WO2010044537A2 - 스텝 액츄에이터 - Google Patents

스텝 액츄에이터 Download PDF

Info

Publication number
WO2010044537A2
WO2010044537A2 PCT/KR2009/004344 KR2009004344W WO2010044537A2 WO 2010044537 A2 WO2010044537 A2 WO 2010044537A2 KR 2009004344 W KR2009004344 W KR 2009004344W WO 2010044537 A2 WO2010044537 A2 WO 2010044537A2
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
nut member
coupled
housing
magnet
Prior art date
Application number
PCT/KR2009/004344
Other languages
English (en)
French (fr)
Other versions
WO2010044537A3 (ko
Inventor
현우진
Original Assignee
엘지이노텍주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍주식회사 filed Critical 엘지이노텍주식회사
Priority to CN2009801500172A priority Critical patent/CN102246400B/zh
Priority to US13/124,235 priority patent/US8567272B2/en
Priority to EP09820687.3A priority patent/EP2341601B1/en
Priority to JP2011532007A priority patent/JP5730207B2/ja
Publication of WO2010044537A2 publication Critical patent/WO2010044537A2/ko
Publication of WO2010044537A3 publication Critical patent/WO2010044537A3/ko
Priority to US14/039,961 priority patent/US8826757B2/en
Priority to US14/448,660 priority patent/US9644719B2/en
Priority to US15/474,647 priority patent/US10495198B2/en
Priority to US16/667,123 priority patent/US10982741B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H27/00Step-by-step mechanisms without freewheel members, e.g. Geneva drives
    • F16H27/02Step-by-step mechanisms without freewheel members, e.g. Geneva drives with at least one reciprocating or oscillating transmission member
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/02Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/2015Means specially adapted for stopping actuators in the end position; Position sensing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H29/00Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action
    • F16H29/02Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/10Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type
    • H02K37/12Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets
    • H02K37/14Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2075Coaxial drive motors
    • F16H2025/2078Coaxial drive motors the rotor being integrated with the nut or screw body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/15Intermittent grip type mechanical movement
    • Y10T74/1503Rotary to intermittent unidirectional motion
    • Y10T74/1508Rotary crank or eccentric drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18568Reciprocating or oscillating to or from alternating rotary
    • Y10T74/18576Reciprocating or oscillating to or from alternating rotary including screw and nut
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18568Reciprocating or oscillating to or from alternating rotary
    • Y10T74/18576Reciprocating or oscillating to or from alternating rotary including screw and nut
    • Y10T74/18664Shaft moves through rotary drive means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/19698Spiral
    • Y10T74/19702Screw and nut

Definitions

  • Embodiments relate to a step actuator.
  • the step actuator has a rotor and a stator, and linearly drives an axis according to the rotation of the rotor.
  • a step actuator may be connected to a member for driving a reflector of an automotive headlight system and used to change the lighting direction.
  • the step actuator can be applied to a variety of electrical and mechanical devices that require linear motion by converting the rotational motion of the rotor into linear motion.
  • An embodiment provides a step actuator of a new structure.
  • the embodiment provides a step actuator including a rotor of a new structure.
  • the embodiment provides a step actuator in which the rotor and bearing are rigidly coupled.
  • the step actuator includes a housing; A stator disposed inside the housing; A rotor including a magnet disposed radially inward of the stator and a nut member inserted into and coupled to the magnet and protruding through one side of the housing; A bearing rotatably supporting the nut member; A screw member coupled to the nut member and moving linearly as the rotor rotates; And a mounting member supported on one side of the housing and supported such that the screw member is linearly movable, wherein the nut member is coupled to an end passing through the bearing and extending from the end to be in contact with the bearing. Contains wealth.
  • the step actuator includes a housing; A stator disposed inside the housing; A magnet disposed radially inward of the stator; A nut member inserted into and coupled to the magnet and protruding through one side of the housing; A bearing rotatably supporting the nut member; A fastening member coupled to the nut member with the bearing interposed therebetween; A screw member coupled to the nut member and moving linearly as the nut member rotates; And a mounting member supported on one side of the housing and supported to linearly move the screw member.
  • the step actuator includes a housing; A stator disposed inside the housing; A rotor including a magnet disposed radially inward of the stator and a nut member inserted into and coupled to the magnet and protruding through one side of the housing; A bearing disposed outside the housing to rotatably support the nut member; A bearing cover coupled to the housing to support the bearing; A screw member coupled to the nut member and moving linearly as the rotor rotates; And a mounting member coupled to the bearing cover to support the screw member to be linearly movable.
  • Embodiments can provide a step actuator of a new structure.
  • Embodiments can provide a step actuator comprising a rotor of a new structure.
  • Embodiments may provide a step actuator in which the rotor and bearing are rigidly coupled.
  • FIG. 1 is a perspective view of a step actuator according to an embodiment.
  • FIG. 2 is a sectional view of a step actuator according to an embodiment
  • FIG. 3 and 4 are exploded perspective views of the step actuator according to the embodiment.
  • FIG 5 shows a second housing supporting a bearing in a first direction in a step actuator according to an embodiment.
  • FIG. 6 to 10 illustrate a first embodiment of the rotor and bearing coupling structure in the step actuator according to the embodiment.
  • 11 to 14 illustrate a second embodiment of the rotor and bearing coupling structure in the step actuator according to the embodiment.
  • 15 to 17 illustrate a third embodiment of the rotor and bearing coupling structure in the step actuator according to the embodiment.
  • FIGS. 18-20 illustrate a fourth embodiment of a rotor and bearing engagement structure in a step actuator according to an embodiment.
  • 21 to 23 illustrate a fifth embodiment of the rotor and bearing coupling structure in the step actuator according to the embodiment.
  • 24 is a view for explaining that the elastic member is used for the firm coupling of the rotor and the bearing in the step actuator according to the embodiment.
  • 25 to 29 are views for explaining the structure and the coupling relationship between the bearing cover and the mounting member.
  • each component is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
  • the size of each component does not necessarily reflect the actual size.
  • FIG. 1 is a perspective view of a step actuator according to an embodiment
  • FIG. 2 is a cross-sectional view of a step actuator according to an embodiment
  • FIGS. 3 and 4 are exploded perspective views of a step actuator according to an embodiment.
  • the step actuator includes a stator, a rotor that is rotated by interaction with the stator, and the rotor is coupled to the rotor to rotate forward and reverse. It includes a screw member 10 for linear reciprocating motion in the first direction and the second direction as it is rotated, and a joint 70 coupled to the screw member 10.
  • the stator includes first and second bobbins 130 and 140 and first and second yokes 150 and 160 disposed between the first housing 110 and the second housing 120.
  • the rotor includes a magnet 30 disposed inside the stator and rotated by interacting with the stator, and a nut member 20 coupled to the magnet 30.
  • the screw member 10 and the nut member 20 are coupled in a bolt and nut relationship. Therefore, when the nut member 20 is rotated, the screw member 10 is linearly moved.
  • first bobbin 130 and the second bobbin 140 are disposed in an internal space between the first housing 110 and the second housing 120, and the first bobbin 130 is disposed.
  • first yoke 150 and the second yoke 160 are disposed between the second bobbin 140 and the second bobbin 140.
  • the magnet 30, the nut member 20, and the screw member 10 are disposed in the circumferential directions of the first bobbin 130 and the second bobbin 140.
  • a bearing 40, a bearing cover 50, and a mounting member 60 are disposed at one side of the second housing 120.
  • the screw member 10 is linear in a first direction along an axial direction of the screw member 10 and in a second direction opposite to the first direction as the step actuator according to the embodiment is operated. Do a reciprocating motion.
  • the screw member 10 is supported by the first direction side is inserted into the protrusion tube 132 of the first bobbin 130 and the second direction side penetrates the protrusion 61 of the mounting member 60. Is supported.
  • the joint 70 is coupled to the second direction side end of the screw member 10.
  • a thread 11 is formed on the first outer side surface of the screw member 10, and a stopper 12 is formed between the screw 11 and the end portion of the second direction side.
  • the thread 11 of the screw member 10 is coupled to the thread 21 formed on the inner circumferential surface of the nut member 20.
  • the screw member 10 is moved in the first direction and the second direction.
  • the stopper 12 limits the range of movement of the screw member 10 in the second direction. As the screw member 10 is moved in the second direction, the stopper 12 is caught by the protrusion 61 of the mounting member 60 so that the screw member 10 is no longer moved in the second direction. .
  • a blocking part 133 is formed at an end of the first direction side of the protruding tube 132 of the first bobbin 130 to limit the movement range of the screw member 10 in the first direction.
  • Limiting the range of movement of the screw member 10 in the second direction is the diameter of the through-hole 62 of the protrusion 61 formed in the mounting member 60 screw thread 11 of the screw member 10 It may be achieved by forming small so that it does not pass, and likewise limiting the range of movement in the first direction of the screw member 10 is the diameter of the end of the first direction side of the protruding pipe 132 the screw member It may be achieved by forming small so that the thread 11 of (10) does not pass. Therefore, the blocking part 133 and the stopper 12 may be selectively formed according to the design.
  • the screw member 10 is installed to be linearly movable in the first direction and the second direction through the mounting member 60, it is limited to rotate about the axis. That is, the screw member 10 is limited to the rotation by the protrusion 61 of the mounting member 60.
  • the second direction side of the screw member 10 is formed by cutting in a D-shape, the through hole 62 of the mounting member 60 and the second direction side cross section of the screw member 10 and the It may be formed in a corresponding shape.
  • the screw member 10 since the screw member 10 cannot be rotated, the screw member 10 is linearly moved in the first direction and the second direction when the nut member 20 coupled to the screw member 10 is rotated. do.
  • the joint 70 is coupled to the second directional end of the screw member 10.
  • the joint 70 may be coupled to a variety of mechanisms for transmitting the force by the linear motion of the screw member 10.
  • the apparatus may be variously selected according to the apparatus to which the step actuator according to the embodiment is applied.
  • a buried groove 13 is formed in the second direction side of the screw member 10, and a part of the joint 70 is buried in the buried groove 13. Therefore, the screw member 10 and the joint 70 may be firmly coupled along the axial direction.
  • the buried groove 13 may be formed by performing a knurling process or a tapping process on the screw member 10.
  • the joint 70 has a joint hole 71 formed therein, and the screw member 10 having the buried groove 13 formed therein is inserted into the joint hole 71.
  • the screw member 10 is inserted into the joint hole 71, when heat or ultrasonic wave is applied to the joint 70, the joint 70 is melted and the melted portion is inserted into the buried groove 13. Inflow. In this case, a force may be applied from the outside so that the molten portion of the joint 70 flows into the buried groove 13 well.
  • the joint 70 may be hardened to firmly couple the screw member 10 and the joint 70 to each other.
  • the nut member 20 is inserted into and coupled to the magnet 30, and the second direction side end 22 penetrates through the magnet 30 to protrude in the second direction.
  • the outer peripheral surface of the nut member 20 is formed with a protrusion 23 extending in the axial direction, the groove 31 of the shape corresponding to the protrusion 23 is coupled to the magnet 30 formed on the inner peripheral surface.
  • the nut member 20 and the magnet 30 are partially overlapped in the circumferential direction by the protrusion 23 and the groove 31, and are alternately arranged. Therefore, the force acting in the circumferential direction by the rotation of the magnet 30 is transmitted to the nut member 20 and the nut member 20 is rotated together as the magnet 30 is rotated.
  • the protrusion 23 and the groove 31 may be formed in a curved surface, in which case the groove 31 of the magnet 30 may be more easily processed.
  • the second directional end 22 of the nut member 20 is engaged with the inner ring of the bearing 40.
  • the nut member 20 may be freely rotated while being supported by the bearing 40.
  • the nut member 20 has a screw thread 21 formed on the inner circumferential surface of the central portion thereof and is coupled to the screw thread 11 of the screw member 10.
  • the nut member 20 is rotatably supported by the inner circumferential surface of the first direction in combination with the protruding tube 132 of the first bobbin 130. That is, the first direction side inner circumferential surface of the nut member 20 is in contact with and supported by the outer circumferential surface of the protruding tube 132.
  • the magnet 30 may be formed of a permanent magnet in which the N side and the S pole are alternately magnetized at equal intervals in the circumferential direction. As described above, the nut member 20 is inserted into and coupled to the magnet 30, so that the nut member 20 also rotates as the magnet 30 is rotated.
  • the second direction side end portion 32 of the magnet 30 may protrude in a second direction to contact the inner ring of the bearing 40.
  • the magnet 30 may rotate smoothly without contact with the outer ring of the bearing 40 by the second direction side end 32 of the magnet 30.
  • the first bobbin 130 on which the first coil 131 is wound and the second bobbin 140 on which the second coil 141 is wound are disposed outside the circumferential direction of the magnet 30.
  • the first yoke 150 and the second yoke 160 are disposed between the first bobbin 130 and the second bobbin 140.
  • the first bobbin 130 is formed with a first coil winding part 134 in which the first coil 131 is wound in a circumferential direction, and includes a first terminal part for electrically connecting the first coil 131 ( 135) is formed.
  • the second bobbin 140 is formed with a second coil winding 144 in which the second coil 141 is wound in a circumferential direction, and a second for electrically connecting the second coil 141.
  • the terminal portion 145 is formed.
  • the first bobbin 130 is provided with the protruding tube 132 through which the screw member 10 is inserted and supported, and the third tooth 111 of the first housing 110 is inserted therein. Slits 136 are formed.
  • the first bobbin 130 faces the magnet 30 and the nut member 20 in a first direction, and the first bobbin 130 is provided with a recessed portion 134 recessed in the first direction to form the magnet. As the 30 and the nut member 20 flow in the first direction and the second direction, the friction force that may be generated between the first bobbin 130 and the magnet 30 and the nut member 20 may be reduced. Can be.
  • the first yoke 150 protrudes toward the first housing 110 from an inner circumference of the ring-shaped first body portion 151 and the first body portion 151 and the first bobbin 130.
  • a first tooth 152 disposed between the magnets 30 and a first ground terminal 153 for grounding the first body 151 are included.
  • the second yoke 160 protrudes toward the second housing 120 from an inner circumference of the ring-shaped second body portion 161 and the second body portion 161 and the second bobbin 140.
  • a second tooth 162 disposed between the magnet 30 and a second ground terminal portion 163 for grounding the second body portion 161.
  • the third tooth 111 protruding toward the second housing 120 is formed in the first housing 110 to penetrate the slit 136 of the first bobbin 152 to pass through the first bobbin. It is disposed between the 130 and the magnet 30.
  • the third tooth 111 and the first tooth 152 are alternately disposed along the outer circumference of the magnet 30.
  • the first housing 110 is formed with a first rim 112 protruding radially inward from the cylindrical body, and the third tooth 111 is in a second direction from the first rim 112. Extends.
  • One side of the first bobbin 130 is inserted into and coupled to the first opening 113 formed by the first rim 112.
  • a fourth tooth 121 protruding in the direction of the first housing 110 is formed in the second housing 120 and disposed between the second bobbin 140 and the magnet 30.
  • the fourth tooth 121 and the second tooth 162 are alternately disposed along the outer circumference of the magnet 30.
  • the second housing 120 is formed with a second rim portion 122 protruding radially inward from the cylindrical body, and the fourth tooth 121 extends in the first direction from the second rim portion 122. do.
  • the first housing 110 is formed with a first cut portion 114 is a part of the first rim 112 is cut
  • the second housing 120 is a part of the second rim 122 is cut
  • the second cut portion 124 is formed.
  • the first cut part 114 and the second cut part 124 may include a first terminal part 135 formed on the first bobbin 130, a first ground terminal part 153 formed on the first yoke 150,
  • the second ground terminal part 163 formed on the second yoke 160 and the second terminal part 145 formed on the second bobbin 140 may form an opening to protrude outward.
  • the bearing 40 is disposed on the second direction side of the second housing 120, and the bearing cover 50 supporting the bearing 40 is installed. That is, the bearing cover 50 is coupled to the second housing 120 to constrain the bearing 40.
  • the second housing 120 and the bearing cover 50 may be coupled by spot welding or laser welding.
  • the inner ring of the bearing 40 is coupled to and supported by the second direction side end 22 of the nut member 20.
  • the bearing 40 is limited in the first direction by the second rim portion 122 of the second housing 120 and is moved in the second direction by the bearing cover 50. Movement is restricted.
  • the diameter of the second opening 123 formed by the second rim portion 122 is larger than the diameter of the magnet 30 and smaller than the diameter of the bearing 40. Therefore, it is possible to prevent the friction force from occurring between the magnet 30 and the second housing 120, it is possible to limit the movement of the bearing 40 in the first direction.
  • FIG. 5 is a view showing that the second housing supports the bearing in the first direction in the step actuator according to the embodiment.
  • the nut member 20 is inserted into the magnet 30 and engaged with the inner ring of the bearing 40.
  • the bearing cover 50 is coupled to the second housing 120 in a second direction, and the mounting member 60 is coupled to the bearing cover 50 in a second direction.
  • the bearing 40 is installed between the bearing cover 50 and the second housing 120, which is in the first direction by the second rim 122 of the second housing 120. Movement is restricted.
  • the bearing 40 is partially exposed between the second rim 122 and the magnet 30, and an unexposed portion of the bearing 40 is exposed to the second rim 122. This is a portion where movement in the first direction is limited.
  • 6 to 24 show other embodiments of the coupling structure of the rotor and the bearing in the step actuator according to the embodiment. 6 to 24, parts overlapping with the embodiments described with reference to FIGS. 1 to 5 will be omitted and only the coupling structure of the rotor and the bearing will be described.
  • the fastening part may be embodied in the form of a bearing fastening part 22a or a hook 22c
  • the fastening member may be embodied in the form of a stop ring 25, a nut member stopper 26, and a bush 27. .
  • 6 to 10 are diagrams illustrating a first embodiment of the rotor and bearing coupling structure in the step actuator according to the embodiment.
  • the second direction side end portion 22 of the nut member 20 penetrates through the bearing 40 and protrudes in the second direction.
  • the outer circumference of the second direction side end 22 of the nut member 20 is engaged in contact with the inner ring of the bearing 40.
  • the protruding portion of the second directional end portion 22 of the nut member 20 is subjected to swaging after applying heat or ultrasonic waves to the bearing 40.
  • a bearing fastening portion 22a is formed in contact with the inner ring in contact with the second direction.
  • the bearing 40, the magnet 30 and the nut member 20 can be firmly coupled, the bearing 40 is supported so that the magnet 30 and the nut member 20 can be rotated smoothly can do.
  • 11 to 14 illustrate a second embodiment of the rotor and bearing coupling structure in the step actuator according to the embodiment.
  • a coupling groove 22b formed along the circumferential direction is formed at the end portion 22 of the second direction side of the nut member 20.
  • the stop ring 25 is disposed on the second direction side of the bearing 40.
  • the second direction side end 22 of the nut member 20 penetrates the bearing 40 and protrudes in the second direction side.
  • the coupling groove 22b of the nut member 20 is exposed to the second direction side.
  • the stop ring 25 is inserted into the coupling groove 22b to restrain the bearing 40 from the second direction side.
  • the stop ring 25 is coupled to the engaging groove 22b and in contact with the inner ring of the bearing 40 in the second direction.
  • the bearing 40, the magnet 30, and the nut member 20 may be firmly coupled by the coupling groove 22b and the stop ring 25, and the bearing 40 may be connected to the magnet 30. ) And the nut member 20 can be smoothly rotated.
  • 15 to 17 are diagrams illustrating a third embodiment of the rotor and bearing coupling structure in the step actuator according to the embodiment.
  • a nut member stopper 26 is disposed at the second direction side of the bearing 40 and engaged with the nut member 22 at the second direction side.
  • the nut member stopper 26 is in contact with the inner ring of the bearing 40 in the second direction and a part of the nut member stopper 26 is inserted into the nut member 22.
  • the outer circumferential surface of the nut member stopper 26 is engaged in contact with the inner circumferential surface of the nut member 22.
  • a through hole is formed in the center of the nut member stopper 26 so that the screw member 10 may pass through.
  • the bearing 40, the magnet 30, and the nut member 20 may be firmly coupled by the nut member stopper 26, and the bearing 40 may include the magnet 30 and the nut member ( 20) can be supported to rotate smoothly.
  • FIGS. 18 to 20 are diagrams illustrating a fourth embodiment of the rotor and bearing coupling structure in the step actuator according to the embodiment.
  • a hook 22c is formed at the end portion 22 of the second direction side of the nut member 20.
  • the hook 22c penetrates through the bearing 40 and is in contact with the second direction side of the bearing 40. That is, the hook 22c of the nut member 20 is coupled to the inner ring of the bearing 40.
  • the bearing 40, the magnet 30, and the nut member 20 may be firmly coupled by the hook 22c formed on the nut member 20, and the bearing 40 may be connected to the magnet 30. ) And the nut member 20 can be smoothly rotated.
  • 21 to 23 illustrate a fifth embodiment of the rotor and bearing coupling structure in the step actuator according to the embodiment.
  • a coupling groove 22b formed along the circumferential direction is formed at the end portion 22 of the second direction side of the nut member 20.
  • a ring-shaped bush 27 is disposed at the second direction side of the bearing 40.
  • the second direction side end 22 of the nut member 20 penetrates the bearing 40 and protrudes in the second direction side.
  • the coupling groove 22b of the nut member 20 is exposed to the second direction side.
  • the coupling groove 22b and the bush 27 are firmly coupled to each other. That is, the bush 27 is coupled to the coupling groove 22b and in contact with the inner ring of the bearing 40 in the second direction.
  • the bearing 40, the magnet 30, and the nut member 20 may be firmly coupled by the coupling groove 22b and the bush 27, and the bearing 40 may be the magnet 30. And the nut member 20 may be smoothly rotated.
  • 24 is a view for explaining that the elastic member is used for the firm coupling of the rotor and the bearing in the step actuator according to the embodiment.
  • first, second, third and fourth elastic members 28a, 28b, 28c, and 28d illustrates the use of the first, second, third and fourth elastic members 28a, 28b, 28c, and 28d in the coupling structure of the rotor and the bearing in the second embodiment described with reference to FIGS. 11 to 14.
  • first, second, third and fourth elastic members 28a, 28b, 28c and 28d may be applied to other embodiments.
  • a first elastic member 28a may be disposed between the stop ring 25 and the bearing 40, and a second elastic member 28b may be disposed between the bearing 40 and the magnet 30. ) May be disposed, and the third elastic member 28c and the fourth elastic member 28d may be disposed between the magnet 30 and the nut member 20.
  • the first, second, third, and fourth elastic members 28a, 28b, 28c, and 28d may be applied to both the coupling structure of the rotor and the bearing. That is, the position and number at which the elastic members are disposed are optional.
  • the first, second, third, and fourth elastic members 28a, 28b, 28c, and 28d provide elastic force in the axial direction. Therefore, the bearing 40, the magnet 30 and the nut member 20 may be more firmly coupled by the first, second, third and fourth elastic members 28a, 28b, 28c, and 28d.
  • the bearing 40 may support the magnet 30 and the nut member 20 to be smoothly rotated.
  • 25 to 29 are views for explaining the structure and the coupling relationship between the bearing cover and the mounting member.
  • the bearing cover 50 includes a coupling frame 51, a coupling pipe 52, a locking frame 53, a support piece 55, an anti-rotation protrusion 56, and a first contact piece 57. ).
  • the coupling frame 51 is formed in a ring shape having a predetermined width and is coupled to the second rim portion 122 of the second housing 120.
  • the coupling frame 51 and the second rim portion 122 may be coupled by welding.
  • the coupling pipe 52 extends in the second direction from the inner circumference of the coupling frame 51 and has an inner circumferential surface in contact with the outer ring of the bearing 40.
  • the hook frame 53 is formed to protrude radially inward from the second direction side end of the coupling pipe 52, and contacts the outer ring of the bearing (40).
  • the latch frame 53 restricts the bearing 40 from moving in the second direction.
  • the support piece 55 extends in the second direction from the outer circumference of the coupling frame 51 and is provided with a plurality of spaced apart from each other. At this time, the imaginary line connecting the support piece 55 is approximately circular.
  • the anti-rotation protrusion 56 extends radially outward from the support piece 55, and a first bending piece 56a and a second bending piece 56b are formed in the circumferential direction, respectively.
  • the first bending piece 56a and the second bending piece 56b are mounted to the mounting member 60 so that the mounting member 60 does not rotate in the circumferential direction when the mounting member 60 is coupled to the bearing cover 50. It is supported by the locking piece 64 and the locking protrusion 65 of 60, respectively.
  • the first bending piece 56a and the second bending piece 56b increase the contact area of the anti-rotation protrusion 56 so that the anti-rotation protrusion 56 stops the locking piece 64 and the locking protrusion 65. To be firmly supported.
  • the first contact piece 57 extends radially outward from the second direction side end portion of the support piece 55, and contacts the second contact piece 67 of the mounting member 60 to mount the mounting piece.
  • the member 60 is prevented from flowing in the axial direction.
  • the mounting member 60 includes a protrusion 61, a housing tube 63, a locking piece 64, a locking protrusion 65, an extension frame 66, and a second contact piece 67.
  • the protrusion 61 and the receiving tube 63 form a body of the mounting member 60.
  • the protrusion 61 supports the screw member 10 so as to be movable in the first direction and the second direction, and the housing tube 63 has the bearing 40 and the bearing cover 50 disposed therein.
  • Provide space for The protrusion 61 is formed to protrude in a second direction from the accommodation tube 63.
  • the accommodating tube 63 has a first direction end portion inserted between the support piece 55 of the bearing cover 50 and the coupling tube 52. Therefore, the outer circumference of the first direction side end portion of the housing tube 63 is in contact with the inner circumference of the support piece 55, and the inner circumference of the first direction side end of the housing tube 63 is the coupling tube 52. Contact with the outer periphery of the
  • the extension frame 66 extends radially outward from the outer circumferential surface of the housing tube 63 to form a ring shape, and the anti-rotation protrusion 56 and the first contact piece 57 of the bearing cover 50 are formed. To face.
  • the locking pieces 64 extend in the first direction from the outer circumference of the extension frame 66 and are provided with a plurality of spaced apart from each other.
  • the inner circumferential surface of the engaging piece 64 faces the outer circumferential surface of the coupling frame 51 of the bearing cover 50.
  • the mounting member 60 When the mounting member 60 is rotated in the clockwise direction while the locking piece 64 is positioned between the support piece 55 and the support piece 55 of the bearing cover 50, the first bending piece 56a is caught by the circumferential end of the engaging piece 64. Thus, the mounting member 60 no longer rotates clockwise.
  • the locking protrusion 65 is formed on the extension frame 66 between the locking piece 64 and the locking piece 64 and has elasticity.
  • the locking protrusion 65 is formed in a cantilever shape, and the free end side contacts the second bending piece 56b of the anti-rotation protrusion 56.
  • the locking projection 65 is located between the support piece 55 and the support piece 55 adjacent to each other, and as the mounting member 60 rotates in the clockwise direction, the anti-rotation protrusion 56 ) Is caught by the second bending piece 56b of the anti-rotation protrusion 56. Then, the mounting member 60 is no longer rotated counterclockwise.
  • the free end side of the locking protrusion 65 is formed to be inclined so that the locking protrusion 65 can smoothly cross the anti-rotation protrusion 56.
  • the second contact piece 67 extends radially inward from the first direction end portion of the locking piece 64 and is spaced apart from the extension frame 66 by a predetermined distance.
  • the first contact piece 57 is inserted between the second contact piece 67 and the extension frame 66.
  • the mounting member 60 is located in the second direction of the bearing cover 50. Therefore, when the mounting member 60 is coupled to the bearing cover 50, the second contact piece 67 integrally formed with the mounting member 60 may include the first integrally formed with the bearing cover 50. Since it is located in the first direction of the contact piece 57, the mounting member 60 does not flow in the first direction and the second direction.
  • an embossing 57a is formed on a surface of the first contact piece 57 that is in contact with the second contact piece 67. .
  • the embossing 57a is connected to the second contact piece 67 when the mounting member 60 is rotated so that the locking piece 64 and the locking protrusion 65 are caught by the rotation preventing protrusion 56, respectively.
  • the second contact piece 67 is supported in the first direction.
  • a method of coupling the mounting member 60 to the bearing cover 50 will be described with reference to FIGS. 26 to 29.
  • the mounting member 60 is inserted between the support piece 55 of the bearing cover 50 and the coupling tube 52 while inserting the housing tube 63 of the mounting member 60.
  • the locking piece 64 and the locking projection 65 are positioned between the rotation preventing projection 56 and the rotation preventing projection 56 of the bearing cover 50.
  • the first contact piece 57 and the second contact piece 67 overlap each other in the axial direction.
  • the second contact piece 67 is in contact.
  • the embossing 57a is formed in the first contact piece 57, the embossing 57a is in close contact with the second contact piece 67 so that the second contact piece 67 is in the first direction.
  • the bearing cover 50 and the mounting member 60 are firmly coupled without flowing in the axial direction.
  • the free end side of the locking protrusion 165 may be lifted in the second direction, and then the mounting member 60 may be rotated counterclockwise.
  • the step actuator according to the embodiment restrains the position of the bearing 40 and supports and supports the linear movement of the screw member 10 and the bearing cover 50 for supporting the mounting member 60.
  • a mounting member 60 a mounting member 60. Therefore, the design of the mounting member 60 can be freely modified, and can be easily coupled with the bearing cover 50.
  • an electric field is generated when the power is applied to the first terminal 135 and the second terminal 145, respectively, and the magnet 30 is rotated in the forward and reverse directions.
  • Embodiments can be applied to step actuators.

Abstract

실시예에 따른 스텝 액츄에이터는 하우징; 상기 하우징 내부에 배치되는 스테이터; 상기 스테이터의 반경방향 내측에 배치되는 마그네트와, 상기 마그네트의 내부에 삽입되어 결합되고 상기 하우징의 일측을 관통하여 돌출되는 너트 부재를 포함하는 로터; 상기 너트 부재를 회전 가능하게 지지하는 베어링; 상기 너트 부재에 결합되어 상기 로터가 회전함에 따라 선형으로 움직이는 스크류 부재; 및 상기 하우징의 일측에 지지되고 상기 스크류 부재가 선형으로 이동 가능하도록 지지되는 마운팅 부재를 포함하고, 상기 너트 부재는 상기 베어링을 관통하는 단부와, 상기 단부에서 연장되어 상기 베어링과 접촉하여 결합되는 체결부를 포함한다.

Description

스텝 액츄에이터
실시예는 스텝 액츄에이터에 관한 것이다.
스텝 액츄에이터는 로터(Rotor)와 스테이터(Stator)를 가지고, 상기 로터의 회전에 따라 축을 선형적으로 구동한다.
예를 들어, 스텝 액츄에이터는 자동차 전조등 시스템의 리플렉터(reflector)를 구동하기 위한 부재에 연결되어 조명 방향을 변경하는데 사용될 수 있다. 뿐만 아니라 스텝 액츄에이터는 로터의 회전 운동을 선형 운동으로 변환시킴으로써 선형적인 동작이 요구되는 다양한 전기장치 및 기계장치에 적용될 수 있다.
실시예는 새로운 구조의 스텝 액츄에이터를 제공한다.
실시예는 새로운 구조의 로터를 포함하는 스텝 액츄에이터를 제공한다.
실시예는 로터와 베어링이 견고하게 결합된 스텝 액츄에이터를 제공한다.
실시예에 따른 스텝 액츄에이터는 하우징; 상기 하우징 내부에 배치되는 스테이터; 상기 스테이터의 반경방향 내측에 배치되는 마그네트와, 상기 마그네트의 내부에 삽입되어 결합되고 상기 하우징의 일측을 관통하여 돌출되는 너트 부재를 포함하는 로터; 상기 너트 부재를 회전 가능하게 지지하는 베어링; 상기 너트 부재에 결합되어 상기 로터가 회전함에 따라 선형으로 움직이는 스크류 부재; 및 상기 하우징의 일측에 지지되고 상기 스크류 부재가 선형으로 이동 가능하도록 지지되는 마운팅 부재를 포함하고, 상기 너트 부재는 상기 베어링을 관통하는 단부와, 상기 단부에서 연장되어 상기 베어링과 접촉하여 결합되는 체결부를 포함한다.
실시예에 따른 스텝 액츄에이터는 하우징; 상기 하우징 내부에 배치되는 스테이터; 상기 스테이터의 반경방향 내측에 배치되는 마그네트; 상기 마그네트의 내부에 삽입되어 결합되고 상기 하우징의 일측을 관통하여 돌출되는 너트 부재; 상기 너트 부재를 회전 가능하게 지지하는 베어링; 상기 베어링을 사이에 두고 상기 너트 부재와 결합되는 체결부재; 상기 너트 부재에 결합되어 상기 너트 부재가 회전함에 따라 선형으로 움직이는 스크류 부재; 및 상기 하우징의 일측에 지지되고 상기 스크류 부재가 선형으로 이동 가능하도록 지지되는 마운팅 부재를 포함한다.
실시예에 따른 스텝 액츄에이터는 하우징; 상기 하우징 내부에 배치되는 스테이터; 상기 스테이터의 반경방향 내측에 배치되는 마그네트와, 상기 마그네트의 내부에 삽입되어 결합되고 상기 하우징의 일측을 관통하여 돌출되는 너트 부재를 포함하는 로터; 상기 하우징의 외측에 배치되어 상기 너트 부재를 회전 가능하게 지지하는 베어링; 상기 하우징과 결합되어 상기 베어링을 지지하는 베어링 커버; 상기 너트 부재에 결합되어 상기 로터가 회전함에 따라 선형으로 움직이는 스크류 부재; 및 상기 베어링 커버와 결합되어 상기 스크류 부재가 선형으로 이동 가능하도록 지지하는 마운팅 부재를 포함한다.
실시예는 새로운 구조의 스텝 액츄에이터를 제공할 수 있다.
실시예는 새로운 구조의 로터를 포함하는 스텝 액츄에이터를 제공할 수 있다.
실시예는 로터와 베어링이 견고하게 결합된 스텝 액츄에이터를 제공할 수 있다.
도 1은 실시예에 따른 스텝 액츄에이터의 사시도.
도 2는 실시예에 따른 스텝 액츄에이터의 단면도.
도 3과 도 4는 실시예에 따른 스텝 액츄에이터의 분해 사시도.
도 5는 실시예에 따른 스텝 액츄에이터에서 제2 하우징이 베어링을 제1 방향에서 지지하는 것을 도시한 도면.
도 6 내지 도 10은 실시예에 따른 스텝 액츄에이터에서 로터와 베어링 결합 구조의 제1 실시예를 설명하는 도면.
도 11 내지 도 14는 실시예에 따른 스텝 액츄에이터에서 로터와 베어링 결합 구조의 제2 실시예를 설명하는 도면.
도 15 내지 도 17는 실시예에 따른 스텝 액츄에이터에서 로터와 베어링 결합 구조의 제3 실시예를 설명하는 도면.
도 18 내지 도 20은 실시예에 따른 스텝 액츄에이터에서 로터와 베어링 결합 구조의 제4 실시예를 설명하는 도면.
도 21 내지 도 23은 실시예에 따른 스텝 액츄에이터에서 로터와 베어링 결합 구조의 제5 실시예를 설명하는 도면.
도 24는 실시예에 따른 스텝 액츄에이터에서 로터와 베어링의 견고한 결합을 위해 탄성 부재가 사용된 것을 설명하는 도면.
도 25 내지 도 29는 베어링 커버와 마운팅 부재의 구조 및 결합 관계를 설명하는 도면.
이하, 첨부된 도면을 참조하여 실시예에 따른 스텝 액츄에이터에 대해 상세히 설명하도록 한다.
도면에서 각 구성요소의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
도 1은 실시예에 따른 스텝 액츄에이터의 사시도이고, 도 2는 실시예에 따른 스텝 액츄에이터의 단면도이고, 도 3과 도 4는 실시예에 따른 스텝 액츄에이터의 분해 사시도이다.
도 1 내지 도 4를 참조하면, 실시예에 따른 스텝 액츄에이터는 스테이터(Stator)와, 상기 스테이터와의 상호 작용에 의해 회전되는 로터(Rotor)와, 상기 로터와 결합되어 상기 로터가 정회전 및 역회전됨에 따라 제1 방향 및 제2 방향으로 선형 왕복 운동을 하는 스크류 부재(10)와, 상기 스크류 부재(10)에 결합된 조인트(70)를 포함한다.
상기 스테이터는 제1 하우징(110)과 제2 하우징(120) 사이에 배치되는 제1,2 보빈(130,140) 및 제1,2 요크(150,160)를 포함한다.
상기 로터는 상기 스테이터의 내측에 배치되어 상기 스테이터와 상호 작용에 의해 회전되는 마그네트(30)와, 상기 마그네트(30)와 결합된 너트 부재(20)를 포함한다.
상기 스크류 부재(10)와 상기 너트 부재(20)는 볼트 및 너트의 관계로 결합된다. 따라서, 상기 너트 부재(20)가 회전되면 상기 스크류 부재(10)는 선형 이동을 하게 된다.
보다 상세히 설명하면, 상기 제1 하우징(110)과 상기 제2 하우징(120) 사이의 내부 공간에는 상기 제1 보빈(130) 및 상기 제2 보빈(140)이 배치되고, 상기 제1 보빈(130)과 상기 제2 보빈(140) 사이에는 상기 제1 요크(150) 및 상기 제2 요크(160)가 배치된다.
또한, 상기 제1 보빈(130) 및 제2 보빈(140)의 원주 방향의 내측으로 상기 마그네트(30), 상기 너트 부재(20) 및 상기 스크류 부재(10)가 배치된다.
또한, 상기 제2 하우징(120)의 일측에는 베어링(40), 베어링 커버(50), 마운팅 부재(60)가 배치된다.
보다 상세히 설명하면, 상기 스크류 부재(10)는 실시예에 따른 스텝 액츄에이터가 동작됨에 따라 상기 스크류 부재(10)의 축 방향을 따라 제1 방향 및 상기 제1 방향과 반대 방향인 제2 방향으로 선형 왕복 운동을 한다.
또한, 상기 스크류 부재(10)는 제1 방향측이 상기 제1 보빈(130)의 돌출관(132)에 삽입되어 지지되고 제2 방향측이 상기 마운팅 부재(60)의 돌출부(61)를 관통하며 지지된다. 상기 스크류 부재(10)의 제2 방향측 단부에는 상기 조인트(70)가 결합된다.
상기 스크류 부재(10)의 제1 방향측 외면은 나사산(11)이 형성되고, 상기 나사산(11)과 제2 방향측 단부 사이에는 스토퍼(12)가 형성된다.
상기 스크류 부재(10)의 나사산(11)은 상기 너트 부재(20)의 내주면에 형성된 나사산(21)과 결합된다. 따라서, 상기 너트 부재(20)가 회전됨에 따라 상기 스크류 부재(10)는 제1 방향 및 제2 방향으로 이동된다.
상기 스토퍼(12)는 상기 스크류 부재(10)의 제2 방향으로의 이동 범위를 제한한다. 상기 스크류 부재(10)가 제2 방향으로 이동됨에 따라 상기 스토퍼(12)는 상기 마운팅 부재(60)의 돌출부(61)에 걸려 상기 스크류 부재(10)가 더 이상 제2 방향으로 이동되지 않도록 한다. 또한, 상기 제1 보빈(130)의 돌출관(132)의 제1 방향측 단부에는 차단부(133)가 형성되어 상기 스크류 부재(10)의 제1 방향으로의 이동 범위를 제한한다.
상기 스크류 부재(10)의 제2 방향으로의 이동 범위를 제한하는 것은 상기 마운팅 부재(60)에 형성된 돌출부(61)의 관통홀(62)의 직경을 상기 스크류 부재(10)의 나사산(11)이 통과되지 않도록 작게 형성하는 것으로 달성될 수도 있고, 마찬가지로 상기 스크류 부재(10)의 제1 방향으로의 이동 범위를 제한하는 것은 상기 돌출관(132)의 제1 방향측 단부의 직경을 상기 스크류 부재(10)의 나사산(11)이 통과되지 않도록 작게 형성하는 것으로 달성될 수도 있다. 따라서, 상기 차단부(133) 및 상기 스토퍼(12)는 설계에 따라 선택적으로 형성될 수 있다.
한편, 상술한 바와 같이 상기 스크류 부재(10)는 상기 마운팅 부재(60)를 관통하여 제1 방향 및 제2 방향으로 선형적으로 이동 가능하게 설치되나, 축 중심으로 회전하는 것은 제한된다. 즉, 상기 스크류 부재(10)는 상기 마운팅 부재(60)의 돌출부(61)에 의해 회전되는 것이 제한된다.
예를 들어, 상기 스크류 부재(10)의 제2 방향측은 D자 형태로 커팅되어 형성되고, 상기 마운팅 부재(60)의 관통홀(62)은 상기 스크류 부재(10)의 제2 방향측 단면과 대응하는 형상으로 형성될 수 있다.
따라서, 상기 스크류 부재(10)는 회전될 수 없으므로, 상기 스크류 부재(10)와 결합된 상기 너트 부재(20)가 회전되는 경우 상기 스크류 부재(10)는 제1 방향 및 제2 방향으로 선형 이동한다.
앞서 설명한 바와 같이, 상기 스크류 부재(10)의 제2 방향 단부에는 상기 조인트(70)가 결합된다. 상기 조인트(70)에는 상기 스크류 부재(10)의 선형 운동에 의한 힘이 전달되는 다양한 기구물이 결합될 수 있다. 예기서, 상기 기구물은 실시예에 따른 스텝 액츄에이터가 적용되는 장치에 따라 다양하게 선택될 수 있다.
상기 스크류 부재(10)의 제2 방향측에는 매립 홈(13)이 형성되고, 상기 매립 홈(13)에 상기 조인트(70)의 일부가 매립된다. 따라서, 상기 스크류 부재(10)와 조인트(70)는 축 방향을 따라 견고하게 결합될 수 있다.
예를 들어, 상기 매립 홈(13)은 상기 스크류 부재(10)에 널링(knurling) 공정 또는 태핑(tapping) 공정을 수행하여 형성할 수 있다. 상기 조인트(70)는 내부에 조인트 홀(71)이 형성되고, 상기 조인트 홀(71) 내로 상기 매립 홈(13)이 형성된 상기 스크류 부재(10)가 삽입된다. 상기 조인트 홀(71)에 상기 스크류 부재(10)가 삽입된 상태에서, 상기 조인트(70)에 열 또는 초음파를 가하면 상기 조인트(70)가 용융되고, 용융된 부분이 상기 매립 홈(13)에 유입된다. 이때, 상기 매립 홈(13)에 상기 조인트(70)의 용융된 부분이 잘 유입되도록 외부에서 힘을 가할 수도 있다.
그리고, 열 또는 초음파를 제거하면 상기 조인트(70)가 경화되어 상기 스크류 부재(10)와 조인트(70)가 견고하게 결합될 수 있다.
한편, 상기 너트 부재(20)는 상기 마그네트(30)의 내부에 삽입되어 결합되고 제2 방향측 단부(22)가 상기 마그네트(30)를 관통하여 제2 방향으로 돌출된다. 상기 너트 부재(20)의 외주면에는 축 방향을 따라 연장된 돌기부(23)가 형성되어, 상기 돌기부(23)에 대응하는 형태의 홈(31)이 내주면에 형성된 상기 마그네트(30)와 결합된다.
상기 돌기부(23)와 홈(31)에 의해 상기 너트 부재(20)와 상기 마그네트(30)는 원주 방향을 따라 일부분이 오버랩되어 교대로 배치된다. 따라서, 상기 마그네트(30)의 회전에 의해 원주 방향으로 작용하는 힘은 상기 너트 부재(20)에 전달되고 상기 너트 부재(20)는 상기 마그네트(30)가 회전됨에 따라 함께 회전된다.
예를 들어, 상기 돌기부(23)와 홈(31)은 곡면으로 형성될 수 있으며, 이 경우 상기 마그네트(30)의 홈(31)을 보다 용이하게 가공할 수 있다.
상기 너트 부재(20)의 제2 방향측 단부(22)는 상기 베어링(40)의 내륜과 결합된다. 따라서, 상기 너트 부재(20)는 상기 베어링(40)에 의해 지지되면서 자유롭게 회전될 수 있다.
또한, 상기 너트 부재(20)는 대략 중앙부 내주면에 나사산(21)이 형성되어 상기 스크류 부재(10)의 나사산(11)과 결합된다. 또한, 상기 너트 부재(20)는 제1 방향측 내주면이 상기 제1 보빈(130)의 돌출관(132)과 결합되어 회전 가능하게 지지된다. 즉, 상기 너트 부재(20)의 제1 방향측 내주면은 상기 돌출관(132)의 외주면에 접촉 지지된다.
상기 마그네트(30)는 N측과 S극이 원주 방향으로 동일 간격으로 교대로 착자된 영구 자석으로 형성될 수 있다. 앞서 설명한 바와 같이, 상기 마그네트(30)의 내부에는 상기 너트 부재(20)가 삽입되어 결합됨으로써, 상기 마그네트(30)가 회전됨에 따라 상기 너트 부재(20)도 회전된다.
한편, 상기 마그네트(30)의 제2 방향측 단부(32)는 제2 방향으로 돌출되어 상기 베어링(40)의 내륜과 접촉될 수도 있다. 상기 마그네트(30)의 제2 방향측 단부(32)에 의해 상기 마그네트(30)는 상기 베어링(40)의 외륜과 접촉되지 않고 원활히 회전될 수 있다.
상기 마그네트(30)의 원주 방향의 외측에는 제1 코일(131)이 권선된 제1 보빈(130)과, 제2 코일(141)이 권선된 제2 보빈(140)이 배치된다. 그리고, 상기 제1 보빈(130)과 제2 보빈(140) 사이에는 상기 제1 요크(150)와 제2 요크(160)가 배치된다.
상기 제1 보빈(130)은 상기 제1 코일(131)이 원주 방향으로 권선되는 제1 코일 권선부(134)가 형성되고, 상기 제1 코일(131)을 전기적으로 연결하기 위한 제1 단자부(135)가 형성된다. 마찬가지로, 상기 제2 보빈(140)은 상기 제2 코일(141)이 원주 방향으로 권선되는 제2 코일 권선부(144)가 형성되고, 상기 제2 코일(141)을 전기적으로 연결하기 위한 제2 단자부(145)가 형성된다.
상기 제1 보빈(130)은 앞서 설명된 바와 같이, 상기 스크류 부재(10)가 삽입되어 지지되는 상기 돌출관(132)이 형성되고 상기 제1 하우징(110)의 제3 투스(111)가 삽입되는 슬릿(136)이 형성된다. 상기 제1 보빈(130)은 제1 방향에서 상기 마그네트(30) 및 너트 부재(20)와 대면하는데 상기 제1 보빈(130)에는 제1 방향으로 함몰된 함몰부(134)가 형성되어 상기 마그네트(30) 및 너트 부재(20)가 제1 방향 및 제2 방향으로 유동됨에 따라 상기 제1 보빈(130)과 상기 마그네트(30) 및 너트 부재(20) 사이에 발생될 수 있는 마찰력을 감소시킬 수 있다.
상기 제1 요크(150)는 링 형상의 제1 몸체부(151)와, 상기 제1 몸체부(151)의 내주에서 상기 제1 하우징(110) 방향으로 돌출되어 상기 제1 보빈(130)과 상기 마그네트(30) 사이에 배치되는 제1 투스(152)와, 상기 제1 몸체부(151)를 접지시키기 위한 제1 접지 단자부(153)가 포함된다. 또한, 상기 제2 요크(160)는 링 형상의 제2 몸체부(161)와, 상기 제2 몸체부(161)의 내주에서 상기 제2 하우징(120) 방향으로 돌출되어 상기 제2 보빈(140)과 상기 마그네트(30) 사이에 배치되는 제2 투스(162)와, 상기 제2 몸체부(161)를 접지시키기 위한 제2 접지 단자부(163)가 포함된다.
한편, 상기 제1 하우징(110)에는 상기 제2 하우징(120) 방향으로 돌출된 상기 제3 투스(111)가 형성되어 상기 제1 보빈(152)의 슬릿(136)을 관통하여 상기 제1 보빈(130)과 상기 마그네트(30) 사이에 배치된다. 상기 제3 투스(111)와 상기 제1 투스(152)는 상기 마그네트(30)의 외주를 따라 교대로 배치된다.
상기 제1 하우징(110)은 원통형의 몸체로부터 반경방향 내측으로 돌출된 제1 림부(rim)(112)가 형성되고, 상기 제3 투스(111)는 상기 제1 림부(112)로부터 제2 방향으로 연장된다. 상기 제1 림부(112)에 의해 형성되는 제1 개구부(113)는 상기 제1 보빈(130)의 일측이 삽입되어 결합된다.
또한, 상기 제2 하우징(120)에는 상기 제1 하우징(110) 방향으로 돌출된 제4 투스(121)가 형성되어 상기 제2 보빈(140)과 상기 마그네트(30) 사이에 배치된다. 상기 제4 투스(121)와 상기 제2 투스(162)는 상기 마그네트(30)의 외주를 따라 교대로 배치된다.
상기 제2 하우징(120)은 원통형의 몸체로부터 반경 반향의 내측으로 돌출된 제2 림부(122)가 형성되고, 상기 제4 투스(121)는 상기 제2 림부(122)로부터 제1 방향으로 연장된다.
한편, 상기 제1 하우징(110)에는 상기 제1 림부(112)가 일부 절단된 제1 절단부(114)가 형성되고, 상기 제2 하우징(120)에는 상기 제2 림부(122)가 일부 절단된 제2 절단부(124)가 형성된다. 상기 제1 절단부(114) 및 제2 절단부(124)는 상기 제1 보빈(130)에 형성된 제1 단자부(135)와, 상기 제1 요크(150)에 형성된 제1 접지 단자부(153)와, 상기 제2 요크(160)에 형성된 제2 접지 단자부(163)와, 상기 제2 보빈(140)에 형성된 제2 단자부(145)가 외측으로 돌출될 수 있는 개구를 형성한다.
상기 제2 하우징(120)의 제2 방향측에는 상기 베어링(40)이 배치되고, 상기 베어링(40)을 지지하는 상기 베어링 커버(50)가 설치된다. 즉, 상기 베어링 커버(50)는 상기 제2 하우징(120)과 결합되어 상기 베어링(40)을 구속한다. 예를 들어, 상기 제2 하우징(120)과 상기 베어링 커버(50)는 스폿 용접 또는 레이저 용접으로 결합될 수 있다.
앞서 설명한 바와 같이, 상기 베어링(40)의 내륜은 상기 너트 부재(20)의 제2 방향측 단부(22)와 결합되어 지지된다.
그리고, 상기 베어링(40)은 상기 제2 하우징(120)의 상기 제2 림(rim)부(122)에 의해 제1 방향으로의 이동이 제한되고 상기 베어링 커버(50)에 의해 제2 방향으로의 이동이 제한된다.
상기 제2 림부(122)에 의해 형성되는 제2 개구부(123)의 직경은 상기 마그네트(30)의 직경 보다 크게 형성되고, 상기 베어링(40)의 직경보다 작게 형성된다. 따라서, 상기 마그네트(30)와 상기 제2 하우징(120) 사이에 마찰력이 발생되는 것을 방지할 수 있으며, 상기 베어링(40)이 제1 방향으로 이동되는 것을 제한할 수 있다.
도 5는 실시예에 따른 스텝 액츄에이터에서 제2 하우징이 베어링을 제1 방향에서 지지하는 것을 도시한 도면이다.
도 5를 참조하면, 상기 너트 부재(20)는 상기 마그네트(30)의 내부에 삽입되어 상기 베어링(40)의 내륜과 결합된다.
상기 베어링 커버(50)는 제2 방향에서 상기 제2 하우징(120)과 결합되고, 상기 마운팅 부재(60)는 제2 방향에서 상기 베어링 커버(50)와 결합된다.
상기 베어링 커버(50)와 제2 하우징(120) 사이에는 상기 베어링(40)이 설치되는데, 상기 베어링(40)은 상기 제2 하우징(120)의 제2 림부(122)에 의해 제1 방향으로의 이동이 제한된다.
도 5에서는 상기 제2 림부(122)와 상기 마그네트(30) 사이로 상기 베어링(40)이 일부분 노출된 것이 도시되어 있으며, 상기 베어링(40)의 노출되지 않은 부분이 상기 제2 림부(122)에 의해 제1 방향으로의 이동이 제한되는 부분이다.
한편, 도 6 내지 도 24에는 실시예에 따른 스텝 액츄에이터에서 로터와 베어링의 결합 구조의 다른 실시예들이 도시되어 있다. 도 6 내지 도 24에 도시된 실시예들을 설명함에 있어서 도 1 내지 도 5에서 설명된 실시예와 중복되는 부분은 설명을 생략하고 로터와 베어링의 결합 구조에 대해서만 설명하도록 한다.
아래 설명되는 실시예에서는 상기 베어링(40), 마그네트(30) 및 너트 부재(20)를 견고하게 결합하기 위하여, 체결부와 체결부재를 사용한다. 상기 체결부는 베어링 체결부(22a) 또는 후크(22c)의 형태로 구현될 수 있고, 상기 체결부재는 멈춤 링(25), 너트 부재 스토퍼(26) 및 부쉬(27)의 형태로 구현될 수 있다.
도 6 내지 도 10은 실시예에 따른 스텝 액츄에이터에서 로터와 베어링 결합 구조의 제1 실시예를 설명하는 도면이다.
도 6, 도 7 및 도 8을 참조하면, 상기 너트 부재(20)의 제2 방향측 단부(22)는 상기 베어링(40)을 관통하여 제2 방향으로 돌출된다. 상기 너트 부재(20)의 제2 방향측 단부(22)의 외주는 상기 베어링(40)의 내륜과 접촉하여 결합된다.
도 6, 도 9 및 도 10을 참조하면, 상기 너트 부재(20)의 제2 방향측 단부(22)의 돌출 부분은 열 또는 초음파를 가한 후 스웨이징(swaging) 가공하여 상기 베어링(40)의 내륜과 제2 방향측에서 접촉되어 결합되는 베어링 체결부(22a)가 형성된다.
따라서, 상기 베어링(40), 마그네트(30) 및 너트 부재(20)는 견고하게 결합될 수 있고, 상기 베어링(40)은 상기 마그네트(30) 및 너트 부재(20)가 원활히 회전될 수 있도록 지지할 수 있다.
도 11 내지 도 14는 실시예에 따른 스텝 액츄에이터에서 로터와 베어링 결합 구조의 제2 실시예를 설명하는 도면이다.
도 11, 도 12 및 도 13을 참조하면, 상기 너트 부재(20)의 제2 방향측 단부(22)에는 원주 방향을 따라 형성된 결합 홈(22b)이 형성된다. 그리고, 상기 베어링(40)의 제2 방향측에는 멈춤 링(25)이 배치된다.
상기 베어링(40), 마그네트(30) 및 너트 부재(20)를 결합하면, 상기 너트 부재(20)의 제2 방향측 단부(22)가 상기 베어링(40)을 관통하여 제2 방향측으로 돌출되고, 상기 너트 부재(20)의 결합 홈(22b)이 제2 방향측으로 노출된다.
도 11 및 14를 참조하면, 상기 결합 홈(22b)에 상기 멈춤 링(25)을 삽입하여 상기 베어링(40)을 제2 방향 측에서 구속한다. 상기 멈춤 링(25)은 상기 결합 홈(22b)에 결합되고 상기 베어링(40)의 내륜과 제2 방향측에서 접촉된다.
따라서, 상기 결합 홈(22b)과 멈춤 링(25)에 의하여 상기 베어링(40), 마그네트(30) 및 너트 부재(20)는 견고하게 결합될 수 있고, 상기 베어링(40)은 상기 마그네트(30) 및 너트 부재(20)가 원활히 회전될 수 있도록 지지할 수 있다.
도 15 내지 도 17는 실시예에 따른 스텝 액츄에이터에서 로터와 베어링 결합 구조의 제3 실시예를 설명하는 도면이다.
도 15 내지 도 17을 참조하면, 상기 베어링(40)의 제2 방향측에는 너트 부재 스토퍼(26)가 배치되어 제2 방향측에서 상기 너트 부재(22)와 결합된다.
상기 너트 부재 스토퍼(26)는 상기 베어링(40)의 내륜과 제2 방향에서 접촉하고 일부분이 제1 방향측으로 돌출되어 상기 너트 부재(22)의 내부에 삽입된다.
상기 너트 부재 스토퍼(26)의 외주면은 상기 너트 부재(22)의 내주면과 접촉하여 결합된다. 물론, 도시된 바와 같이, 상기 너트 부재 스토퍼(26)의 중심에는 관통홀이 형성되어 상기 스크류 부재(10)가 관통될 수 있다.
따라서, 상기 너트 부재 스토퍼(26)에 의해 상기 베어링(40), 마그네트(30) 및 너트 부재(20)는 견고하게 결합될 수 있고, 상기 베어링(40)은 상기 마그네트(30) 및 너트 부재(20)가 원활히 회전될 수 있도록 지지할 수 있다.
도 18 내지 도 20은 실시예에 따른 스텝 액츄에이터에서 로터와 베어링 결합 구조의 제4 실시예를 설명하는 도면이다.
도 18 내지 도 20을 참조하면, 상기 너트 부재(20)의 제2 방향측 단부(22)에는 후크(22c)가 형성된다. 상기 후크(22c)는 상기 베어링(40)을 관통하여 상기 베어링(40)의 제2 방향측에 접촉된다. 즉, 상기 너트 부재(20)의 후크(22c)는 상기 베어링(40)의 내륜과 결합된다.
따라서, 상기 너트 부재(20)에 형성된 후크(22c)에 의해 상기 베어링(40), 마그네트(30) 및 너트 부재(20)는 견고하게 결합될 수 있고, 상기 베어링(40)은 상기 마그네트(30) 및 너트 부재(20)가 원활히 회전될 수 있도록 지지할 수 있다.
도 21 내지 도 23은 실시예에 따른 스텝 액츄에이터에서 로터와 베어링 결합 구조의 제5 실시예를 설명하는 도면이다.
도 21 내지 도 23을 참조하면, 상기 너트 부재(20)의 제2 방향측 단부(22)에는 원주 방향을 따라 형성된 결합 홈(22b)이 형성된다. 그리고, 상기 베어링(40)의 제2 방향측에는 링 형상의 부쉬(27)가 배치된다.
상기 베어링(40), 마그네트(30) 및 너트 부재(20)를 결합하면, 상기 너트 부재(20)의 제2 방향측 단부(22)가 상기 베어링(40)을 관통하여 제2 방향측으로 돌출되고, 상기 너트 부재(20)의 결합 홈(22b)이 제2 방향측으로 노출된다.
상기 결합 홈(22b)에 상기 부쉬(27)를 삽입하고, 상기 부쉬(27)에 코킹(caulking) 공정을 하면 상기 결합 홈(22b)과 부쉬(27)가 견고하게 결합된다. 즉, 상기 부쉬(27)는 상기 결합 홈(22b)에 결합되고 상기 베어링(40)의 내륜과 제2 방향측에서 접촉된다.
따라서, 상기 결합 홈(22b)과 부쉬(27)에 의하여 상기 베어링(40), 마그네트(30) 및 너트 부재(20)는 견고하게 결합될 수 있고, 상기 베어링(40)은 상기 마그네트(30) 및 너트 부재(20)가 원활히 회전될 수 있도록 지지할 수 있다.
도 24는 실시예에 따른 스텝 액츄에이터에서 로터와 베어링의 견고한 결합을 위해 탄성 부재가 사용된 것을 설명하는 도면이다.
도 24에서는 도 11 내지 도 14에서 설명한 제2 실시예에서 로터와 베어링의 결합 구조에서 제1,2,3,4 탄성 부재(28a,28b,28c,28d)를 사용한 것이 예시되어 있다. 그러나, 상기 제1,2,3,4 탄성 부재(28a,28b,28c,28d)는 다른 실시예들에서도 적용될 수 있다.
도 24를 참조하면, 상기 멈춤 링(25)과 베어링(40) 사이에 제1 탄성부재(28a)가 배치될 수 있고, 상기 베어링(40)과 마그네트(30) 사이에 제2 탄성부재(28b)가 배치될 수 있고, 상기 마그네트(30)와 너트 부재(20) 사이에 상기 제3 탄성 부재(28c) 및 제4 탄성 부재(28d)가 배치될 수 있다.
상기 제1,2,3,4 탄성 부재(28a,28b,28c,28d)는 로터와 베어링의 결합 구조에서 모두 적용될 수 있으며, 설계에 따라 어느 하나만 적용될 수도 있다. 즉, 탄성 부재가 배치되는 위치와 수는 선택적이다.
상기 제1,2,3,4 탄성 부재(28a,28b,28c,28d)는 축 방향으로 탄성력을 제공한다. 따라서, 상기 제1,2,3,4 탄성 부재(28a,28b,28c,28d)에 의해 상기 베어링(40), 마그네트(30) 및 너트 부재(20)는 더욱 견고하게 결합될 수 있고, 상기 베어링(40)은 상기 마그네트(30) 및 너트 부재(20)가 원활히 회전될 수 있도록 지지할 수 있다.
도 25 내지 도 29는 베어링 커버와 마운팅 부재의 구조 및 결합 관계를 설명하는 도면이다.
도 25를 참조하면, 상기 베어링 커버(50)는 결합테(51), 결합관(52), 걸림테(53), 지지편(55), 회전방지돌기(56) 및 제1 접촉편(57)을 포함한다.
상기 결합테(51)는 소정 폭을 가진 링 형상으로 형성되어 상기 제2 하우징(120)의 제2 림부(122)와 결합된다. 예를 들어, 상기 결합테(51)와 상기 제2 림부(122)는 용접에 의해 결합될 수 있다.
상기 결합관(52)은 상기 결합테(51)의 내주에서 제2 방향으로 연장되어 형성되며 내주면이 상기 베어링(40)의 외륜과 접촉한다.
상기 걸림테(53)는 상기 결합관(52)의 제2 방향측 단부에서 반경방향 내측으로 돌출되어 형성되며, 상기 베어링(40)의 외륜과 접촉한다. 상기 걸림테(53)는 상기 베어링(40)이 제2 방향으로 이동되는 것을 제한한다.
상기 지지편(55)은 상기 결합테(51)의 외주에서 제2 방향으로 연장되어 형성되며, 상호 이격된 복수개가 마련된다. 이때, 상기 지지편(55)을 연결한 가상의 선은 대략 원형을 이룬다.
상기 회전방지돌기(56)은 상기 지지편(55)에서 반경방향 외측으로 연장되어 형성되고, 원주 방향으로 각각 제1 벤딩편(56a) 및 제2 벤딩편(56b)가 형성된다. 상기 제1 벤딩편(56a) 및 제2 벤딩편(56b)은 상기 마운팅 부재(60)가 상기 베어링 커버(50)에 결합되었을 때 상기 마운팅 부재(60)가 원주 방향으로 회전되지 않도록 상기 마운팅 부재(60)의 걸림편(64) 및 걸림돌기(65)에 각각 지지된다.
상기 제1 벤딩편(56a) 및 제2 벤딩편(56b)은 상기 회전방지돌기(56)의 접촉 면적을 증가시킴으로써 상기 회전방지돌기(56)가 상기 걸림편(64) 및 걸림돌기(65)에 견고하게 지지되도록 한다.
상기 제1 접촉편(57)은 상기 지지편(55)의 제2 방향측 단부에서 반경방향 외측으로 각각 연장 형성되며, 상기 마운팅 부재(60)의 제2 접촉편(67)과 접촉하여 상기 마운팅 부재(60)가 축 방향으로 유동하는 것을 방지한다.
상기 마운팅 부재(60)는 돌출부(61), 수납관(63), 걸림편(64), 걸림돌기(65), 연장테(66) 및 제2 접촉편(67)을 포함한다.
상기 돌출부(61)와 수납관(63)은 상기 마운팅 부재(60)의 몸체를 이룬다. 상기 돌출부(61)는 상기 스크류 부재(10)가 제1 방향 및 제2 방향으로 이동 가능하도록 지지하고, 상기 수납관(63)은 상기 베어링(40) 및 베어링 커버(50)가 내측에 배치될 수 있는 공간을 제공한다. 상기 돌출부(61)는 상기 수납관(63)으로부터 제2 방향으로 돌출된 형태로 형성된다.
상기 수납관(63)은 제1 방향측 단부가 상기 베어링 커버(50)의 지지편(55)과 결합관(52) 사이에 삽입된다. 따라서, 상기 수납관(63)의 제1 방향측 단부의 외주는 상기 지지편(55)의 내주와 접촉하고, 상기 수납관(63)의 제1 방향측 단부의 내주는 상기 결합관(52)의 외주와 접촉한다.
상기 연장테(66)는 상기 수납관(63)의 외주면에서 반경방향 외측으로 연장 형성되어 링 형상을 이루며, 상기 베어링 커버(50)의 회전방지돌기(56) 및 제1 접촉편(57)과 대향한다.
상기 걸림편(64)은 상기 연장테(66)의 외주에서 제1 방향으로 연장되어 상호 이격된 복수개가 마련된다. 상기 걸림편(64)의 내주면은 상기 베어링 커버(50)의 결합테(51)의 외주면에 대향한다.
상기 걸림편(64)을 상기 베어링 커버(50)의 지지편(55)과 지지편(55) 사이에 위치시킨 상태에서 상기 마운팅 부재(60)를 시계 방향으로 회전시키는 경우, 상기 제1 벤딩편(56a)이 상기 걸림편(64)의 원주 방향 단부에 걸리게 된다. 따라서, 상기 마운팅 부재(60)는 더 이상 시계 방향으로 회전되지 않는다.
상기 걸림돌기(65)는 상기 걸림편(64)과 걸림편(64) 사이의 상기 연장테(66)에 형성되고 탄성을 가진다. 상기 걸림돌기(65)는 외팔보 형태로 형성되며, 자유단부측이 상기 회전방지돌기(56)의 제2 벤딩편(56b)에 접촉한다.
즉, 상기 걸림돌기(65)는 상호 인접하는 상기 지지편(55)과 지지편(55) 사이에 위치되었다가, 상기 마운팅 부재(60)가 시계방향으로 회전함에 따라, 상기 회전방지돌기(56)를 타고 넘어서 상기 회전방지돌기(56)의 제2 벤딩편(56b)에 걸린다. 그러면, 상기 마운팅 부재(60)가 반시계방향으로 더 이상 회전되지 않는다.
상기 걸림돌기(65)가 원활하게 상기 회전방지돌기(56)를 타고 넘어갈 수 있도록, 상기 걸림돌기(65)의 자유단부측은 경사지게 형성된다.
상기 제2 접촉편(67)은 상기 걸림편(64)의 제1 방향 단부에서 반경방향 내측으로 연장되어 형성되어 상기 연장테(66)와 소정 간격 이격된다. 상기 제2 접촉편(67)과 상기 연장테(66) 사이에는 상기 제1 접촉편(57)이 삽입된다.
상기 마운팅 부재(60)는 상기 베어링 커버(50)의 제2 방향에 위치된다. 따라서, 상기 마운팅 부재(60)가 상기 베어링 커버(50)에 결합되는 경우, 상기 마운팅 부재(60)에 일체로 형성된 제2 접촉편(67)은 상기 베어링 커버(50)에 일체로 형성된 제1 접촉편(57)의 제1 방향에 위치되므로, 상기 마운팅 부재(60)는 제1 방향 및 제2 방향으로 유동되지 않는다.
상기 베어링 커버(50)와 상기 마운팅 부재(60)가 밀착되어 결합되도록 하기 위하여, 상기 제1 접촉편(57)에는 상기 제2 접촉편(67)과 접촉되는 면에 엠보싱(57a)이 형성된다. 상기 엠보싱(57a)은 상기 마운팅 부재(60)가 회전하여 상기 걸림편(64) 및 상기 걸림돌기(65)가 상기 회전방지돌기(56)에 각각 걸렸을 때, 상기 제2 접촉편(67)에 밀착되어 상기 제2 접촉편(67)을 제1 방향에서 지지한다.
도 26 내지 도 29를 참조하여 상기 마운팅 부재(60)를 상기 베어링 커버(50)에 결합하는 방법을 설명한다.
도 26에 도시된 바와 같이, 상기 마운팅 부재(60)의 수납관(63)을 상기 베어링 커버(50)의 지지편(55)와 결합관(52) 사이에 삽입하면서, 상기 마운팅 부재(60)의 걸림편(64)과 걸림돌기(65)를 상기 베어링 커버(50)의 회전방지돌기(56)와 회전방지돌기(56) 사이에 위치시킨다.
도 26에 도시된 상태는, 도 27에 도시된 바와 같이, 상기 베어링 커버(50)의 제1 접촉편(57)과 상기 마운팅 부재(60)의 제2 접촉편(67)이 축 방향으로 겹쳐진 상태는 아니다.
도 26 및 도 27의 상태에서, 상기 마운팅 부재(60)을 시계방향으로 회전시키면, 도 28에 도시된 바와 같이, 상기 걸림편(64)은 상기 제1 벤딩편(56a)에 접촉 지지되고, 상기 걸림돌기(65)는 상기 회전방지돌기(56)를 타고 넘어 자유단부가 상기 제2 벤딩편(56b)에 접촉 지지된다. 따라서, 상기 마운팅 부재(60)는 회전되지 않는다.
도 28에 도시된 상태는, 도 29에 도시된 바와 같이, 상기 제1 접촉편(57)과 상기 제2 접촉편(67)이 축 방향으로 겹쳐진 상태이므로, 상기 제1 접촉편(57)과 상기 제2 접촉편(67)은 접촉한다. 그런데, 상기 제1 접촉편(57)에는 상기 엠보싱(57a)이 형성되어 있으므로, 상기 엠보싱(57a)이 상기 제2 접촉편(67)에 밀착되어 상기 제2 접촉편(67)을 제1 방향으로 밀어서 지지한다. 따라서, 상기 베어링 커버(50)와 상기 마운팅 부재(60)는 축 방향으로 유동하지 않고 견고하게 결합되는 것이다.
상기 마운팅 부재(60)을 분리하고자 할 경우에는, 상기 걸림돌기(165)의 자유단부측을 제2 방향으로 들어 올린 후, 상기 마운팅 부재(60)를 반시계방향으로 회전시키면 된다.
이와 같이, 실시예에 따른 스텝 액츄에이터는 상기 베어링(40)의 위치를 구속하고 상기 마운팅 부재(60)를 지지하는 베어링 커버(50)와, 상기 스크류 부재(10)의 선형 이동을 가이드하고 지지하는 마운팅 부재(60)를 구비한다. 따라서, 상기 마우팅 부재(60)의 설계를 자유롭게 변형시킬 수 있으며, 상기 베어링 커버(50)와 용이하게 결합시킬 수 있다.
상술한 바와 같은 스텝 액츄에이터는 상기 제1 단자부(135) 및 제2 단자부(145)에 각각 전원이 인가됨에 따라 전기장이 발생되고, 그에 따라 상기 마그네트(30)가 정방향 및 역방향으로 회전된다.
상기 마그네트(30)가 회전됨에 따라 상기 마그네트(30)와 결합된 너트 부재(20)가 회전되고, 상기 너트 부재(20)의 나사산(21)과 맞물리는 나사산(11)을 가진 스크류 부재(10)는 상기 마그네트(30)의 회전 방향에 따라 제1 방향 및 제2 방향으로 이동하게 된다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
실시예는 스텝 액츄에이터에 적용될 수 있다.

Claims (15)

  1. 하우징;
    상기 하우징 내부에 배치되는 스테이터;
    상기 스테이터의 반경방향 내측에 배치되는 마그네트와, 상기 마그네트의 내부에 삽입되어 결합되고 상기 하우징의 일측을 관통하여 돌출되는 너트 부재를 포함하는 로터;
    상기 너트 부재를 회전 가능하게 지지하는 베어링;
    상기 너트 부재에 결합되어 상기 로터가 회전함에 따라 선형으로 움직이는 스크류 부재; 및
    상기 하우징의 일측에 지지되고 상기 스크류 부재가 선형으로 이동 가능하도록 지지되는 마운팅 부재를 포함하고,
    상기 너트 부재는 상기 베어링을 관통하는 단부와, 상기 단부에서 연장되어 상기 베어링과 접촉하여 결합되는 체결부를 포함하는 스텝 액츄에이터.
  2. 제 1항에 있어서,
    상기 너트 부재의 단부의 외주면은 상기 베어링 내륜의 내주면과 결합되고, 상기 체결부는 상기 베어링 내륜의 측면과 결합되는 스텝 액츄에이터.
  3. 제 1항에 있어서,
    상기 체결부는 상기 너트 부재의 단부에 열 또는 초음파를 가한 후 스웨이징 공정을 통해 상기 베어링과 결합되는 베어링 체결부인 스텝 액츄에이터.
  4. 제 1항에 있어서,
    상기 체결부는 상기 너트 부재의 단부에 형성된 후크를 포함하는 스텝 액츄에이터.
  5. 제 4항에 있어서,
    상기 후크와 베어링 사이, 상기 베어링과 마그네트 사이, 상기 마그네트와 너트 부재 사이 중 적어도 한 위치에 탄성 부재가 배치되는 스텝 액츄에이터.
  6. 하우징;
    상기 하우징 내부에 배치되는 스테이터;
    상기 스테이터의 반경방향 내측에 배치되는 마그네트;
    상기 마그네트의 내부에 삽입되어 결합되고 상기 하우징의 일측을 관통하여 돌출되는 너트 부재;
    상기 너트 부재를 회전 가능하게 지지하는 베어링;
    상기 베어링을 사이에 두고 상기 너트 부재와 결합되는 체결부재;
    상기 너트 부재에 결합되어 상기 너트 부재가 회전함에 따라 선형으로 움직이는 스크류 부재; 및
    상기 하우징의 일측에 지지되고 상기 스크류 부재가 선형으로 이동 가능하도록 지지되는 마운팅 부재를 포함하는 스텝 액츄에이터.
  7. 제 6항에 있어서,
    상기 너트 부재는 상기 베어링을 관통하는 단부와, 상기 단부에 형성된 결합 홈을 포함하고,
    상기 체결부재는 상기 결합 홈에 결합되고 상기 베어링의 내륜과 접촉하는 스텝 액츄에이터.
  8. 제 6항에 있어서,
    상기 체결부재는 상기 결합 홈에 끼워지는 멈춤 링인 스텝 액츄에이터.
  9. 제 6항에 있어서,
    상기 체결부재는 상기 결합 홈에 결합되어 코킹 공정에 의해 고정되는 부쉬인 스텝 액츄에이터.
  10. 제 6항에 있어서,
    상기 체결부재와 베어링 사이, 상기 베어링과 마그네트 사이, 상기 마그네트와 너트 부재 사이 중 적어도 한 위치에 탄성 부재가 배치되는 스텝 액츄에이터.
  11. 제 6항에 있어서,
    상기 체결부재는 상기 베어링의 내륜과 접촉하고 상기 너트 부재의 내부에 삽입되어 결합되는 너트 부재 스토퍼인 스텝 액츄에이터.
  12. 하우징;
    상기 하우징 내부에 배치되는 스테이터;
    상기 스테이터의 반경방향 내측에 배치되는 마그네트와, 상기 마그네트의 내부에 삽입되어 결합되고 상기 하우징의 일측을 관통하여 돌출되는 너트 부재를 포함하는 로터;
    상기 하우징의 외측에 배치되어 상기 너트 부재를 회전 가능하게 지지하는 베어링;
    상기 하우징과 결합되어 상기 베어링을 지지하는 베어링 커버;
    상기 너트 부재에 결합되어 상기 로터가 회전함에 따라 선형으로 움직이는 스크류 부재; 및
    상기 베어링 커버와 결합되어 상기 스크류 부재가 선형으로 이동 가능하도록 지지하는 마운팅 부재를 포함하는 스텝 액츄에이터.
  13. 제 12항에 있어서,
    상기 너트 부재는 상기 베어링과 결합되는 체결부를 포함하는 스텝 액츄에이터.
  14. 제 13항에 있어서,
    상기 체결부는 상기 베어링과 상기 스크류 부재의 축 방향에 평행한 방향을 따라 오버랩되는 스텝 액츄에이터.
  15. 제 12항에 있어서,
    상기 베어링의 외륜은 상기 베어링 커버와 결합되고 상기 베어링의 내륜은 상기 너트 부재와 결합되는 스텝 액츄에이터.
PCT/KR2009/004344 2008-10-14 2009-08-04 스텝 액츄에이터 WO2010044537A2 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN2009801500172A CN102246400B (zh) 2008-10-14 2009-08-04 步进驱动器
US13/124,235 US8567272B2 (en) 2008-10-14 2009-08-04 Step actuator
EP09820687.3A EP2341601B1 (en) 2008-10-14 2009-08-04 Step actuator
JP2011532007A JP5730207B2 (ja) 2008-10-14 2009-08-04 ステップアクチュエータ
US14/039,961 US8826757B2 (en) 2008-10-14 2013-09-27 Step actuator
US14/448,660 US9644719B2 (en) 2008-10-14 2014-07-31 Step actuator
US15/474,647 US10495198B2 (en) 2008-10-14 2017-03-30 Step actuator
US16/667,123 US10982741B2 (en) 2008-10-14 2019-10-29 Step actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080100895A KR101028247B1 (ko) 2008-10-14 2008-10-14 스텝 액츄에이터
KR10-2008-0100895 2008-10-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/124,235 A-371-Of-International US8567272B2 (en) 2008-10-14 2009-08-04 Step actuator
US14/039,961 Continuation US8826757B2 (en) 2008-10-14 2013-09-27 Step actuator

Publications (2)

Publication Number Publication Date
WO2010044537A2 true WO2010044537A2 (ko) 2010-04-22
WO2010044537A3 WO2010044537A3 (ko) 2010-07-01

Family

ID=42106997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004344 WO2010044537A2 (ko) 2008-10-14 2009-08-04 스텝 액츄에이터

Country Status (6)

Country Link
US (5) US8567272B2 (ko)
EP (1) EP2341601B1 (ko)
JP (1) JP5730207B2 (ko)
KR (1) KR101028247B1 (ko)
CN (2) CN102246400B (ko)
WO (1) WO2010044537A2 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101558563B1 (ko) 2008-07-28 2015-10-08 엘지이노텍 주식회사 스텝 액츄에이터
KR101028247B1 (ko) 2008-10-14 2011-04-11 엘지이노텍 주식회사 스텝 액츄에이터
KR101821817B1 (ko) * 2011-07-22 2018-01-24 엘지이노텍 주식회사 리니어 스텝모터
NO333966B1 (no) * 2012-02-10 2013-11-04 Electrical Subsea & Drilling As Anordning ved elektromekanisk aktuator og framgangsmåte for aktuering av et ringstempel
KR101939397B1 (ko) * 2012-06-15 2019-01-16 엘지이노텍 주식회사 스크류 조인트를 가지는 전동기
TW201416585A (zh) * 2012-10-17 2014-05-01 Hiwin Mikrosystem Corp 螺桿往復運動之內轉式直驅機構
KR101914724B1 (ko) * 2012-12-17 2018-11-02 엘지이노텍 주식회사 모터의 회전자
FR3005130B1 (fr) * 2013-04-24 2015-04-17 Sonceboz Sa Actionneur electrique a tige filetee
US20150260267A1 (en) * 2014-03-11 2015-09-17 Tricore Corporation Anti-jam structure for linear actuator
KR102417264B1 (ko) 2014-12-30 2022-07-05 엘지이노텍 주식회사 모터
US9906096B2 (en) * 2015-04-28 2018-02-27 Schaeffler Technologies AG & Co. KG Eccentric leadscrew actuator
KR102516582B1 (ko) * 2015-10-01 2023-03-31 엘지이노텍 주식회사 센싱 마그넷 조립체 및 이를 포함하는 모터
WO2018126118A1 (en) * 2016-12-30 2018-07-05 Newtonoid Technologies, Llc System for controlling the application of energy to a construction component
CN107336258B (zh) * 2017-07-04 2020-05-19 上海宇航系统工程研究所 一种适用于深空高低温环境的驱动关节
TWM555895U (zh) * 2017-09-18 2018-02-21 Timotion Technology Co Ltd 線性致動器及其緩衝組件
CN211820848U (zh) * 2019-12-03 2020-10-30 合肥威尔燃油系统股份有限公司北京分公司 一种燃料电池进气控制阀
KR20220000625A (ko) * 2020-06-26 2022-01-04 주식회사다스 자동차의 시트 슬라이딩 장치용 모터

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2615683A (en) * 1944-10-23 1952-10-28 Joy Mfg Co Drilling apparatus
US2476584A (en) * 1945-08-23 1949-07-19 Eastman Machine Co Control actuator and control system
US2956188A (en) * 1956-04-06 1960-10-11 Fostoria Corp Sealless motor for valve operation
US2918827A (en) * 1957-03-01 1959-12-29 Gen Electric Linear actuator
BE628339A (ko) * 1962-02-14
US3356874A (en) * 1964-03-23 1967-12-05 Royal Industries Enclosed rotor drive device
US3660704A (en) * 1970-07-31 1972-05-02 Thomas O Paine Ball-screw linear actuator
AT349824B (de) * 1976-03-26 1979-04-25 Froelichstahl Herbert Ing Antriebsanordnung zur erzielung einer hin- und hergehenden bewegung einer schubstange, insbesondere fuer einen stallmistfoerderer
US4019616A (en) * 1976-06-24 1977-04-26 International Business Machines Corporation Linear motion drive apparatus for a printer carriage
US4114469A (en) * 1977-04-04 1978-09-19 Dresser Industries, Inc. Valve actuator
US4463291A (en) * 1979-12-31 1984-07-31 Andale Company Automatic control system and valve actuator
CH652462A5 (fr) * 1983-03-30 1985-11-15 Sonceboz Sa Actuateur lineaire a moteur electrique.
US4579012A (en) * 1983-05-04 1986-04-01 Kollmorgen Technologies Corporation Compact electromechanical actuator
US4858481A (en) * 1985-05-13 1989-08-22 Brunswick Valve & Control, Inc. Position controlled linear actuator
JPS62117373U (ko) * 1986-01-20 1987-07-25
US4867000A (en) * 1986-11-10 1989-09-19 Lentz Dennis G Linear motion power cylinder
JP2530196B2 (ja) * 1988-02-01 1996-09-04 自動車電機工業株式会社 ストロ―ク型ステップモ―タ
JP2767894B2 (ja) * 1989-06-07 1998-06-18 松下電器産業株式会社 直線運動型モータ
US5066145A (en) * 1989-06-29 1991-11-19 Tribology Systems, Inc. Solid-lubricated bearing assembly
US5041748A (en) * 1989-10-16 1991-08-20 Sundstrand Corporation Lightweight, direct drive electromechanical actuator
US5099161A (en) * 1990-10-16 1992-03-24 Savair Inc. Compact electric linear actuator with tubular rotor
US5499547A (en) * 1991-09-04 1996-03-19 Smc Kabushiki Kaisha Actuator
JP3028905B2 (ja) * 1994-01-31 2000-04-04 アイシン精機株式会社 後輪操舵アクチュエ−タ
DE19528735A1 (de) * 1994-08-06 1996-02-15 Toyoda Automatic Loom Works Motor zur Umwandlung der Drehung einer Welle in eine lineare Bewegung
JPH08266035A (ja) * 1995-03-23 1996-10-11 Tec Corp 直動形ステッピングモーター
JPH10215545A (ja) * 1997-01-28 1998-08-11 Mitsubishi Electric Corp 回転/直動変換用モータ
JP3336916B2 (ja) 1997-03-18 2002-10-21 アスモ株式会社 アクチュエータ
DE69839840D1 (de) * 1998-02-23 2008-09-18 Mitsubishi Electric Corp Steuer ventil
SE513931C2 (sv) * 1999-01-27 2000-11-27 Daimler Chrysler Ag Don inrättat att verka mellan två i förhållande till varandra rörliga delar hos ett fordon
US6531798B1 (en) * 1999-02-24 2003-03-11 Tri-Tech, Inc Linear/rotary motor and method of use
KR100402382B1 (ko) * 1999-04-20 2003-10-17 미쓰비시덴키 가부시키가이샤 회전/직동변환 모터용 모터 샤프트 및 그의 제조방법
US6603228B1 (en) * 1999-06-04 2003-08-05 Obara Corporation Driving unit of a welding equipment
KR100626735B1 (ko) * 1999-12-29 2006-09-22 엘지이노텍 주식회사 전동기의 회전축의 베어링 지지 구조
EP1156576A1 (fr) * 2000-05-19 2001-11-21 Société industrielle de Sonceboz S.A. Actionneur linéaire ou rotatif
FR2809464B1 (fr) * 2000-05-26 2002-10-11 Commissariat Energie Atomique Transmission a vis, ecrou et cable attache a la vis
DE10044733A1 (de) * 2000-09-09 2002-03-21 Schaeffler Waelzlager Ohg Vorschubeinheit
JP2002122203A (ja) * 2000-10-17 2002-04-26 Minebea Co Ltd リニアアクチュエータ
US6603229B1 (en) * 2000-11-15 2003-08-05 Tri-Tech, Inc. Linear actuator with threaded captivation sleeve, captive lead screw, and spring pre-load adjustment
US6453761B1 (en) * 2000-11-16 2002-09-24 Thomson Saginaw Ball Screw Company, L.L.C. Direct attachment electric motor operated ball nut and screw linear actuator
KR200285091Y1 (ko) * 2002-05-22 2002-08-13 주식회사 모아텍 리드 스크류 모터 샤프트의 지지 구조
JP4119294B2 (ja) * 2003-04-03 2008-07-16 愛三工業株式会社 ステップモータとそのステップモータを備えた流量制御弁
JP4280542B2 (ja) * 2003-04-30 2009-06-17 日本電産コパル株式会社 ステッピングモータ
JP2005168211A (ja) * 2003-12-03 2005-06-23 Minebea Co Ltd ステッピングモータ
KR100512342B1 (ko) * 2003-12-09 2005-09-05 엘지이노텍 주식회사 스텝핑 모터 구조
KR100516718B1 (ko) * 2003-12-18 2005-09-22 주식회사 모아텍 케이스와 가이드부재 일체형 구조를 가지는 스텝모터
FR2869168B1 (fr) * 2004-04-14 2006-06-23 Transrol Soc Par Actions Simpl Verin d'actionnement a capteur associe a sa tige
JP4303162B2 (ja) * 2004-05-25 2009-07-29 ミネベア株式会社 アクチュエータ
DE102004028355B4 (de) * 2004-06-11 2011-12-29 Siemens Ag Antriebseinrichtung
JP4274473B2 (ja) * 2004-06-14 2009-06-10 ミネベア株式会社 アクチュエータ
JP4417181B2 (ja) * 2004-06-15 2010-02-17 三菱電機株式会社 モータの軸受保持構造
KR20070030382A (ko) * 2005-09-13 2007-03-16 엘지이노텍 주식회사 스테핑 모터
CN2845300Y (zh) 2005-11-01 2006-12-06 上海小糸车灯有限公司 一种汽车前照灯步进调光马达
EP2001703B1 (en) * 2006-03-27 2017-12-13 Johnson Controls Technology Company Transmission device for seat adjuster
US7779973B2 (en) * 2006-07-05 2010-08-24 Chen-Hui Ko Transmission mechanism with the function of the shock absorption
KR100819246B1 (ko) * 2006-08-16 2008-04-02 삼성전자주식회사 스테핑 모터
DE102006042477A1 (de) * 2006-09-09 2008-03-27 Zf Friedrichshafen Ag Elektromotorischer Aktuator zur Auslenkung eines Kraftfahrzeugteils
EP1928074B1 (fr) * 2006-11-30 2011-09-14 Société Industrielle de Sonceboz S.A. Actionneur linéaire de type vis-écrou
US20080164784A1 (en) * 2007-01-04 2008-07-10 Hsiu-Ming Huang Step-by-step motor able to carry out up-and-down motion
JP4310347B2 (ja) * 2007-03-16 2009-08-05 本田技研工業株式会社 送りねじ機構
JP5208921B2 (ja) * 2007-03-30 2013-06-12 Thk株式会社 回転ベアリング、回転テーブル装置、テーブル径決定方法
CN101815885B (zh) * 2007-08-01 2012-04-18 Skf公司 线性致动器
US8439338B2 (en) * 2008-02-29 2013-05-14 Thk Co., Ltd. Rotary table device provided with cooling structure and rotary bearing provided with cooling structure
JP4459278B2 (ja) * 2008-03-27 2010-04-28 本田技研工業株式会社 伸縮アクチュエータ
KR101567061B1 (ko) * 2008-07-28 2015-11-09 엘지이노텍 주식회사 스텝 액츄에이터와 인쇄회로기판용 케이스의 결합 구조
KR101558563B1 (ko) * 2008-07-28 2015-10-08 엘지이노텍 주식회사 스텝 액츄에이터
KR101028247B1 (ko) * 2008-10-14 2011-04-11 엘지이노텍 주식회사 스텝 액츄에이터
DE102009010085B3 (de) * 2009-02-24 2010-07-01 Saia-Burgess Dresden Gmbh Linear-Aktuator
JP4982593B2 (ja) * 2010-07-09 2012-07-25 日本ムーグ株式会社 リニアアクチュエータ及び鉄道車両用の揺動制御装置
DE102010052920A1 (de) * 2010-11-30 2012-05-31 Schaeffler Technologies Gmbh & Co. Kg Fahrwerkaktuator
JP5653746B2 (ja) * 2010-12-24 2015-01-14 ミネベア株式会社 メータ用ステッピングモータ
JP6000527B2 (ja) * 2011-11-02 2016-09-28 ナブテスコ株式会社 電動アクチュエータ、電動アクチュエータ動力切断方法、及び電動アクチュエータ動力切断装置
NO333966B1 (no) * 2012-02-10 2013-11-04 Electrical Subsea & Drilling As Anordning ved elektromekanisk aktuator og framgangsmåte for aktuering av et ringstempel
EP2852517B1 (de) * 2012-04-20 2019-05-15 IPGate AG Lageranordnung in einem axialantrieb
US9360015B2 (en) * 2012-07-16 2016-06-07 Magna Powertrain Of America, Inc. Submerged rotor electric water pump with structural wetsleeve
KR20150015939A (ko) * 2013-08-02 2015-02-11 주식회사 모아텍 스텝 액츄에이터
DE102017102630B4 (de) * 2017-02-09 2020-08-06 Johnson Electric Germany GmbH & Co. KG Linearschrittmotor, sowie Vorrichtung und Verfahren zur Herstellung eines Linearschrittmotors mit kugelgelagerter Rotorwelle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2341601A4

Also Published As

Publication number Publication date
EP2341601A2 (en) 2011-07-06
US8826757B2 (en) 2014-09-09
EP2341601B1 (en) 2018-10-03
US8567272B2 (en) 2013-10-29
KR101028247B1 (ko) 2011-04-11
JP2012506230A (ja) 2012-03-08
CN103560641B (zh) 2017-03-01
US20170204951A1 (en) 2017-07-20
CN102246400A (zh) 2011-11-16
EP2341601A4 (en) 2016-11-16
US20110203396A1 (en) 2011-08-25
US20200063840A1 (en) 2020-02-27
US10982741B2 (en) 2021-04-20
US20150020623A1 (en) 2015-01-22
WO2010044537A3 (ko) 2010-07-01
CN102246400B (zh) 2013-11-20
US9644719B2 (en) 2017-05-09
US10495198B2 (en) 2019-12-03
CN103560641A (zh) 2014-02-05
KR20100041627A (ko) 2010-04-22
JP5730207B2 (ja) 2015-06-03
US20140026696A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
WO2010044537A2 (ko) 스텝 액츄에이터
KR100680152B1 (ko) 감속기 일체형 액츄에이터
KR100406311B1 (ko) 기아감속기를구비한모터와,그것의조립및보수방법
JPH0956091A (ja) 永久磁石式回転電機
WO2011158993A1 (ko) 슬롯리스 고정자를 갖는 브러시리스 직류 모터
WO2017213323A1 (ko) 접지 단자, 커버 조립체 및 이를 포함하는 모터
WO2022092839A1 (ko) Bldc 모터를 구비한 구동모터 및 이를 이용한 액추에이터
WO2018128398A1 (ko) 모터 및 변속기
WO2016002994A1 (ko) 모터
WO2018139791A1 (ko) 모터
WO2020050535A1 (ko) 모터
WO2016171439A1 (en) Laundry treatment apparatus and magnetic gear device
WO2021187820A1 (ko) 고정자 비대칭 슈를 이용한 전동기 및 그 제작 방법
WO2019027196A1 (ko) 로터 및 이를 포함하는 모터
WO2021157935A1 (ko) 모터
WO2021141230A1 (ko) 모터
WO2009096739A2 (ko) 발전기 및 이를 포함하는 풍력발전시스템
WO2019124799A1 (ko) 로터 및 이를 구비하는 모터
WO2021141276A1 (ko) 모터
WO2020017778A1 (ko) 모터
WO2020071699A1 (ko) 모터
WO2019039770A1 (ko) 기어박스 및 이를 포함하는 액츄에이터
KR101014094B1 (ko) 스텝 액츄에이터 장치
WO2021133056A1 (ko) 모터
WO2020032395A1 (ko) 로터 및 이를 구비하는 모터

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150017.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820687

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009820687

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011532007

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13124235

Country of ref document: US