WO2019027196A1 - 로터 및 이를 포함하는 모터 - Google Patents

로터 및 이를 포함하는 모터 Download PDF

Info

Publication number
WO2019027196A1
WO2019027196A1 PCT/KR2018/008590 KR2018008590W WO2019027196A1 WO 2019027196 A1 WO2019027196 A1 WO 2019027196A1 KR 2018008590 W KR2018008590 W KR 2018008590W WO 2019027196 A1 WO2019027196 A1 WO 2019027196A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor core
rotor
magnet
disposed
molding part
Prior art date
Application number
PCT/KR2018/008590
Other languages
English (en)
French (fr)
Inventor
한지훈
원일식
유진승
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170098593A external-priority patent/KR102510334B1/ko
Priority claimed from KR1020170113928A external-priority patent/KR102517687B1/ko
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to EP18840181.4A priority Critical patent/EP3664256B1/en
Priority to CN201880057138.1A priority patent/CN111095737B/zh
Priority to US16/636,142 priority patent/US11469641B2/en
Publication of WO2019027196A1 publication Critical patent/WO2019027196A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/26Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating armatures and stationary magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • Embodiments relate to a rotor and a motor including the same.
  • BACKGROUND ART Transmission of an automobile includes a motor, which is manually operated according to a clutch operation of a user or is automatically operated in accordance with a speed by a mission.
  • the motor of the transmission may include a sensor magnet mounted on the top of the rotor.
  • the sensor magnet is formed in a ring shape having an outer peripheral surface and an inner peripheral surface. These sensor magnets are installed at the upper part of the rotor to inform the position of the rotor.
  • the sensor magnet and the rotor can be fixed through the molding part.
  • a weld line is generated in the molding part during the injection molding process for molding the molding part.
  • the weld line is preferably minimized because it causes cracking of the molding part.
  • the rotor of the motor may include a magnet.
  • the magnet may be attached to the outer circumferential surface of the rotor core.
  • various protector methods are applied to improve the durability of the magnet assembly due to its structural characteristics.
  • the can type combines a cup-like can on the outer circumferential surface of the rotor so as to protect the rotor and prevent the detachment of the magnet.
  • An embodiment for achieving the above object is as follows.
  • the rotor further includes a sensor magnet disposed on the rotor core, wherein the molding part is disposed on the outer side of the sensor magnet, and is disposed on the outer side of the plurality of magnets with respect to the radial direction of the center of the rotor core
  • the thickness of the molding part may be smaller than the thickness of the molding part disposed outside the sensor magnet.
  • the molding section cut in a direction perpendicular to the longitudinal direction of the magnet includes a convex portion and a concave portion, and the convex portion and the concave portion may be alternately arranged.
  • the center of the recess is disposed outside the rotor core.
  • the number of the projections, the magnets, and the number of the guide projections is the same.
  • the distance from the center of the rotor core to the outer surface of the metering portion passing through the center of the guide protrusion may be smaller than the distance to the outer surface of the magnet.
  • the shape of the outer circumferential surface of the mold and the shape of the outer circumferential surface of the magnet may correspond to each other.
  • the curvature of the outer circumferential surface of the magnet and the curvature of the outer circumferential surface of the molding portion are the same.
  • the thickness of the convex portion and the thickness of the concave portion may be the same.
  • the concave portion may be disposed symmetrically with respect to the center of the rotor core.
  • a stator disposed outside the rotor, wherein the rotor includes a rotor core, a plurality of magnets disposed outside the rotor core, and a plurality of magnets disposed outside the plurality of magnets
  • the rotor core includes a plurality of guide protrusions disposed between the plurality of magnets, wherein a distance from a center of the rotor core to an outer surface of the molding part passing through the center of the guide protrusion is larger than a distance May be smaller than a distance to the outer surface of the molding part passing through the center of one of the plurality of magnets.
  • the embodiment is an embodiment for achieving the above object.
  • a stator disposed outside the rotor, wherein the rotor includes a rotor core coupled to the shaft, a rotor coupled to the rotor core, and a rotor disposed between the rotor core and the magnet,
  • the can member includes a groove portion, the groove portion is disposed between the magnet and the magnet so as to be concave on the outer peripheral surface of the can member toward the center of the rotor, and the height of the can member
  • the first can and the second can include a first can and a second can respectively disposed on both side ends of the rotor core, And a first welding bead disposed so as to abut the lower end of the groove portion of the second can and disposed over the lower end of the groove portion of the first can and the lower end of the groove portion of the second can, It can provide.
  • the rotor core includes guide protrusions, the guide protrusions protrude radially from the outer circumferential surface of the rotor core, and the guide protrusions may be disposed along the axial direction of the shaft.
  • the groove portion may include a bottom surface and side walls disposed at both ends of the bottom surface, respectively.
  • the groove portion includes a bottom surface and side walls disposed at both ends of the bottom surface, and a bottom surface of the groove portion can contact the guide protrusion.
  • the sidewall may be spaced apart from the magnet.
  • the groove portion may be interference fit between the magnet and the magnet with respect to the circumferential direction of the rotor.
  • a plurality of second welding beads may be disposed on the bottom surface of the groove.
  • a plurality of the grooves are disposed, and the grooves may be arranged symmetrically with respect to the center of the rotor.
  • the distance from the center of the rotor core to the outer circumferential surface of the first weld bead is smaller than the distance from the center of the rotor core to the outer circumferential surface of the magnet, and may be greater than the distance to the outer circumferential surface of the groove.
  • the can member is in surface contact with the guide projection.
  • a method of manufacturing a rotor comprising the steps of: attaching a magnet to the rotor core; covering the can member to the rotor core so that the groove portion is interference fit between the magnet and the magnet; And welding the joint portions of the first and second plates.
  • FIG. 1 is a view showing a motor according to a first embodiment
  • Fig. 2 is a view showing the rotor shown in Fig. 1,
  • FIG. 3 is a side cross-sectional view of the rotor with reference to A-A in Fig. 2,
  • FIG. 5 is a plan view of a rotor core and a magnet based on B-B of FIG. 2,
  • Figs. 6 and 7 are plan views of the rotor with reference to B-B of Fig. 2,
  • FIG. 9 is a view showing the thickness of the sensor magnet side molding part and the thickness of the rotor side molding part
  • FIG. 10 shows the progress of the molding part in a general rotor
  • FIG. FIG. 5 is a diagram showing a comparison of the progress of the molded part in the rotor of the motor according to the first embodiment
  • FIG. 11 is a view showing the weld line occurrence state of the molding part in a general rotor.
  • FIG. 8 is a diagram showing a comparison of weld line occurrence states of a molding portion in a rotor of a motor according to the first embodiment;
  • FIG. 12 is a view showing a motor according to a second embodiment
  • FIG. 13 is a view showing a rotor of a motor according to the second embodiment
  • Fig. 14 is a cross-sectional view of the rotor shown in Fig. 12,
  • Fig. 15 is a plan view of the rotor shown in Fig. 12,
  • 16 is a view showing a first welding bead and a second welding bead
  • 17 is a view showing a projected first welding bead
  • FIG. 18 is a block diagram showing a manufacturing method of a motor according to the second embodiment.
  • 19 is a view showing a manufacturing process of the motor according to the second embodiment.
  • the singular form may include plural forms unless otherwise specified in the text, and may be a combination of A, B, and C when described as " A and / or at least one (or more than one) Or < / RTI > all possible combinations.
  • first, second, A, B, (a), and (b) may be used.
  • the expression “upward” or “downward” may include not only an upward direction but also a downward direction on the basis of one component.
  • FIG. 1 is a view showing a motor according to a first embodiment.
  • the motor according to the first embodiment may include a shaft 100, a rotor 200, and a stator 300.
  • the rotor 200 and the stator 300 cause electrical interaction.
  • the rotor 200 rotates and the shaft 100 rotates in conjunction therewith.
  • the shaft 100 may be coupled to a dual clutch transmission (DCT) to provide power.
  • DCT dual clutch transmission
  • the dual clutch transmission is equipped with two sets of clutches, so that 1, 3, and 5 stages are implemented as power transmitted through one clutch And the second, fourth, and sixth stages can be realized by the power transmitted through the other clutch.
  • the dual clutch transmission can selectively receive the power of the shaft 100.
  • the dual clutch transmission is characterized in that it provides the same operational convenience and smooth shifting feeling as a conventional automatic transmission vehicle, and can exhibit higher fuel economy than a conventional manual transmission vehicle.
  • Fig. 2 is a view showing the rotor shown in Fig. 1
  • Fig. 3 is a side sectional view of the rotor taken along the line A-A in Fig.
  • the rotor 200 is disposed inside the stator 300.
  • the rotor 200 may include a rotor core 210, a magnet 220, and a molding part 230.
  • a sensor magnet (400) is disposed on the rotor core (210).
  • the molding unit 230 couples the rotor core 210 and the sensor magnet 400 together.
  • the sensor magnet 400 may be disposed on the rotor core 210 so as to have a concentric axis with the rotor core 210.
  • the magnet 220 may be coupled to the outer circumferential surface of the rotor core 210.
  • the sensor magnet 400 may be magnetized to a plurality of poles.
  • the sensor magnet 400 is disposed on the rotor core 210 so that its center is equal to the center C of the rotor core 210.
  • the sensor magnet 400 serves to generate a signal for detecting the rotational position of the rotor core 210.
  • the sensor magnet 400 is implemented in a ring shape.
  • the sensor magnet 400 may have a hole through which the shaft 100 passes.
  • the sensor magnet 400 may be made of samarium cobalt.
  • the molding unit 230 couples the rotor core 210 and the sensor magnet 400 together.
  • the molding part 230 may be formed to enclose the rotor core 210 and the sensor magnet 400 together.
  • the molding part 230 may be formed by a dual injection process including the rotor core 210 and the sensor magnet 400.
  • the molding part 230 surrounds the upper surface 410, the outer peripheral surface 420, the lower surface 430 and the inner peripheral surface 440 of the sensor magnet 400.
  • the molding part 230 may be configured to surround only a part of the inner circumferential surface 440 of the sensor magnet 400 with respect to the axial direction.
  • the molding part 230 may be formed to surround only a part of the upper surface 410 in the radial direction with respect to the center C of the sensor magnet 400. This is to ensure the pole detection performance of the sensor magnet 400.
  • FIG. 4 is a view showing an injection flow.
  • the magnet 220 is attached to the outer circumferential surface of the rotor core 210, and the sensor magnet 400 is disposed on the rotor core 210 to perform injection molding.
  • the injection gate is disposed on the upper side of the sensor magnet 400 and the mold material flows from the upper side where the sensor magnet 400 is located to the lower side where the rotor core 210 is located.
  • the injection flow at the rotor 200 side can be roughly divided into an injection flow A flowing outside the magnet 220 and an injection flow B flowing between the magnet 220 and the magnet 220 .
  • FIG. 5 is a view showing a flat cross-section of a rotor core and a magnet based on B-B in Fig.
  • M in FIG. 5 is a boundary line indicating an outer circumferential surface of a general molding part.
  • the first region S1 and the second region S2 have different injection flows.
  • the first area S1 corresponds to a region where the guide protrusion 211 is located and corresponds to the gap between the magnet 220 and the magnet 220.
  • the injection flow B flowing between the magnet 220 and the magnet 220 proceeds in the first area S1.
  • the second area S2 corresponds to the outside of the magnet 220.
  • the injection flow A flowing to the outside of the magnet 220 proceeds to the second region S2.
  • the fluid cross-sectional area of the first area S1 is larger than the fluid cross-sectional area of the second area S2. Therefore, the mold material advances downward in the first region S1, and advances downward relatively slowly in the second region S2.
  • the weld line may be generated in the axial direction due to the difference between the traveling speed of the molding material in the first area S1 and the traveling speed of the molding material in the second area S2.
  • Figs. 6 and 7 are views showing a flat section of the rotor with reference to B-B in Fig. 2.
  • the molding part 230 of the rotor 200 reduces the cross-sectional area of the fluid in the first area S1 shown in FIG. 5 to form the first area S1 and the second area S2, In order to reduce the difference in the traveling speed of the mold water.
  • the distance from the center C of the rotor core 210 to the outer surface of the molding part 230 through the center P1 of the guide protrusion 211 is referred to as a first distance T1.
  • the distance from the center C of the rotor core 210 to the outer surface of the molding part 230 through the center P2 of the magnet 211 is referred to as a second distance T2.
  • the distance from the center C of the rotor core 210 to the outer surface of the magnet 220 is referred to as a third distance T3.
  • the molding part 230 is formed such that the first distance T1 is smaller than the second distance T2. Furthermore.
  • the first distance T1 is formed to be smaller than the third distance T3 distance.
  • the molding part 230 may include the convex part 231 and the concave part 232.
  • the molding part 230 is formed with a convex part 231 protruding outward relative to the molding part 230 in a direction perpendicular to the longitudinal direction of the magnet 220, And may include concave recessed portions 232.
  • the convex portion 231 and the concave portion 232 are alternately arranged along the circumferential direction of the rotor 200.
  • the plurality of recesses 232 may be disposed symmetrically with respect to the center of the rotor core 210. This is to maintain the balance of the motor.
  • the convex portion 231 is disposed in a second region (S2 in Fig. 5) which is an outer region of the magnet 220. [ The concave portion 232 is disposed in the first region S1 which is a region between the magnet 220 and the magnet 220. [ Therefore, the number of the convex portions 231 is the same as the number of the magnets 220. The number of the convex portions 231 is the same as the number of the guide protrusions 121.
  • the center P3 of the concave portion 232 may be disposed outside the rotor core 210.
  • the shape of the outer circumferential surface of the molding part 230 may correspond to the shape of the outer circumferential surface of the magnet 220.
  • the thickness t1 of the convex portion 231 and the thickness t2 of the concave portion 232 may be the same in view of the thickness of the molding portion 230. [ When the thickness t1 of the convex portion 231 and the thickness t2 of the concave portion 232 are the same, the traveling speed of the mold mol in the first region S1 and the traveling speed of the mold in the second region S2 Since there is no difference in speed, the occurrence of the weld line can be minimized.
  • FIG. 9 is a view showing the thickness of the sensor magnet side molding part and the thickness of the rotor side molding part.
  • the thicknesses t1 and t2 of the molding part 230 disposed on the outer side of the rotor core 210 are equal to the thickness t3 of the molding part 230 disposed on the outer side of the sensor magnet 400 Is smaller than the thicknesses (t1, t2) of the molding part (230) disposed outside the rotor core (210). Since the molding part 230 disposed outside the sensor magnet 400 has a relatively large thickness t3, the probability of occurrence of a crack is low even if a weld line is generated in the corresponding area.
  • FIG. 10 shows the progress of the molding part in a general rotor
  • FIG. FIG. 5 is a view showing a comparison of the progress of the molding part in the rotor of the motor according to the first embodiment.
  • FIG. 10 (a) is a view showing the progress of the molding part in a general rotor.
  • the advancing speed of the mold in the first area S1 is slower than the advancing speed of the mold in the second area S2 (see FIG. 5). Because the cross-sectional area of the fluid outside the magnet is smaller than the cross-sectional area of the fluid between the magnet and the magnet.
  • FIG. 10 (b) is a diagram comparing the progress of the molding part in the rotor of the motor according to the first embodiment.
  • FIG. 11 is a view showing the weld line occurrence state of the molding part in a general rotor.
  • FIG. 5 is a diagram showing a comparison of weld line occurrence states of a molding portion in a rotor of a motor according to the first embodiment.
  • FIG. 5 is a diagram showing a comparison of weld line occurrence states of a molding portion in a rotor of a motor according to the first embodiment.
  • FIG. 11A is a view showing a weld line generation state of a molding part in a general rotor
  • FIG. 11B is a diagram comparing a weld line occurrence state of a molding part in the rotor of the motor according to the first embodiment .
  • FIG. 11 (a) it can be seen that many weld lines are generated in the molding portion disposed on the outer side of the rotor.
  • FIG. 11 (b) it can be seen that almost no weld line is generated in the molding part disposed outside the rotor according to the first embodiment.
  • FIG. 12 is a view showing a motor according to the second embodiment.
  • the motor according to the second embodiment may include a shaft 1000, a rotor 2000, and a stator 3000.
  • the rotor 2000 and the stator 3000 cause electrical interaction.
  • the rotor 2000 rotates and the shaft 1000 rotates in conjunction therewith.
  • Shaft 1000 may be coupled to a dual clutch transmission (DCT) to provide power.
  • DCT dual clutch transmission
  • the dual clutch transmission is equipped with two sets of clutches, so that 1, 3, and 5 stages are implemented as power transmitted through one clutch And the second, fourth, and sixth stages can be realized by the power transmitted through the other clutch.
  • the dual clutch transmission (DCT) can selectively receive the power of the shaft (1000).
  • the dual clutch transmission is characterized in that it provides the same operational convenience and smooth shifting feeling as a conventional automatic transmission vehicle, and can exhibit higher fuel economy than a conventional manual transmission vehicle.
  • FIG. 13 is a view showing the rotor of the motor according to the second embodiment.
  • the rotor 2000 may include a rotor core 2100, a magnet 2200, and a can member 2300.
  • the sensor magnet 4000 is disposed on the rotor core 2100.
  • the sensor magnet 4000 is coupled to the shaft 1000.
  • the magnet 2200 is coupled to the outer circumferential surface of the rotor core 2100.
  • the sensor magnet 4000 may be magnetized to a plurality of poles.
  • the sensor magnet 4000 is disposed on the rotor core 2100 such that the center is the same as the center C of the rotor core 2100.
  • the sensor magnet 4000 serves to generate a signal for detecting the rotational position of the rotor core 2100.
  • the sensor magnet 4000 is implemented in a ring shape. And the sensor magnet 4000 can be made of samarium cobalt.
  • the can member 2300 surrounds the magnet 2200 and serves to fix the magnet 2200 so as not to be detached from the rotor core 2100. Further, the can member 2300 prevents the magnet 2200 from being exposed, and physically and chemically protects the rotor core 2100 and the magnet 2200.
  • the can 2300 may include a first can 2310 and a second can 2320.
  • the first can 2310 can be mounted at one end of the rotor core 2100.
  • the second can 2320 can be mounted at the other side of the rotor core 2100.
  • the first can 2310 and the second can 2320 may have a cylindrical shape and the upper end may be bent to contact one end surface and the other end surface of the rotor core 2100, respectively.
  • the first can 2310 and the second can 2320 When the first can 2310 and the second can 2320 are mounted on the respective rotor cores 2100, the lower end of the first can 2310 and the lower end of the second can 2320 are placed in contact with each other do.
  • the first can 2310 and the second can 2320 include grooves 2310a and 2320a, respectively.
  • the groove portions 2310a and 2320a may be disposed along the height direction of the can member 2300.
  • the height direction of the can member 2300 is a direction parallel to the axial direction of the shaft 1000 when the shaft 1000 is coupled to the rotor 2000.
  • the groove portions 2310a and 2320a are concave on the outer circumferential surface of the can member 2300.
  • Fig. 14 is a cross-sectional view of the rotor shown in Fig. 12, and Fig. 15 is a plan view of the rotor shown in Fig.
  • the grooves 2310a and 2320a are positioned between the magnet 2200 and the magnet 2200.
  • the groove portions 2310a and 2320a may be two.
  • the two grooves 2310a and 2320a may be disposed symmetrically with respect to the center C of the rotor 2000.
  • the number of the groove portions 2310a and 2320a can be changed.
  • the maximum number of the grooves 2310a and 2320a may be the same as the number of the magnets 2200.
  • the can member 2300 can be interference fit with the rotor core 2100 and the magnet 2200.
  • the groove portions 2310a and 2320a of the can member 2300 move along the gap between the magnet 2200 and the magnet 2200 when the can member 2300 is put on the rotor core 2100 and the magnet 2200.
  • the groove portions 2310a and 2320a of the can member 2300 are also constricted not only in the magnet 2200 but also in the rotor core 2100.
  • the groove portions 2310a and 2320a may include bottom portions 2310aa and 2320aa and side portions 2310bb and 2320bb formed by being bent at both ends of the bottom portions 2310aa and 2320aa.
  • the bottoms 2310aa and 2320aa are in contact with the rotor core 2100.
  • the rotor core 2100 may include guide protrusions 2110, and the bottom portions 2310aa and 2320aa may be in surface contact with the guide protrusions 2110.
  • the side portions 2310bb and 2320bb are spaced apart from the magnet 2200 so that a space can be disposed between the side portions 2310bb and 2320bb and the magnet 2200.
  • the guide protrusion 2110 protrudes from the outer circumferential surface of the rotor core 2100 and serves to guide and fix the magnet 2200.
  • the guide protrusions 2110 may be arranged at regular intervals along the circumferential direction of the rotor core 2100.
  • 16 is a view showing a first welding bead and a second welding bead.
  • a first weld bead 10 is formed in the grooves 2310a and 2320a.
  • the lower end 2310b of the groove 2310a of the first can 2310 and the lower end 2310b of the groove 2310b of the second can 2320 are inserted into the rotor core 2100, respectively, when the first can 2310 and the second can 2320 are mounted on the rotor core 2100, The lower end 2320b of the lower case 2320a abuts.
  • the first welding bead 10 is not only the groove portion 2310a of the first can 2310 and the groove portion 2320a of the second can 2320, And is welded to the guide protrusion 2110 of the rotor core 2100.
  • the first can 2310, the second can 2320, and the rotor core 2100 are welded to each other so that the coupling force generated by the interference between the can 2300 and the can core 2300,
  • the coupling force between the rotor core 2100 and the magnet 2200 is further increased. Therefore, it is possible to secure the toughness of the can member 2300 without applying an adhesive to the can member 2300.
  • a second weld bead 20 is additionally created in the grooves 2310a and 2320a.
  • the second welding bead 20 may be formed by welding the bottom portion 2310aa of the groove portion 2310a of the first can 2310 and the guide protrusion 2110. [ The second welding bead 20 may be formed by welding the bottom portion 2320aa of the groove portion 2320a of the second can 2320 and the guide protrusion 2110.
  • the first can 2310 and the rotor core 2100 are welded to each other and the second can 2320 and the rotor core 2100 are welded together to further increase the coupling force between the rotor core 2100 and the magnet 2200
  • 17 is a view showing a protruded first welding bead.
  • the distance L1 from the center C of the rotor core 2100 to the outer circumferential surface of the first welding bead 10 is greater than the distance L1 from the center of the rotor core 2100 to the outer circumferential surface of the magnet 2200 And may be larger than the distance L3 to the outer peripheral surface of the groove portions 2310aa and 2320a.
  • the first weld bead 10 may be in a convex shape.
  • FIG. 18 is a block diagram showing a manufacturing method of the motor according to the second embodiment
  • FIG. 19 is a diagram showing a manufacturing process of the motor according to the second embodiment.
  • a rotor core 2100 is manufactured. Referring to Figs. 18 and 19 (b), an adhesive is applied to the outer peripheral surface of the rotor core 2100. 18 and 19 (c), the magnet 2200 is attached to the outer circumferential surface of the rotor core 2100. (S100)
  • the can member 2300 is fixed to the rotor core 2100 such that the grooves 2310a and 2320a are forcedly fitted between the magnet 2200 and the magnet 2200, 2100).

Abstract

본 발명은 로터 코어; 상기 로터 코어 외측에 배치되는 복수개의 마그넷; 및 상기 복수개의 마그넷 외측에 배치되는 몰딩부;을 포함하며, 상기 로터 코어는 상기 복수 개의 마그넷 사이에 배치되는 복수개의 가이드 돌기를 포함하고, 상기 로터 코어의 중심에서, 상기 가이드 돌기의 중심을 지나는 상기 몰딩부의 외면까지의 거리가 상기 복수개의 마그넷 중 하나의 마그넷의 중심을 지나는 상기 몰딩부의 외면까지의 거리 보다 작은 로터를 제공할 수 있다.

Description

로터 및 이를 포함하는 모터
실시예는 로터 및 이를 포함하는 모터에 관한 것이다.
자동차의 변속기(Transmission)는 사용자의 클러치 조작에 따라 수동 조작되거나, 미션에 의해 속도에 따라 자동 조작되는 변속장치로서, 모터를 포함하여 구성된다.
변속기의 모터는 로터의 상부에 설치되는 센서 마그넷을 포함할 수 있다. 센서 마그넷은 외주면과 내주면을 갖는 링 형태로 형성된다. 이러한 센서 마그넷은 로터의 상부에 설치되어 로터의 위치를 알려주는 역할을 한다. 센서 마그넷과 로터는 몰딩부를 통해 고정될 수 있다. 그러나 몰딩부를 성형하는 사출 성형 과정에서 몰딩부에 웰드 라인(weld line)이 발생하는 문제점이 있다. 웰드 라인은 몰딩부의 크랙을 유발하기 때문에 최소화하는 것이 바람직하다.
또한. 모터의 로터는 마그넷을 포함할 수 있다. 마그넷은 로터 코어의 외주면에 부착될 수 있다. 이러한 모터의 경우, 구조적 특성상 마그넷 조립의 내구성 향상을 위해 여러 Protector 방식(Molding, Can, Tube 등)이 적용되고 있다.
그 중, 캔 타입은 로터의 외주면에 컵(Cup) 형상의 캔(Can)을 위아래로 결합하여 로터를 보호함과 아울러 마그넷의 이탈을 방지하는 역할을 한다.
그러나, 캔의 내부로 로터를 조립하기 위해서는 캔의 내측에 접착제를 도포하여야 한다. 그러나 이러한 접착제 도포 공정은 로터를 조립하는 공정을 복잡하게 하는 문제점이 있다.
한편, 몰딩 타입의 경우, 내화학성이 요구되어 재료에 제한이 크며, 크랙이 발생할 위험이 큰 문제점이 있다.
실시예는 몰딩부의 웰드라인을 최소화하여 몰딩부의 크랙을 방지할 수 있는 로터 및 이를 포함하는 모터를 제공하는 것을 그 목적으로 한다.
실시예는 캔을 사용하여 마그넷을 보호하되, 접착제를 도포하는 공정을 배제할 수 있는 모터를 제공하는 것을 그 목적으로 한다.
실시예에서 해결하고자 하는 과제는 이상에서 언급된 과제에 국한되지 않으며 여기서 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 목적을 달성하기 위한 실시예는. 로터 코어와, 상기 로터 코어 외측에 배치되는 복수개의 마그넷 및 상기 복수개의 마그넷 외측에 배치되는 몰딩부;을 포함하며, 상기 로터 코어는 상기 복수 개의 마그넷 사이에 배치되는 복수개의 가이드 돌기를 포함하고, 상기 로터 코어의 중심에서, 상기 가이드 돌기의 중심을 지나는 상기 몰딩부의 외면까지의 거리가 상기 복수개의 마그넷 중 하나의 마그넷의 중심을 지나는 상기 몰딩부의 외면까지의 거리 보다 작은 로터를 제공할 수 있다.
바람직하게는, 상기 로터 코어의 상측에 배치되는 센서 마그넷;을 더 포함하고, 상기 몰딩부는 상기 센서 마그넷의 외측에 배치되며, 상기 로터 코어의 중심의 반경 방향을 기준으로 상기 복수 개의 마그넷의 외측에 배치된 상기 몰딩부의 두께는 상기 센서 마그넷의 외측에 배치된 상기 몰딩부의 두께보다 작을 수 있다.
바람직하게는, 상기 마그넷의 길이 방향과 수직한 방향으로 자른 상기 몰딩부의 단면은 볼록부와 오목부를 포함하며, 상기 볼록부와 상기 오목부는 교대로 배열될 수 있다.
바람직하게는, 상기 오목부의 중심은 상기 로터코어의 외측에 배치되는 로터.
바람직하게는, 상기 볼록부, 상기 마그넷 및 상기 가이드 돌기의 개수는 동일한 로터.
바람직하게는, 상기 로터 코어의 중심에서, 상기 가이드 돌기의 중심을 지나는 상기 몰징부의 외면까지의 거리는 상기 마그넷의 외면까지의 거리보다 작을 수 있다.
바람직하게는, 상기 몰드물의 외주면의 형상과 상기 마그넷의 외주면의 형상이 대응될 수 있다.
바람직하게는, 상기 마그넷 외주면의 곡률과 상기 몰딩부의 외주면의 곡률이 동일한 부분을 포함할 수 있다.
바람직하게는, 상기 볼록부의 두께와 상기 오목부의 두께는 동일할 수 있다.
바람직하게는, 상기 오목부는 상기 로터 코어의 중심을 기준으로 대칭되게 배치될 수 있다.
상기 목적을 달성하기 위한 다른 실시예는. 샤프트와, 상기 샤프트가 배치되는 홀을 포함하는 로터 및 상기 로터의 외측에 배치되는 스테이터를 포함하고, 상기 로터는 로터 코어와, 상기 로터 코어 외측에 배치되는 복수 개의 마그넷 및 상기 복수 개의 마그넷 외측에 배치되는 몰딩부를 포함하며, 상기 로터 코어는 상기 복수 개의 마그넷 사이에 배치되는 복수 개의 가이드 돌기를 포함하고, 상기 로터 코어의 중심에서, 상기 가이드 돌기의 중심을 지나는 상기 몰딩부의 외면까지의 거리가 상기 복수 개의 마그넷 중 하나의 마그넷의 중심을 지나는 상기 몰딩부의 외면까지의 거리 보다 작을 수 있다.
실시예는, 상기 목적을 달성하기 위한 실시예는. 샤프트와, 상기 샤프트가 배치되는 홀을 포함하는 로터 및 상기 로터의 외측에 배치되는 스테이터를 포함하고, 상기 로터는 샤프트와 결합된 로터코어와, 상기 로터코어와 결합된 마그넷 상기 로터코어 및 상기 마그넷을 둘러싸는 캔부재를 포함하고, 상기 캔부재는 홈부를 포함하고, 상기 홈부는 상기 마그넷과 상기 마그넷 사이에서 상기 로터의 중심을 향하여 상기 캔부재의 외주면에서 오목하게 배치되고, 상기 캔부재의 높이 방향을 따라 배치되며, 상기 캔부재는 상기 로터코어의 양 측단에 각각 배치되는 제1 캔과 제2 캔을 포함하고, 상기 제1 캔과 상기 제2 캔은, 상기 제1 캔의 홈부의 하단과 상기 제2 캔의 홈부의 하단이 맞닿도록 배치되고, 상기 제1 캔의 홈부의 하단과 상기 제2 캔의 홈부의 하단에 걸쳐 배치되는 제1 용접비드를 포함하는 모터를 제공할 수 있다.
바람직하게는, 상기 로터코어는 가이드돌기를 포함하고, 상기 가이드돌기는 상기 로터코어의 외주면에서 상기 로터코어의 반경방향으로 돌출되며, 상기 가이드돌기는 상기 샤프트의 축 방향을 따라 배치될 수 있다.
바람직하게는, 상기 홈부는 바닥면과 상기 바닥면의 양 단에 각각 배치되는 측벽을 포함할 수 있다.
바람직하게는, 상기 홈부는 바닥면과 상기 바닥면의 양 단에 각각 배치되는 측벽을 포함하고, 상기 홈부의 바닥면은 상기 가이드돌기와 접촉할 수 있다.
바람직하게는, 상기 측벽은 상기 마그넷과 이격 배치될 수 있다.
바람직하게는, 상기 홈부는 상기 로터의 원주 방향을 기준으로, 상기 마그넷과 상기 마그넷 사이에 억지 끼워맞춤될 수 있다.
바람직하게는, 상기 홈부의 바닥면에는 복수 개의 제2 용접비드가 배치될 수 있다.
바람직하게는, 상기 홈부는 복수 개가 배치되며, 상기 로터의 중심을 기준으로 대칭되게 배치될 수 있다.
바람직하게는, 상기 로터 코어의 중심에서 상기 제1 용접비드의 외주면까지의 거리는 상기 로터 코어의 중심에서 상기 마그넷의 외주면까지의 거리보다 작고, 상기 홈부의 외주면 까지의 거리보다는 클 수 있다.
바람직하게는, 상기 캔부재는 상기 가이드돌기와 면접촉할 수 있다.
다른 실시예는, 상기 로터코어에 마그넷을 부착하는 단계와, 상기 마그넷과 상기 마그넷 사이에 상기 홈부가 억지 끼움맞춤되도록 상기 캔부재를 상기 로터코어에 씌우는 단계 및 상기 제1 캔과 상기 제2 캔의 이음부분을 용접하는 단계를 포함할 수 있다.
실시예에 따르면, 몰딩부의 웰드라인을 최소화하여 몰딩부의 크랙을 방지하는 유리한 효과를 제공한다.
실시예에 따르면, 캔에 접착제를 도포하는 공정을 배제할 수 있는 유리한 효과를 제공한다.
도 1은 제1 실시예에 따른 모터를 도시한 도면,
도 2는 도 1에서 도시한 로터를 도시한 도면,
도 3은 도 2의 A-A를 기준으로 한 로터의 측단면을 도시한 도면,
도 4는 사출 흐름을 도시한 도면,
도 5는 도 2의 B-B를 기준으로 한 로터 코어와 마그넷의 평단면을 도시한 도면,
도 6 및 도 7은 도 2의 B-B를 기준으로 하여 로터의 평단면을 도시한 도면,
도 8은 몰딩부의 두께를 도시한 도면,
도 9는 센서 마그넷 측 몰딩부의 두께와 로터 측 몰딩부의 두께를 도시한 도면,
도 10은 일반적인 로터에서 몰딩부의 진행 상태와. 제1 실시예에 따른 모터의 로터에서 몰딩부의 진행 상태를 비교한 도면,
도 11은 일반적인 로터에서 몰딩부의 웰드 라인 발생 상태와. 제1 실시예에 따른 모터의 로터에서 몰딩부의 웰드 라인 발생 상태를 비교한 도면,
도 12는 제2 실시예에 따른 모터를 도시한 도면,
도 13은 제2 실시예에 따른 모터의 로터를 도시한 도면,
도 14는 도 12에서 도시한 로터의 횡단면도,
도 15는 도 12에서 도시한 로터의 평면도,
도 16은 제1 용접비드와 제2 용접비드를 도시한 도면,
도 17은 돌출된 제1 용접비드를 도시한 도면,
도 18은 제2 실시예에 따른 모터의 제조방법을 도시한 블록도,
도 19는 제2 실시예에 따른 모터의 제조과정을 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, “A 및(와) B, C 중 적어도 하나(또는 한 개 이상)”로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 ‘연결’, ‘결합’ 또는 ‘접속’된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 ‘연결’, ‘결합’ 또는 ‘접속’ 되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 “상(위) 또는 하(아래)”에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
도 1은 제1 실시예에 따른 모터를 도시한 도면이다.
도 1을 참고하면, 제1 실시예에 따른 모터는 샤프트(100)과, 로터(200)와, 스테이터(300)를 포함할 수 있다.
로터(200)와 스테이터(300)는 전기적 상호 작용을 유발한다. 전기적 상호 작용이 유발되면, 로터(200)가 회전하고 이에 연동하여 샤프트(100)이 회전한다. 샤프트(100)은 듀얼 클러치 트랜스미션(DCT, Dual-clutch Transmission)과 연결되어 동력을 제공할 수 있다.
여기서, 듀얼 클러치 트랜스미션(DCT)은, 종래의 수동 트랜스미션 차량에 탑재되는 단판 클러치 트랜스미션과는 달리 2조의 클러치를 탑재하고 있어서, 하나의 클러치를 통하여 전달되는 동력으로 1, 3, 5단을 구현하고, 나머지 하나의 클러치를 통하여 전달되는 동력으로 2, 4, 6단을 구현할 수 있도록 하는 시스템이다.
듀얼 클러치 트랜스미션(DCT)은 샤프트(100)의 동력을 선택적으로 전달 받을 수 있다.
듀얼 클러치 트랜스미션은, 종래의 자동 트랜스미션 차량과 같은 편리한 운전성 및 부드러운 변속감을 제공함과 아울러, 종래의 수동 트랜스미션 차량보다 높은 연비를 발휘할 수 있는 특징이 있다.
도 2는 도 1에서 도시한 로터를 도시한 도면이고, 도 3은 도 2의 A-A를 기준으로 한 로터의 측단면을 도시한 도면이다.
도 2 및 도 3을 참조하면, 로터(200)는 스테이터(300)의 내측에 배치된다.
로터(200)는 로터 코어(210)와 마그넷(220)과 몰딩부(230) 포함할 수 있다.
로터 코어(210) 위에 센서 마그넷(400)이 배치된다. 몰딩부(230)가 로터 코어(210)와 센서 마그넷(400)을 결합시킨다. 센서 마그넷(400)은 로터 코어(210)와 동심축을 갖도록 로터 코어(210) 위에 배치될 수 있다. 마그넷(220)은 로터 코어(210)의 외주면에 결합될 수 있다.
센서 마그넷(400)은 복수 개의 극으로 착자될 수 있다. 센서 마그넷(400)은 중심이 로터 코어(210)의 중심(C)과 동일하도록 로터 코어(210) 위에 배치된다. 이러한 센서 마그넷(400)은 로터 코어(210)의 회전 위치를 검출하기 위한 시그널을 유발하는 역할을 한다. 센서 마그넷(400)은 링형태로 구현된다. 센서 마그넷(400)은 중심에 샤프트(100)이 관통하는 홀이 형성될 수 있다. 그리고 센서 마그넷(400)은 사마륨 코발트(Samarium Cobalt)로 이루어질 수 있다.
몰딩부(230)는 로터 코어(210)와 센서 마그넷(400)을 결합시킨다. 몰딩부(230)는 로터 코어(210)와 센서 마그넷(400)를 함께 감싸도록 형성될 수 있다. 몰딩부(230)는 로터 코어(210)와 센서 마그넷(400)를 포함한 상태에서 이중 사출되어 형성될 수 있다. 몰딩부(230)가 센서 마그넷(400)의 상면(410), 외주면(420), 하면(430) 및 내주면(440)을 둘러싸는 형태이다. 이때, 몰딩부(230)는 축방향을 기준으로 센서 마그넷(400)의 내주면(440)의 일부만 감싸도록 실시될 수 있다. 그리고 몰딩부(230)는 센서 마그넷(400)의 중심(C)을 기준하여 반경 방향으로 상면(410)의 일부만 감싸도록 실시될 수 있다. 이는 센서 마그넷(400)의 극 검출 성능을 확보하기 위함이다.
도 4는 사출 흐름을 도시한 도면이다.
도 4를 참조하면, 로터 코어(210)의 외주면에 마그넷(220)이 부착되고, 로터 코어(210)의 상측에 센서 마그넷(400)이 배치된 상태에서, 사출 성형이 진행된다. 사출 게이트가 센서 마그넷(400)의 상측에 배치되어 몰드물은 센서 마그넷(400)이 위치한 상측에서 로터 코어(210)가 위치한 하측으로 흐른다.
이때, 로터(200) 측의 사출 흐름을 살펴보면 크게 마그넷(220)의 외측으로 흐르는 사출 흐름(A)과, 마그넷(220)과 마그넷(220) 사이를 흐르는 사출 흐름(B)으로 구분될 수 있다.
도 5는 도 2의 B-B를 기준으로 한 로터 코어와 마그넷의 평단면을 도시한 도면이다.
도 4 및 도 5를 참조하면, 도 5의 M은 일반적인 몰딩부의 외주면을 나타내는 경계선이다. 제1 영역(S1)과 제2 영역(S2)은 사출 흐름이 상이하다.
제1 영역(S1)은 가이드 돌기(211)가 위치한 영역으로, 마그넷(220)과 마그넷(220) 사이에 해당한다. 제1 영역(S1)으로 마그넷(220)과 마그넷(220) 사이를 흐르는 사출 흐름(B)이 진행된다. 제2 영역(S2)은 마그넷(220)의 외측에 해당한다. 제2 영역(S2)으로 마그넷(220)의 외측으로 흐르는 사출 흐름(A)이 진행된다.
제1 영역(S1)의 유체 단면적이 제2 영역(S2)의 유체 단면적 보다 크다. 따라서, 몰드물은 제1 영역(S1)에서 빠르게 하향하여 진행되고, 제2 영역(S2)에서 상대적으로 느리게 하향하여 진행된다. 제1 영역(S1)에서 몰드물의 진행속도와 제2 영역(S2)에서 몰드물의 진행속도의 차이로 인하여 축 방향으로 웰드 라인이 발생할 수 있다.
도 6 및 도 7은 도 2의 B-B를 기준으로 하여 로터의 평단면을 도시한 도면이다.
도 5 내지 도 7을 참조하면, 로터(200)의 몰딩부(230)는 도 5에서 도시한 제1 영역(S1)에서의 유체 단면적을 줄여 제1 영역(S1)과 제2 영역(S2)에서의 몰드물의 진행속도 차이를 줄이고자 한다.
로터 코어(210)의 중심(C)에서 가이드 돌기(211)의 중심(P1)을 지나 몰딩부(230)의 외면까지의 거리를 제1 거리(T1)라 한다. 그리고 로터 코어(210)의 중심(C)에서 마그넷(211)의 중심(P2)을 지나 몰딩부(230)의 외면까지의 거리를 제2 거리(T2)라 한다. 로터 코어(210)의 중심(C)에서 상기 마그넷(220)의 외면까지의 거리를 제3 거리(T3)라 한다.
몰딩부(230)는 제1 거리(T1)가 제2 거리(T2)보다 작게 형성된다. 나아가. 제1 거리(T1)는 제3 거리(T3)거리 보다 작게 형성된다.
따라서, 몰딩부(230)는 볼록부(231)와 오목부(232)를 포함할 수 있다. 마그넷(220)의 길이 방향과 수직한 방향으로 자른 몰딩부(230)의 수평 단면을 기준할 때, 몰딩부(230)는 상대적으로 외측으로 돌출되어 배치된 볼록부(231)와 상대적으로 내측으로 오목하게 배치된 오목부(232)를 포함할 수 있다. 이러한 볼록부(231)와 오목부(232)는 로터(200)의 원주 방향을 따라 교대로 배치된다. 복수 개의 오목부(232)는 로터 코어(210)의 중심을 기준으로 대칭되게 배치될 수 있다. 이는 모터의 밸런스를 유지하기 위함이다.
볼록부(231)는 마그넷(220)의 외측 영역인 제2 영역(도 5의 S2)에 배치된다. 오목부(232)는 마그넷(220)과 마그넷(220) 사이 영역인 제1 영역(S1)에 배치된다. 따라서, 볼록부(231)의 개수는 마그넷(220)의 개수와 동일하다. 또한, 볼록부(231)의 개수는 가이드 돌기(121)의 개수와 동일하다.
도 8은 몰딩부의 두께를 도시한 도면이다.
도 8을 참조하면, 오목부(232)의 중심(P3)는 로터 코어(210)의 외측에 배치될 수 있다.
이러한 몰딩부(230)의 외주면의 형상을 보면, 마그넷(220)의 외주면의 형상과 대응될 수 있다. 예를 들어, 마그넷(220)의 외주면의 곡률(R1)과 몰딩부(230)의 외주면의 곡률(R2)이 동일한 부분이 몰딩부(230) 중에 존재한다.
몰딩부(230)의 두께 관점에서 보면, 볼록부(231)의 두께(t1)와 오목부(232)의 두께(t2)는 동일할 수 있다. 볼록부(231)의 두께(t1)와 오목부(232)의 두께(t2)가 동일한 경우, 제1 영역(S1)에서의 몰드몰의 진행속도와 제2 영역(S2)에서의 몰드물의 진행속도가 차이가 없기 때문에 웰드 라인 발생을 최소화할 수 있다.
도 9는 센서 마그넷 측 몰딩부의 두께와 로터 측 몰딩부의 두께를 도시한 도면이다.
도 9를 참조하면, 로터 코어(210)의 외측에 배치된 몰딩부(230)의 두께(t1,t2)는 센서 마그넷(400)의 외측에 배치된 몰딩부(230)의 두께(t3)는 로터 코어(210)의 외측에 배치된 몰딩부(230)의 두께(t1,t2)보다 작다. 센서 마그넷(400)의 외측에 배치된 몰딩부(230)는 상대적으로 두께(t3)가 두껍기 때문에 해당 영역에 웰드 라인이 발생하여도 크랙이 발생할 확률이 낮다.
도 10은 일반적인 로터에서 몰딩부의 진행 상태와. 제1 실시예에 따른 모터의 로터에서 몰딩부의 진행 상태를 비교한 도면이다.
도 10의 (a)는 일반적인 로터에서 몰딩부의 진행 상태를 도시한 도면이다.
도 10의 (a)를 참조하면, 제1 영역(S1)(도 5 참조)에서 몰드물의 진행 속도가 제2 영역(S2)(도 5 참조)에서 몰드물의 진행 속도 보다 느린 것을 확인할 수 있다. 마그넷의 외측에서 유체 단면적이 마그넷과 마그넷 사이에서의 유체 단면적 보다 작기 때문이다.
도 10의 (b)는 제1 실시예에 따른 모터의 로터에서 몰딩부의 진행 상태를 비교한 도면이다.
도 10의 (b)를 참조하면, 제1 영역(S1)(도 5 참조)에서 몰드물의 진행 속도와 제2 영역(S2)(도 5 참조)에서 몰드물의 진행 속도가 차이가 없다. 마그넷의 외측에서 유체 단면적이 마그넷과 마그넷 사이에서의 유체 단면적이 동일하기 때문이다. 이러한 경우, 로터(200)의 외측면에서 웰드 라인이 최소화 된다.
도 11은 일반적인 로터에서 몰딩부의 웰드 라인 발생 상태와. 제1 실시예에 따른 모터의 로터에서 몰딩부의 웰드 라인 발생 상태를 비교한 도면이다.
도 11의 (a)는 일반적인 로터에서 몰딩부의 웰드 라인 발생 상태를 도시한 도면이고, 도 11의 (b)는 제1 실시예에 따른 모터의 로터에서 몰딩부의 웰드 라인 발생 상태를 비교한 도면이다.
도 11의 (a)를 참조하면, 로터의 외측에 배치된 몰딩부에서 많은 웰드 라인이 발생함을 확인할 수 있다. 반면에, 도 11의 (b)를 참조하면, 제1 실시예에 따른 로터의 외측에 배치된 몰딩부에서 웰드 라인이 거의 발생하지 않음을 확인할 수 있다.
도 12는 제2 실시예에 따른 모터를 도시한 도면이다.
도 12를 참고하면, 제2 실시예에 따른 모터는 샤프트(1000)와, 로터(2000)와, 스테이터(3000)를 포함할 수 있다.
로터(2000)와 스테이터(3000)는 전기적 상호 작용을 유발한다. 전기적 상호 작용이 유발되면, 로터(2000)가 회전하고 이에 연동하여 샤프트(1000)가 회전한다. 샤프트(1000)는 듀얼 클러치 트랜스미션(DCT, Dual-clutch Transmission)과 연결되어 동력을 제공할 수 있다.
여기서, 듀얼 클러치 트랜스미션(DCT)은, 종래의 수동 트랜스미션 차량에 탑재되는 단판 클러치 트랜스미션과는 달리 2조의 클러치를 탑재하고 있어서, 하나의 클러치를 통하여 전달되는 동력으로 1, 3, 5단을 구현하고, 나머지 하나의 클러치를 통하여 전달되는 동력으로 2, 4, 6단을 구현할 수 있도록 하는 시스템이다.
듀얼 클러치 트랜스미션(DCT)은 샤프트(1000)의 동력을 선택적으로 전달 받을 수 있다.
듀얼 클러치 트랜스미션은, 종래의 자동 트랜스미션 차량과 같은 편리한 운전성 및 부드러운 변속감을 제공함과 아울러, 종래의 수동 트랜스미션 차량보다 높은 연비를 발휘할 수 있는 특징이 있다.
도 13은 제2 실시예에 따른 모터의 로터를 도시한 도면이다.
도 12 및 도 13을 참조하면, 제2 실시예에 따른 로터(2000)는 로터 코어(2100)와 마그넷(2200)과 캔부재(2300)를 포함할 수 있다. 로터 코어(2100) 위에 센서 마그넷(4000)이 배치된다. 센서 마그넷(4000)은 샤프트(1000)에 결합된다. 마그넷(2200)은 로터 코어(2100)의 외주면에 결합된다.
센서 마그넷(4000)은 복수 개의 극으로 착자될 수 있다. 센서 마그넷(4000)은 중심이 로터 코어(2100)의 중심(C)과 동일하도록 로터 코어(2100) 위에 배치된다. 이러한 센서 마그넷(4000)은 로터 코어(2100)의 회전 위치를 검출하기 위한 시그널을 유발하는 역할을 한다. 센서 마그넷(4000)은 링형태로 구현된다. 그리고 센서 마그넷(4000)은 사마륨 코발트(Samarium Cobalt)로 이루어질 수 있다.
캔부재(2300)는 마그넷(2200)을 둘러싸서 마그넷(2200)이 로터 코어(2100)에서 이탈되지 않도록 고정시키는 역할을 한다. 또한, 캔부재(2300)는 마그넷(2200)이 노출되는 것을 막고, 물리적 화학적으로 로터 코어(2100) 및 마그넷(2200)을 보호한다.
이러한 캔부재(2300)는 제1 캔(2310)과 제2 캔(2320)을 포함할 수 있다. 제1 캔(2310)은 로터 코어(2100)의 일측단에서 장착될 수 있다. 그리고 제2 캔(2320)은 로터 코어(2100)의 타측단에서 장착될 수 있다. 제1 캔(2310)과 제2 캔(2320)은 각각 원통 형태이며, 상단은 로터 코어(2100)의 일측단면과 타측단면에 각각 닿도록 절곡될 수 있다.
제1 캔(2310)과 제2 캔(2320)은, 각각 로터 코어(2100)에 장착되면, 제1 캔(2310)의 하단과 제2 캔(2320)의 하단이 마주보는 상태에서 맞닿도록 배치된다. 그리고 제1 캔(2310)과 제2 캔(2320)은 각각 홈부(2310a,2320a)를 포함한다. 홈부(2310a,2320a)는 캔부재(2300)의 높이방향을 따라 길게 배치될 수 있다. 캔부재(2300)의 높이 방향은, 로터(2000)에 샤프트(1000)이 결합되었을 때, 샤프트(1000)의 축 뱡향과 평행인 방향이다. 그리고 홈부(2310a,2320a)는 캔부재(2300)의 외주면에서 오목하게 배치된다.
도 14는 도 12에서 도시한 로터의 횡단면도이고, 도 15는 도 12에서 도시한 로터의 평면도이다.
도 12 내지 도 15를 참조하면, 로터(2000)의 원주 방향으로, 홈부(2310a,2320a)는 마그넷(2200)과 마그넷(2200) 사이에 위치한다. 홈부(2310a,2320a)는 2개일 수 있다. 2개의 홈부(2310a,2320a)는 로터(2000)의 중심(C)을 기준으로 대칭되게 배치될 수 있다. 한편, 홈부(2310a,2320a)의 개수는 변경 실시 가능한다. 홈부(2310a,2320a)의 최대 개수는 마그넷(2200)의 개수와 동일 할 수 있다. 홈부(2310a,2320a)가 1개인 경우, 밸런스와 고정력에 문제가 발생할 수 있다. 반면에 홈부(2310a,2320a)가 너무 많은 경우, 캔부재(2300)를 로터 코어(2100)에 결합시키기 어려운 문제점이 있다.
캔부재(2300)는 로터 코어(2100) 및 마그넷(2200)에 억지 끼움맞춤될 수 있다. 캔부재(2300)를 로터 코어(2100) 및 마그넷(2200)에 씌우면, 캔부재(2300)의 홈부(2310a,2320a)는 마그넷(2200)과 마그넷(2200) 사이를 따라 이동한다. 캔부재(2300)의 홈부(2310a,2320a)는 마그넷(2200) 뿐만 아니라, 로터 코어(2100)에도 억지 끼움된다.
홈부(2310a,2320a)는 바닥부(2310aa,2320aa)와 바닥부(2310aa,2320aa)의 양단에서 절곡되어 형성되는 측부(2310bb,2320bb)를 포함할 수 있다. 바닥부(2310aa,2320aa)는 로터 코어(2100)와 접촉한다. 구체적으로, 로터 코어(2100)는 가이드돌기(2110)를 포함할 수 있는데, 바닥부(2310aa,2320aa)는 가이드돌기(2110)와 면접촉할 수 있다. 측부(2310bb,2320bb)는 마그넷(2200)과 이격되게 배치되어, 측부(2310bb,2320bb)와 마그넷(2200) 사이에 공간이 배치될 수 있다.
가이드돌기(2110)는 로터 코어(2100)의 외주면에서 돌출된 것으로, 마그넷(2200)을 가이드하고, 고정하는 역할을 한다. 이러한 가이드돌기(2110)는 로터 코어(2100)의 원주 방향을 따라 일정 간격마다 배치될 수 있다.
도 16은 제1 용접비드와 제2 용접비드를 도시한 도면이다.
도 12 및 도 16를 참조하면, 홈부(2310a,2320a)에 제1 용접비드(10)가 생성된다. 제1 캔(2310)과 제2 캔(2320)이 각각 로터 코어(2100)에 장착되면, 제1 캔(2310)의 홈부(2310a)의 하단(2310b)과 제2 캔(2320)의 홈부(2320a)의 하단(2320b)이 맞닿는다. 이러한 상태에서, 제1 캔(2310)의 홈부(2310a)의 하단(2310b)과 제2 캔(2320)의 홈부(2320a)의 하단(2320b)의 경계에서 용접이 수행되면, 제1 용접비드(10)가 생성된다. 제1 용접비드(10)는 제1 캔(2310)의 홈부(2310a)와 제2 캔(2320)의 홈부(2320a) 뿐만 아니라. 로터 코어(2100)의 가이드돌기(2110)까지 용접되면서 발생되는 것이다.
결과적으로, 제1 캔(2310)과, 제2 캔(2320)과 로터 코어(2100)가 용접으로 결합되면서, 캔부재(2300)가 억지 끼움맞춤되면서 발생되는 결합력과 더불어, 용접을 통한 결합력이 부가되면서, 로터 코어(2100) 및 마그넷(2200)의 결합력이 한층 높아지는 이점이 있다. 따라서, 캔부재(2300)에 접착제를 도포하지 않고서도, 캔부재(2300)의 강건성을 확보할 수 있다.
또한, 추가적으로, 홈부(2310a,2320a)에는 제2 용접비드(20)가 각각 생성된다. 제2 용접비드(20)는 제1 캔(2310)의 홈부(2310a)의 바닥부(2310aa)와 가이드돌기(2110)가 용접되면서 발생할 수 있다. 그리고 제2 용접비드(20)는 제2 캔(2320)의 홈부(2320a)의 바닥부(2320aa)와 가이드돌기(2110)가 용접되면서 발생할 수 있다.
제1 캔(2310)과 로터 코어(2100)가 용접되어 결합하고, 제2 캔(2320)과 로터 코어(2100)가 용접으로 결합되면서 로터 코어(2100) 및 마그넷(2200)의 결합력을 더욱 높일 수 있는 이점이 있다
도 17은 돌출된 제1 용접비드를 도시한 도면이다.
한편, 도 17을 참조하면, 로터 코어(2100)의 중심(C)에서 제1 용접비드(10)의 외주면까지의 거리(L1)는 로터 코어(2100)의 중심에서 마그넷(2200)의 외주면까지의 거리(L2)보다 작고, 홈부(2310aa,2320a)의 외주면 까지의 거리(L3)보다는 클 수 있다. 예를 들어, 제1 용접비드(10)는 볼록한 형태일 수 있다.
도 18은 제2 실시예에 따른 모터의 제조방법을 도시한 블록도이고, 도 19는 제2 실시예에 따른 모터의 제조과정을 도시한 도면이다.
도 18 및 도 19의 (a)를 참조하면, 로터 코어(2100)를 제조한다. 도 18 및 도 19의 (b)를 참조하면, 로터 코어(2100)의 외주면에 접착제를 도포한다. 그리고 도 18 및 도 19의 (c)를 참조하면, 로터 코어(2100)의 외주면에 마그넷(2200)을 부착한다.(S100)
도 18 및 도 19의 (d)를 참조하면, 로터 코어(2100)에 마그넷(2200)과 마그넷(2200) 사이에 홈부(2310a,2320a)가 억지 끼움맞춤되도록 캔부재(2300)를 로터 코어(2100)에 씌운다.(S200)
도 18 및 도 19의 (d)를 참조하면, 제1 캔(2310)과 제2 캔(2320)의 이음부분을 용접한다.(S300)
이상으로 본 발명의 바람직한 하나의 실시예에 따른 로터 및 이를 포함하는 모터에 관하여 첨부된 도면을 참조하여 구체적으로 살펴보았다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 로터 코어;
    상기 로터 코어 외측에 배치되는 복수개의 마그넷; 및
    상기 복수개의 마그넷 외측에 배치되는 몰딩부;을 포함하며,
    상기 로터 코어는 상기 복수 개의 마그넷 사이에 배치되는 복수개의 가이드 돌기를 포함하고,
    상기 로터 코어의 중심에서,
    상기 가이드 돌기의 중심을 지나는 상기 몰딩부의 외면까지의 거리가 상기 복수개의 마그넷 중 하나의 마그넷의 중심을 지나는 상기 몰딩부의 외면까지의 거리 보다 작은 로터.
  2. 제1 항에 있어서,
    상기 로터 코어의 상측에 배치되는 센서 마그넷;을 더 포함하고,
    상기 몰딩부는 상기 센서 마그넷의 외측에 배치되며, 상기 로터 코어의 중심의 반경 방향을 기준으로 상기 복수 개의 마그넷의 외측에 배치된 상기 몰딩부의 두께는 상기 센서 마그넷의 외측에 배치된 상기 몰딩부의 두께보다 작은 로터.
  3. 제1 항에 있어서,
    상기 마그넷의 길이 방향과 수직한 방향으로 자른 상기 몰딩부의 단면은 볼록부와 오목부를 포함하며, 상기 볼록부와 상기 오목부는 교대로 배열되는 로터.
  4. 제3 항에 있어서,
    상기 오목부의 중심은 상기 로터코어의 외측에 배치되는 로터.
  5. 샤프트;
    상기 샤프트가 배치되는 홀을 포함하는 로터; 및
    상기 로터의 외측에 배치되는 스테이터를 포함하고,
    상기 로터는
    로터 코어;
    상기 로터 코어 외측에 배치되는 복수 개의 마그넷; 및
    상기 복수 개의 마그넷 외측에 배치되는 몰딩부;을 포함하며,
    상기 로터 코어는 상기 복수 개의 마그넷 사이에 배치되는 복수 개의 가이드 돌기를 포함하고,
    상기 로터 코어의 중심에서,
    상기 가이드 돌기의 중심을 지나는 상기 몰딩부의 외면까지의 거리가 상기 복수 개의 마그넷 중 하나의 마그넷의 중심을 지나는 상기 몰딩부의 외면까지의 거리 보다 작은 모터.
  6. 샤프트;
    상기 샤프트가 배치되는 홀을 포함하는 로터; 및
    상기 로터의 외측에 배치되는 스테이터를 포함하고,
    상기 로터는 샤프트와 결합된 로터코어;
    상기 로터코어와 결합된 마그넷;및
    상기 로터코어 및 상기 마그넷을 둘러싸는 캔부재를 포함하고,
    상기 캔부재는 홈부를 포함하고,
    상기 홈부는 상기 마그넷과 상기 마그넷 사이에서 상기 로터의 중심을 향하여 상기 캔부재의 외주면에서 오목하게 배치되고, 상기 캔부재의 높이 방향을 따라 배치되며,
    상기 캔부재는 상기 로터코어의 양 측단에 각각 배치되는 제1 캔과 제2 캔을 포함하고,
    상기 제1 캔과 상기 제2 캔은,
    상기 제1 캔의 홈부의 하단과 상기 제2 캔의 홈부의 하단이 맞닿도록 배치되고, 상기 제1 캔의 홈부의 하단과 상기 제2 캔의 홈부의 하단에 걸쳐 배치되는 제1 용접비드를 포함하는 모터.
  7. 제6 항에 있어서,
    상기 로터코어는 가이드돌기를 포함하고,
    상기 가이드돌기는 상기 로터코어의 외주면에서 상기 로터코어의 반경방향으로 돌출되며, 상기 가이드돌기는 상기 샤프트의 축 방향을 따라 배치되는 모터.
  8. 제6 항에 있어서,
    상기 홈부는 바닥면과 상기 바닥면의 양 단에 각각 배치되는 측벽을 포함하는 모터.
  9. 제6 항에 있어서,
    상기 홈부는 바닥면과 상기 바닥면의 양 단에 각각 배치되는 측벽을 포함하고, 상기 홈부의 바닥면은 상기 가이드돌기와 접촉하는 모터.
  10. 제9 항에 있어서,
    상기 측벽은 상기 마그넷과 이격 배치되는 모터.
PCT/KR2018/008590 2017-08-03 2018-07-30 로터 및 이를 포함하는 모터 WO2019027196A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18840181.4A EP3664256B1 (en) 2017-08-03 2018-07-30 Motor comprising a rotor
CN201880057138.1A CN111095737B (zh) 2017-08-03 2018-07-30 转子和包括该转子的电机
US16/636,142 US11469641B2 (en) 2017-08-03 2018-07-30 Rotor and motor comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0098593 2017-08-03
KR1020170098593A KR102510334B1 (ko) 2017-08-03 2017-08-03 로터 및 이를 포함하는 모터
KR1020170113928A KR102517687B1 (ko) 2017-09-06 2017-09-06 모터 및 모터의 제조방법
KR10-2017-0113928 2017-09-06

Publications (1)

Publication Number Publication Date
WO2019027196A1 true WO2019027196A1 (ko) 2019-02-07

Family

ID=65232769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008590 WO2019027196A1 (ko) 2017-08-03 2018-07-30 로터 및 이를 포함하는 모터

Country Status (4)

Country Link
US (1) US11469641B2 (ko)
EP (1) EP3664256B1 (ko)
CN (1) CN111095737B (ko)
WO (1) WO2019027196A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113812064A (zh) * 2019-05-15 2021-12-17 松下知识产权经营株式会社 转子和具有该转子的电动机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4195460A1 (en) * 2021-12-07 2023-06-14 Siemens Gamesa Renewable Energy A/S Rotor for a permanent magnet electrical machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066293A (ja) * 1996-08-12 1998-03-06 Ebara Corp キャンドモータ
KR20100028476A (ko) * 2008-09-04 2010-03-12 니폰 덴산 시바우라 가부시키가이샤 모터 및 그 제조방법
KR20110072678A (ko) * 2009-12-23 2011-06-29 엘지이노텍 주식회사 모터의 회전자
KR20160080503A (ko) * 2014-12-29 2016-07-08 엘지이노텍 주식회사 모터 및 이를 포함하는 클러치 액츄에이터
KR20170032022A (ko) * 2015-09-14 2017-03-22 엘지이노텍 주식회사 캔부재 및 이를 포함하는 로터 조립체
KR20170048015A (ko) * 2015-10-26 2017-05-08 엘지이노텍 주식회사 로터 코어 조립체, 로터 조립체 및 이를 포함하는 모터

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE794848A (fr) * 1972-12-15 1973-05-29 Pompey Acieries Procede de fabrication ameliorant la tenue de pieces soudees en aciers refractaires
JP2003299279A (ja) * 2002-03-29 2003-10-17 Honda Motor Co Ltd ブラシレスモータ
JP2004072968A (ja) * 2002-08-09 2004-03-04 Toyoda Mach Works Ltd モータの回転子とその製造方法
DE102004030063A1 (de) 2004-06-23 2006-03-16 Heinz Leiber Permanentmagneterregte Drehfeldmaschine
WO2007133500A2 (en) * 2006-05-10 2007-11-22 Jones Robert M Electric machine having segmented stator
JP4671997B2 (ja) 2007-10-23 2011-04-20 三菱電機株式会社 回転電機の回転子、及びその製造方法
CN105658982B (zh) * 2013-10-01 2018-05-04 舍弗勒技术股份两合公司 用于离合器执行器或者传动装置执行器的注塑包封的定子的定位和转子位置磁体到这种执行器中的引入
KR102297684B1 (ko) * 2014-12-23 2021-09-03 엘지이노텍 주식회사 로터 조립체, 이의 제조방법 및 로터 조립체를 구비하는 모터
KR20160088033A (ko) 2015-01-15 2016-07-25 엘지전자 주식회사 이동 단말기 및 그 제어 방법
US10432044B2 (en) 2015-11-02 2019-10-01 Denso Corporation Rotor including stacked cores, motor, method for manufacturing rotor, and method for manufacturing motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066293A (ja) * 1996-08-12 1998-03-06 Ebara Corp キャンドモータ
KR20100028476A (ko) * 2008-09-04 2010-03-12 니폰 덴산 시바우라 가부시키가이샤 모터 및 그 제조방법
KR20110072678A (ko) * 2009-12-23 2011-06-29 엘지이노텍 주식회사 모터의 회전자
KR20160080503A (ko) * 2014-12-29 2016-07-08 엘지이노텍 주식회사 모터 및 이를 포함하는 클러치 액츄에이터
KR20170032022A (ko) * 2015-09-14 2017-03-22 엘지이노텍 주식회사 캔부재 및 이를 포함하는 로터 조립체
KR20170048015A (ko) * 2015-10-26 2017-05-08 엘지이노텍 주식회사 로터 코어 조립체, 로터 조립체 및 이를 포함하는 모터

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3664256A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113812064A (zh) * 2019-05-15 2021-12-17 松下知识产权经营株式会社 转子和具有该转子的电动机
EP3972089A4 (en) * 2019-05-15 2022-07-06 Panasonic Intellectual Property Management Co., Ltd. ROTOR AND MOTOR COMPRISING SUCH ROTOR

Also Published As

Publication number Publication date
US20200259391A1 (en) 2020-08-13
CN111095737B (zh) 2022-08-30
EP3664256A4 (en) 2020-08-12
CN111095737A (zh) 2020-05-01
EP3664256A1 (en) 2020-06-10
US11469641B2 (en) 2022-10-11
EP3664256B1 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
WO2010044537A2 (ko) 스텝 액츄에이터
WO2011046296A2 (ko) 차량의 구동모터용 레졸버
WO2018128398A1 (ko) 모터 및 변속기
WO2017188659A1 (ko) 파워 터미널 및 이를 포함하는 모터
WO2019027196A1 (ko) 로터 및 이를 포함하는 모터
WO2017150886A1 (ko) 로터 및 이를 포함하는 모터
WO2018088787A1 (ko) 토크 인덱스 센서 및 이를 포함하는 조향 장치
WO2018101638A1 (ko) 커버 조립체, 모터 및 이를 포함하는 전동식 조향장치
WO2018016744A1 (ko) 모터
WO2021172761A1 (ko) 모터
WO2016002994A1 (ko) 모터
WO2018139791A1 (ko) 모터
WO2021141230A1 (ko) 모터
WO2021040401A1 (ko) 센싱 장치
WO2020040424A1 (ko) 스테이터 및 이를 구비하는 모터
WO2021157935A1 (ko) 모터
WO2022108292A1 (ko) 모터
WO2019124799A1 (ko) 로터 및 이를 구비하는 모터
WO2021141299A1 (ko) 모터
WO2020085744A1 (ko) 모터
WO2020149626A1 (ko) 로터 및 이를 포함하는 모터
WO2020055067A1 (ko) 모터
WO2019132389A1 (ko) 모터
WO2020017778A1 (ko) 모터
WO2019139240A1 (ko) 센싱 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018840181

Country of ref document: EP

Effective date: 20200303