001928B2 (ja) 2008-10-20 2008-10-20 内燃機関の廃熱回収システム
JP2008-269683 2008-10-20

Publications (1)

Publication Number Publication Date
WO2010047410A1 true WO2010047410A1 (ja) 2010-04-29

Family

ID=42119441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068309 WO2010047410A1 (ja) 2008-10-20 2009-10-20 内燃機関の廃熱回収システム

Country Status (4)

Country Link
US (1) US8544270B2 (ja)
EP (1) EP2336537B1 (ja)
JP (1) JP5001928B2 (ja)
WO (1) WO2010047410A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094690A (zh) * 2010-12-03 2011-06-15 北京工业大学 基于单螺杆膨胀机的发动机排气余热利用系统

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2320058B1 (en) * 2008-08-26 2015-11-25 Sanden Corporation Waste heat utilization device for internal combustion engine
US8739531B2 (en) * 2009-01-13 2014-06-03 Avl Powertrain Engineering, Inc. Hybrid power plant with waste heat recovery system
US8616323B1 (en) 2009-03-11 2013-12-31 Echogen Power Systems Hybrid power systems
US9014791B2 (en) 2009-04-17 2015-04-21 Echogen Power Systems, Llc System and method for managing thermal issues in gas turbine engines
MX2012000059A (es) 2009-06-22 2012-06-01 Echogen Power Systems Inc Sistema y metodo para manejar problemas termicos en uno o mas procesos industriales.
WO2011017476A1 (en) 2009-08-04 2011-02-10 Echogen Power Systems Inc. Heat pump with integral solar collector
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8794002B2 (en) 2009-09-17 2014-08-05 Echogen Power Systems Thermal energy conversion method
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
BR112013014453B1 (pt) 2010-12-10 2021-03-23 Vaporgenics,Inc. Motor térmico universal
DE202011001111U1 (de) * 2011-01-05 2011-03-17 Eckert, Frank System zur Kopplung von Rankine-Prozessen an Verbrennungsmotoren und Gasturbinen
DE102011013115A1 (de) * 2011-03-04 2012-09-06 Voith Patent Gmbh Förderanlage für Öl und Gas
JP5278496B2 (ja) * 2011-03-25 2013-09-04 株式会社豊田自動織機 車両用排熱回収装置
EP2762713B1 (en) * 2011-09-30 2015-10-14 Nissan Motor Co., Ltd. Rankine cycle
WO2013055391A1 (en) 2011-10-03 2013-04-18 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
JP5708446B2 (ja) * 2011-11-02 2015-04-30 株式会社豊田自動織機 廃熱回生システム
JP2013133752A (ja) * 2011-12-27 2013-07-08 Toyota Industries Corp 廃熱利用装置
US9103249B2 (en) * 2012-02-29 2015-08-11 Caterpillar Inc. Flywheel mechanical energy derived from engine exhaust heat
US9133743B2 (en) * 2012-03-15 2015-09-15 Tenneco Automotive Operating Company Inc. Exhaust treatment secondary air supply system
DE102012204260A1 (de) * 2012-03-19 2013-09-19 Bayerische Motoren Werke Aktiengesellschaft Wärmekraftmaschine in einem Kraftfahrzeug
US9074492B2 (en) 2012-04-30 2015-07-07 Electro-Motive Diesel, Inc. Energy recovery arrangement having multiple heat sources
DE112013003440B4 (de) * 2012-07-09 2021-02-25 Sanden Holdings Corporation Vorrichtung zum Nutzen von Abwärme von einer Kraftmaschine
WO2014031526A1 (en) 2012-08-20 2014-02-27 Echogen Power Systems, L.L.C. Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US9051853B2 (en) * 2012-08-29 2015-06-09 GM Global Technology Operations LLC System and method for controlling fluid flow into and/or out of a catalytic heat exchanger based on a catalyst temperature
DE102012215551A1 (de) * 2012-09-03 2014-03-06 Robert Bosch Gmbh Brennkraftmaschine
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
JP6021637B2 (ja) * 2012-12-28 2016-11-09 三菱重工業株式会社 発電システム、発電方法
GB2509740A (en) * 2013-01-11 2014-07-16 Dearman Engine Company Ltd Cryogenic engine combined with a power generator
CA2899163C (en) 2013-01-28 2021-08-10 Echogen Power Systems, L.L.C. Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
US9316141B2 (en) 2013-02-15 2016-04-19 Enis Pilavdzic Engine energy management system
FR3002279B1 (fr) * 2013-02-20 2016-05-13 Renault Sa Systeme de recuperation de chaleur des gaz d'echappement dans un moteur a combustion interne
AU2014225990B2 (en) 2013-03-04 2018-07-26 Echogen Power Systems, L.L.C. Heat engine systems with high net power supercritical carbon dioxide circuits
US20140260245A1 (en) * 2013-03-15 2014-09-18 Eaton Corporation Volumetric energy recovery device with variable speed drive
US9518497B2 (en) 2013-07-24 2016-12-13 Cummins, Inc. System and method for determining the net output torque from a waste heat recovery system
EP2829700B1 (en) 2013-07-27 2024-01-10 Meyer, Edo Engine energy-management system
CN103726949B (zh) * 2013-12-27 2015-06-24 天津大学 双压力双回路多级膨胀的内燃机余热回收系统
WO2015138897A1 (en) * 2014-03-14 2015-09-17 Eaton Corporation Orc system post engine shutdown pressure management
WO2016073252A1 (en) 2014-11-03 2016-05-12 Echogen Power Systems, L.L.C. Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
US9656536B2 (en) * 2015-03-03 2017-05-23 Toyota Motor Engineering & Manufacturing North America, Inc. System for cooling a vehicle compartment
DE102015208859A1 (de) * 2015-05-13 2016-11-17 Mahle International Gmbh Fahrzeug
US10287923B2 (en) * 2015-12-18 2019-05-14 Cummins, Inc. Flow and pressure estimators in a waste heat recovery system
KR101911139B1 (ko) * 2016-04-28 2018-10-23 재단법인 건설기계부품연구원 건설기계의 페열 회수를 통한 연비 향상 시스템
US10914228B2 (en) 2016-11-15 2021-02-09 Cummins Inc. Waste heat recovery with active coolant pressure control system
US10815929B2 (en) * 2017-07-05 2020-10-27 Cummins Inc. Systems and methods for waste heat recovery for internal combustion engines
US11097600B2 (en) * 2017-08-25 2021-08-24 Thermo King Corporation Method and system for adaptive power engine control
US10883388B2 (en) 2018-06-27 2021-01-05 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11137177B1 (en) 2019-03-16 2021-10-05 Vaporgemics, Inc Internal return pump
SE544061C2 (en) * 2019-07-05 2021-11-30 Climeon Ab Method and controller for dynamically determining a system curve in a heat power system
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
WO2022125816A1 (en) 2020-12-09 2022-06-16 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system
US12116908B2 (en) * 2022-08-17 2024-10-15 Innio Waukesha Gas Engines Inc. System for utilizing a thermomechanical cycle to drive a compressor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799222A (en) 1980-10-18 1982-06-19 Kubota Ltd Method of improving thermoengine and a one improved
JPS59138707A (ja) 1983-01-28 1984-08-09 Hitachi Ltd ランキン機関
JPH0144526B2 (ja) * 1981-03-27 1989-09-28 Niigata Engineering Co Ltd
JP2001227616A (ja) * 1999-12-08 2001-08-24 Honda Motor Co Ltd 駆動装置
JP2005345084A (ja) * 2004-06-04 2005-12-15 Shigeto Matsuo 排熱回収冷凍空調システム
JP2006037760A (ja) * 2004-07-23 2006-02-09 Sanden Corp ランキンサイクル発電装置
JP2006170185A (ja) 2004-11-19 2006-06-29 Denso Corp 内燃機関の廃熱利用装置およびその制御方法
JP2008297961A (ja) * 2007-05-30 2008-12-11 Denso Corp 廃熱利用装置を備える冷凍装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444526A (en) 1987-08-12 1989-02-16 Seiko Instr & Electronics Coordinate reader
JP4135626B2 (ja) * 2003-06-23 2008-08-20 株式会社デンソー 発熱体の廃熱利用装置
US7454910B2 (en) * 2003-06-23 2008-11-25 Denso Corporation Waste heat recovery system of heat source, with Rankine cycle
JP2005291037A (ja) * 2004-03-31 2005-10-20 Nippon Soken Inc 流体機械
JP4034291B2 (ja) * 2004-04-26 2008-01-16 株式会社デンソー 流体機械
DE102005024685A1 (de) * 2004-05-31 2005-12-29 Denso Corp., Kariya Wärmekreis
JP2006046763A (ja) * 2004-08-03 2006-02-16 Denso Corp 廃熱利用装置を備える冷凍装置
DE102005051428B4 (de) * 2004-10-29 2015-05-28 Denso Corporation Abwärmenutzungsvorrichtung
US7690213B2 (en) * 2006-02-24 2010-04-06 Denso Corporation Waste heat utilization device and control method thereof
DE102007013817B4 (de) * 2006-03-23 2009-12-03 DENSO CORPORATION, Kariya-shi Abwärmesammelsystem mit Expansionsvorrichtung
JP2010065587A (ja) * 2008-09-10 2010-03-25 Sanden Corp 廃熱利用装置
JP2010229843A (ja) * 2009-03-26 2010-10-14 Sanden Corp 内燃機関の廃熱利用装置
JP2011214480A (ja) * 2010-03-31 2011-10-27 Sanden Corp 内燃機関の廃熱利用装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799222A (en) 1980-10-18 1982-06-19 Kubota Ltd Method of improving thermoengine and a one improved
JPH0144526B2 (ja) * 1981-03-27 1989-09-28 Niigata Engineering Co Ltd
JPS59138707A (ja) 1983-01-28 1984-08-09 Hitachi Ltd ランキン機関
JP2001227616A (ja) * 1999-12-08 2001-08-24 Honda Motor Co Ltd 駆動装置
JP2005345084A (ja) * 2004-06-04 2005-12-15 Shigeto Matsuo 排熱回収冷凍空調システム
JP2006037760A (ja) * 2004-07-23 2006-02-09 Sanden Corp ランキンサイクル発電装置
JP2006170185A (ja) 2004-11-19 2006-06-29 Denso Corp 内燃機関の廃熱利用装置およびその制御方法
JP2008297961A (ja) * 2007-05-30 2008-12-11 Denso Corp 廃熱利用装置を備える冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2336537A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094690A (zh) * 2010-12-03 2011-06-15 北京工业大学 基于单螺杆膨胀机的发动机排气余热利用系统

Also Published As

Publication number Publication date
EP2336537A4 (en) 2012-02-22
US8544270B2 (en) 2013-10-01
JP2010096147A (ja) 2010-04-30
EP2336537A1 (en) 2011-06-22
US20110192163A1 (en) 2011-08-11
EP2336537B1 (en) 2013-03-20
JP5001928B2 (ja) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5001928B2 (ja) 内燃機関の廃熱回収システム
EP2762690B1 (en) Engine-waste-heat utilization device
US7950230B2 (en) Waste heat recovery apparatus
US8713939B2 (en) Exhaust heat recovery system
US9441503B2 (en) Waste heat utilization apparatus
EP2204902B1 (en) Waste heat utilization device for internal combustion engine
EP2284458A1 (en) Waste heat utilization device for internal combustion
CN101182797B (zh) 兰金循环系统和液压储能系统的组合
JP5278496B2 (ja) 車両用排熱回収装置
JP5999652B2 (ja) 排熱回収装置
WO2010029905A1 (ja) 排熱利用装置
US9784141B2 (en) Method and system of controlling a thermodynamic system in a vehicle
JP2008231981A (ja) 内燃機関の廃熱利用装置
KR20110041392A (ko) 폐열 회생 시스템
JP6143755B2 (ja) エンジンの廃熱利用装置
JP4588644B2 (ja) 廃熱利用装置を備える冷凍装置
CN103032997A (zh) 朗肯循环以及在朗肯循环中使用的热交换器
JP2005325746A (ja) 車両用排熱回収システム
JP2013119831A (ja) 動力回収装置
JP4699972B2 (ja) 廃熱利用装置およびその制御方法
WO2020189425A1 (ja) ランキンサイクルシステム及びその制御方法
JP2008196342A (ja) 内燃機関の廃熱利用装置
CN117846844A (zh) 一种应用于高原地区的发动机余热回收启动系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009822104

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13125089

Country of ref document: US