WO2010044187A1 - 通信端末及び通信方法 - Google Patents

通信端末及び通信方法 Download PDF

Info

Publication number
WO2010044187A1
WO2010044187A1 PCT/JP2009/004552 JP2009004552W WO2010044187A1 WO 2010044187 A1 WO2010044187 A1 WO 2010044187A1 JP 2009004552 W JP2009004552 W JP 2009004552W WO 2010044187 A1 WO2010044187 A1 WO 2010044187A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
communication
terminal
path
packet
Prior art date
Application number
PCT/JP2009/004552
Other languages
English (en)
French (fr)
Inventor
松下陽介
藤原ゆうき
本間秀樹
森田直樹
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/747,689 priority Critical patent/US8427957B2/en
Priority to EP09820366.4A priority patent/EP2337270B1/en
Priority to JP2010533788A priority patent/JP5449183B2/ja
Priority to CN200980101366.5A priority patent/CN101897153B/zh
Publication of WO2010044187A1 publication Critical patent/WO2010044187A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/30Connectivity information management, e.g. connectivity discovery or connectivity update for proactive routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/025Updating only a limited number of routers, e.g. fish-eye update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/125Shortest path evaluation based on throughput or bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a communication terminal and communication method for creating path information between terminals constituting a system in an ad hoc communication system.
  • each terminal in the system periodically transmits a route creation packet by broadcast.
  • Each terminal in the system describes destination information of its own terminal in a route creation packet received from another terminal, and transfers it to the other terminal. Then, each terminal in the system creates a route based on the destination information of the plurality of terminals included in the received route creation packet.
  • the proactive method has an advantage that the load at the time of transmission of the communication packet is small because the route creation is performed in advance regardless of the transmission of the communication packet.
  • the proactive method since the route creation packet is transmitted regardless of the transmission of the communication packet, the amount of the route creation packet occupied in the communication network is large, and there is a disadvantage that the entire system has a large load.
  • a terminal in the system transmits a route creation packet by broadcast prior to the communication to confirm a route to a desired final destination.
  • the route creation packet since the route creation packet is transmitted only when necessary, the amount of route creation packet occupied in the communication network is small, and the load on the entire system is small.
  • the proactive method is adopted in the communication system with high communication frequency
  • the reactive method is adopted in the communication system with low communication frequency. is there.
  • REQUEST FOR COMMENT 3626 Optimized Link State Routing Protocol (OLSR) Request for Comment 3684: Topology Dissemination Based on Reverse Forwarding (TBRPF) REQUEST FOR COMMENT 3561: Ad hoc On-Demand Distance Vector Routing (AODV) Routing REQUEST FOR COMMENT 4728: The Dynamic Source Routing Protocol for Mobile Ad Fock Networks for IP 4 (DSR) for Mobile Ad Hoc Networks for IPv4)
  • the above-described conventional techniques have the following problems. That is, in wireless communication, when communication is continued using the same route with the other party in the state where the communication terminal is stopped, the amount of communication is as long as the obstacle does not obstruct the route currently being used. It is relatively stable. On the other hand, as the communication terminal moves and the distance from the relay terminal constituting the currently used route increases, the communication amount of the currently used route gradually decreases (see FIG. 35A). Therefore, the communication terminal, when the amount of communication is below a predetermined threshold value f 1, and transmits a route creation packet to a communication partner, reconfigure the path, switching to the reconstructed route. Thus, the communication terminal avoids the interruption of communication.
  • the status of the band greatly varies depending on the use status of other terminals connected to the PLC.
  • communication may be interrupted as soon as the vacuum cleaner switch is turned on (see FIG. 35B).
  • the vacuum cleaner switch is turned on (see FIG. 35B).
  • the communication terminal prepares an alternative route in advance, and when the state of this route falls below a predetermined requirement necessary for normal communication, there is a technique for switching to the alternative route prepared in advance.
  • Patent Document 1 Japanese Patent Document 1
  • Patent Document 1 there is a problem that it is not known whether the alternative path satisfies the predetermined requirements necessary for normal communication at the switching timing. Therefore, in the communication terminal, when the alternative route prepared in advance does not satisfy the predetermined requirement necessary for normal communication at the timing of the switching, it is difficult to continue the communication.
  • a route creation packet is transmitted by broadcast at predetermined intervals, and an alternative route is reconfigured in preparation for interruption of communication. It is conceivable.
  • the amount of communication does not gradually decrease as in wireless communication, but the communication is suddenly interrupted, so it is not possible to predict the interruption of communication in advance. Therefore, when the interruption of communication does not occur, there is a problem that the route creation packet is uselessly broadcast and the limited bandwidth is uselessly used for the route creation packet. Further, since the interruption of communication can not be predicted in advance, there is a problem that if the predetermined period for transmitting the route creation packet is too long, the time from the interruption of communication to the restart of communication becomes long. On the other hand, if the predetermined period for transmitting the route creation packet is shortened, the route creation packet is broadcast uselessly even if communication does not occur, and a finite bandwidth is largely occupied by the useless route creation packet. There's a problem.
  • the present invention has been made in view of the above problems, and a control packet such as a route creation packet is obtained even when the amount of communication of a currently used route decreases to such an extent that communication can not be continued instantaneously. It is an object of the present invention to provide a communication terminal and communication method capable of avoiding interruption of communication without unnecessarily occupying a bandwidth.
  • the present invention is directed to a communication terminal which constitutes an ad hoc network. Then, the communication terminal broadcasts a route creation packet at the start of data transmission to obtain a plurality of route candidates, and unicasts a route estimation packet to the route candidate to transmit the route in the best state. It is what you acquire.
  • the communication terminal uses a communication unit that communicates data packets to the receiving terminal via at least one relay terminal, and uses the communication terminal to create a route to the receiving terminal prior to data packet communication.
  • the first control packet is broadcasted, and a predetermined number of routes leading to the receiving terminal are selected in the order of good communication status based on the response result of the first control packet, and selected at predetermined time intervals during data packet communication.
  • the second control packet for confirming the change of the communication state is unicasted to each of the relay terminals constituting the predetermined number of routes, and the route used for the data packet communication based on the response result of the second control packet And a control unit which switches to a path having the best communication state among the selected number of paths and continues communication of data packets.
  • control unit sets a path having a wide band as a path having a good communication state.
  • control unit may set a path with a small delay time as a path with a good communication state.
  • an ad hoc network is connected using a PLC.
  • the communication terminal is not moved but fixed. Therefore, unlike when wireless communication is used, movement of the communication terminal does not require reconfiguration of the route. Rather, in the case of using a PLC, the communication terminal is affected by the usage state of the home appliance that is fixed and the route currently being used is connected near that route. Therefore, even if the state of the currently used route band is deteriorated by turning on the home appliance switch, if the home appliance switch is turned off, the state of the route band may be restored. is there.
  • the communication terminal since the communication terminal moves, whether or not the state of the used route returns again depends on whether the communication terminal returns to the original position, so it is not always clear. .
  • the PLC since the communication terminal is fixed, there is a very high possibility that the state of the used path will be restored again if the use state of the other terminal returns to the original state.
  • the first control packet used for route creation is broadcasted, and based on the response result of the first control packet, the route to the receiving terminal is specified in order of good communication state.
  • route candidates are prepared in advance, and routes are selected and switched among the route candidates.
  • the first control packet used for route creation may be broadcasted only once before communication, and the amount of control packet occupying the bandwidth can be significantly reduced.
  • the communication terminal unicasts a second control packet for confirming increase and decrease of the bandwidth to each relay terminal constituting a predetermined number of paths selected at predetermined time intervals.
  • the communication terminal unicasts a second control packet for confirming increase and decrease of the bandwidth to each relay terminal constituting a predetermined number of paths selected at predetermined time intervals.
  • the communication terminal switches to the path with the best communication state among the predetermined number of selected paths based on the response result to the second control packet and continues the communication of the data packet.
  • the communication is switched to the widest route at predetermined time intervals. It can prevent the occurrence of interruptions.
  • the possibility of the communication interruption can be significantly reduced.
  • the communication terminal when the bandwidth of the route used for data packet communication becomes equal to or less than the predetermined value within the predetermined time interval, the communication terminal has the next bandwidth out of the selected predetermined number of routes. It is characterized by switching to a wide route.
  • the bandwidth of the route used for data packet communication becomes equal to or less than the predetermined value within the predetermined time interval
  • the bandwidth is switched to the next wider bandwidth among the selected predetermined number of routes.
  • a plurality of route candidates are prepared in advance, and even if the bandwidth of the currently used route is narrowed to a state in which communication can not be continued within a predetermined time interval, the route candidate is immediately selected. Switching to another route candidate having a wide bandwidth, so that interruption of communication can be eliminated.
  • the communication unit notifies, from the relay terminal forming the route used for data packet communication, that at least a part of the bandwidth of the route used for communication has become equal to or less than a predetermined value.
  • Receive bandwidth reduction notification When the communication control unit receives the bandwidth decrease notification via the communication unit, the communication control unit determines that the bandwidth of the route used for data packet communication has become equal to or less than a predetermined value based on the bandwidth decrease notification. It is said that.
  • the communication terminal can monitor the increase and decrease of the bandwidth between adjacent communication terminals. Therefore, according to the present aspect, the communication terminal of the transmission source is used for data packet communication by receiving a band decrease notification notifying that the band between the adjacent communication terminals becomes equal to or less than the predetermined value. It can be instantaneously determined that the bandwidth of the route in question is below a predetermined value. As a result, when the bandwidth of the route used for data packet communication becomes equal to or less than the predetermined value, it is possible to switch to the route having the next largest bandwidth among the selected predetermined number of routes. As a result, interruption of communication can be eliminated.
  • the communication terminal when the control unit switches to the path having the next largest band among the selected predetermined number of paths, performs the predetermined number of paths selected at the current predetermined time interval. Unicast the second control packet to each relay terminal to be configured, and based on the result of the response of the second control packet, select a path having the widest bandwidth among the predetermined number of paths used for the next predetermined time interval, At the start of the next predetermined interval, the selected bandwidth is switched to the widest route, and the communication of the data packet is continued.
  • the path is the widest band at the start of the next predetermined time interval.
  • the period in which the next band uses a wide path can be made shorter than a predetermined period, so communication quality can be maintained high while eliminating interruption of communication.
  • the predetermined time interval is provided for each of the selected predetermined number of paths, and the predetermined time interval provided for each of the selected predetermined number of paths is asynchronous with each other. It is
  • the control unit may determine that a band of a second route other than the first route is wider than the first route.
  • the route used for data packet communication is switched to the second route after the predetermined time for the second route has elapsed.
  • the path having the widest bandwidth at that timing is selected. Since the selection is made, communication can be performed through the widest path. As a result, the communication time in the widest band state can be extended, and the widest path can be fully utilized throughout the communication.
  • the communication unit is not configured so far from the first relay terminal to the first relay terminal from the first relay terminal that configures one of the predetermined number of selected routes.
  • a new route is created between the two relay terminals, and a notification that one route to the receiving terminal has increased is received.
  • the control unit is characterized by replacing the one path with the widest path among the increased one path.
  • one path using another bypass path is used.
  • one route is replaced with one including another bypass, so that the route with the widest bandwidth can be selected in consideration of the change in the route that has occurred after communication.
  • the bandwidth can be updated to a route that is less likely to be less than or equal to the predetermined threshold without broadcasting the first control packet again.
  • the present invention in the case where a new route is created between the first relay terminal and the second relay terminal that has not configured one route, the same destination as the receiving terminal is used.
  • the present invention is characterized in that another communication terminal creates a route via the first relay terminal and the second relay terminal as a transmission source.
  • the communication unit when the bandwidth between the first relay terminal and the second relay terminal becomes equal to or less than a predetermined value, the communication unit receives a bandwidth reduction notification as a notification to that effect.
  • the control unit is characterized in that, upon receiving the band decrease notification via the communication unit, the control unit returns the replaced one route to the original one route.
  • the replaced one path is returned to the original one path, thereby reducing the bandwidth of the one path. Since the number of routes selected in advance can be maintained even after the decrease, the number of routes as backup to be switched can be secured to prevent occurrence of communication interruption.
  • the control unit when the bandwidth becomes equal to or less than a predetermined value in any of the predetermined number of selected routes, the control unit performs a predetermined time for unicasting the second control packet for that route.
  • the interval is set to a predetermined minimum time interval.
  • the bandwidth falls below a predetermined value in any of the predetermined number of selected routes, it can be estimated that the increase and decrease of the bandwidth is unstable for that route. Therefore, according to the present aspect, it is assumed that the second control packet is unicast on the assumption that the path has a large increase / decrease in bandwidth, and the predetermined time interval for the path is set to the predetermined minimum time interval.
  • the predetermined time interval for the path is set to the predetermined minimum time interval.
  • control unit causes the bandwidth of the route to be less than or equal to a predetermined value within the next predetermined time interval or less for the route in which the predetermined time interval for unicasting the second control packet is set to the predetermined minimum time interval. If it does not, the predetermined time interval is gradually returned.
  • the path is determined as a path with little fluctuation of the band, and the path is made variable only by changing the predetermined time interval gradually by gradually returning to the predetermined time interval. Since it can be determined whether or not the route is an unstable route with a large increase and decrease in bandwidth, the process of determining the stability of the route can be facilitated.
  • the bandwidth of the route is set to a predetermined value also in the subsequent predetermined time intervals.
  • the predetermined minimum interval is set again.
  • the communication terminal is a communication terminal that constitutes an ad hoc network and relays data packets between the receiving terminal and the receiving terminal.
  • a predetermined number of routes to the receiving terminal are selected by the transmitting terminal in order of good communication state.
  • the communication terminal according to the present invention is a communication unit for communicating data packets, and a predetermined number of communication terminals selected based on control packets unicasted by the transmitting terminal at predetermined time intervals during communication of the data packets.
  • the communication terminal when the communication terminal operates as a relay terminal and is located at a branch point between the first route and the second route, the communication terminal is the most out of the other routes passing through the branch point.
  • the present invention is also directed to a communication method implemented by a communication terminal constituting an ad hoc network. Then, the communication method of the present invention comprises the steps of communicating a data packet to a receiving terminal via at least one relay terminal, and first control used to create a route to the receiving terminal prior to communication of the data packet.
  • the step of broadcasting a packet the step of selecting a predetermined number of routes leading to the receiving terminal in the order of good communication state based on the response result of the first control packet, and the selection at predetermined time intervals during data packet communication
  • the present invention is also directed to a communication method implemented by a communication terminal that constructs an ad hoc network and relays data packets between a transmitting terminal and a receiving terminal.
  • a predetermined number of routes to the receiving terminal are selected by the transmitting terminal in order of good communication state.
  • a predetermined number of communication terminals are selected based on control packets unicasted by the transmitting terminal at predetermined time intervals.
  • the communication terminal Determining whether or not the communication terminal is located at a branch point of two or more paths among the predetermined number of paths selected; When the bandwidth used for data packet communication becomes equal to or less than a predetermined value, the route with the best communication status is selected from other routes via the branch point, and the route used for data packet communication is switched And
  • a route with the best bandwidth can be acquired when selecting a route.
  • the ratio of the bandwidth consumed for transmission of the route creation packet among the bandwidths consumed for all communications can be significantly reduced, and transmission of data originally intended to be transmitted can be secured.
  • FIG. 1 is a configuration diagram of a communication system according to Embodiment 1 of the present invention.
  • FIG. 2 is a configuration diagram of a logical topology of the communication system according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing a hardware configuration of the communication terminal according to Embodiment 1 of the present invention.
  • FIG. 4A is a functional block diagram of a terminal apparatus according to Embodiment 1 of the present invention.
  • FIG. 4B is a diagram showing an example of path candidates held by the path candidate holding unit 404.
  • FIG. 5A is a diagram showing the format of a route search packet (route request) used in the first embodiment of the present invention.
  • FIG. 5B is a diagram showing a specific example of a route search packet (route request) used in the first embodiment of the present invention.
  • FIG. 5C is a diagram showing the format of a route search packet (route reply) used in the first embodiment of the present invention.
  • FIG. 5D is a diagram showing a specific example of a route search packet (route reply) used in the first embodiment of the present invention.
  • FIG. 6A is a diagram showing the format of a route estimation packet (route estimation request) used in the first embodiment of the present invention.
  • FIG. 6B is a diagram showing a specific example of the route estimation packet (route estimation request) used in the first embodiment of the present invention.
  • FIG. 6C is a diagram showing the format of a route estimation packet (route estimation reply) used in the first embodiment of the present invention.
  • FIG. 6D is a diagram showing a specific example of the route estimation packet (route estimation reply) used in the first embodiment of the present invention.
  • FIG. 7 is a sequence diagram at the time of route search in the communication terminal according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram showing a network state after the end of the route search and setting by the route request and the route reply.
  • FIG. 9 is a sequence diagram at the time of route estimation of the communication terminal according to the first embodiment.
  • FIG. 10 is a diagram showing a network state after path estimation at time T1 in the communication terminal according to the first embodiment.
  • FIG. 11 is a diagram showing a network state after path estimation at time T2 in the communication terminal according to the first embodiment.
  • FIG. 12 is a diagram showing a network state after path estimation at time T3 in the communication terminal according to the first embodiment.
  • FIG. 13 is a path selection diagram of the communication terminal according to the first embodiment.
  • FIG. 14 is a flowchart showing data transmission processing in the communication terminal according to the first embodiment.
  • FIG. 15 is a flowchart showing a route search process in the communication terminal according to the first embodiment.
  • FIG. 16 is a flowchart showing a route estimation process in the communication terminal according to the first embodiment.
  • FIG. 17 is a network configuration diagram in the second embodiment.
  • FIG. 18A is a diagram showing the format of a bandwidth reduction notification packet used in the second embodiment of the present invention.
  • FIG. 18B is a diagram showing a specific example of a bandwidth decrease notification packet used in the second embodiment of the present invention.
  • FIG. 19 is a diagram illustrating a network state at the time of transmitting a bandwidth decrease notification to a route branch terminal according to the second embodiment.
  • FIG. 20 is a diagram illustrating a network state after the bandwidth reduction notification has been transmitted to the route branching terminal according to the second embodiment.
  • FIG. 21 is a route selection diagram when a bandwidth decrease notification is sent to the route branch terminal according to the second embodiment.
  • FIG. 22 is a diagram showing a network state at the time of transmitting a bandwidth decrease notification to the transmitting terminal according to the second embodiment.
  • FIG. 23 is a diagram showing a network state after transmitting a bandwidth decrease notification to the transmitting terminal according to the second embodiment.
  • FIG. 24 is a route selection diagram when a bandwidth decrease notification is transmitted to the transmission terminal according to the second embodiment.
  • FIG. 25 is a flowchart illustrating processing of the relay terminal according to the second embodiment.
  • FIG. 26 is a diagram showing a network state after route estimation at time T4 in the communication terminal according to Embodiment 3.
  • FIG. 27 is a diagram illustrating a network state after route estimation at time T5 in the communication terminal according to Embodiment 3.
  • FIG. 28 is a diagram showing a network state after route estimation at time T6 in the communication terminal according to Embodiment 3.
  • FIG. 29 is a route selection diagram when route estimation is asynchronous in the communication terminal according to the third embodiment.
  • FIG. 30 is a route selection diagram in the case of changing the route estimation interval in the communication terminal according to the third embodiment.
  • FIG. 31 is a flowchart showing a route estimation process in the communication terminal according to the third embodiment.
  • FIG. 32 is a diagram of a network configuration in the fourth embodiment.
  • FIG. 33A is a diagram showing a route estimation reply used in the fourth embodiment.
  • FIG. 33B shows a route estimation reply used in the fourth embodiment.
  • FIG. 34 is a diagram of route selection in the communication terminal according to Embodiment 4.
  • FIG. 35A is a band fluctuation diagram of a communication terminal using conventional wireless communication.
  • FIG. 35B is a band fluctuation diagram of a communication terminal using a conventional PLC.
  • FIG. 1 is a configuration diagram of a communication system according to Embodiment 1 of the present invention.
  • the communication system of the present invention is composed of a plurality of communication terminals 101-108.
  • a terminal transmitting data is called a transmitting terminal
  • a terminal relaying data is called a relay terminal
  • a terminal receiving data is called a receiving terminal.
  • the example shown in FIG. 1 shows a state in which the transmitting terminal A101 transmits data to the receiving terminal D104 via the relay terminal B102 and the relay terminal C103.
  • the network used here is assumed to be a network of PLC (Power Line Communication), but is also applicable to a network such as a wireless LAN or a wired LAN.
  • the service area 109 of this system is larger than the cover areas 110, 111 and 112 of the respective communication terminals 101 to 103 existing in the network. For this reason, the transmitting terminal A 101 and the receiving terminal D 104 adopt an ad hoc network in which mutual communication is performed via the relay terminal B 102 and the relay terminal C 103.
  • FIG. 2 is a diagram of a logical topology of the communication system shown in FIG. In FIG. 2, it is shown that communication terminals A to H 101 to 108 connected by lines can directly communicate with each other.
  • FIG. 3 is a diagram showing a hardware configuration of each communication terminal described above.
  • the communication terminal comprises a memory 301 including various control programs and a work area, a CPU 302 for controlling the entire communication terminal, and a network interface 303 connected to the power line and communicating various data via the power line.
  • the CPU 302 executes a program stored in the memory 301. Also, the CPU 302 transmits data via the network interface 303, and receives data by decrypting data received via the network interface 303.
  • FIG. 4A is a functional block diagram of a terminal apparatus according to Embodiment 1 of the present invention.
  • the terminal apparatus includes a packet reception unit 401, a route selection unit 402, a route search / estimation scheduler 403, a route candidate holding unit 404, a route search unit 406, a route estimation unit 407, a route comparison unit 408, and a packet transmission unit. It has 409.
  • These functional blocks are realized by the memory 301, the CPU 302, the network interface 303, and the like described above.
  • the packet reception unit 401 receives all receivable packets. When the packet is received, the packet reception unit 401 inquires the route selection unit 402 whether there is a route candidate for transmitting the received packet up to the destination of the received packet.
  • the route selection unit 402 refers to the route candidate holding unit 404 which holds several route candidates to the destination of the received packet, and confirms the presence or absence of a route candidate to the destination of the received packet. The path candidate held by the path candidate holding unit 404 will be described later.
  • the packet reception unit 401 passes the received packet to the route selection unit 402.
  • the packet reception unit 401 instructs the route search / estimation scheduler 403 to search for the route to the destination of the received packet. Do.
  • the route selection unit 402 causes the route comparison unit 408 to compare the plurality of route candidates held in the route candidate holding unit 404 with respect to the destination of the packet passed from the packet reception unit 401. Choose the best route from
  • the route search / estimation scheduler 403 When the route search / estimation scheduler 403 receives an instruction to search for a route from the packet reception unit 401, the route search / estimation scheduler 403 instructs the route search unit 406 to perform a route search for searching for a route to the destination of the received packet. Also, the route search / estimation scheduler 403 sets a predetermined timer when the route for transmitting the received packet is selected by the route selection unit 402, and estimates a band condition for the route used for transmission of the received packet. Are instructed to the route estimation unit 407. The route search / estimation scheduler 403 performs route estimation each time the timer expires.
  • the route search unit 406 When receiving a route search instruction from the route search / estimation scheduler 403, the route search unit 406 broadcasts a route search packet serving as a first control packet from the packet transmission unit 409 to the network. Then, the route searching unit 406 receives a response packet to the first control packet via the packet receiving unit 401, acquires a route candidate from the response packet (route request / route reply), and the route candidate holding unit 404. Send to
  • FIG. 4B is a diagram showing an example of path candidates held by the path candidate holding unit 404.
  • the route candidate holding unit 404 sets each of the final destination, the next destination as a relay route, bandwidth information, delay information, priority (band), priority (delay), and option as a route candidate. It shall have a field.
  • the address (for example, D, J, etc.) of the receiving terminal is set as the destination address of the transmission packet.
  • the address (for example, B, E, K, J, etc.) of the relay terminal that transmits the transmission packet next is set.
  • the band information information (for example, 100, 50, 60, 40 Mbps, etc.) regarding the band from the transmitting terminal to the receiving terminal calculated using Equation (1) is set.
  • a delay time (for example, 1 or 2 seconds) until the reception terminal receives the transmission packet from the transmission terminal is set.
  • the priority (band) is a field for determining which of band information and delay information is to be prioritized when a route to the same final destination is selected, and “1” when band information is prioritized. When “" gives priority to delay information, "2" is set.
  • the priority (delay) is a field for determining which of the band information and the delay information is to be prioritized, and “1” indicates the case of prioritizing the delay information, and “2” indicates the case of prioritizing the band information. Is set.
  • An option is a field in which any item can be set. For example, whether to set valid / invalid of each route candidate or optional content of priority (band) / priority (delay) in the option gives priority to either the band information or the delay information. Is set.
  • each field of the route candidate shown in FIG. 4B may be provided with either band information or delay information.
  • the path candidate includes only band information or delay information, it is not necessary to determine which of band information and delay information is to be prioritized, so that priority (band) and priority ( It is not necessary to have both fields of delay).
  • whether or not to provide an optional field may be determined arbitrarily depending on the system.
  • the route estimation unit 407 generates a second control packet for each of the route candidates to the destination of the received packet stored in the route candidate storage unit 404 based on the route estimation instruction from the route search / estimation scheduler 403.
  • the route estimation packet as is transmitted from the packet transmission unit 409 to the network by unicast.
  • the route estimation unit 407 receives a response packet to the second control packet via the packet reception unit 401, and acquires state information indicating the state of the bandwidth of each route from the response packet (route estimation Information request / route estimation reply) is transmitted to the route candidate holding unit 404.
  • the path candidate storage unit 404 When receiving the state information of each path from the path estimation unit 407, the path candidate storage unit 404 stores the state information of each path and transmits the state information to the path comparison unit 408.
  • the path comparison unit 408 receives path candidates for the received packet from the path candidate holding unit 404. Further, when the state information is received for each of the path candidates, the path comparison unit 408 compares the state information of the respective paths, and notifies the path selection unit 402 when it is necessary to change the path. The route selection unit 402 changes the route to be selected when a change of the route is instructed by the route comparison unit 408.
  • FIG. 5A to 5D are diagrams showing the format of a route search packet.
  • a route search packet When a route search packet is used as a request packet from a transmitting terminal to a receiving terminal, it is called a route request.
  • FIG. 5A is a diagram showing a packet format of a route request.
  • the route search packet is composed of a PHY header 501, a MAC header 502, and a payload 503. Modulation scheme information is stored in the PHY header 501.
  • the MAC header 502 stores fields representing the transmission source address 504, the destination address 505, the relay source address 506, and the relay destination address 507, and a sequence number 508 assigned to each transmission source terminal.
  • the payload 503 has a field 509 in which the final destination address of the route to be searched is indicated, and an information storage area 510 in which the route information to the final destination is stored.
  • FIG. 5B is a diagram showing one specific example of the route search packet.
  • address A of transmitting terminal A 101 is set as transmission source address 504, and addresses of all terminals as destination address 505 (ff: ff: ff: ff: ff: ff) is set to ALL.
  • the address A of the transmission terminal A 101 is set in the relay source address 506, and ALL indicating the addresses (ff: ff: ff: ff: ff: ff) of the relay destination address 507 is also set. That is, the route search packet is transmitted by broadcast.
  • the relay terminal B 102 that has received the route search packet converts the relay source address 506 into the address B of the relay terminal B 102 and transmits the address B to the relay terminal C 103. Also, the relay terminal C103 that has received this route search packet converts the relay source address 506 into the address C of the relay terminal C103 and transmits it to the receiving terminal D104. However, when the route search packet arrives at the receiving terminal D104 which is the final destination, the receiving terminal D104 does not relay the route search packet.
  • FIG. 5C is a diagram showing a packet format of a route reply.
  • the route reply MAC header 502 in addition to the fields 504 to 508 similar to the route request, there is a route number 520 assigned to each final destination.
  • the payload 503 in addition to the final destination address 509, the link information 521, 523, 525 of the route between each relay terminal existing from the transmission source to the final destination, and the link information 521, 523, 525
  • the link information 521, 523, 525 is state information indicating the state of the band in the path between each relay terminal existing from the transmission source to the final destination.
  • FIG. 5D is a diagram showing one specific example of the route reply.
  • the source address 504 becomes the address D of the receiving terminal D104
  • the destination address 505 becomes the address A of the transmitting terminal A101.
  • the relay source address 506 and the relay destination address 507 are attached to follow the reverse of the path from the transmitting terminal A 101 to the receiving terminal D 104.
  • the relay source address 506 is the address D of the receiving terminal D 104
  • the relay destination address 507 is the address C of the relay terminal C 103.
  • the link information 521 between the transmitting terminal A 101 and the relay terminal B 102 indicates that the band status is 70 Mbps
  • the link information 523 between the relay terminal B 102 and the relay terminal C 103 has a band status of 80 Mbps.
  • the link information 525 between the relay terminal C 103 and the receiving terminal D 104 indicates that the band status is 60 Mbps.
  • the link information 521, 523 and 525 are information indicating the state of the band between the relay source and the relay destination of the relay destination terminal receiving the route request when the route search packet is used as a route request. It is written in the information storage area 610. When the route search packet is used as a route reply, the route reply is unicast transmitted.
  • FIG. 6A to 6D show the format of a route estimation packet.
  • a route estimation packet When a route estimation packet is used as a request packet, it will be called a route estimation request.
  • FIG. 6A is a diagram showing a packet format of a route estimation request.
  • the route estimation request is composed of a PHY header 601, a MAC header 602 and a payload 603, and has the same configuration as the route reply shown in FIGS. 5C and 5D. That is, in addition to the transmission source address 604, the destination address 605, the relay source address 606 and the relay destination address 607, and the sequence number 608, the route number 620 is added to the MAC header 602 of the route request.
  • each relay terminal In the payload 603, in addition to the final destination address 609, the link information 621, 623, 625 of the route between each relay terminal existing from the transmission source to the final destination, and the link information 621, 623, 625 There are relay terminal addresses 622 and 624 that indicate whether the information is the route between terminals.
  • each relay terminal When receiving each of the route estimation requests, each relay terminal resets the relay destination address and the relay source address included in the MAC header 602 according to the relay address included in the payload 603, and transmits it to the next relay terminal.
  • FIG. 6B is a diagram showing one specific example of the route estimation request.
  • the route estimation request when transmitting from transmitting terminal A 101 to receiving terminal D 104, the route estimation request relays source address 604 to address A of transmitting terminal A 101, destination address 605 to address D of receiving terminal D 104, and The address A of the transmitting terminal A 101 is set in the source address 606, and the address B of the relay terminal B 102 is set in the relay destination address 607. That is, the route estimation request is transmitted by unicast. Also, the route estimation request is transmitted to the receiving terminal D 104 in the order of the relay terminal B 102 and the relay terminal C 103 by the relay addresses 622 and 624.
  • the relay terminal at either the relay source or the relay destination is status information indicating the state of the bandwidth of the path between the relay source and the relay destination, Write in link information 621, 623, 625.
  • FIG. 6C is a diagram showing a packet format of a route estimation reply.
  • the format of the route estimation reply has the same configuration as that of the route reply shown in FIG. 5C.
  • the information stored in the route estimation reply is also similar to the route reply shown in FIG. 5C.
  • the link information between transmitting terminal A 101 and relay terminal B 102 has a band status of 70 Mbps
  • the link information between relay terminal B 102 and relay terminal C 103 has a band status of 80 Mbps
  • relay terminal C 103 The link information between the terminal and the receiving terminal D 104 has a bandwidth of 60 Mbps.
  • the link information should be added when the relay terminal of the relay destination receives the route search packet.
  • the link information may be additionally written at the relay terminal of either the relay source or the relay destination. For example, if the link information is the amount of power attenuation from the transmitting terminal A101 to the relay terminal B102, the relay terminal B102 receiving the route estimation request adds link information, but the link information from the transmitting terminal A101 to the relay terminal B102 If it is information indicating which modulation scheme to use when transmitting, the transmitting terminal A 101 may additionally add link information when the route estimation reply is received.
  • FIG. 7 is a sequence diagram when performing route search in the first embodiment of the present invention.
  • the route search is to find the best route from among the countless routes configured using the links shown in FIG.
  • the bandwidth of the route is calculated using the following equation.
  • the receiving terminal D104 returns a route reply for the route having the highest value of this value.
  • R1, R2, R3 ... represent the band of each path
  • the transmitting terminal A 101 transmits a route request 710 in which the final destination is set to the receiving terminal D 104 by the broadcast packet 711.
  • Each of the relay terminal B 102, the relay terminal E 105, and the relay terminal G 107 that has received the broadcast packet 711 adds the link information and transmits the broadcast packets 712, 713, and 714, respectively.
  • the broadcast packet 712 transmitted by the relay terminal E 105 also reaches the relay terminal B 102, but the relay terminal B 102 does not perform relay transmission.
  • the route of transmitting terminal A101 ⁇ relay terminal E105 ⁇ relay terminal B102 is not good when compared with the route of transmitting terminal A101 ⁇ relay terminal B102 using Expression (1). It is because it becomes a route. It is assumed that the following packets are the same. Such control is effective for suppressing the occupation of the bandwidth by the transmission of useless control packets.
  • Each of the relay terminal C 103, the relay terminal F 106, and the relay terminal H 108 which has received the broadcast packets 712, 713 and 714 adds the link information and transmits the broadcast packets 715, 716 and 717, respectively.
  • the receiving terminal D 104 that has received the broadcast packets 716, 716, and 717 does not perform any further relay transmission. This is because the receiving terminal D104 is a final destination terminal.
  • the receiving terminal D104 calculates a route in a good state (that is, a route with high expression (1)) from the information of all the received route request packets, and transmits the route reply 719 to the transmitting terminal A101 via the calculated route. Send back.
  • the number of route reply replies can be arbitrarily set according to the network size. It is preferable that the number of replies is set to be included in the route replied in the route reply under any circumstances, of the countless routes existing between the transmission source and the destination, under any circumstances.
  • the route reply 718 is sent back with three unicast packets 719, 720 and 721.
  • Each route reply is a route reverse to the route searched for from the transmitting terminal A 101 to the receiving terminal D 104, ie, the receiving terminal D104 ⁇ relay terminal C 103 ⁇ relay terminal B 102 ⁇ transmitting terminal terminal A 101, receiving terminal D 104 ⁇ relay
  • the relay transmission is performed in the order of the path of terminal F106 ⁇ relay terminal E105 ⁇ transmission terminal A101 or the path of reception terminal D104 ⁇ relay terminal H108 ⁇ relay terminal G107 ⁇ transmission terminal A101.
  • the route reply starts the operation of the data relay function at each terminal.
  • FIG. 8 is a network diagram when the route search and route reply is finished searching for and setting a route.
  • a route candidate 1 is a route of transmission terminal A 101 ⁇ relay terminal B 102 ⁇ relay terminal C 103 ⁇ reception terminal D104.
  • the route candidate 2 is a route of transmission terminal A 101 ⁇ relay terminal E 105 ⁇ relay terminal F 106 ⁇ reception terminal D104.
  • the route candidate 3 is a route of transmission terminal A 101 ⁇ relay terminal G107 ⁇ relay terminal H108 ⁇ reception terminal D104.
  • 100 Mbps between the transmission terminal A 101 and the relay terminal B 102 of the route candidate 1 indicates link information between the transmission terminal A 101 and the relay terminal B 102.
  • 100 Mbps between the relay terminal B102 and the relay terminal C103 indicates link information between the relay terminal B102 and the relay terminal C103. Further, 100 Mbps between the relay terminal C103 and the receiving terminal D104 indicates link information between the relay terminal C103 and the receiving terminal D104.
  • the route candidate 2 and the route candidate 3 If each link information is applied to equation (1), the bandwidth of each route is 33 Mbps for route candidate 1, 10 Mbps for route candidate 2, and 20 Mbps for route candidate 3. Therefore, in the transmitting terminal A 101, the path comparison unit 408 compares the bands of the path candidate 1, the path candidate 2 and the path candidate 3 with each other. Then, the route selection unit 402 selects the route candidate 1 as a route to the final destination D based on the comparison result.
  • FIG. 9 is a sequence diagram in the case where path estimation is performed on each path candidate shown in FIG.
  • route estimation requests are sent using source routing for each path candidate. That is, the route estimation request is transmitted from the transmitting terminal A 101 to the receiving terminal D 104 not only through the route candidate 1 set between the transmitting terminal A 101 and the receiving terminal D 104 but also through the route candidate 2 and the route candidate 3 .
  • Unicast packets sent by each terminal consume much less bandwidth than broadcast packets. Therefore, by combining the route search using broadcast packets and the route estimation using unicast packets, transmitting terminal A can suppress bandwidth consumption and obtain the best route according to the change in the situation. It becomes.
  • route estimation is periodically performed on all the route candidates, but the timing of route estimation and which route to perform route estimation may be changed according to the situation. You may
  • FIGS. 10 to 12 are state transition diagrams showing the results of periodic route estimation.
  • FIG. 10 shows the result of performing the first route estimation in a state where only time T1 has elapsed from the start of communication.
  • FIG. 11 shows the result of performing the second route estimation in a state where only time T2 has elapsed from the start of communication.
  • FIG. 12 shows the result of the third route estimation in the state where only time T3 has elapsed since the start of communication.
  • FIGS. 10 to 12 show an example in which the priority of the route candidate is determined with respect to the band.
  • the fluctuation of the bandwidth occurs when the power of the home appliance is turned on or the like even if the communication terminal is not moved. Even on the premise of wireless, a similar situation may occur when an ad hoc network is formed by communication terminals with less movement and a shield is generated between the communication terminals.
  • the bandwidth of each link of the route candidate 1 is lowered from 100 Mbps to 40 Mbps as compared with the route candidate search (FIG. 8). Also, the bandwidth of each link of the route candidate 2 is increased from 30 Mbps to 80 Mbps. There is no change in the bandwidth of each link of the route candidate 3. According to the estimation result, the bandwidth of each route is 13 Mbps for route candidate 1, 27 Mbps for route candidate 2, and 20 Mbps for route candidate 3. Therefore, at time T1, the transmitting terminal A 101 selects the route candidate 2 and performs transmission.
  • the estimation result does not change from time T1 (FIG. 10). Therefore, transmitting terminal A 101 continues to select path candidate 2.
  • the bandwidth of each link of the route candidate 1 returns from 40 Mbps to 100 Mbps.
  • the bandwidths of the links of the route candidate 2 and the route candidate 3 do not change as compared with the time T2. In this case, the bandwidth of each route is 33 Mbps for the route candidate 1, 27 Mbps for the route candidate 2, and 20 Mbps for the route candidate 3. Therefore, at time T3, the transmission terminal A 101 selects the route candidate 1.
  • FIG. 13 is a selected route diagram showing the relationship between the band fluctuation of each of the route candidates 1 to 3 shown in FIGS. 10 to 12 and the selected route.
  • the band of the path candidate 1 and the band of the path candidate 2 fluctuate between time T0 (that is, at the time of path search) and time T1. If route search is performed only at the time of communication disclosure, route candidate 1 will continue to be used throughout the period of the communication, but in the present embodiment, at the time T1 at which route estimation is performed during communication, more states are The selected route is switched to the route candidate 2 which is a good route.
  • the band of the route candidate 1 fluctuates between time T2 and time T3. In response to this situation change, the selected route is successfully returned to the route candidate 1 which is a route with a better state.
  • FIG. 14 is a diagram showing a flowchart of route selection processing at the time of data transmission of the terminal device (transmitting terminal A 101) according to Embodiment 1 of the present invention.
  • the transmitting terminal A 101 refers to the path candidate holding unit 404 to confirm the presence or absence of a path to the final destination of the transmission packet (step S1401).
  • the transmitting terminal A 101 performs a route search process (step S1402). Details of the route search process will be described later.
  • the transmitting terminal A 101 performs route selection processing, selects an optimal route based on the band information or the delay information (step S1406), and ends the processing.
  • the transmitting terminal A 101 executes route selection processing, and selects an optimal route based on the band information or the delay information. (Step S1403).
  • the transmitting terminal A 101 confirms whether or not the selected route is within the valid time (that is, the timer T) (step S1404). If the transmission terminal A 101 is within the expiration date (timer T), the processing ends. On the other hand, when the expiration date (timer T) has expired, the transmitting terminal A 101 invalidates the currently selected route, and executes route estimation processing (step S1405). Details of the route estimation process will be described later.
  • the transmitting terminal A 101 performs route selection processing again based on the estimated route, selects an optimal route (step S1406), and ends the processing.
  • FIG. 15 is a flowchart for explaining the details of the route search process of step S1402 of FIG.
  • transmitting terminal A 101 transmits a route request 710 by broadcast to start route search (step S1501).
  • the transmitting terminal A 101 selects a route candidate based on the information described in the route reply packet 720. Are set (step S1503).
  • the transmitting terminal A 101 retransmits the route request packet 710.
  • the transmitting terminal A 101 repeats the retransmission, and discards the data packet (step S 1505) if the route reply packet 720 can not be received even if the maximum number of retransmissions is exceeded (step S 1504).
  • the transmitting terminal A 101 may continuously discard data packets for the same final destination for a certain period. Thus, it is possible to prevent continuous route search processing for the final destination in which no route is found, and to prevent the band occupancy rate of the route request packet 710 from increasing.
  • FIG. 16 is a flowchart for describing the details of the route estimation process of step S1405 of FIG.
  • the transmitting terminal A 101 invalidates the currently selected route, and re-estimates the route.
  • the transmitting terminal A 101 sets information on relay terminals of the respective paths for path candidates 1 to 3 to the receiving terminal D 104 which is the final destination terminal (step S 1601), and transmits a route estimation request packet by unicast. (Step S1602).
  • the transmitting terminal A 101 selects a route having the best state at that time from the route candidates 1 to 3 and updates the selected route (step S1604). ).
  • the transmitting terminal A 101 determines that the route is incommunicable and discards the route (step S1605). For example, when the route estimation reply packet is not received for the route estimation request packet transmitted using the route candidate 2, the transmitting terminal A 101 discards the route candidate 2. As a result, when the route to the final destination is lost (step S1606), the route estimation process is ended and the route search process is performed (step S1402 in FIG. 14).
  • the absence of a path includes the case where as a result of updating the selected path, only a path in an extremely bad state remains. As long as the route exists, the transmitting terminal A 101 repeatedly performs the same process each time the timer expires.
  • the transmitting terminal A 101 broadcasts a write request, which is the first control packet used for route creation, and reaches the receiving terminal D 104 based on the response result of the route request.
  • a predetermined number of paths are selected in the order of wide bandwidth (or small delay time).
  • route candidates for example, route candidates 1 to 3 are prepared in advance, and a route having a good state is selected and switched among the route candidates. Therefore, broadcasting a route request used for route creation is before communication. This can be done once, and the amount of control packet occupying the bandwidth can be greatly reduced.
  • a similar situation may occur when an ad hoc network is formed by communication terminals with a small amount of movement and communication objects generate a shield between communication terminals even if wireless communication is premised on not only PLCs. Therefore, the present invention is also useful when applied to a network using wireless communication.
  • the wireless LAN 11n standard even if one route is communicated by the wireless LAN 11n standard and the other route is communicated by the wireless LAN 11b standard, it is applied to a network having a plurality of routes of different standards. It is useful. Alternatively, it is also useful to apply to a network in which one path is configured by wireless communication and the other path is configured by PLC.
  • the transmitting terminal A unicasts a route request packet, which is a second control packet for confirming increase and decrease of the bandwidth, to each relay terminal constituting the selected predetermined number of routes at predetermined time intervals during data packet communication. Do. As a result, since the transmitting terminal A unicasts a route request packet for confirming increase and decrease of the bandwidth during data packet communication, the use amount of control packets is minimized, and the proportion of control packets occupied in the bandwidth is significantly reduced. It can be reduced to
  • the transmitting terminal A switches to the path with the largest bandwidth among the predetermined number of selected paths and continues the communication of the data packet.
  • the communication is interrupted because the path is switched to the widest bandwidth in predetermined time units.
  • FIG. 17 is a network diagram in the case where a route candidate is branched at the relay terminal according to Embodiment 2 of the present invention.
  • route candidate 1 is transmission terminal A 101 ⁇ relay terminal E 105 ⁇ relay terminal C 103 ⁇ reception terminal D104.
  • Path candidate 2 is transmission terminal A 101 ⁇ relay terminal E 105 ⁇ relay terminal F 106 ⁇ reception terminal D104.
  • Path candidate 3 is transmission terminal A 101 ⁇ relay terminal G107 ⁇ relay terminal H108 ⁇ reception terminal D104. It is assumed that these three route candidates 1 to 3 are set.
  • the bandwidth of each route is 33 Mbps for route candidate 1, 13 Mbps for route candidate 2, and 20 Mbps for route candidate 3.
  • the transmitting terminal A101 selects the route candidate 1 as a route to the receiving terminal D104 which is the final destination.
  • the route is branched into the route candidate 1 and the route candidate 2 at the relay terminal E 105.
  • a terminal having two or more relay destination addresses is called a path branch terminal.
  • a route estimation request is to be transmitted for each relay destination at such a route branching terminal. That is, only one route estimation request from the transmission terminal A 101 to the relay terminal E 105 is transmitted for the route candidate 1 and the route candidate 2. The route estimation request transmitted from the relay terminal E 105 is transmitted one by one for each of the route candidate 1 and the route candidate 2.
  • one route estimation request for the route candidate 1 and the route candidate 2 is transmitted from the transmitting terminal A 101 to one relay terminal E 105.
  • the transmission terminal A101 transmits a route estimation request for the route candidate 3 to the relay terminal G107.
  • the relay terminal E 105 receives the route estimation request from the transmitting terminal A 101, it transmits the route estimation request for the route candidate 1 to the relay terminal C 103, and transmits the route estimation request for the route candidate 2 to the relay terminal G 107.
  • the route estimation reply for the route candidates is returned.
  • bandwidth consumption of the route estimation request In networks where bandwidth is affected by the power on / off of home appliances such as PLC, sensitive links (eg near a TV or PC) and non-affected links (eg near a bedroom) Because it is decided, a certain link is likely to be used by overlapping many route candidates. Therefore, such a bandwidth reduction method is considered to be effective.
  • the relay terminal E 105 when the relay terminal E 105 is located at a branch point of the path between the path candidate 1 and the path candidate 2, the relay terminal E 105 is the widest path among the path candidate 1 and the path candidate 2 passing through the branch point. Select to switch. As a result, it is possible to omit the process of notifying the transmission terminal A 101 that is the transmission source that the bandwidth used for data packet communication has become equal to or less than the predetermined value (hereinafter referred to as a bandwidth reduction notification). Therefore, the processing of the entire system can be simplified.
  • a bandwidth reduction notification the predetermined value
  • FIG. 18A is a diagram showing a packet format of a bandwidth reduction notification.
  • FIG. 18B is a diagram showing a specific example of a bandwidth reduction notification packet that is actually transmitted.
  • the bandwidth reduction notification packet is a packet for instructing to change the route without waiting for the next route estimation when an extreme bandwidth reduction occurs in the communication path.
  • the change of the route may be performed by the route branch terminal (the relay terminal E 105 in this example) or may be performed by the transmission source terminal (the transmission terminal A 101 in this example).
  • the bandwidth reduction notification packet is transmitted to the adjacent communication terminal, for example, when the bandwidth of the adjacent link of each communication terminal falls below a predetermined threshold Xmbps.
  • the bandwidth reduction notification packet may be transmitted to the adjacent communication terminal when the bandwidth of the adjacent link of each communication terminal becomes Y% or less at the time of path estimation. Further, the bandwidth reduction notification packet may be transmitted to the adjacent terminal when the bandwidth of the adjacent link of each communication terminal is reduced by Z Mbps or more than the initial bandwidth.
  • the header of the bandwidth reduction notification packet is the same as a normal packet, and bandwidth reduction information 1801 is stored in the payload portion.
  • the bandwidth reduction information 1801 is composed of the address of the relay terminal and bandwidth information between the terminals. For example, when the link between the relay terminal C103 and the receiving terminal D104 becomes 5 Mbps, the addresses of the relay terminal C103 and the receiving terminal D104, and the band information of the link between the relay terminal C103 and the receiving terminal D104, "5" And will be stored (FIG. 18B).
  • the communication terminal notifies the information to the route selection unit 402, and the route selection unit 402 updates the selection of the route.
  • FIG. 19 is a state transition diagram in the case where the relay terminal C 103 transmits a bandwidth decrease notification 2001 in the network diagram shown in FIG.
  • FIG. 19 illustrates the case where the relay terminal C103 transmits a bandwidth decrease notification 2001 to the relay terminal E106 because the link bandwidth between the relay terminal C103 and the reception terminal D104 is 5 Mbps and falls below the threshold of 10 Mbps.
  • FIG. 20 is a state transition diagram when the relay terminal E 105 receives the bandwidth decrease notification 2001 in the network diagram shown in FIG.
  • the relay terminal E105 is a route branch terminal.
  • FIG. 20 illustrates the case where the route branch terminal E 105 that has received the band decrease notification 2001 performs route estimation.
  • the bandwidth of the route of the route candidate 1 from the relay terminal E 105 to the receiving terminal D 104 is 4.8 Mbps.
  • the bandwidth of the route of the route candidate 2 from the relay terminal E 105 to the receiving terminal D 104 is 40 Mbps. From this, the relay terminal E 105 selects the route candidate 2 having a wide band.
  • the relay terminal E 105 which is a route branch terminal selects a route from its own branch route, the relay terminal E 105 may not relay the bandwidth reduction notification to the transmission terminal A 101.
  • FIG. 21 is a route selection diagram in the state shown in FIG. 19 and FIG.
  • the route is estimated separately from the route estimation performed periodically (the timing of T1, T2, and T3) at the timing (Ta) below that. It is understood that the estimation is performed and the path switching is performed.
  • the relay terminal E 105 receives the bandwidth reduction notification and switches the route from the route candidate 1 to the route candidate 2. This makes it possible to avoid temporary deterioration when the bandwidth is extremely reduced.
  • each communication terminal notifies that effect to the transmitting terminal.
  • the transmitting terminal and the route branching terminal can instantaneously determine that the bandwidth of the selected route used for data packet communication has become equal to or less than a predetermined threshold. Therefore, when the bandwidth of the selected route used for data packet communication falls below a predetermined threshold, the transmitting terminal or route branch end should switch to the route with the next wider bandwidth among the selected route candidates. Can. As a result, interruption of communication can be eliminated.
  • FIG. 22 in the network diagram shown in FIG. 17, in response to the decrease in bandwidth between the relay terminal C 103 and the receiving terminal D 104, the relay terminal C 103 transmits a bandwidth decrease notification 2001 to the relay terminal E 105, and further FIG. 18 is a state transition diagram in the case where the relay terminal E 105 transmits a bandwidth decrease notification 2001 to the transmission terminal A 101.
  • the bandwidth of each route is 4 .5 Mbps, path candidate 2 becomes 28.5 Mbps, and path candidate 3 becomes 20 Mbps. For this reason, the transmission terminal A 101 selects the route candidate 2 with the widest bandwidth.
  • the route selection diagram in this case is the same as that shown in FIG.
  • FIG. 23 is a state transition diagram in the case where path selection is performed without performing band estimation in the transmitting terminal A 101 when the band decrease notification 2001 is relayed to the transmitting terminal A 101.
  • the transmitting terminal A 101 selects, for example, the route candidate 3 having the second highest bandwidth among the routes obtained at the time of the previous route search and estimation without performing the bandwidth estimation.
  • route estimation is performed, use of the route (route candidate 1) from which the bandwidth reduction notification 2001 has been sent is continued during the time from the transmission of the route estimation packet to the transmission of the route estimation packet. Although it is a moment, the route deterioration occurs. If it is an unacceptable communication (e.g., in the case of animation), the second best path may be selected without path estimation. This can avoid interruption of communication.
  • the transmitting terminal A 101 may transmit the route estimation packet and use the second best route only until the route reply packet is returned. Unlike the route request sent by flooding, since the route estimation request is a unicast packet, adjusting the priority will not result in failure of the video packet.
  • FIG. 24 is a route selection diagram when the route estimation is not performed in FIG. As shown by reference numeral 2401 in FIG. 24, even if no route estimation is performed, there is a period during which it is not possible to select a route with the best route condition, but the route condition is most immediately obtained by performing route estimation. It can be seen that a good route can be selected. From this, it can be considered that if the route estimation period is adjusted, it is possible to sufficiently cope with the case of not performing the route estimation for the bandwidth reduction notification.
  • the bandwidth is the largest at the next route estimation. Switch to a wide route and continue communication. As a result, since it is possible to shorten the period in which the second wide bandwidth path is used compared to the path estimation period, it is possible to maintain high communication quality while eliminating interruption of communication.
  • FIG. 25 is a flowchart showing processing of the relay terminal in the second embodiment.
  • each relay terminal determines whether the received packet is a route request (step S2501). If it is a route request, the relay terminal address (address of the own terminal) and the link information between the adjacent communication terminals are added to the received route request (step S2502), and relay transmission is performed to the next communication terminal. (Step S2503).
  • each relay terminal determines whether the received packet is a route reply (step S2504). If it is a route reply, a route (route number) and route information (link information etc.) are set from the information contained in the route reply (step S2505), and relay transmission is performed to the next terminal.
  • each relay terminal determines whether it is a route estimation request (step S2506). If the received packet is a route estimation request, link information is added to the received packet. Furthermore, when the relay terminal is a route branch terminal (step S2508), route estimation processing (step S1504) is performed on each route. For example, in the example of FIG. 17, when the relay terminal E 105, which is a route branch terminal, receives a route estimation request from the transmitting terminal A 101, the relay terminal E 105 performs one route estimation for each of the route candidate 1 and the route candidate 2. A transmission request is transmitted to perform path estimation for each of the path candidate 1 and the path candidate 2. As shown in FIG.
  • the relay terminal E 105 when the relay terminal E 105 is located at a branch point of the route between the route candidate 1 and the route candidate 2, the relay terminal E 105 is between the route candidate 1 and the route candidate 2 via the branch point.
  • the path with the widest bandwidth can be selected and switched among them. This can simplify the processing of the entire system.
  • each relay terminal determines whether it is a route estimation reply (step S2509). If it is the route estimation reply, each relay terminal updates the link information held by its own terminal (step S 2510).
  • each relay terminal determines whether it is a band decrease notification (step S 2511). If the received packet is a band decrease notification, if the own terminal is not a path branch terminal (step S 2512), the received band decrease notification is relayed to the transmitting terminal. On the other hand, when the relay terminal is a route branch terminal, if the state of the other route held by the own terminal is good (step S 2513: Yes), the route is switched and the bandwidth reduction notification is discarded (step S 2514). . On the other hand, if the state of the other route is bad (step S2513: NO), the received bandwidth reduction notification is relayed to the transmitting terminal. Thus, as shown in FIG. 23 and FIG.
  • the band used for data packet communication to the transmitting terminal A 101 is predetermined. Since it is possible to omit the process of notifying that the threshold value has become equal to or less than the threshold value, the process as the entire system can be simplified.
  • Each relay terminal determines that the received packet is a data packet to be relayed when the received packet is a packet other than those described above, and determines whether the own terminal has a route to the final destination (Ste S2515). If the own terminal has a route to the final destination, relay transmission of the received packet is performed. On the other hand, when the own terminal does not have a route to the final destination, the received packet is discarded, and a route error packet is sent to the transmitting terminal A 101 (step S 2516) to start route search.
  • the relay terminal E 105 when the relay terminal E 105 is located at the branch point of the route between the route candidate 1 and the route candidate 2, the relay terminal E 105 passes through the route candidate 1 and the route The path with the widest bandwidth is selected from the candidate 2 and switched. As a result, the relay terminal E 105 can omit the process of notifying that the bandwidth used for data packet communication up to the transmission terminal A 101 has become equal to or less than a predetermined value. Therefore, the processing of the entire system can be simplified.
  • the relay terminal C103 transmits a band decrease notification to the relay terminal E105 when the band between the relay terminal C103 and the reception terminal D104 becomes equal to or less than a predetermined value.
  • the relay terminal E 105 can instantaneously determine that the bandwidth of the selected path used for data packet communication has become equal to or less than a predetermined threshold. Therefore, the relay terminal E 105 can switch to a path having the second largest band among the selected path candidates when the band of the selected path used for data packet communication becomes equal to or less than a predetermined threshold. . As a result, interruption of communication can be eliminated.
  • the path is switched to the widest path among path candidates during the current path estimation period. Furthermore, even if the path is switched to the second widest path among path candidates during the current path estimation period, the path is switched to the widest path in the next path estimation and communication is continued . As a result, since it is possible to shorten the period in which the second wide bandwidth path is used compared to the path estimation period, it is possible to maintain high communication quality while eliminating interruption of communication.
  • the third embodiment will be described.
  • a case where path estimation is performed asynchronously for each path will be described.
  • the route reduction notification is sent, there is no point in performing band estimation of the route in most cases.
  • a scheme will be described in which the timing at which the transmitting terminal performs path estimation in such a situation is changed.
  • FIG. 26 to 28 show state transitions when the link bandwidth between the relay terminal C103 and the reception terminal D104 decreases from the state of FIG. 8 and the relay terminal C103 transmits a bandwidth decrease notification to the transmission terminal A101.
  • FIG. FIG. 26 shows the state at time T4 when the bandwidth reduction notification is transmitted from the relay terminal C103 to the transmitting terminal A101.
  • FIG. 27 illustrates a state of time T5 at which the route estimation for the route candidate 3 is performed after the transmission terminal A 101 receives the bandwidth decrease notification.
  • FIG. 28 illustrates a state of time T6 when the transmission terminal A101 performs path estimation for the path candidate 3 next to time T5.
  • the bandwidth of the path is 4.5 Mbps for the path candidate 1, 26.7 Mbps for the path candidate 2, and 20 Mbps for the path candidate 3.
  • the transmission terminal A 101 receives a bandwidth reduction notification from the relay terminal C 103 via the relay terminal B 102. As a result, the transmitting terminal A101 recognizes a decrease in link bandwidth between the relay terminal C103 and the receiving terminal D104. At this timing T4, the transmitting terminal A 101 starts route search for all routes. As a result, the route candidate 2 is acquired as the optimal route, and the route is switched from the route candidate 1 to the route candidate 2.
  • the sending terminal A101 is transmitting by the route candidate 2 . Furthermore, in FIG. 28, when it is found that the band of the route candidate 3 has increased at time T6 at which the route estimation of the route candidate 3 is performed, the transmitting terminal A 101 selects the route candidate 3. The transmitting terminal A 101 does not necessarily perform path estimation for the selected path, since the increase and decrease of the link in the selected path is known by data transmission. In that case, a band increase notification may be sent indicating an increase in band.
  • FIG. 29 is a path selection diagram during state transition of FIG. 26 to FIG. In FIG. 29, it is assumed that the current route candidate 1 is selected as a route. At this time, the route estimation for the route candidate 1 is stopped. In this state, when the transmission terminal A101 receives a bandwidth decrease notification for the route candidate 1 which is the selected route (time T4), the transmission terminal A101 performs route search of all routes. By the route search at time T4, the transmitting terminal A 101 acquires the route candidate 2 as an optimal route, and updates the selected route from the route candidate 1 to the route candidate 2. Thereafter, the transmission terminal A 101 stops the route estimation for the route candidate 2.
  • the transmitting terminal A 101 starts periodic route estimation for the route candidate 1 asynchronously with the timing of performing the route estimation for the route candidate 3 from when the transmission terminal A 101 no longer selects the route candidate 1 as a route. However, the interval between each timing at which route estimation is performed for each route candidate is constant. Thereafter, the timing T6 of the route estimation of the route candidate 3 arrives, and the transmitting terminal A 101 performs route estimation for the route candidate 3. As a result, when it is found that the bandwidth of the route candidate 3 has increased, the transmitting terminal A 101 selects the route candidate 3. Similarly to the route candidate 1, the route candidate 3 may reset the timer value of the periodic route estimation when the bandwidth decrease notification is received.
  • the transmitting terminal A 101 switches to the route candidate 3 having the widest bandwidth when the time T6 of the route estimation elapses for the route candidate 3 other than the route candidate 2 currently used for communication of the data packet.
  • the path with the largest bandwidth is selected at that timing. Therefore, since communication is performed on a path with the widest bandwidth, communication time can be extended in the widest bandwidth state. As a result, it is possible to make the best use of the widest path throughout the communication.
  • Embodiment 4 Next, the fourth embodiment will be described.
  • the case where the interval of the route estimation is not constant but variable is described.
  • FIG. 30 is a diagram of route selection when the time interval for performing route estimation changes.
  • a link with many bandwidth fluctuations and a link with few bandwidths are determined.
  • the timing of path estimation of each path is changed by the band reduction notification, and a path of a good band is selected while suppressing band consumption by the control packet.
  • the bandwidth reduction notification is received, or when the previous route estimation and the route estimation result greatly fluctuate, the value of the timer is set to a predetermined minimum value (initial value).
  • the interval for performing the route estimation is set to a predetermined minimum value.
  • the band in the route candidate 1 becomes equal to or less than a predetermined threshold, it is possible to estimate that the increase and decrease of the band is unstable for the route. Therefore, assuming that the route candidate 1 is a route with a large increase and decrease in bandwidth, the interval for performing route estimation is set to a predetermined minimum value.
  • the bandwidth of the route is equal to or less than the predetermined value in the next route estimation in which the route estimation interval is set to a predetermined minimum value.
  • the route estimation interval for the route candidate 1 is again set to a predetermined minimum value. According to this, also in the route estimation after setting to the predetermined minimum value, when the bandwidth of the route is equal to or less than the predetermined value, not only the variation of the bandwidth may be large but also the route of the large variation of the bandwidth It can be determined that As described above, it is easy to find an unstable route with a large band fluctuation simply by varying the route estimation interval.
  • the band whose band has once become less than or equal to the predetermined threshold is recovered to be equal to or more than the predetermined threshold.
  • the interval of the route estimation for the route candidate 1 is gradually returned to the predetermined interval. According to this, even if the fixed interval of the route estimation is once set to the predetermined minimum value, for example, the switch of the vacuum cleaner is turned on when the bandwidth of the route does not fall below the predetermined value in the subsequent route estimation. If the cause is a temporary cause as in the case, the path is determined to be a path with little fluctuation of the band, and is gradually returned to the predetermined interval. As a result, it is possible to determine whether or not the route is an unstable route with a large increase and decrease in bandwidth only by varying the interval of the route estimation, thereby facilitating the process of determining the stability of the route.
  • FIG. 31 shows a flowchart in the case of adjusting a timer for path estimation.
  • the process of doubling the timer value when the route estimation reply packet is received step S3201
  • the timer value Is added to the process step S3203 to return the initial value to the initial value (predetermined minimum value).
  • the route branch terminal may return a route reply to the number of routes requested by each communication terminal. That is, it is not necessary to transmit a plurality of route replies, and it is sufficient to transmit only routes in better condition.
  • FIG. 32 is a network diagram when data transmission from the transmitting terminal I 3201 to the receiving terminal D 104 is started while transmitting data from the transmitting terminal A 101 to the receiving terminal D 104 which is the final destination.
  • the transmitting terminal A 101 has acquired three routes similar to those in FIG.
  • the transmitting terminal I 3201 which is a transmitting terminal different from the transmitting terminal A 101 requests one route, and acquires the route (path candidate 4) of transmitting terminal I 3201 ⁇ relay terminal G 107 ⁇ relay terminal F 106 ⁇ receiving terminal D 104 Do.
  • the bandwidth information of the link is as shown in FIG.
  • the relay terminal G107 In this case, in the relay terminal G107, two route candidates of the route candidate 3 (sending terminal A 101 ⁇ relay terminal G 107 ⁇ relay terminal H 108 ⁇ receiving terminal D 104) and the route candidate 4 are provided as the route to the receiving terminal D 104 which is the final destination. It will have. Therefore, in the example shown in FIG. 32, the relay terminal G107 is a route branch terminal.
  • the relay terminal G107 may return link bandwidth information to each of the transmission terminals (transmission terminal A 101 and transmission terminal I 3201) one by one. Therefore, the relay terminal G107 sends back, to each transmitting terminal, path information in a better state among the held paths.
  • the state of the path candidate 4 (relay terminal G107 ⁇ relay terminal F106 ⁇ reception terminal D104) is in the state compared to the path candidate 3 (relay terminal G107 ⁇ relay terminal H108 ⁇ reception terminal D104). good. Therefore, the relay terminal G107 changes the route reply of the route candidate 3 to a part of the route candidate 4, and sends back the transmission terminal A101 as transmission terminal A101 ⁇ relay terminal G107 ⁇ relay terminal F106 ⁇ reception terminal D104.
  • 33A and 33B show route reply packets transmitted and received by the relay terminal G107.
  • the route reply received by the relay terminal G107 from the relay terminal H108 indicates the transmission terminal A101 ⁇ the relay terminal G107 ⁇ the relay terminal H108 ⁇ the reception terminal D104 as the route candidate 3.
  • the route reply that relay terminal G107 transmits to transmission terminal A101 changes path candidate 3 from transmission terminal A101 ⁇ relay terminal G107 ⁇ relay terminal F106 ⁇ reception terminal D104.
  • the link band (3301) between the relay terminal G107 and the relay terminal H108 is 60 Mbps
  • the address (3302) of the relay terminal H108 is H
  • the link band (3303) between the relay terminal H108 and the reception terminal D104 is 60 Mbps.
  • the link bandwidth (3311) between the relay terminal G107 and the relay terminal F106 is 100 Mbps
  • the address (3312) of the relay terminal F106 is F
  • the link bandwidth (3313) between the relay terminal F106 and the reception terminal D104 is 60 Mbps.
  • FIG. 34 is a route selection diagram corresponding to FIG. 34, when the route search is performed from the transmitting terminal I 3201, a route candidate 4 is created. Then, at the time of the next route estimation in which the route candidate 4 is created, it is understood that the route candidate 4 is selected as a route to be used for communication from the transmitting terminal A 101 to the receiving terminal D 104. This shows that the probability of selecting a better route is improved.
  • the transmitting terminal A 101 transmits the relay terminal G 107 and the path candidate 3 up to that point from the relay terminal G 107 that constitutes the path candidate 3 which is one of the path candidates 1 to 3.
  • a new route is created between the relay terminal F 106 which has not been configured, and a notification that the route candidate 4 reaching the transmission terminal A 101 has increased is received.
  • the transmitting terminal A 101 replaces the path candidate 3 with the path candidate 4 when the increased band of the path candidate 4 is wider than the band of the path candidate 3. In this way, it is possible to select the path with the widest bandwidth in consideration of the change in the path that occurred after communication.
  • the route candidate 4 can be obtained without re-broadcasting the route search packet while maintaining the route candidates 1 to 3 which are the predetermined number of routes selected in advance, and the bandwidth can be updated to a route which does not easily fall below the predetermined threshold.
  • the transmitting terminal which is another transmitting terminal for the receiving terminal D104 which is the same transmission destination as the transmitting terminal A101. This is a case where I3201 creates a route via the relay terminal G107 and the relay terminal F106.
  • the relay terminal G107 may notify the transmission terminal A101 of that.
  • the transmitting terminal A 101 can also return the replaced path candidate 4 to the original path candidate 3. According to this, since the number of paths selected in advance can be maintained even after the bandwidth of the path candidate 4 decreases, the number of paths as backup to be switched can be secured to prevent occurrence of communication interruption.
  • a communication terminal, a communication method and the like that can secure a route in the best state while keeping the bandwidth consumed for transmission of control packets low in an ad hoc network and the like using power lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)

Abstract

 電力線を用いたアドホックネットワークにおいて、制御パケットの送信に消費される帯域を低く抑えたままで、最も状態の良い経路を確保する通信端末を提供する。アドホックネットワークを構成する通信端末は、経路作成パケットをデータ送信開始時にブロードキャスト送信することにより、複数の経路候補を取得し、その経路候補に対して所定期間毎に、経路推定パケットをユニキャスト送信することにより、最も状態の良い経路を取得する。

Description

通信端末及び通信方法
 本発明は、アドホックな通信システムにおいて、システムを構成する端末間の経路情報を作成する通信端末及び通信方法に関する。
 近年、無線LANやPLC(Power Line Communication)の分野では、通信システムの大型化に伴い、1つの基地局がシステム全体を管理する態様ではなく、システムを構成する各端末が他の端末の中継を行うことにより、通信範囲を拡大するアドホックネットワークが採用されている。
 アドホックネットワークの場合、どの端末を中継して所望の最終宛先に通信パケットを送信するかを示す通信経路を作成する必要がある。通信経路を作成する方式には、プロアクティブ方式(例えば、非特許文献1,2を参照)と、リアクディブ方式(例えば、非特許文献3,4を参照)とが存在する。
 プロアクティブ方式は、システム内の各端末が、定期的に経路作成パケットをブロードキャストにて送信しあう。システム内の各端末は、他端末から受信した経路作成パケットに自端末の宛先情報を記載して、さらに他の端末に転送する。そして、システム内の各端末は、受信した経路作成パケットに含まれる複数の端末の宛先情報に基づいて、経路を作成する。プロアクティブ方式では、通信パケットの送信とは無関係に事前に経路作成が行われるため、通信パケットの送信時の負荷が少ないという利点がある。一方、プロアクティブ方式では、通信パケットの送信の有無に関わらず、経路作成パケットを送信するため、通信網に占める経路作成パケットの量が大きく、システム全体とすれば負荷が大きいという欠点がある。
 リアクティブ方式は、システム内の端末が、通信を行うときにだけ、その通信に先だって、経路作成パケットをブロードキャストにて送信して、所望の最終宛先までの経路を確認するものである。リアクティブ方式では、必要なときにだけ経路作成パケットを送信するため、その分通信網に占める経路作成パケットの量は小さく、システム全体の負荷は小さいという利点がある。一方、通信パケットの送信に先立って毎回に経路作成を行う必要があり、通信パケットの送信時の負荷が大きいという利点がある。
 上記プロアクティブ方式及びリアクティブ方式の利点及び欠点を勘案して、一般には、通信頻度の多い通信システムではプロアクティブ方式が採用され、通信頻度の少ない通信システムではリアクティブ方式が採用される傾向にある。
特開2007-221568号公報
リクエスト・フォー・コメント(REQUEST FOR COMMENT) 3626:オプティマイズ・リンク・ステート・ルーチング・プロトコル(Optimized Link State Routing Protocol (OLSR)) リクエスト・フォー・コメント(REQUEST FOR COMMENT) 3684:トポロジー・ディセミネーション・ベースド・オン・リザーブ・フォワーディング(Topology Dissemination Based on Reverse-Path Forwarding (TBRPF)) リクエスト・フォー・コメント(REQUEST FOR COMMENT) 3561:アド・フォック・オンデマンド・ディスタンス・ベクター・ルーチング(Ad hoc On-Demand Distance Vector (AODV) Routing) リクエスト・フォー・コメント(REQUEST FOR COMMENT) 4728:ザ・ダイナミック・ソース・ルーチング・プロトコル・フォー・モバイル・アド・フォック・ネットワークス・フォー・アイピーブイ4(The Dynamic Source Routing Protocol (DSR) for Mobile Ad Hoc Networks for IPv4)
 しかし、上記従来の技術では、以下のような問題があった。すなわち、無線通信において、通信端末が停止した状態で、通信相手との間で同一の経路を継続使用して通信する場合は、現在使用している経路を障害物が遮らない限り、通信量は比較的安定している。一方、通信端末が移動して、現在使用している経路を構成する中継端末との距離が離れるに従って、現在使用している経路の通信量は徐々に低下する(図35A参照)。そのため、通信端末は、通信量が所定の閾値f1を下回ると、通信相手に対して経路作成パケットを送信して、経路を再構成し、再構成した経路に切り替える。このようにして、通信端末は、通信の中断を回避している。
 しかし、PLCを用いた場合、PLCに接続されている他の端末の使用状況によって、帯域の状況が大きく変動する。例えば、掃除機のスイッチをONにした途端に通信が中断することがある(図35B参照)。このように、PLCを用いた場合は、無線通信を用いた場合と異なって、通信の中断を事前に予測して経路を再構成することができないという問題がある。
 このような問題に対しては、通信端末は、予め代替経路を用意しておき、本経路の状態が正常通信に必要な所定の要件を下回った場合に、予め用意した代替経路に切替える技術がある(例えば、特許文献1)。
 しかし、特許文献1の技術では、代替経路がその切替えのタイミングで、正常通信に必要な所定の要件を満たすか否かはわからないという問題がある。そのため、通信端末は、予め用意した代替経路がその切替えのタイミングで、正常通信に必要な所定の要件を満たさない場合には、通信の継続が困難になる。
 さらに、特許文献1の技術を改良して、通信の中断を回避するために、所定周期毎に経路作成パケットをブロードキャストにて送信して、通信の中断に備えて代替経路を再構成しておくことが考えられる。
 しかし、PLCを用いた場合、無線通信のように通信量が徐々に低下するのではなく、突然通信が中断するので、通信の中断を予め予測できない。そのため、通信の中断が発生しない場合には、経路作成パケットを無駄にブロードキャストして、経路作成パケットに有限な帯域が無駄に使用されるという問題がある。また、通信の中断を予め予測できないため、経路作成パケットを送信する所定周期があまりに長いと、通信の中断から通信の再開までの時間が長くなるという問題がある。一方で、経路作成パケットを送信する所定周期を短くすると、通信の中断が発生しないまでも、無駄に経路作成パケットをブロードキャストして、無駄な経路作成パケットにより有限な帯域が大幅に占有されるという問題がある。
 そこで、本発明は、上記課題に鑑みてなされたものであって、現在使用している経路の通信量が瞬時に通信の継続ができなくなる程に減少した場合でも、経路作成パケット等の制御パケットに帯域を無駄に占有させることなく、通信の中断を回避できる通信端末及び通信方法を提供することを目的とする。
 上記課題を解決するために、本発明は、アドホックネットワークを構成する通信端末に向けられている。そして、通信端末は、経路作成パケットをデータ送信開始時にブロードキャスト送信することにより、複数の経路候補を取得し、その経路候補に対して経路推定パケットをユニキャスト送信することにより最も状態の良い経路を取得するものである。
 本発明の一態様では、通信端末は、少なくとも1つの中継端末を介して、受信端末に対してデータパケットを通信する通信部と、データパケットの通信に先立って、受信端末までの経路作成に用いる第1制御パケットをブロードキャストし、第1制御パケットの応答結果に基づいて、受信端末に至る経路を通信状態が良い順番で所定数選択すると共に、データパケットの通信中に、所定時間間隔毎に選択された所定数の経路を構成する各中継端末に通信状態の変化を確認する第2制御パケットをユニキャストして、第2制御パケットの応答結果に基づいて、データパケットの通信に用いている経路を選択された所定数の経路の中で最も通信状態が良い経路に切替えてデータパケットの通信を継続する制御部とを備えたものである。
 また、本発明の一態様では、制御部は、帯域が広い経路を通信状態が良い経路とする。あるいは、制御部は、遅延時間が小さい経路を通信状態が良い経路としてもよい。
 本発明の一態様では、アドホックネットワークは、PLCを用いて接続される。
 PLCを用いた場合には、無線通信を用いた場合と異なり、通信端末が移動するものではなく、固定している。従って、無線通信を用いた場合と異なり、通信端末が移動することにより経路の再構成が必要となるのではない。むしろ、PLCを用いた場合、通信端末は、固定であって現在使用している経路がその経路付近に接続されている家電の使用状態の影響を受ける。従って、家電のスイッチがONすることによって、現在使用している経路の帯域の状態が劣化した場合であっても、家電のスイッチをOFFすれば、経路の帯域の状態は元に戻る可能性がある。ここで、無線通信を用いた場合では、通信端末が移動するため、使用していた経路の状態が再度戻るかどうかは通信端末が元の位置に戻るか否かに依存するため、必ずしも明らかでない。一方、PLCを用いた場合、通信端末は固定であるため、他の端末の使用状態が元の状態に戻れば、使用していた経路の状態が再度戻る可能性は極めて高い。
 そこで、本態様では、データパケットの通信に先立って、経路作成に用いる第1制御パケットをブロードキャストし、第1制御パケットの応答結果に基づいて、受信端末に至る経路を通信状態が良い順番で所定数選択することにより、予め経路候補を用意して、その経路候補の中で経路を選択して切替える。これにより、経路作成に用いる第1制御パケットをブロードキャストするのは通信前の一回でよく、制御パケットが帯域を占める量を大幅に軽減できる。
 また、通信端末は、データパケットの通信中は、所定時間間隔毎に選択された所定数の経路を構成する各中継端末に帯域の増減を確認する第2制御パケットをユニキャストする。これにより、制御パケットの使用量を最小限に抑え、制御パケットが帯域に占める割合を大幅に軽減できる。
 さらに、通信端末は、第2制御パケットに対する応答結果に基づいて、選択された所定数の経路の中で最も通信状態が良い経路に切替えてデータパケットの通信を継続する。これにより、最初に決めた経路を使用し続けて、帯域が所定の閾値以下になった後に通信経路を再作成するのではなく、所定時間間隔毎に最も帯域の広い経路に切替えるので、通信の中断の発生を予防できる。その結果、通信の中断を事前に予測できないPLCを用いた場合であっても、通信が途切れる可能性を大幅に軽減できる。
 本発明の態様では、通信端末は、所定時間間隔内に、データパケットの通信に用いている経路の帯域が所定値以下になった場合、選択された所定数の経路の中から次に帯域が広い経路に切替えることを特徴とするものである。
 本態様によると、所定時間間隔内に、データパケットの通信に用いている経路の帯域が所定値以下になった場合、選択された所定数の経路の中から次に帯域が広い経路に切替える。これにより、予め経路候補を複数用意しておき、所定時間間隔内に、現在使用している経路の帯域が通信を継続できない状態にまで狭くなった場合であっても、経路候補の中ですぐに帯域の広い他の経路候補に切替えるので、通信の中断を無くすことができる。
 本発明の一態様では、通信部は、データパケットの通信に用いている経路を構成する中継端末から、通信に用いている経路の少なくとも一部の帯域が所定値以下になった旨を通知する帯域減少通知を受信する。通信制御部は、通信部を介して、帯域減少通知を受信した場合、当該帯域減少通知に基づいて、データパケットの通信に用いている経路の帯域が所定値以下になったと判断することを特徴とするものである。
 データパケットの通信中であれば、通信端末は、隣接する通信端末間の帯域の増減を監視できる。そこで、本態様によると、送信元の通信端末は、隣接する通信端末間の帯域が所定値以下になった場合にその旨を通知する帯域減少通知を受信することにより、データパケットの通信に用いている経路の帯域が所定値以下になったことを瞬時に判断できる。これにより、データパケットの通信に用いている経路の帯域が所定値以下になった場合に、選択された所定数の経路の中から次に帯域が広い経路に切替えることができる。その結果、通信の中断を無くすことができる。
 本発明の一態様では、通信端末は、制御部が、選択された所定数の経路の中から次に帯域が広い経路に切替えた場合、現在の所定時間間隔において選択された所定数の経路を構成する各中継端末に第2制御パケットをユニキャストし、第2制御パケットの応答に結果に基づいて、次の所定時間間隔に用いる所定数の経路の中の最も帯域が広い経路を選択し、次の所定間隔の開始の際に、選択された最も帯域が広い経路に切替えて、データパケットの通信を継続することを特徴とするものである。
 本態様によると、現在の所定時間間隔内に所定数の経路の中から次に帯域が広い経路に切替えた場合であっても、次の所定時間間隔の開始の際に最も帯域が広い経路に切替えて通信を継続することにより、次の帯域が広い経路を使用する期間を所定期間より短くできるので、通信の中断を無くしつつ、通信品質を高く維持できる。
 本発明の一態様では、所定時間間隔は、選択された所定数の経路毎に設けられ、選択された所定数の経路毎に設けられた所定時間間隔は、相互に非同期であることを特徴とするものである。
 本発明の一態様では、データパケットの通信に用いている経路を第1経路とすると、制御部が、第1経路以外の第2経路の帯域が、第1経路より広くなったことが第2経路についての所定時間経過後に判明した場合に、第2経路の所定時間経過後に、データパケットの通信に用いている経路を第2経路に切替えることを特徴とするものである。
 本態様によると、第1経路以外の各帯域について所定期間が経過したときに最も帯域が広い経路に切替えることにより、各経路についての所定期間が経過したときにそのタイミングで最も帯域が広い経路を選択するので、最も帯域が広い経路で通信を行うことができる。その結果、最も帯域が広い状態での通信時間を長くし、通信全体を通じて最も帯域が広い経路を最大限活用できる。
 本発明の一態様では、通信部は、選択された所定数の経路の中の一の経路を構成する第1中継端末から、第1中継端末と一の経路をそれまで構成していなかった第2中継端末との間に新たな経路が作成されて、受信端末に至る一の経路が増加した旨の通知を受信する。制御部は、増加した一の経路の中で最も帯域が広い経路に一の経路を置き換えることを特徴とするものである。
 本態様によると、通信に先立って選択された所定数の経路の中の一の経路において通信中に別のバイパス経路が作成された場合であって、別のバイパス経路を用いた一の経路の方が帯域が広い場合は、一の経路を別のバイパスを含むものに置換するので、通信後に生じた経路の変化も考慮して最も帯域が広い経路を選択できる。これにより、予め選択した所定数の経路を維持しながら、第1制御パケットを再度ブロードキャストすることなく、帯域が所定の閾値以下になりにくい経路に更新できる。
 本発明の一態様では、第1中継端末と一の経路をそれまで構成していなかった第2中継端末との間に新たな経路が作成される場合とは、受信端末と同一の送信先に対して、他の通信端末が送信元として前記第1中継端末及び前記第2中継端末を介した経路を作成した場合であることを特徴とするものである。
 本態様によると、第1中継端末と一の経路をそれまで構成していなかった第2中継端末との間に新たな経路が作成される場合は、受信端末と同一の送信先に対して、他の通信端末が送信元として前記第1中継端末及び第2中継端末を介した経路を作成した場合とすることができる。
 本発明の一態様では、前記通信部は、第1中継端末と第2中継端末との間の帯域が所定値以下になった場合、その旨の通知を帯域減少通知を受信する。制御部は、通信部を介して、帯域減少通知を受信した場合、置き換えた一の経路を元の一の経路に戻すことを特徴とするものである。
 本態様によると、第1中継端末と第2中継端末との間の帯域が所定値以下になった場合、置き換えた一の経路を元の一の経路に戻すことにより、一の経路の帯域の減少後も予め選択した経路の数を維持できるので、切替えるバックアップとしての経路の数を確保して、通信の中断の発生を予防できる。
 本発明の一態様では、制御部は、選択された所定数の経路の中のいずれかの経路において帯域が所定値以下になった場合、その経路については第2制御パケットをユニキャストする所定時間間隔を、所定の最小時間間隔に設定することを特徴とするものである。
 選択された所定数の経路の中のいずれかの経路において帯域が所定値以下になった場合、その経路については帯域の増減が不安定であると推定できる。そのため、本態様によると、帯域の増減が大きい経路と仮定して第2制御パケットをユニキャストする所定時間間隔を、その経路については所定の最小時間間隔に設定することにより、その経路の帯域の増減を小まめに把握するので、帯域の変動が大きい可能性のある経路をいち早く発見できる。その結果、例えば、動画のような連続したデータを送信する場合には、帯域の変動が大きい可能性のある経路を経路の選択肢から外して、通信の安定を図ることができる。
 本発明の一態様では、制御部は、第2制御パケットをユニキャストする所定時間間隔を、所定の最小時間間隔に設定した経路について、次以降の所定時間間隔内において経路の帯域が所定値以下にならなかった場合、段階的に所定時間間隔に戻すことを特徴とするものである。
 本態様によると、所定時間間隔を一旦所定の最小時間間隔に設定した場合でも、次以降の所定時間間隔内において経路の帯域が所定値以下にならなかった(例えば、掃除機のスイッチをオンした場合のように一時的な原因に起因する)場合には、経路は帯域の変動の少ない経路と判断して徐々に所定時間間隔に戻すことにより、所定時間間隔を可変にするだけで、その経路が帯域の増減が大きい経路不安定な経路か否かを判断できるので、経路の安定性を判断する処理を容易化できる。
 本発明の一態様では、制御部は、第2制御パケットをユニキャストする所定時間間隔を、所定の最小時間間隔に設定した経路について、次以降の所定時間間隔内においても経路の帯域が所定値以下になった場合、再度所定の最小間隔に設定することを特徴とするものである。
 本態様によると、次以降の所定時間間隔内においても、経路の帯域が所定値以下になった場合、再度所定の最小時間間隔に設定することにより、帯域の変動が大きい可能性のあるだけではなく、実際に帯域の変動が大きい経路であると判断できる。これにより、所定時間間隔を可変にするだけで、帯域の変動が大きい不安定な経路を発見する処理が容易となる。
 本発明の一態様では、通信端末は、アドホックネットワークを構成し、信端末と受信端末との間でデータパケットを中継する通信端末である。ただし、送信端末によって、受信端末までの経路が、通信状態が良い順番に所定数選択されているものとする。そして、本発明の通信端末は、データパケットを通信する通信部と、データパケットの通信中において、送信端末が所定時間間隔毎にユニキャストした制御パケットに基づいて、通信端末が選択された所定数の経路の中の二以上の経路の分岐点に位置するか否かを判断し、通信端末が選択された所定数の経路の中の二以上の経路の分岐点に位置する場合には、データパケットの通信に用いている帯域が所定値以下になると、分岐点を経由する他の経路の中から最も通信状態の良い経路を選択して、データパケットの通信に用いている経路を切替える制御部とを備える。
 本態様によると、通信端末が、中継端末として動作し、第1経路と第2経路との経路の分岐点に位置する場合には、通信端末が分岐点を経由する他の経路の中から最も帯域の広い経路を選択して切替えることにより、送信元である通信端末にデータパケットの通信に用いている帯域が所定値以下になった旨の通知をする処理を省くことができるので、システム全体としての処理を簡素化できる。
 本発明は、アドホックネットワークを構成する通信端末が実施する通信方法にも向けられている。そして、本発明の通信方法は、少なくとも1つの中継端末を介して、受信端末に対してデータパケットを通信するステップと、データパケットの通信に先立って、受信端末までの経路作成に用いる第1制御パケットをブロードキャストするステップと、第1制御パケットの応答結果に基づいて、受信端末に至る経路を通信状態が良い順番で所定数選択するステップと、データパケットの通信中に、所定時間間隔毎に選択された所定数の経路を構成する各中継端末に通信状態の変化を確認する第2制御パケットをユニキャストするステップと、第2制御パケットの応答結果に基づいて、選択された所定数の経路の中で最も通信状態が良い経路に切替えてデータパケットの通信を継続するステップとを備える方法である。
 また、本発明は、アドホックネットワークを構成し、送信端末と受信端末との間でデータパケットを中継する通信端末が実施する通信方法にも向けられている。ただし、送信端末によって、受信端末までの経路が、通信状態が良い順番に所定数選択されているものとする。そして、本発明の通信方法は、データパケットを通信するステップと、データパケットの通信中において、送信端末が所定時間間隔毎にユニキャストした制御パケットに基づいて、通信端末が選択された所定数の経路の中の二以上の経路の分岐点に位置するか否かを判断するステップと、通信端末が選択された所定数の経路の中の二以上の経路の分岐点に位置する場合には、データパケットの通信に用いている帯域が所定値以下になると、分岐点を経由する他の経路の中から最も通信状態の良い経路を選択して、データパケットの通信に用いている経路を切替えるステップとを備える。
 本発明は、上記構成により、電力線等を用いたアドホックネットワークにおいて、経路選択時に最も帯域の良い経路を取得できる。また、全通信に消費される帯域の中に経路作成パケットの送信に消費される帯域が占める割合を大幅に削減して、本来送信したいデータの送信を確保できる。
図1は、本発明の実施の形態1に係る通信システムの構成図である。 図2は、本発明の実施の形態1に係る通信システムの論理トポロジーの構成図である。 図3は、本発明の実施の形態1に係る通信端末のハード構成を示した図である。 図4Aは、本発明の実施の形態1に係る端末装置の機能ブロック図である。 図4Bは、経路候補保持部404が保持する経路候補の一例を示す図である。 図5Aは、本発明の実施の形態1で用いる経路探索用パケット(ルートリクエスト)のフォーマットを表した図である。 図5Bは、本発明の実施の形態1で用いる経路探索用パケット(ルートリクエスト)の一具体例を表した図である。 図5Cは、本発明の実施の形態1で用いる経路探索用パケット(ルートリプライ)のフォーマットを表した図である。 図5Dは、本発明の実施の形態1で用いる経路探索用パケット(ルートリプライ)の一具体例を表した図である。 図6Aは、本発明の実施の形態1で用いる経路推定用パケット(ルートエスティメーションリクエスト)のフォーマットを表した図である。 図6Bは、本発明の実施の形態1で用いる経路推定用パケット(ルートエスティメーションリクエスト)の一具体例を表した図である。 図6Cは、本発明の実施の形態1で用いる経路推定用パケット(ルートエスティメーションリプライ)のフォーマットを表した図である。 図6Dは、本発明の実施の形態1で用いる経路推定用パケット(ルートエスティメーションリプライ)の一具体例を表した図である。 図7は、本発明の実施の形態1に係る通信端末での経路探索時のシーケンス図である。 図8は、ルートリクエスト・ルートリプライによる経路探索・設定の終了後のネットワーク状態を示す図である。 図9は、実施の形態1に係る通信端末の経路推定時のシーケンス図である。 図10は、実施の形態1に係る通信端末における時刻T1での経路推定後のネットワーク状態を示す図である。 図11は、実施の形態1に係る通信端末における時刻T2での経路推定後のネットワーク状態を示す図である。 図12は、実施の形態1に係る通信端末における時刻T3での経路推定後のネットワーク状態を示す図である。 図13は、実施の形態1に係る通信端末の経路選択図である。 図14は、実施の形態1に係る通信端末におけるデータ送信処理を表すフローチャートである。 図15は、実施の形態1に係る通信端末における経路探索処理を表すフローチャートである。 図16は、実施の形態1に係る通信端末における経路推定処理を表すフローチャートである。 図17は、実施の形態2におけるネットワーク構成図である。 図18Aは、本発明の実施の形態2で用いる帯域減少通知パケットのフォーマットを表した図である。 図18Bは、本発明の実施の形態2で用いる帯域減少通知パケットの一具体例を表した図である。 図19は、実施の形態2に係る経路分岐端末へ帯域減少通知を送信時のネットワーク状態を示す図である。 図20は、実施の形態2に係る経路分岐端末へ帯域減少通知を送信後のネットワーク状態を示す図である。 図21は、実施の形態2に係る経路分岐端末へ帯域減少通知を送信した場合の経路選択図である。 図22は、実施の形態2に係る送信端末へ帯域減少通知を送信時のネットワーク状態を示す図である。 図23は、実施の形態2に係る送信端末へ帯域減少通知を送信後のネットワーク状態を示す図である。 図24は、実施の形態2に係る送信端末へ帯域減少通知を送信した場合の経路選択図である。 図25は、実施の形態2に係る中継端末の処理を表すフローチャートである。 図26は、実施の形態3に係る通信端末における時刻T4での経路推定後のネットワーク状態を示す図である。 図27は、実施の形態3に係る通信端末における時刻T5での経路推定後のネットワーク状態を示す図である。 図28は、実施の形態3に係る通信端末における時刻T6での経路推定後のネットワーク状態を示す図である。 図29は、実施の形態3に係る通信端末において経路推定を非同期とした場合の経路選択図である。 図30は、実施の形態3に係る通信端末において経路推定間隔を変動させた場合の経路選択図である。 図31は、実施の形態3に係る通信端末における経路推定処理を表すフローチャートである。 図32は、実施の形態4におけるネットワーク構成図である。 図33Aは、実施の形態4で用いるルートエスティメーションリプライを示す図である。 図33Bは、実施の形態4で用いるルートエスティメーションリプライを示す図である。 図34は、実施の形態4に係る通信端末における経路選択図である。 図35Aは、従来の無線通信を用いた通信端末における帯域変動図である。 図35Bは、従来のPLCを用いた通信端末における帯域変動図である。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る通信システムの構成図である。図1において、本発明の通信システムは、複数の通信端末101~108で構成されている。ここでは、通信端末101~108のうち、特に、データを送信する端末を送信端末と呼び、データを中継する端末を中継端末と呼び、データを受信する端末を受信端末と呼ぶことにする。図1に示す例では、送信端末A101が、中継端末B102及び中継端末C103を介して、受信端末D104にデータを送信する状態を示している。ここで用いられるネットワークは、PLC(Power Line Communication)のネットワークであることを想定しているが、無線LANや有線LAN等のネットワークにも適用可能である。このシステムのサービスエリア109は、ネットワーク内に存在する各通信端末101~103のカバーエリア110、111及び112よりも大きい。このため、送信端末A101及び受信端末D104は、中継端末B102及び中継端末C103を介して、相互の通信を行うアドホックネットワークを採用している。
 図2は、図1に示す通信システムの論理トポロジーの図である。図2において、線で繋がっている通信端末A~H101~108同士が、直接通信可能であることを表している。
 図3は、上述した各通信端末のハード構成を示した図である。図3において、通信端末は、各種の制御プログラムやワークエリアを含むメモリ301、通信端末全体を制御するCPU302、及び電力線と接続され電力線を介して各種データを通信するネットワークインタフェース303から構成されている。CPU302は、メモリ301に格納されているプログラムを実行する。また、CPU302は、ネットワークインタフェース303を介してデータの送信を行い、ネットワークインタフェース303を介して受信したデータを解読することにより受信する。
 図4Aは、本発明の実施の形態1に係る端末装置の機能ブロック図である。図4Aにおいて、端末装置は、パケット受信部401、経路選択部402、経路探索・推定スケジューラ403、経路候補保持部404、経路探索部406、経路推定部407、経路比較部408、及びパケット送信部409を備える。これらの機能ブロックは、上述したメモリ301、CPU302、及びネットワークインタフェース303等によって実現される。
 パケット受信部401は、受信可能な全てのパケットを受信する。パケット受信部401は、パケットを受信すると、受信パケットの宛先まで、受信パケットを送信する経路候補の有無を経路選択部402に問い合わせる。経路選択部402は、受信パケットの宛先までの経路候補を幾通りか保持する経路候補保持部404を参照して、受信パケットの宛先までの経路候補の有無を確認する。経路候補保持部404が保持する経路候補については後述する。パケット受信部401は、経路選択部402が受信パケットの宛先までの経路の存在を確認した場合には、その受信パケットを経路選択部402に渡す。一方、パケット受信部401は、経路選択部402が受信パケットの宛先までの経路候補の不存在を確認した場合には、経路探索・推定スケジューラ403に、受信パケットの宛先までの経路の探索を指示する。
 経路選択部402は、パケット受信部401より渡されたパケットの宛先について、経路候補保持部404に保持された複数の経路候補を経路比較部408で相互に比較させて、複数の経路候補の中から最適な経路を選択する。
 経路探索・推定スケジューラ403は、パケット受信部401から経路を探索する旨の指示を受けた場合、経路探索部406に対して受信パケットの宛先までの経路を探索する経路探索の指示を行う。また、経路探索・推定スケジューラ403は、経路選択部402にて受信パケットを送信する経路が選択されると所定のタイマを設定し、受信パケットの送信に用いる経路について帯域の状況を推定する経路推定の指示を経路推定部407に対して行う。経路探索・推定スケジューラ403は、タイマが切れるたびに経路推定を行う。
 経路探索・推定スケジューラ403から経路探索の指示を受けた場合、経路探索部406は、第1制御パケットとしての経路探索パケットを、パケット送信部409からネットワークにブロードキャストにて送信する。そして、経路探索部406は、パケット受信部401を介して、第1制御パケットに対する応答パケットを受信して、その応答パケットから経路候補を取得し(ルートリクエスト・ルートリプライ)、経路候補保持部404に送る。
 経路探索部406から経路候補を受け取った場合、経路候補保持部404は、経路候補を保存し、経路比較部408に送信する。図4Bは、経路候補保持部404が保持する経路候補の一例を示す図である。図4Bを参照して、経路候補保持部404は、経路候補として、最終宛先、中継経路としての次宛先、帯域情報、遅延情報、優先度(帯域)、優先度(遅延)、及びオプションの各フィールドを備えるものとする。最終宛先には、送信パケットの宛先アドレスとして、受信端末のアドレス(例えば、D、J等)が設定される。次宛先には、送信パケットを次に送信する中継端末のアドレス(例えば、B,E,K,J等)が設定される。帯域情報には、式(1)を用いて算出された、送信端末から受信端末までの帯域に関する情報(例えば、100、50、60、40Mbps等)が設定される。遅延情報には、送信端末からの送信パケットを受信端末が受信するまでの遅延時間(例えば、1、2秒等)が設定される。
 優先度(帯域)とは、同じ最終宛先までの経路が選択された場合、帯域情報か遅延情報のどちらを優先するのかを決定するためのフィールドであって、帯域情報を優先する場合は“1”が、遅延情報を優先する場合は“2”が設定される。優先度(遅延)とは、帯域情報か遅延情報のどちらを優先するのかを決定するためのフィールドであって、遅延情報を優先する場合は“1”が、帯域情報を優先する場合は“2”が設定される。オフションとは、任意の項目が設定可能なフィールドである。例えば、オフションには、ユーザによって、各経路候補の有効/無効が設定されたり、優先度(帯域)/優先度(遅延)の設定内容に関わらず、帯域情報と遅延情報のどちらを優先するのか等が設定される。
 なお、図4Bに示す経路候補の各フィールドとしては、帯域情報か、遅延情報かのどちらか一方のみのを備えるものであってもよい。また、経路候補が、帯域情報か遅延情報のどちらか一方のみを備える場合、帯域情報か遅延情報かのどちらを優先するのかを決定する必要がなくなるので、優先度(帯域)、及び優先度(遅延)の両方のフィールドも備える必要はない。また、オプションのフィールドを備えるか否かはシステムに応じて任意に決めればよい。
 経路推定部407は、経路探索・推定スケジューラ403からの経路推定の指示をもとに、経路候補保持部404に保持された受信パケットの宛先までの経路候補の各々に対して、第2制御パケットとしての経路推定パケットを、パケット送信部409からネットワークにユニキャストにて送信する。、そして、経路推定部407は、パケット受信部401を介して、第2制御パケットに対する応答パケットを受信して、その応答パケットから各経路の帯域の状態を示した状態情報を取得し(ルートエスティメーションリクエスト・ルートエスティメーションリプライ)、経路候補保持部404に送信する。
 経路推定部407から各経路の状態情報を受け取った場合、経路候補保持部404は、各経路の状態情報を保存し、経路比較部408に送信する。
 経路比較部408は、経路候補保持部404から受信パケットについて経路候補を受け取る。また、経路候補の各々について状態情報を受け取った場合、経路比較部408は、各経路の状態情報を比較し、経路変更が必要な場合には、経路選択部402に通知する。経路選択部402は、経路比較部408より経路の変更が指示された場合には、選択する経路を変更する。
 図5A~Dは、経路探索パケットのフォーマットを表した図である。経路探索パケットが送信端末から受信端末へ向かうリクエストパケットとして用いられる場合、ルートリクエストと呼ぶことにする。図5Aは、ルートリクエストのパケットフォーマットを示す図である。図5Aにおいて、経路探索パケットは、PHYヘッダ501、MACヘッダ502及びペイロード503からなる。PHYヘッダ501には、変調方式情報が格納されている。MACヘッダ502には、送信元アドレス504、宛先アドレス505、中継元アドレス506及び中継先アドレス507を表すフィールドと、送信元端末毎に付与されるシーケンス番号508とが格納されている。ペイロード503には、探索したい経路の最終宛先アドレスが示されるフィールド509と、最終宛先までの経路情報とが格納される情報格納領域510とがある。
 図5Bは、経路探索パケットの一具体例を示した図である。図5Bにおいて、送信端末A101より送信される経路探索パケットには、送信元アドレス504として送信端末A101のアドレスAが設定され、宛先アドレス505としては全端末のアドレス(ff:ff:ff:ff:ff:ff)を示すALLが設定される。中継元アドレス506にも送信端末A101のアドレスAが設定され、中継先アドレス507も全端末のアドレス(ff:ff:ff:ff:ff:ff)を示すALLが設定される。すなわち、経路探索パケットは、ブロードキャストにて送信される。この経路探索パケットを受信した中継端末B102は、中継元アドレス506を中継端末B102のアドレスBに変換して中継端末C103に送信する。また、この路探索パケットを受信した中継端末C103は、中継元アドレス506を中継端末C103のアドレスCに変換して受信端末D104に送信する。ただし、最終宛先である受信端末D104に経路探索パケットが届いた場合には、受信端末D104は、経路探索パケットの中継処理を行わない。
 経路探索パケットは、受信端末から送信端末へ向かうリプライパケットとして用いるときはルートリプライと呼ぶことにする。図5Cは、ルートリプライのパケットフォーマットを表した図である。図5Cを参照して、ルートリプライのMACヘッダ502には、ルートリクエストと同様のフィールド504~508に加えて、最終宛先毎に付与される経路番号520がある。ペイロード503には、最終宛先アドレス509に加えて、送信元から最終宛先までの間に存在する各中継端末間の経路のリンク情報521、523,525と、リンク情報521、523,525がどの中継端末間の経路の情報かを示す中継端末のアドレス522、524とが存在する。リンク情報521、523,525は、送信元から最終宛先までの間に存在する各中継端末間の経路での帯域の状態を示す状態情報である。
 例えば、図5Dは、ルートリプライの一具体例を示した図である。図5Dにおいて、受信端末D104から送信端末A101にルートリプライが返信される場合には、送信元アドレス504は受信端末D104のアドレスDとなり、宛先アドレス505は送信端末A101のアドレスAとなる。中継元アドレス506及び中継先アドレス507は、送信端末A101から受信端末D104までの経路の逆をたどるようにつけられる。ここでは、中継元アドレス506は、受信端末D104のアドレスDとなり、中継先アドレス507は、中継端末C103のアドレスCとなる。
 また、送信端末A101と中継端末B102との間のリンク情報521は、帯域の状態が70Mbpsであることを示し、中継端末B102と中継端末C103との間のリンク情報523は、帯域の状態が80Mbpsであることを示し、中継端末C103と受信端末D104との間のリンク情報525は、帯域の状態が60Mbpsであることを示している。このリンク情報521,523,525は、経路探索パケットがルートリクエストとして用いられるときに、ルートリクエストを受信した中継先の端末が、中継元と中継先との間の帯域の状態を示した情報として情報格納領域610に書き込むものである。なお、経路探索パケットがルートリプライとして用いられる場合、ルートリプライはユニキャスト送信される。
 図6A~Dは、経路推定パケットのフォーマットを表した図である。経路推定パケットがリクエストパケットとして用いられる場合、ルートエスティメーションリクエストと呼ぶことにする。図6Aは、ルートエスティメーションリクエストのパケットフォーマットを示す図である。図6Aにおいて、ルートエスティメーションリクエストは、PHYヘッダ601、MACヘッダ602及びペイロード603からなり、図5C,Dで示したルートリプライと同様な構成になっている。すなわち、ルートリクエストのMACヘッダ602には、送信元アドレス604、宛先アドレス605、中継元アドレス606及び中継先アドレス607と、シーケンス番号608とに加えて、経路番号620が追加されている。ペイロード603には、最終宛先アドレス609に加えて、送信元から最終宛先までの間に存在する各中継端末間の経路のリンク情報621,623,625と、リンク情報621,623,625がどの中継端末間の経路の情報かを示す中継端末のアドレス622、624とが存在する。各中継端末は、ルートエスティメーションリクエストを受信すると、ペイロード603に含まれる中継アドレスに応じてMACヘッダ602に含まれる中継先アドレス及び中継元アドレスを再設定して次の中継端末に送信する。
 図6Bは、ルートエスティメーションリクエストの一具体例を示した図である。図6Bにおいて、送信端末A101から受信端末D104に送信する場合には、ルートエスティメーションリクエストは、送信元アドレス604に送信端末A101のアドレスAを、宛先アドレス605に受信端末D104のアドレスDを、中継元アドレス606に送信端末A101のアドレスAを、中継先アドレス607に中継端末B102のアドレスBを設定する。すなわち、ルートエスティメーションリクエストは、ユニキャストにて送信される。また、ルートエスティメーションリクエストは、中継アドレス622,624により、中継端末B102及び中継端末C103の順序で受信端末D104に送信される。ルートエスティメーションリクエストが中継端末から中継端末に送信される毎に、中継元及び中継先のいずれかの中継端末が、中継元と中継先との間の経路の帯域の状態を示す状態情報を、リンク情報621,623,625に書き込む。
 経路推定パケットがリプライパケットとして用いられる場合、ルートエスティメーションリプライと呼ぶことにする。図6Cは、ルートエスティメーションリプライのパケットフォーマットを示す図である。図6Cにおいて、ルートエスティメーションリプライのフォーマットは、図5Cに示したルートリプライと同様の構成である。ルートエスティメーションリプライに格納される情報も、図5Cに示したルートリプライと同様である。ここでは、送信端末A101と中継端末B102との間のリンク情報は帯域の状態が70Mbpsであり、中継端末B102と中継端末C103との間のリンク情報は帯域の状態が80Mbpsであり、中継端末C103と受信端末D104との間のリンク情報は帯域の状態が60Mbpsである。
 経路探索パケットは、ブロードキャストで送信されるため、リンク情報を中継先の中継端末が経路探索パケットを受信した場合に追記されなければならない。一方、経路推定パケットは、ユニキャストで相互に送受信されるため、リンク情報を中継元及び中継先のいずれかの中継端末で追記してもよい。例えば、リンク情報が送信端末A101から中継端末B102への電力減衰量であれば、ルートエスティメーションリクエストを受信した中継端末B102がリンク情報を追記するが、リンク情報が送信端末A101から中継端末B102へ送信する時にどの変調方式を用いるかという情報であれば、ルートエスティメーションリプライを受信した時に送信端末A101がリンク情報を追記しても良い。
 図7は、本発明の実施形態1において経路探索を行う場合のシーケンス図である。経路探索とは、図2で示したリンクを使用して構成される無数の経路の中から、最も状態の良い経路を探し出すことである。アドホックネットワークにおいて、経路の状態の比較手法は様々であるが、本実施の形態では下記の式を用いて、経路の帯域を算出する。受信端末D104は、この数値の最も高かった経路に対してルートリプライを返す。ただし、R1,R2,R3・・・は、各経路の帯域を表す。
Figure JPOXMLDOC01-appb-M000001
 まず、送信端末A101は、最終宛先を受信端末D104と設定したルートリクエスト710をブロードキャストパケット711で送信する。ブロードキャストパケット711を受信した中継端末B102、中継端末E105及び中継端末G107の各々は、各リンク情報を追記して、それぞれブロードキャストパケット712、713及び714を送信する。ここで、中継端末E105が送信したブロードキャストパケット712は、中継端末B102にも届くが、中継端末B102は中継送信を行わない。最終宛先を通信端末D104として場合、送信端末A101→中継端末E105→中継端末B102という経路は、送信端末A101→中継端末B102という経路と、式(1)を用いて比較した場合に状態の良くない経路になるからである。以下のパケットも同様であるとする。このような制御は、無駄な制御パケットの送信による帯域の占有を抑えるために有効である。
 ブロードキャストパケット712、713及び714を受信した中継端末C103、中継端末F106及び中継端末H108の各々は、各リンク情報を追記して、それぞれブロードキャストパケット715、716及び717を送信する。ブロードキャストパケット716、716及び717を受信した受信端末D104は、これ以上の中継送信を行わない。これは、受信端末D104が最終宛先端末だからである。受信端末D104は、受信した全てのルートリクエストパケットの情報から状態の良い経路(すなわち、式(1)の高い経路)を算出し、当該算出した経路を介して、ルートリプライ719を送信端末A101に返信する。ルートリプライの返信数は、ネットワーク規模によって任意に設定可能である。返信数は、送信元と宛先間に存在する無数の経路のうち、最も状態の良い経路がどのような状況においても、ルートリプライで返信した経路に含まれるように設定されることが好ましい。
 本実施の形態では、ルートリプライ718を3つのユニキャストパケット719、720及び721で返信している。各ルートリプライは、それぞれ送信端末A101→受信端末D104間に探索された経路とは逆の経路である受信端末D104→中継端末C103→中継端末B102→送信端末端末A101という経路、受信端末D104→中継端末F106→中継端末E105→送信端末A101という経路、あるいは受信端末D104→中継端末H108→中継端末G107→送信端末A101という経路の順で、中継送信される。ルートリプライによって各端末でのデータ中継機能の動作が開始される。
 図8は、ルートリクエスト・ルートリプライによって経路の探索・設定が終了した時のネットワーク図である。図8において、経路候補1は、送信端末A101→中継端末B102→中継端末C103→受信端末D104という経路である。経路候補2は、送信端末A101→中継端末E105→中継端末F106→受信端末D104という経路である。経路候補3は、送信端末A101→中継端末G107→中継端末H108→受信端末D104という経路である。また、経路候補1の送信端末A101と中継端末B102との間の100Mbpsは、送信端末A101と中継端末B102との間のリンク情報を示している。中継端末B102と中継端末C103との間の100Mbpsは、中継端末B102と中継端末C103との間のリンク情報を示している。また、中継端末C103と受信端末D104との間の100Mbpsは、中継端末C103と受信端末D104との間のリンク情報を示している。経路候補2及び経路候補3においても、同様である。各リンク情報を式(1)に当てはめると、それぞれの経路の帯域は、経路候補1が33Mbpsとなり、経路候補2が10Mbpsとなり、経路候補3が20Mbpsとなる。そのため、送信端末A101において、経路比較部408は、経路候補1、経路候補2及び経路候補3の帯域を相互に比較する。そして、経路選択部402は、比較結果に基づいて、経路候補1を最終宛先Dに対する経路として選択している。
 図9は、図8に示す各経路候補に対して経路推定を行う場合のシーケンス図である。図9において、ルートエスティメーションリクエストは、各経路候補に対してソースルーチング(source routing)を用いて送信される。すなわち、ルートエスティメーションリクエストは、送信端末A101から受信端末D104間に設定されている経路候補1に限らず、経路候補2及び経路候補3を介して、送信端末A101から受信端末D104に送信される。各端末で送信されるユニキャストパケットは、ブロードキャストパケットに比べて極めて帯域消費が少ない。そのため、送信端末Aは、ブロードキャストパケットを用いる経路探索と、ユニキャストパケットを用いる経路推定とを組み合わせることによって、帯域消費を抑えて状況の変化に応じて最も状態の良い経路を取得することが可能となる。なお、本実施の形態では、経路推定は定期的に全経路候補に対して行われるものとするが、経路推定のタイミングや、どの経路に対して経路推定を行うかは状況に応じて変化させてよい。
 図10~12は、定期的に経路推定された結果を表す状態遷移図である。図10は、通信開始から時刻T1だけ経過した状態において、1回目の経路推定を行った結果を示している。図11は、通信開始から時刻T2だけ経過した状態において、2回目の経路推定を行った結果を示している。図12は、通信開始から時刻T3だけ経過した状態において、3回目の経路推定を行った結果を示している。なお、図10~12は、帯域に関して、経路候補の優先度を決定している例を示している。本実施の形態では、PLCを前提としているため、通信端末の移動がなくても家電の電源ONなどにより、帯域の変動は発生するものとする。無線を前提としても、移動の少ない通信端末でアドホックネットワークを形成し、通信端末間に遮蔽物が発生した場合には、同様の状況は発生しうる。
 図10において、時刻T1では、経路候補探索時(図8)と比較して、経路候補1の各リンクの帯域が100Mbpsから40Mbpsに低下している。また、経路候補2の各リンクの帯域は、30Mbpsから80Mbpsに増加している。なお、経路候補3の各リンクの帯域は変化がない。推定結果より各経路の帯域は、それぞれ経路候補1が13Mbpsとなり、経路候補2が27Mbpsとなり、経路候補3が20Mbpsとなる。従って、時刻T1では、送信端末A101は、経路候補2を選択して送信を行う。
 図11において、時刻T2では、時刻T1(図10)と推定結果が変化していない。そのため、送信端末A101は、引き続き経路候補2を選択する。図12において、時刻T3では、経路候補1の各リンクの帯域が40Mbpsから100Mbpsに戻っている。なお、経路候補2及び経路候補3の各リンクの帯域は、時刻T2のときと比較して変化がない。この場合、各経路の帯域は、それぞれ経路候補1が33Mbpsとなり、経路候補2が27Mbpsとなり、経路候補3が20Mbpsとなる。そこで、時刻T3では、送信端末A101は、経路候補1を選択する。
 図13は、図10から図12で示した各経路候補1~3の帯域変動と、選択された経路との関係を表した選択経路図である。図13において、時刻T0(すなわち、経路探索時)と時刻T1との間で、経路候補1の帯域と経路候補2の帯域とが変動している。通信の開示時に経路探索を行っただけでは、その通信の期間中ずっと経路候補1を使い続けることになるが、本実施の形態では通信の途中で経路推定を行った時刻T1において、より状態の良い経路である経路候補2に選択経路を切り換えている。また、時刻T2と時刻T3の間では経路候補1の帯域が変動している。この状況変化に対しても、より状態の良い経路である経路候補1に選択経路を戻すことに成功している。
 従来の方式では、経路が切断された場合に、経路探索をもう一度行い、新しい経路を設定するというものであったため、経路が切断されるまでは、新しい経路を選択することは不可能であった。また、別の従来の方式では、経路の帯域が閾値を下回った場合に、予め経路探索によって取得された第2の候補経路に切り換えるというものであったため、その時に最も状態の良い経路を選択することは不可能であった。このような原因は、経路探索がブロードキャストの連続(フラッディング)によって行われているため、多大な帯域を占有し、本来送信したいデータ用の帯域を圧迫してしまうため、経路探索を極力回避しなければならなかったためである。それに対して、本実施の形態では、ユニキャストパケットをいくつかの経路候補に送信することにより、制御パケットによる帯域の占有を回避しつつ、最も状態の良い経路を取得することが可能となる。
 図14は、本発明の実施の形態1に係る端末装置(送信端末A101)のデータ送信時の経路選択処理のフローチャートを示す図である。図14を参照して、送信端末A101は、経路候補保持部404を参照して、送信パケットの最終宛先への経路の有無を確認する(ステップS1401)。送信端末A101は、送信パケットの最終宛先までの経路が設定されて無い場合には、経路探索処理を実施する(ステップS1402)。経路探索処理の詳細については後述する。次に、送信端末A101は、経路選択処理を実施し、帯域情報又は遅延情報に基づいて、最適な経路を選択し(ステップS1406)、処理を終了する。
 一方、送信端末A101は、送信パケットの最終宛先までの経路が設定されて有ることを確認した場合には、経路選択処理を実施し、帯域情報又は遅延情報に基づいて、最適な経路を選択する(ステップS1403)。次に、送信端末A101は、選択した経路について有効時間(すなわち、タイマT)内か否かを確認する(ステップS1404)。送信端末A101は、有効期限(タイマT)内であると、そのまま処理を終了する。一方、送信端末A101は、有効期限(タイマT)が切れると、現在選択された経路を無効とし、経路推定処理を実行する(ステップS1405)。経路推定処理の詳細については後述する。次に、送信端末A101は、推定された経路に基づいて、再度、経路選択処理を実施し、最適な経路を選択し(ステップS1406)、処理を終了する。
 次に、経路探索処理の詳細について説明する。図15は、図14のステップS1402の経路探索処理の詳細を説明するフローチャートである。図7及び図15を参照して、送信端末A101は、ルートリクエスト710をブロードキャストにて送信することによって、経路探索を開始する(ステップS1501)。最終宛先端末である受信端末D104から所定の時間内にルートリプライパケット720が受信された場合(ステップS1502)には、送信端末A101は、ルートリプライパケット720に記載された情報に基づいて、経路候補を設定する(ステップS1503)。
 一方、ルートリプライパケット720が受信されない場合には、送信端末A101は、ルートリクエストパケット710の再送を行う。送信端末A101は、再送を繰り代えし行い、最大再送回数を超えてもルートリプライパケット720を受信できなかった場合(ステップS1504)には、データパケットの廃棄を行う(ステップS1505)。なお、送信端末A101は、同一の最終宛先に対するデータパケットの廃棄を一定期間継続して行ってもよい。これによって、経路が見つからない最終宛先に対して、連続して経路探索処理うことを防止し、ルートリクエストパケット710の帯域占有率が大きくなることを防ぐことができる。
 また、経路推定処理の詳細について説明する。図16は、図14のステップS1405の経路推定処理の詳細を説明するフローチャートである。図16を参照して、送信端末A101は、経路探索・推定スケジューラ403によって設定されたタイマTが切れると、現在選択された経路を無効とし、経路の再推定を行う。送信端末A101は、最終宛先端末である受信端末D104への経路候補1から3に対して、各経路の中継端末に関する情報を設定し(ステップS1601)、ルートエスティメーションリクエストパケットをユニキャストにて送信する(ステップS1602)。送信端末A101は、ルートエスティメーションリプライパケットが受信された場合(ステップS1603)は、その時刻で最も状態の良い経路を経路候補1から3の中から選択し、選択経路の更新を行う(ステップS1604)。
 一方、送信端末A101は、ルートエスティメーションリプライパケットが受信されない場合には、その経路は通信不能となったものと判断し経路を破棄する(ステップS1605)。例えば、経路候補2を用いて送信したルートエスティメーションリクエストパケットに対して、ルートエスティメーションリプライパケットを受信しなかった場合には、送信端末A101は、経路候補2を破棄する。その結果、最終宛先に対する経路が無くなった場合(ステップS1606)には、経路推定処理を終了して、経路探索処理を行う(図14のステップS1402)。なお、経路が無くなるとは、選択経路を更新した結果、極端に悪い状態の経路しか残らなかった場合を含む。送信端末A101は、経路が存在する限り、タイマが切れるたびに同様の処理を繰り返し行う。
 以上により、本態様によると、送信端末A101は、データパケットの通信に先立って、経路作成に用いる第1制御パケットであるリートリクエストをブロードキャストし、ルートリクエストの応答結果に基づいて受信端末D104に至る経路を帯域が広い(又は遅延時間が小さい)順番で所定数選択する。これにより、予め経路候補(例えば経路候補1から3)を用意して、その経路候補の中で状態が良い経路を選択して切替えるので、経路作成に用いるルートリクエストをブロードキャストするのは通信前の一回でよく、制御パケットが帯域を占める量を大幅に軽減できる。このような制御は、PLCを用いた場合、通信端末の使用状況によって経路の通信状態が大きく変動し、一旦経路の通信状態が悪くなったとしても、所定時間経過後には良い状態に戻る可能性が高いために可能となる。
 なお、PLCだけに限らず、無線通信を前提としても、移動の少ない通信端末でアドホックネットワークを形成し、通信端末間に遮蔽物が発生した場合には、同様の状況は発生しうる。このため、本発明は、無線通信を用いたネットワークに適用しても有用である。また、一方の経路が無線LANの11n規格で通信されており、他方の経路が無線LANの11b規格で通信されているような、規格の異なる複数の経路を持っているネットワークに適用しても有用である。あるいは、一方の経路が無線通信で構成されていて、他方の経路がPLCで構成されているようなネットワークに適用しても有用である。
 また、送信端末Aは、データパケット通信中の所定時間毎に、選択された所定数の経路を構成する各中継端末に、帯域の増減を確認する第2制御パケットであるルートリクエストパケットをユニキャストする。これにより、送信端末Aは、データパケットの通信中は、帯域の増減を確認するルートリクエストパケットをユニキャストするので、制御パケットの使用量を最小限に抑え、制御パケットが帯域に占める割合を大幅に軽減できる。
 さらに、送信端末Aは、ルートリクエストパケットに対する応答結果に基づいて、選択された所定数の経路の中で最も帯域が広い経路に切替えてデータパケットの通信を継続する。これにより、最初に決めた経路を使用し続けて、帯域が所定の閾値以下になった後に通信経路を再作成するのではなく、所定時間単位に最も帯域の広い経路に切替えるので、通信の中断の発生を予防できる。その結果、通信の中断を事前に予測できないPLCを用いた場合であっても、通信が途切れる可能性を大幅に軽減できる。
 (実施の形態2)
 次に、本発明の実施の形態2について説明する。実施の形態1では、送信端末A101より全ての経路候補が分岐し、経路推定により選択経路が変更される場合について説明した。実施の形態2では、ある中継端末において、経路候補が分岐し、帯域減少通知によって選択経路が変更される場合について説明する。
 図17は、本発明の実施の形態2に係る中継端末で経路候補が分岐している場合のネットワーク図である。図17において、経路候補1は、送信端末A101→中継端末E105→中継端末C103→受信端末D104である。経路候補2は、送信端末A101→中継端末E105→中継端末F106→受信端末D104である。経路候補3は、送信端末A101→中継端末G107→中継端末H108→受信端末D104である。これらの3つの経路候補1~3が設定されているものとする。ここで、各リンクの情報を式(1)に当てはめると、各経路の帯域は、それぞれ経路候補1が33Mbpsとなり、経路候補2が13Mbpsとなり、経路候補3が20Mbpsとなる。そのため、送信端末A101は、経路候補1を最終宛先である受信端末D104に対する経路として選択している。このネットワークでは、経路が中継端末E105で経路候補1と経路候補2とに分岐している。中継端末E105のような1つの最終宛先端末に対して、2つ以上の中継先アドレスを持つ端末を経路分岐端末と呼ぶ。
 ルートエスティメーションリクエストは、このような経路分岐端末において中継先ごとに送信されるものとする。即ち、送信端末A101から中継端末E105へのルートエスティメーションリクエストは、経路候補1及び経路候補2について1つだけ送信される。また、中継端末E105から送信されるルートエスティメーションリクエストは、経路候補1及び経路候補2の各々について1つずつ送信される。
 すなわち、図17に示す例では、送信端末A101からは、経路候補1及び経路候補2に対するルートエスティメーションリクエストが、1つ中継端末E105に送信される。一方、送信端末A101からは、経路候補3に対するルートエスティメーションリクエストが中継端末G107に送信される。中継端末E105は、送信端末A101からのルートエスティメーションリクエストを受信すると、中継端末C103に経路候補1に対するルートエスティメーションリクエストを送信し、中継端末G107に経路候補2に対するルートエスティメーションリクエストを送信する。
 最終宛先である受信端末D104には、経路候補1~3の全てのルートエスティメーションリクエストが届くため、経路候補分のルートエスティメーションリプライを返信する。このような動作を行うことにより、ルートエスティメーションリクエストの帯域消費を削減することが可能となる。PLCのような家電の電源ON/OFFに帯域が左右されるようなネットワークにおいては、影響を受けやすいリンク(例えば、テレビやPCの近く)と、影響を受けにくいリンク(例えば、寝室の近く)が決まっているため、ある特定のリンクは多くの経路候補が重なって使用する可能性が高い。そのため、このような帯域削減方式が有効であると考えられる。
 このように、中継端末E105は、経路候補1と経路候補2との経路の分岐点に位置する場合には、分岐点を経由する経路候補1と経路候補2との中から最も帯域の広い経路を選択して切替える。これにより、送信元である送信端末A101まで、データパケットの通信に用いている帯域が所定値以下になった旨の通知(以下、帯域減少通知と呼ぶ)をする処理を省くことができる。そのため、システム全体としての処理を簡素化できる。
 図18Aは、帯域減少通知のパケットフォーマットを表した図である。図18Bは、実際に送信される帯域減少通知パケットの一具体例を示した図である。帯域減少通知パケットとは、通信中の経路に極端な帯域の減少が発生した場合に、次の経路推定を待たずに、経路の変更を指示するためのパケットである。経路の変更は、経路分岐端末(この例では、中継端末E105)で行われてもよいし、送信元端末(この例では、送信端末A101)で行われても良い。帯域減少通知パケットは、例えば、各通信端末の隣接リンクの帯域が所定の閾値Xmbpsを下回った場合に、隣接する通信端末に送信される。あるいは、帯域減少通知パケットは、各通信端末の隣接リンクの帯域が経路推定時のY%以下になった場合に隣接する通信端末に送信されてもよい。また、帯域減少通知パケットは、各通信端末の隣接リンクの帯域が、当初の帯域よりもZMbps以上低下した場合に隣接する端末に送信されてもよい。
 図18A及び図18Bを参照して、帯域減少通知パケットのヘッダは、通常のパケットと同じであり、ペイロード部には帯域減少情報1801が格納される。帯域減少情報1801は、中継端末のアドレスと、その端末間の帯域情報とから構成される。例えば、中継端末C103-受信端末D104間のリンクが5Mbpsになった場合には、中継端末C103及び受信端末D104のアドレスと、中継端末C103及び受信端末D104間のリンクの帯域情報である「5」とが格納されることになる(図18B)。各通信端末は、パケット受信部401を介して、帯域減少通知パケットを受信すると、その情報を経路選択部402に通知し、経路選択部402で経路の選択を更新することになる。
 図19は、図17に示すネットワーク図に置いて、中継端末C103が帯域減少通知2001を送信する場合の状態遷移図である。図19では、中継端末C103が、中継端末C103-受信端末D104間のリンク帯域が5Mbpsになり、閾値である10Mbpsを下回ったため帯域減少通知2001を中継端末E106に送信する場合を表している。
 図20は、図17に示すネットワーク図に置いて、中継端末E105が帯域減少通知2001を受信した場合の状態遷移図である。ここで、中継端末E105は、経路分岐端末である。図20では、帯域減少通知2001を受信した経路分岐端末E105が、経路推定を行った場合を表している。中継端末E105から受信端末D104までの経路候補1の経路の帯域が4.8Mbpsとなる。一方、中継端末E105から受信端末D104までの経路候補2の経路の帯域が40Mbpsとなる。このことから、中継端末E105は、帯域が広い経路候補2を選択する。なお、経路分岐端末である中継端末E105は、自身の分岐経路の中から経路選択を行った場合には、帯域減少通知を送信端末A101まで中継しなくともよい。
 図21は、図19及び図20で表した状態における経路選択図である。図21において、現在選択された経路1の帯域が閾値を下回った場合に、その下回ったタイミング(Ta)にて、定期的(T1、T2、T3のタイミング)に行われる経路推定とは別に経路推定が行われ、経路の切り替えが行われていることがわかる。上記の例では、中継端末E105は、帯域減少通知を受信して、経路候補1から経路候補2に経路を切り替える。これによって、極端に帯域が低下した場合の一時的な劣化を回避することが可能となる。
 このように、各通信端末は、隣接する通信端末間での帯域が所定値以下になった場合に、その旨を送信端末に向けて通知する。これにより、送信端末や経路分岐端末は、データパケットの通信に用いている選択経路の帯域が所定の閾値以下になったことを瞬時に判断できる。そのため、送信端末や経路分岐端は、データパケットの通信に用いている選択経路の帯域が所定の閾値以下になった場合に、選択された経路候補の中から次に帯域が広い経路に切替えることができる。その結果、通信の中断を無くすことができる。
 図22は、図17に示すネットワーク図に置いて、中継端末C103が、中継端末C103及び受信端末D104間の帯域が減少したことを受けて、帯域減少通知2001を中継端末E105に送信し、さらに中継端末E105が帯域減少通知2001を送信端末A101に送信する場合の状態遷移図である。図22において、図20のように経路分岐端末である中継端末E105が経路推定を行った場合と異なって、送信端末A101において経路推定を行った場合でも、各経路の帯域は経路候補1が4.5Mbpsとなり、経路候補2が28.5Mbpsとなり、経路候補3が20Mbpsとなる。このため、送信端末A101により、最も帯域が広い経路候補2が選択される。この場合の経路選択図としては図21と同様となる。
 図23は、送信端末A101まで帯域減少通知2001を中継した場合に、送信端末A101において、帯域推定を行わずに経路選択を行った場合の状態遷移図である。図23において、送信端末A101は、帯域推定を行わずに前回の経路探索・推定の時に取得した経路のうち、例えば2番目に帯域が良かった経路候補3を選択する。データ通信には、なるべく広い帯域で行う方がよい通信(例えば、ファイル転送)と、ある程度の広さの帯域でよいので一瞬であっても通信停止して欲しくない通信(例えば、動画)がある。経路推定を行った場合、ルートエスティメーションパケットが送信されてからルートエスティメーションパケットが返信されるまでの時間の間に、帯域減少通知2001が送られてきた経路(経路候補1)を使い続けると一瞬ではあるが経路悪化が発生する。それが許されない通信の場合は(例えば、動画の場合)、2番目に良い経路を経路推定することなく選択してもよい。これにより、通信の中断を回避できる。
 なお、送信端末A101は、ルートエスティメーションパケットを送信し、ルートリプライパケットが返信されるまでの間のみ、2番目に良い経路を使用してもよい。フラッディングにより送信されるルートリクエストと異なり、ルートエスティメーションリクエストはユニキャストパケットであるため、優先度の調整をすれば動画パケットの障害とはならない。
 図24は、図23において経路推定を行わなかった場合の経路選択図である。図24において、符号2401にて示すように、経路推定が行われなかった場合でも、最も経路状態の良い経路を選択できない期間が一時的にあるものの、経路推定を行うことによりすぐに最も経路状態の良い経路を選択できていることがわかる。このことより、経路推定期間を調整すれば、帯域減少通知に対して経路推定を行わなかったとしても十分に対応可能であると考えられる。
 これによると、送信端末及び経路分岐端末は、現在の経路推定の期間内に経路候補の中から次に帯域が広い経路に切替えた場合であっても、次の経路推定の際に最も帯域が広い経路に切替えて通信を継続する。これにより、2番目に帯域が広い経路を使用する期間を経路推定の期間より短くできるので、通信の中断を無くしつつ、通信品質を高く維持できる。
 図25は、実施の態様2における中継端末の処理を表すフローチャートである。図25を参照して、まず、各中継端末は、受信したパケットがルートリクエストかどうかを判断する(ステップS2501)。ルートリクエストだった場合には、中継端末アドレス(自端末のアドレス)と、隣接通信端末間のリンク情報とを、受信したルートリクエストに追記して(ステップS2502)、次の通信端末に中継送信する(ステップS2503)。一方、各中継端末は、ルートリクエストでなかった場合には、受信したパケットがルートリプライかどうかを判断する(ステップS2504)。ルートリプライだった場合には、ルートリプライに入っている情報から経路(経路番号)と、経路情報(リンク情報等)とを設定し(ステップS2505)、次の端末に中継送信する。
 次に、各中継端末は、受信したパケットがルートリプライでなかった場合、ルートエスティメーションリクエストかどうかを判断する(ステップS2506)。受信したパケットがルートエスティメーションリクエストであった場合には、受信したパケットにリンク情報の追記を行う。さらに、中継端末が経路分岐端末であった場合(ステップS2508)には、各経路に対して、経路推定処理(ステップS1504)を実施する。例えば、図17の例では、経路分岐端末である中継端末E105が、送信端末A101からルートエスティメーションリクエストを受信すると、中継端末E105は、経路候補1及び経路候補2の各々について1つずつルートエスティメーションリクエストを送信して、経路候補1及び経路候補2の各々について経路推定を行う。図17に示すように、中継端末E105が経路候補1と経路候補2との経路の分岐点に位置する場合には、中継端末E105が、分岐点を経由する経路候補1と経路候補2との中から最も帯域の広い経路を選択して切替えることができる。これにより、システム全体としての処理を簡素化できる。
 一方、各中継端末は、受信したパケットがルートエスティメーションリクエストでなかった場合には、ルートエスティメーションリプライかどうかを判断する(ステップS2509)。ルートエスティメーションリプライだった場合には、各中継端末は、自端末の持っているリンク情報の更新を行う(ステップS2510)。
 次に、各中継端末は、受信したパケットがルートエスティメーションリプライでなかった場合、帯域減少通知かどうかを判断する(ステップS2511)。受信したパケットが帯域減少通知であった場合には、自端末が経路分岐端末でなければ(ステップS2512)、受信した帯域減少通知を送信端末側へ中継送信する。一方、中継端末が経路分岐端末であった場合には、自端末の保持している他経路の状態が良ければ(ステップS2513:Yes)、経路を切り替えて帯域減少通知を破棄する(ステップS2514)。一方、他経路の状態が悪ければ(ステップS2513:No)、受信した帯域減少通知を送信側端末へ中継送信する。このように、図23及び図24に示すように、中継端末E105が2番目に帯域の広い経路候補2を選択して切替えれば、送信端末A101にデータパケットの通信に用いている帯域が所定の閾値以下になった旨の通知をする処理を省くことができるので、システム全体としての処理を簡素化できる。
 各中継端末は、受信したパケットが上述した以外のパケットであった場合には、受信したパケットを中継すべきデータパケットであるとし、最終宛先に対する経路を自端末が持っているかどうかを判断する(ステップS2515)。自端末が最終宛先に対する経路を持っている場合には、受信したパケットの中継送信を行う。一方、自端末が最終宛先に対する経路を持っていない場合には、受信したパケットの破棄を行い、ルートエラーパケットを送信端末A101に送って(ステップS2516)、経路探索を開始させる。
 以上のように、本実施の態様によると、中継端末E105が経路候補1と経路候補2との経路の分岐点に位置する場合には、中継端末E105が分岐点を経由する経路候補1と経路候補2との中から最も帯域の広い経路を選択して切替える。これにより、中継端末E105は、送信端末A101までデータパケットの通信に用いている帯域が所定値以下になった旨の通知をする処理を省くことができる。そのため、システム全体としての処理を簡素化できる。
 また、中継端末C103は、中継端末C103-受信端末D104間の帯域が所定値以下になった場合に帯域減少通知を中継端末E105に送信する。これにより、中継端末E105は、データパケットの通信に用いている選択経路の帯域が所定の閾値以下になったことを瞬時に判断できる。そのため、中継端末E105は、データパケットの通信に用いている選択経路の帯域が所定の閾値以下になった場合に、選択された経路候補の中から2番目に帯域が広い経路に切替えることができる。その結果、通信の中断を無くすことができる。
 さらに、現在の経路推定の期間内に経路候補の中から2番目に帯域が広い経路に切替えた場合であっても、次の経路推定の際に最も帯域が広い経路に切替えて通信を継続する。これにより、2番目に帯域が広い経路を使用する期間を経路推定の期間より短くできるので、通信の中断を無くしつつ、通信品質を高く維持できる。
 (実施の形態3)
 次に、実施の形態3について説明する。実施の形態3では、各経路に対して非同期に経路推定を行う場合について説明する。経路減少通知を送られた直後には、経路の帯域推定を行うことはほとんどの場合で意味が無い。本実施の形態では、このような状況で送信端末が経路推定を行うタイミングを変更する方式について述べる。
 図26から図28は、図8の状態から中継端末C103-受信端末D104間のリンク帯域が減少し、中継端末C103が、送信端末A101に向けて帯域減少通知を送信している場合の状態遷移図である。図26は、帯域減少通知が中継端末C103から送信端末A101に送信された時刻T4の状態を示している。図27は、送信端末A101が帯域減少通知を受信した後、経路候補3について経路推定を行った時刻T5の状態を示している。図28は、送信端末A101が時刻T5の次に経路候補3について経路推定を行った時刻T6の状態を示している。
 図26において、経路の帯域は、経路候補1が4.5Mbpsとなり、経路候補2が26.7Mbpsとなり、経路候補3が20Mbpsとなる。送信端末A101は、中継端末C103から中継端末B102を介して帯域減少通知を受信する。これにより、送信端末A101は、中継端末C103-受信端末D104間でのリンク帯域の減少を認識する。このタイミングT4にて、送信端末A101は、全経路に対して経路探索を開始する。その結果、最適な経路として経路候補2を取得し、経路を経路候補1から経路候補2に切替える。
 図27において、送信端末A101が帯域減少通知を受信した後であって、経路候補3についての次の経路推定のタイミングである時刻T5では、送信端末A101は、経路候補2による送信を行っている。さらに、図28において、経路候補3の経路推定を行う時刻T6にて、経路候補3の帯域が増加したことが判明すると、送信端末A101は、経路候補3を選択する。なお、送信端末A101は、選択されている経路中にあるリンクの増減はデータ送信によって判明するため、選択している経路に対する経路推定は必ずしも行わなくともよい。その場合、帯域の増加を示す帯域増加通知を送ってもよい。
 図29は、図26から図28の状態遷移中の経路選択図である。図29において、現在経路候補1が経路として選択されているとする。この際、経路候補1について経路推定は停止されている。この状態で、送信端末A101が選択経路である経路候補1について帯域減少通知を受けたときに(時刻T4)、送信端末A101は全経路の経路探索を行う。時刻T4での経路探索によって、送信端末A101は、最適な経路として経路候補2を取得し、選択経路を経路候補1から経路候補2に更新する。その後、送信端末A101は、経路候補2についての経路推定を停止する。
 送信端末A101は、経路候補1について経路として選択しなくなったときから、経路候補3について経路推定を行うタイミングとは非同期に、経路候補1について定期的な経路推定を開始する。但し、各経路候補について経路推定を行う各タイミングの間隔は一定とする。その後、経路候補3の経路推定のタイミングであるT6が到来し、送信端末A101が経路候補3について経路推定を行う。その結果、経路候補3の帯域が増加したことが判明すると、送信端末A101は経路候補3を選択する。なお、経路候補3も経路候補1と同様に帯域減少通知を受けた時に定期的な経路推定のタイマ値をリセットしてもよい。
 これによると、送信端末A101は、現在データパケットの通信に用いている経路候補2以外の経路候補3について経路推定の時刻T6が経過したときに最も帯域が広い経路候補3に経路に切替える。これにより、各経路についての所定期間が経過したときに、そのタイミングで最も帯域が広い経路を選択する。そのため、最も帯域が広い経路で通信を行うので、最も帯域が広い状態での通信時間を長くできる。その結果、通信全体を通じて最も帯域が広い経路を最大限活用できる。
 (実施の形態4)
 次に、実施の形態4について説明する。実施の形態4では、実施の形態3と異なり経路推定の間隔が一定ではなく可変となっている場合について説明する。
 図30は、経路推定を行う時間間隔が変動する場合の経路選択図である。PLCのような家電の電源ON/OFFに帯域が左右されるネットワークにおいては、帯域変動の多いリンクと少ないリンクとが決まっている。経路推定のパケット量を抑えるためには、変動の多いリンクに対しては頻繁に経路推定し、変動の少ないリンクに対しては時間間隔を広げて経路推定することが好ましい。そこで、帯域減少通知によって、各経路の経路推定のタイミングを変更し、制御パケットによる帯域消費を抑えながら良い帯域の経路を選択している。具体的には、ルートエスティメーションリクエストを送信し、ルートエスティメーションリプライが返信された場合には、次のルートエスティメーションリクエストまでのタイマを2倍に延ばす。一方、帯域減少通知を受信した場合、又は、前回の経路推定と経路推定結果が大きく変動している場合に、タイマの値を所定の最小値(初期値)に設定する。
 図30において、経路候補1については、経路推定を行った結果、経路候補1の帯域が所定の閾値以下になると、経路推定を行う間隔が所定の最小値に設定される。この場合、経路候補1において帯域が所定の閾値以下になった場合、その経路については帯域の増減が不安定であると推定できる。そこで、経路候補1を帯域の増減が大きい経路と仮定して経路推定を行う間隔を、所定の最小値に設定する。これにより、経路候補1の帯域の増減を小まめに把握できるので、帯域の変動が大きい可能性のある経路をいち早く発見できる。その結果、例えば、動画のような連続したデータを送信する場合には、帯域の変動が大きい可能性のある経路を経路の選択肢から外して、通信の安定を図ることができる。
 また、図30において、経路候補1について、経路推定の間隔を、所定の最小値に設定した次の経路推定においても経路の帯域が所定値以下である。この場合、経路候補1についての経路推定の間隔を、再度所定の最小値に設定する。これによると、所定の最小値に設定した後の経路推定においても、経路の帯域が所定値以下である場合、帯域の変動が大きい可能性のあるだけではなく、実際に帯域の変動が大きい経路であると判断できる。このように、経路推定の間隔を可変にするだけで、帯域の変動が大きい不安定な経路を発見する処理が容易となる。
 さらに、図30において、経路候補1について、一旦帯域が所定の閾値以下になった帯域が、所定の閾値以上に回復している。この場合、経路候補1についての経路推定の間隔を、段階的に前記所定間隔に戻している。これによると、経路推定の定間隔を一旦所定の最小値に設定した場合でも、次以降の経路推定において経路の帯域が所定値以下にならなかった場合には、例えば掃除機のスイッチをオンした場合のように一時的な原因に起因する場合には、前記経路は帯域の変動の少ない経路と判断して徐々に前記所定間隔に戻す。これにより、経路推定の間隔を可変にするだけで、その経路が帯域の増減が大きい経路不安定な経路か否かを判断できるので、経路の安定性を判断する処理を容易化できる。
 一方、図30において、経路候補3については、ルートエスティメーションリクエストに対して、ルートエスティメーションリプライが返信されているので、次のルートエスティメーションリクエストまでのタイマを2倍に延ばしている。なお、本実施の形態では2倍としたが、これに限られるものではない。
 このように、本実施の態様によると、経路の変動特性を考慮した経路推定が可能となる。
 図31は、経路推定のタイマを調整する場合のフローチャートを示している。図17で行っている経路推定の処理に加えて、ルートエスティメーションリプライパケットを受信するとタイマ値を2倍にする処理(ステップS3201)、及び、帯域減少通知を受信すると(ステップS3202)、タイマ値を初期値(所定の最小値)に戻す処理(ステップS3203)が追加される。
 (実施の形態5)
 次に、実施の形態5について説明する。実施の形態5では、1つの最終宛先端末に対して、送信端末が複数存在する場合について説明する。1つの最終宛先端末に対して複数の送信端末が存在する場合には、複数の送信端末の経路を合わせてみると経路分岐端末となる端末が存在する。この経路分岐端末においては、各通信端末が要求している経路本数に対してルートリプライを返信すればよい。すなわち、ルートリプライを複数送信する必要はなく、より状態の良い経路のみを送信すればよい。
 図32は、送信端末A101から最終宛先である受信端末D104に向けてデータ送信中に、送信端末I3201から受信端末D104に向けたデータ送信が開始された場合のネットワーク図である。図32において、送信端末A101は、図8と同様の経路を3つ取得済みであるものとする。送信端末A101とは別の送信端末である送信端末I3201は、1つの経路を要求し、送信端末I3201→中継端末G107→中継端末F106→受信端末D104の経路(経路候補4)を取得したものとする。リンクの帯域情報は、図32に示す通りである。この場合、中継端末G107では、最終宛先である受信端末D104に対する経路として経路候補3(送信端末A101→中継端末G107→中継端末H108→受信端末D104)と、経路候補4との2つ経路候補を持つことになる。したがって、図32に示す例では、中継端末G107が、経路分岐端末となる。
 しかし、中継端末G107は、図17で説明した経路分岐端末と異なり、リンクの帯域情報を各送信端末(送信端末A101及び送信端末I3201)に1つずつ返せばよい。そこで、中継端末G107は、各送信端末には、保持している経路のうち、より良い状態の経路情報を返信するものとする。具体的には、図32では、経路候補4(中継端末G107→中継端末F106→受信端末D104)の方が、経路候補3(中継端末G107→中継端末H108→受信端末D104)に比べて状態が良い。そのため、中継端末G107は、経路候補3のルートリプライを経路候補4の一部で変更して、送信端末A101→中継端末G107→中継端末F106→受信端末D104として、送信端末A101返信する。
 図33A,Bは、中継端末G107で送受信されるルートリプライパケットを示す図である。図33Aにおいて、中継端末G107が中継端末H108から受信したルートリプライは、経路候補3として、送信端末A101→中継端末G107→中継端末H108→受信端末D104を示している。それに対して、図33Bを参照して、中継端末G107が送信端末A101に送信するルートリプライは、経路候補3を送信端末A101→中継端末G107→中継端末F106→受信端末D104に変更している。それに伴い、中継端末G107-中継端末H108間のリンク帯域(3301)が60Mbpsに、中継端末H108のアドレス(3302)がHに、及び中継端末H108-受信端末D104間のリンク帯域(3303)が60Mbpsに、中継端末G107-中継端末F106間のリンク帯域(3311)が100Mbpsに、中継端末F106のアドレス(3312)がFに、及び中継端末F106-受信端末D104間のリンク帯域(3313)が60Mbpsに、各々変更されている。
 図34は、図33に対応する経路選択図である。図34において、送信端末I3201から経路探索が行われた場合に、経路候補4が作成されている。そして、経路候補4が作成された次の経路推定の時に、経路候補4が送信端末A101から受信端末D104までの通信に用いられる経路として選択されていることがわかる。これにより、より良い経路を選択する確率が向上していることがわかる。
 以上のように、本態様によれば、送信端末A101は、経路候補1から3の中の一つの経路である経路候補3を構成する中継端末G107から、中継端末G107と経路候補3をそれまで構成していなかった中継端末F106との間に新たな経路が作成されて送信端末A101に至る経路候補4が増加した旨の通知を受信する。送信端末A101は、増加した経路候補4の帯域が経路候補3の帯域より広い場合は、経路候補3を経路候補4に置き換える。これにより、通信後に生じた経路の変化も考慮して最も帯域が広い経路を選択できる。そのため、予め選択した所定数の経路である経路候補1から3を維持しながら、経路探索パケットを再度ブロードキャストすることなく経路候補4を得て、帯域が所定の閾値以下になりにくい経路に更新できる。ここで、中継端末G107と中継端末F106との間に新たな経路候補4が作成される場合は、送信端末A101と同一送信先である受信端末D104に対して、別の送信端末である送信端末I3201が中継端末G107、及び中継端末F106を介した経路を作成した場合である。
 さらに、中継端末G107と中継端末F106との間の帯域が所定の閾値以下になった場合には、中継端末G107は送信端末A101にその旨を通知してもよい。この場合、送信端末A101は、置き換えた経路候補4を元の経路候補3に戻すこともできる。これによると、経路候補4の帯域の減少後も予め選択した経路の数を維持できるので、切替えるバックアップとしての経路の数を確保して、通信の中断の発生を予防できる。
 本発明によれば、電力線を用いたアドホックネットワーク等において、制御パケットの送信に消費される帯域を低く抑えたままで、最も状態の良い経路を確保できる通信端末及び通信方法等を提供できる。
101~108、3201 通信端末
109 アドホックネットワークのサービスエリア
110~112 カバーエリア
301 メモリ
302 CPU
303 ネットワークインターフェース
401 パケット受信部
402 経路選択部
403 経路探索・推定スケジューラ
404 経路候補保持部
406 経路探索部
407 経路推定部
408 経路比較部
409 パケット送信部

Claims (18)

  1.  アドホックネットワークを構成する通信端末であって、
     少なくとも1つの中継端末を介して、受信端末に対してデータパケットを通信する通信部と、
     前記データパケットの通信に先立って、前記受信端末までの経路作成に用いる第1制御パケットをブロードキャストし、前記第1制御パケットの応答結果に基づいて、前記受信端末に至る経路を通信状態が良い順番で所定数選択すると共に、
     前記データパケットの通信中において、所定時間間隔毎に、前記選択された所定数の経路を構成する各中継端末に通信状態の変化を確認する第2制御パケットをユニキャストして、前記第2制御パケットの応答結果に基づいて、前記データパケットの通信に用いている経路を、前記選択された所定数の経路の中で最も通信状態が良い経路に切替えて前記データパケットの通信を継続する制御部とを備える、通信端末。
  2.  前記制御部は、帯域が広い経路を通信状態が良い経路とすることを特徴とする、請求項1に記載の通信端末。
  3.  前記制御部は、遅延時間が小さい経路を通信状態が良い経路とすることを特徴とする、請求項1に記載の通信端末。
  4.  前記アドホックネットワークは、PLCを用いて接続されていることを特徴とする、請求項1に記載の通信端末。
  5.  前記制御部は、前記所定時間間隔内に、前記データパケットの通信に用いている経路の帯域が所定値以下になった場合、前記選択された所定数の経路の中から次に帯域が広い経路に切替えることを特徴とする、請求項2に記載の通信端末。
  6.  前記通信部は、前記データパケットの通信に用いている経路を構成する中継端末から、当該通信に用いている経路の少なくとも一部の帯域が所定値以下になった旨を通知する帯域減少通知を受信し、
     前記制御部は、前記通信部を介して、前記帯域減少通知を受信した場合、当該帯域減少通知に基づいて、前記データパケットの通信に用いている経路の帯域が所定値以下になったと判断することを特徴とする、請求項5に記載の通信端末。
  7.  前記制御部は、前記選択された所定数の経路の中から次に帯域が広い経路に切替えた場合、現在の所定時間間隔において前記選択された所定数の経路を構成する各中継端末に前記第2制御パケットをユニキャストし、前記第2制御パケットの応答の結果に基づいて、次の所定時間間隔に用いる所定数の経路の中で最も帯域が広い経路を選択し、前記次の所定時間間隔の開始の際に、前記選択された最も帯域が広い経路に切替えて、前記データパケットの通信を継続することを特徴とする、請求項5に記載の通信端末。
  8.  前記所定時間間隔は、前記選択された所定数の経路毎に設けられ、
     前記選択された所定数の経路毎に設けられた所定時間間隔は、相互に非同期であることを特徴とする、請求項1に記載の通信端末。
  9.  前記データパケットの通信に用いている経路を第1経路とすると、
     前記制御部は、前記第1経路以外の第2経路の帯域が、前記第1経路より広くなったことが前記第2経路についての所定時間経過後に判明した場合に、前記第2経路の所定時間経過後に、前記データパケットの通信に用いている経路を前記第2経路に切替えることを特徴とする、請求項8に記載の通信端末。
  10.  前記通信部は、前記選択された所定数の経路の中で一の経路を構成する第1中継端末から、前記第1中継端末と前記一の経路をそれまで構成していなかった第2中継端末との間に新たな経路が作成されて、前記受信端末に至る前記一の経路が増加した旨の通知を受信し、
     前記制御部は、前記増加した一の経路の中で最も帯域が広い経路に、前記一の経路を置き換えることを特徴とする、請求項2に記載の通信端末。
  11.  前記第1中継端末と前記一の経路をそれまで構成していなかった第2中継端末との間に新たな経路が作成される場合とは、前記受信端末と同一の送信先に対して、他の通信端末が送信元として前記第1中継端末及び前記第2中継端末を介した経路を作成した場合であることを特徴とする、請求項10に記載の通信端末。
  12.  前記通信部は、前記第1中継端末と前記第2中継端末との間の帯域が所定値以下になった場合、その旨を通知する帯域減少通知を受信し、
     前記制御部は、前記通信部を介して、前記帯域減少通知を受信した場合、前記置き換えた一の経路を元の一の経路に戻すことを特徴とする、請求項10に記載の通信端末。
  13.  前記制御部は、前記選択された所定数の経路の中のいずれかの経路において帯域が所定値以下になった場合、その経路については前記第2制御パケットをユニキャストする所定時間間隔を、所定の最小時間間隔に設定することを特徴とする、請求項2に記載の通信端末。
  14.  前記制御部は、前記第2制御パケットをユニキャストする所定時間間隔を、所定の最小時間間隔に設定した経路について、次以降の所定時間間隔内において前記経路の帯域が所定値以下にならなかった場合、段階的に前記所定時間間隔に戻すことを特徴とする、請求項11に記載の通信端末。
  15.  前記制御部は、前記第2制御パケットをユニキャストする所定時間間隔を、所定の最小時間間隔に設定した経路について、次以降の所定時間間隔内においても前記経路の帯域が所定値以下になった場合、再度所定の最小時間間隔に設定することを特徴とする、請求項12に記載の通信端末。
  16.  アドホックネットワークを構成し、送信端末と受信端末との間でデータパケットを中継する通信端末であって、
     前記送信端末によって、前記受信端末までの経路が、通信状態が良い順番に所定数選択されており、
     前記通信端末は、
      前記データパケットを通信する通信部と、
      前記データパケットの通信中において、前記送信端末が所定時間間隔毎にユニキャストした制御パケットに基づいて、前記通信端末が前記選択された所定数の経路の中の二以上の経路の分岐点に位置するか否かを判断し、前記通信端末が前記選択された所定数の経路の中の二以上の経路の分岐点に位置する場合には、前記データパケットの通信に用いている帯域が所定値以下になると、前記分岐点を経由する他の経路の中から最も通信状態の良い経路を選択して、前記データパケットの通信に用いている経路を切替える制御部とを備える、通信端末。
  17.  アドホックネットワークを構成する通信端末が実施する通信方法であって、
     少なくとも1つの中継端末を介して、受信端末に対してデータパケットを通信するステップと、
     前記データパケットの通信に先立って、前記受信端末までの経路作成に用いる第1制御パケットをブロードキャストするステップと、
     前記第1制御パケットの応答結果に基づいて、前記受信端末に至る経路を通信状態が良い順番で所定数選択するステップと、
     前記データパケットの通信中において、所定時間間隔毎に、前記選択された所定数の経路を構成する各中継端末に通信状態の変化を確認する第2制御パケットをユニキャストするステップと、
     前記第2制御パケットの応答結果に基づいて、前記データパケットの通信に用いている経路を前記選択された所定数の経路の中で最も通信状態が良い経路に切替えて前記データパケットの通信を継続するステップとを備える、通信方法。
  18.  アドホックネットワークを構成し、送信端末と受信端末との間でデータパケットを中継する通信端末が実施する通信方法であって、
     前記送信端末によって、前記受信端末までの経路が、通信状態が良い順番に所定数選択されており、
     前記データパケットを通信するステップと、
     前記データパケットの通信中において、前記通信端末が所定時間間隔毎にユニキャストした制御パケットに基づいて、前記通信端末が前記選択された所定数の経路の中の二以上の経路の分岐点に位置するか否かを判断するステップと、
     前記通信端末が前記選択された所定数の経路の中の二以上の経路の分岐点に位置する場合には、前記データパケットの通信に用いている帯域が所定値以下になると、前記分岐点を経由する他の経路の中から最も通信状態の良い経路を選択して、前記データパケットの通信に用いている経路を切替えるステップとを備える、通信方法。
PCT/JP2009/004552 2008-10-15 2009-09-14 通信端末及び通信方法 WO2010044187A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/747,689 US8427957B2 (en) 2008-10-15 2009-09-14 Communication terminal and communication method
EP09820366.4A EP2337270B1 (en) 2008-10-15 2009-09-14 Communication terminal and communication method
JP2010533788A JP5449183B2 (ja) 2008-10-15 2009-09-14 通信端末及び通信方法
CN200980101366.5A CN101897153B (zh) 2008-10-15 2009-09-14 通信终端及通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008266815 2008-10-15
JP2008-266815 2008-10-15

Publications (1)

Publication Number Publication Date
WO2010044187A1 true WO2010044187A1 (ja) 2010-04-22

Family

ID=42106364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004552 WO2010044187A1 (ja) 2008-10-15 2009-09-14 通信端末及び通信方法

Country Status (5)

Country Link
US (1) US8427957B2 (ja)
EP (1) EP2337270B1 (ja)
JP (1) JP5449183B2 (ja)
CN (1) CN101897153B (ja)
WO (1) WO2010044187A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104552A1 (ja) * 2015-12-14 2017-06-22 日本電気株式会社 通信装置、通信システム、および通信方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5195762B2 (ja) * 2007-12-03 2013-05-15 富士通株式会社 パケット通信装置及びパケット通信方法
CN102932259A (zh) * 2012-11-20 2013-02-13 华为技术有限公司 邻居关系处理方法和路由设备
US9992021B1 (en) 2013-03-14 2018-06-05 GoTenna, Inc. System and method for private and point-to-point communication between computing devices
GB2517156A (en) * 2013-08-12 2015-02-18 En Twyn Ltd A power line communications network
CN104753779B (zh) * 2013-12-27 2018-05-18 北京东方正龙数字技术有限公司 一种云群虚拟路由系统的实现方法
WO2015139026A2 (en) 2014-03-14 2015-09-17 Go Tenna Inc. System and method for digital communication between computing devices
WO2015147614A1 (en) * 2014-03-28 2015-10-01 Lg Electronics Inc. Method and apparatus for performing call relay in wireless communication system
US9800507B2 (en) * 2015-02-10 2017-10-24 Verizon Patent And Licensing Inc. Application-based path computation
US9913195B2 (en) * 2015-06-19 2018-03-06 Terranet Ab Mesh path selection
JP6380992B2 (ja) * 2015-07-15 2018-08-29 日本電信電話株式会社 データ転送方法及び通信システム
CN105827534A (zh) * 2016-03-16 2016-08-03 云南电网有限责任公司电力科学研究院 一种自组网方法及装置
CN107743047B (zh) * 2017-10-26 2020-10-27 北方民族大学 一种无线定向中继通信方法及系统
US11425686B2 (en) * 2018-04-23 2022-08-23 Kyocera Corporation Method of determining number of repetitions for multiuser broadcast in IoT deployments
CN109215330B (zh) * 2018-09-11 2021-03-02 国网江苏省电力有限公司电力科学研究院 一种停电上报系统及方法
WO2020185707A1 (en) 2019-03-08 2020-09-17 goTenna Inc. Method for utilization-based traffic throttling in a wireless mesh network
US10834020B1 (en) * 2019-05-09 2020-11-10 L3Harris Technologies, Inc. Scalable network overhead for contested environments

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007457A (ja) * 2002-04-25 2004-01-08 Sony Corp 通信システム、通信制御装置及び通信制御方法、通信装置及び通信方法、並びにコンピュータ・プログラム
WO2006098723A1 (en) * 2005-03-10 2006-09-21 Thomson Licensing Hybrid mesh routing protocol
JP2007221564A (ja) * 2006-02-17 2007-08-30 Nec Corp 通信装置、通信システムおよび方法
JP2007221568A (ja) 2006-02-17 2007-08-30 Ntt Docomo Inc 転送遅延制御方法および無線端末

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL138236A (en) * 2000-09-04 2005-12-18 Eci Telecom Ltd Qos-sensitive path selection in atm network
US7242942B2 (en) * 2002-04-25 2007-07-10 Sony Corporation Communication system, apparatus and method for controlling communication, apparatus and method for communication, and computer program
JP4099708B2 (ja) * 2002-10-09 2008-06-11 日本電気株式会社 通信経路の障害検出装置および方法
US20050053007A1 (en) * 2003-09-09 2005-03-10 Harris Corporation Route selection in mobile ad-hoc networks based on traffic state information
US7408911B2 (en) * 2004-11-08 2008-08-05 Meshnetworks, Inc. System and method to decrease the route convergence time and find optimal routes in a wireless communication network
JP4567745B2 (ja) * 2005-09-29 2010-10-20 富士通株式会社 通信システムにおける通信の切り替え方法
US20070195702A1 (en) * 2006-02-17 2007-08-23 Yuen Wing H Link duration based routing protocol for multihop ad hoc networks
CN101175022B (zh) * 2006-10-31 2010-05-19 中兴通讯股份有限公司 一种无线Ad hoc网络多媒体视频传输路径选择方法
CN101174977B (zh) * 2006-10-31 2010-05-19 中兴通讯股份有限公司 一种无线Ad hoc网络多媒体视频主备路径传输方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007457A (ja) * 2002-04-25 2004-01-08 Sony Corp 通信システム、通信制御装置及び通信制御方法、通信装置及び通信方法、並びにコンピュータ・プログラム
WO2006098723A1 (en) * 2005-03-10 2006-09-21 Thomson Licensing Hybrid mesh routing protocol
JP2007221564A (ja) * 2006-02-17 2007-08-30 Nec Corp 通信装置、通信システムおよび方法
JP2007221568A (ja) 2006-02-17 2007-08-30 Ntt Docomo Inc 転送遅延制御方法および無線端末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2337270A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104552A1 (ja) * 2015-12-14 2017-06-22 日本電気株式会社 通信装置、通信システム、および通信方法

Also Published As

Publication number Publication date
EP2337270A4 (en) 2012-02-29
US8427957B2 (en) 2013-04-23
EP2337270A1 (en) 2011-06-22
US20100290393A1 (en) 2010-11-18
CN101897153B (zh) 2014-04-30
JPWO2010044187A1 (ja) 2012-03-08
CN101897153A (zh) 2010-11-24
EP2337270B1 (en) 2014-08-27
JP5449183B2 (ja) 2014-03-19

Similar Documents

Publication Publication Date Title
WO2010044187A1 (ja) 通信端末及び通信方法
JP4682249B2 (ja) 無線通信ルートの品質を向上させる方法及びシステム
EP2296326B1 (en) Route selection in wireless networks
KR101739436B1 (ko) 멀티-홉 무선 홈 네트워크에서 대역폭 인식 라우팅을 채널 선택 및 채널 스위칭과 결합
JP4807701B2 (ja) 移動端末装置、制御方法及び移動通信システム
JP4689630B2 (ja) 通信端末及び通信制御方法
KR101085687B1 (ko) 애드-혹 망에서 품질을 고려한 다중 경로 라우팅 방법
US20080107033A1 (en) Radio communication network capable of radio communication with reduced overhead
JP5949902B2 (ja) 無線通信装置、無線通信システム及び無線通信方法
JP4357321B2 (ja) パケット伝送装置およびプログラム
Devaraju et al. A multipath local route repair scheme for bidirectional traffic in an airborne network of multibeam FDD nodes
JP7326230B2 (ja) 通信システム、ノード、通信方法及びプログラム
JP2008035522A (ja) 移動ゲートウェイまでの経路再建方法及び経路再建装置
JP2008211443A (ja) 通信システム及び通信方法
JP2008053998A (ja) 無線マルチホップネットワークの経路制御システム
Zhu et al. Implementation experience of a prototype for video streaming over wireless mesh networks
JP4385926B2 (ja) 無線通信システム
JP5022091B2 (ja) 通信装置
CA2896911C (en) Route selection in wireless networks
CA2817659C (en) Route selection in wireless networks
Kataoka et al. A scalable network architecture for a large-scale uni-directional link

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101366.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820366

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010533788

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12747689

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009820366

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE