WO2010041585A1 - 排気センサの活性判定装置、内燃機関の制御装置 - Google Patents

排気センサの活性判定装置、内燃機関の制御装置 Download PDF

Info

Publication number
WO2010041585A1
WO2010041585A1 PCT/JP2009/067148 JP2009067148W WO2010041585A1 WO 2010041585 A1 WO2010041585 A1 WO 2010041585A1 JP 2009067148 W JP2009067148 W JP 2009067148W WO 2010041585 A1 WO2010041585 A1 WO 2010041585A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sensor
time
exhaust
air
Prior art date
Application number
PCT/JP2009/067148
Other languages
English (en)
French (fr)
Inventor
圭一郎 青木
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN2009801398969A priority Critical patent/CN102177431B/zh
Priority to US13/061,850 priority patent/US8291893B2/en
Priority to JP2010532882A priority patent/JP4915478B2/ja
Priority to EP09819120.8A priority patent/EP2336759B1/en
Publication of WO2010041585A1 publication Critical patent/WO2010041585A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/14Timing of measurement, e.g. synchronisation of measurements to the engine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/061Introducing corrections for particular operating conditions for engine starting or warming up the corrections being time dependent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures

Definitions

  • the present invention relates to an exhaust sensor activity determination device and an internal combustion engine control device.
  • an air-fuel ratio control technique for an internal combustion engine using the output of an exhaust sensor has been widely used.
  • the exhaust sensor emits an output corresponding to the air-fuel ratio of the exhaust gas when it reaches the activation temperature.
  • a heater is provided in the exhaust sensor to meet this requirement, and when the internal combustion engine is started, the heater quickly heats the exhaust sensor to a predetermined activation temperature.
  • the exhaust sensor output can be used for air-fuel ratio control at an earlier stage by determining the state in which the exhaust sensor output can be used even before the active state, that is, the semi-active state.
  • exhaust gas components adsorbed by the exhaust sensor are collectively referred to as “adsorption species”.
  • the adsorbed species begin to desorb while the exhaust sensor is being heated when the internal combustion engine is started.
  • the desorbed adsorbed species is present in the vicinity of the exhaust sensor, thereby affecting the output of the exhaust sensor and hindering accurate measurement of the exhaust gas air-fuel ratio. While the effect of the adsorbed species remains, the exhaust sensor output does not show an accurate value for the exhaust gas air-fuel ratio.
  • output deviation occurs due to the influence of the desorbed and adsorbed species, and there is a problem that early use of the exhaust sensor output is hindered.
  • JP 2008-138569 A Japanese Patent Laid-Open No. 2005-207924 JP-A-8-75695 JP 2006-170849 A Japanese Patent Application Laid-Open No. 2004-211611
  • the above-described conventional technology basically uses the exhaust sensor output in the semi-active state, except in the situation where the influence of the adsorbed species is concerned, the period from the semi-active state to the main active state. Masks the exhaust sensor output.
  • the adsorbed species are desorbed from the exhaust sensor while the exhaust sensor is heated when the internal combustion engine is started.
  • the inventor of the present application states that the influence of the adsorbed species can remain even after the exhaust sensor reaches the activation temperature, that is, even if the exhaust sensor is sufficiently high in temperature, the influence of the adsorbed species still remains. I found that I could do it.
  • the technique of the above-mentioned patent document 1 starts the air-fuel ratio control (feedback control) using the exhaust sensor output after the main activation although the exhaust sensor output is masked during the period from the semi-active to the main activation. Therefore, in the above prior art, when the influence of adsorbed species remains after the main activation, the exhaust sensor output is used even though the influence of the adsorbed species is included in the exhaust sensor output. The air-fuel ratio control is started. As described above, the conventional techniques still leave room for improvement in terms of avoiding adverse effects caused by the adsorbed species.
  • the present invention has been made in order to solve the above-described problems, and it is possible to correctly determine when the exhaust sensor output can be used, and to adversely affect the use of the exhaust sensor output including a large amount of the effect of adsorbed species. It is an object of the present invention to provide an exhaust gas sensor activity determination device that can suppress the above.
  • Another object of the present invention is to provide a control device for an internal combustion engine having a configuration that suppresses the adverse effects of sensor output deviation caused by adsorbed species when the engine is started.
  • a first invention is an exhaust sensor activation determination device, A heater for heating the exhaust sensor when starting the internal combustion engine; Whether or not a period of time during which the adsorbed species has substantially disappeared from the exhaust sensor after the adsorbed species as the exhaust gas component adsorbed on the exhaust sensor began to desorb at the start of the internal combustion engine Determination means for determining the activation state of the exhaust sensor based on It is characterized by providing.
  • the second invention is the first invention, wherein An acquisition means for acquiring a physical quantity having a correlation with the temperature of the exhaust sensor;
  • the determination means is Based on the physical quantity, the temperature of the exhaust sensor is set to a predetermined temperature that is set in advance in a temperature range equal to or higher than a desorption start temperature, which is a temperature at which an adsorption species that is an exhaust gas component adsorbed on the exhaust sensor starts to desorb Temperature judging means for judging whether or not, and Activity determination means for determining an activation state of the exhaust sensor based on an elapsed time from the time when the temperature of the exhaust sensor reaches the predetermined temperature; It is characterized by including.
  • the third invention is the first invention, wherein An acquisition means for acquiring a physical quantity having a correlation with the temperature of the exhaust sensor; The heater heats the exhaust sensor to a target temperature when starting the internal combustion engine,
  • the determination means is An activity for determining an activation state of the exhaust sensor based on an elapsed time from the time when the temperature of the exhaust sensor reaches a predetermined temperature set in advance within a temperature range equal to or lower than the target temperature after the heating of the heater is started.
  • the determination means is included.
  • 4th invention is the said 2nd or 3rd invention
  • the activity determination means determines the activation state of the exhaust sensor based on the temperature of the exhaust sensor and the elapsed time;
  • the activity determination means is An activation temperature determining means for determining an activation state of the exhaust sensor based on whether or not the exhaust sensor has reached an activation temperature; Until the elapsed time exceeds a predetermined time, regardless of the determination result of the activation temperature determination unit, an activation determination prohibiting unit that prohibits the exhaust sensor from being determined to have reached an active state; It is characterized by including.
  • the fifth invention is the above-mentioned fourth invention, wherein Means for setting the predetermined time so that a time when the prohibition by the activity determination prohibiting means is released exceeds a time when the exhaust sensor reaches an activation temperature by a heater that heats the exhaust sensor when the internal combustion engine is started. It is characterized by that.
  • the sixth invention is the above-mentioned second or third invention, wherein
  • the predetermined temperature is an activation temperature of the exhaust sensor;
  • the activity determination means determines that the exhaust sensor is in an active state when a predetermined time elapses after the exhaust sensor reaches an activation temperature.
  • the seventh invention is the above-mentioned second or third invention, wherein
  • the activity determination means determines an activation state of the exhaust sensor based on whether or not the elapsed time exceeds a predetermined time;
  • the predetermined time is set so as to exceed the time when the exhaust sensor reaches the activation temperature due to the heating of the heater, and is set to such a length that the output deviation of the exhaust sensor due to the adsorbed species is substantially eliminated. It is characterized by being.
  • the predetermined temperature is a temperature selected from a temperature range of 300 ° C. or higher and 700 ° C. or lower.
  • the physical quantity acquired by the acquisition means is the impedance or admittance of the exhaust sensor
  • the predetermined temperature is a temperature selected from a temperature range of 400 ° C. or higher.
  • Property acquisition means for acquiring the fuel property of the internal combustion engine;
  • Property condition time setting means for setting the predetermined time to a different length according to the fuel property acquired by the property acquisition means; It is characterized by providing.
  • an eleventh aspect of the invention is any one of the fourth to tenth aspects of the invention, Rich peak acquisition means for acquiring a peak value on the rich side of the air-fuel ratio indicated by the output of the exhaust sensor during a period when the exhaust sensor is inactive while starting the internal combustion engine; Rich condition time setting means for setting the predetermined time longer as the air-fuel ratio acquired by the rich peak acquisition means is larger on the rich side; It is characterized by providing.
  • An adsorption amount acquisition means for acquiring an amount having a correlation with a stop-time adsorption amount that is an amount of a gas component adsorbed to the exhaust sensor while the internal combustion engine is stopped;
  • An adsorption amount condition time setting unit that changes the predetermined time according to the amount acquired by the adsorption amount acquisition unit is provided.
  • the thirteenth invention is based on the twelfth invention,
  • the adsorption amount acquisition means includes a water temperature at the time of starting the internal combustion engine, an intake air temperature and an oil temperature, an exhaust sensor temperature at the time of starting the internal combustion engine and a physical quantity correlated therewith, and a long period from the stop of the internal combustion engine to the start of the start.
  • Means for obtaining at least one of the suspension periods The adsorption amount condition time setting means sets the predetermined time as the water temperature or oil temperature at the start of the internal combustion engine is lower, the exhaust sensor temperature at the start of the internal combustion engine is lower, or the stop period is longer. Including means to set longer, It is characterized by that.
  • a fourteenth invention is according to any one of the fourth to tenth inventions, At least one of the rich peak acquisition means and the rich condition time setting means according to the eleventh invention, and the adsorption amount acquisition means and the adsorption amount condition time setting means according to the twelfth or thirteenth invention,
  • the exhaust sensor Immediate activation determination means for determining that the exhaust sensor is in an activated state when the activation temperature is reached; It is characterized by providing.
  • the fifteenth invention is the first invention, in the first invention, Exhaust gas adsorbed by the exhaust sensor based on a measurement result for at least one of the integrated air amount of the internal combustion engine, the element temperature of the exhaust gas sensor, and the element admittance of the exhaust gas sensor. It is characterized in that it is determined whether or not a period of time during which the adsorbed species substantially disappears from the exhaust sensor has elapsed after the adsorbed species as the gas component starts to desorb.
  • a sixteenth aspect of the invention is a control device for an internal combustion engine, An exhaust sensor; An exhaust gas sensor activity determination device according to any one of the first to fifteenth inventions, wherein the exhaust sensor activity determination is performed; Feedback control means for feedback-controlling the air-fuel ratio of the internal combustion engine based on the output of the exhaust sensor; Feedback control start means for starting control by the feedback control means based on the determination result of the activity determination device at the time of starting the internal combustion engine; It is characterized by providing.
  • the seventeenth invention is the sixteenth invention, wherein
  • the exhaust sensor is a critical current type air-fuel ratio sensor.
  • the determination means can determine that the exhaust sensor is activated at the time when the output deviation of the exhaust sensor due to the adsorbed species disappears. Thereby, it can suppress that the exhaust sensor output which contains the influence of adsorption species in large quantities will be used.
  • the second invention it is possible to determine the active state of the exhaust sensor in consideration of the elapsed time from the time when the temperature of the exhaust sensor reaches the desorption start temperature. If the temperature of the exhaust sensor rises to some extent, the output characteristics of the exhaust sensor itself are stabilized. However, the effect of the adsorbed species may remain even when the exhaust sensor becomes hot. If the exhaust sensor is in an environment equal to or higher than the desorption start temperature, the amount of adsorbed species decreases as time passes. Therefore, in the second invention, the time is measured from the time when the exhaust sensor temperature reaches a predetermined temperature equal to or higher than the desorption start temperature.
  • the disappearance degree of the influence of the adsorbed species can be reflected in the activity determination. Thereby, it can suppress that the exhaust sensor output which contains the influence of adsorption species in large quantities will be used.
  • the third aspect of the present invention it is possible to determine the active state of the exhaust sensor in the course of the temperature increase of the exhaust sensor, taking into account the elapsed time from the time when the predetermined temperature is reached.
  • the exhaust sensor in the inactive state is rapidly heated by the heater for the purpose of early use.
  • the temperature of the exhaust sensor quickly rises to the target temperature when the internal combustion engine is started.
  • the temperature of the exhaust sensor rises above the desorption start temperature, the amount of adsorbed species gradually decreases.
  • the third aspect of the invention when the internal combustion engine is started, the time is measured starting from the time when the exhaust sensor temperature reaches a predetermined temperature that is equal to or lower than the target temperature.
  • the progress of a series of physical phenomena related to the desorption of adsorbed species can be reflected in the activity determination. Thereby, it can suppress that the exhaust sensor output which contains the influence of adsorption species in large quantities will be used.
  • the exhaust sensor activity determination is made based on the temperature of the exhaust sensor, it is possible to suppress the situation where the exhaust sensor output is used even though the influence of the adsorbed species remains. That is, according to the fourth aspect, even if the exhaust sensor reaches the activation temperature, if the elapsed time after the desorption start temperature is shorter than the predetermined time, it is determined that the exhaust sensor is in the active state. Is prohibited. That is, it is possible to ensure the use prohibition state of the exhaust sensor output until a predetermined time elapses. As a result, it is possible to suppress the situation where the exhaust sensor output is used despite the influence of the adsorbed species.
  • the fifth invention even if the exhaust sensor reaches the activation temperature, it is not immediately determined that the exhaust sensor is in the active state. According to the knowledge of the inventor of the present application, there are actually many cases in which the influence of the adsorbed species remains even after the exhaust sensor reaches the activation temperature. The inventor of the present application has found that it is effective to provide an exhaust sensor output use prohibition period beyond the activation temperature arrival time, while there is a demand for early use of the exhaust sensor output. Thereby, the situation where the exhaust sensor output in which the influence of the adsorbed species remains is reliably prevented.
  • the exhaust sensor is in an active state after a predetermined time has elapsed since the time when the exhaust sensor reached the activation temperature.
  • a time in other words, a waiting time
  • the seventh aspect whether or not the time when the exhaust sensor has reached the activation temperature due to the heating of the heater has been exceeded, and whether or not the time has passed to the extent that the displacement of the exhaust sensor output due to the adsorbed species has substantially disappeared. Both can be determined based on a comparison between the elapsed time and a predetermined time. Therefore, according to the sixth aspect, determination of the exhaust sensor reaching the activation temperature and determination of disappearance of the influence of the output deviation due to the adsorbed species can be performed collectively by time measurement.
  • the value of the predetermined temperature that determines the starting point of time can be determined from the temperature range in which the desorption temperature of the adsorbed species is mainly distributed. That is, the exhaust gas contains a plurality of components having different desorption temperatures when they become adsorbed species.
  • the adsorbed species having a low desorption temperature among the adsorbed species specifically, relatively low-molecular HC and oxygen
  • the adsorbed species having a high desorption temperature specifically, relatively high molecular HC
  • the value of the predetermined temperature can be appropriately selected according to the temperature range in which the desorption temperature of the adsorbed species in gasoline is dispersed.
  • impedance or admittance is used as a physical quantity having a correlation with the temperature of the exhaust sensor.
  • a predetermined temperature for determining the starting point of time measurement is selected from a temperature range of 400 ° C. or higher. Thereby, time measurement can be performed with high accuracy.
  • the predetermined time in the fourth to sixth inventions described above can be changed according to the fuel properties.
  • the variation in the degree of displacement of the exhaust sensor output due to the difference in fuel properties can be reflected in the predetermined time in the fourth to sixth inventions described above.
  • the predetermined time in the fourth to sixth inventions described above according to the rich side peak can be changed.
  • the predetermined time in the fourth to sixth inventions can be changed to a length with less excess or deficiency.
  • the predetermined time in the fourth to sixth inventions described above can be changed according to the amount of adsorbed species.
  • the predetermined time in the fourth to sixth inventions can be changed to a length with less excess or deficiency.
  • the predetermined time in the fourth to sixth inventions described above is set longer as the amount of adsorbed species increases. Can do.
  • the fourteenth invention when it can be determined that the influence of the adsorbed species is so small that it can be ignored, it can be determined that the exhaust sensor is in the active state when the exhaust sensor reaches the activation temperature. Therefore, when the influence of the adsorbed species can be ignored, the activation determination of the exhaust sensor can be quickly performed accordingly.
  • the integrated air amount, element temperature or element admittance is measured, and with this, it can be determined that the influence of adsorbed species has been sufficiently removed from the output of the exhaust sensor.
  • the seventeenth aspect it is possible to accurately determine the active state for a critical current type exhaust sensor that is greatly affected by output deviation caused by adsorbed species.
  • FIG. 3 is a cross-sectional view showing a sensor element unit 50 of an air-fuel ratio sensor 48.
  • FIG. It is a figure for demonstrating the influence of the output shift of the air fuel ratio sensor 48 during warming-up.
  • 3 is a flowchart of a routine that is executed by an ECU 60 in the first embodiment.
  • 6 is a flowchart of a routine that is executed by an ECU 60 in the second embodiment.
  • 10 is a flowchart of a routine that is executed by an ECU 60 in the third embodiment.
  • 14 is a flowchart of a routine that is executed by the ECU 60 in the fourth embodiment. It is an example of the map in which the target holding time TWACT corresponding to the cooling water temperature THWI is defined. 10 is a flowchart of a routine that is executed by the ECU 60 in the fifth embodiment. It is an example of the map in which the target holding time TIACT corresponding to the impedance value TIMPI is defined. 14 is a flowchart of a routine that is executed by the ECU 60 in the sixth embodiment. It is an example of a map in which a target holding time TAFPACT corresponding to the rich side peak value AFBACTP is defined.
  • FIG. 1 is a diagram for explaining a system configuration according to the first embodiment of the present invention.
  • the system of the present embodiment includes an internal combustion engine (hereinafter also referred to as “engine”) 1.
  • engine an internal combustion engine
  • the internal combustion engine 1 has a plurality of cylinders 2, only one of them is shown in FIG.
  • the internal combustion engine 1 includes a cylinder block 6 having a piston 4 inside.
  • the cylinder block 6 is provided with a cooling water temperature sensor 8 that detects the cooling water temperature THWI of the internal combustion engine 1.
  • the piston 4 is connected to the crankshaft 10 via a crank mechanism.
  • a crank angle sensor 12 is provided in the vicinity of the crankshaft 10.
  • the crank angle sensor 12 is configured to detect a rotation angle (hereinafter referred to as “crank angle”) CA of the crankshaft 10.
  • the cylinder head 14 is assembled to the upper part of the cylinder block 6. A space from the upper surface of the piston 4 to the cylinder head 14 forms a combustion chamber 16. The cylinder head 14 is provided with a spark plug 18 that ignites the air-fuel mixture in the combustion chamber 16.
  • the cylinder head 14 includes an intake port 20 that communicates with the combustion chamber 16.
  • An intake valve 22 is provided at a connection portion between the intake port 20 and the combustion chamber 16.
  • An intake passage 24 is connected to the intake port 20.
  • the intake passage 24 is provided with an injector 26 that injects fuel in the vicinity of the intake port 20.
  • a throttle valve 28 is provided upstream of the injector 26.
  • the throttle valve 28 is an electronically controlled valve that is driven by a throttle motor 30.
  • the throttle valve 28 is driven based on the accelerator opening AA detected by the accelerator opening sensor 32.
  • a throttle opening sensor 34 for detecting the throttle opening is provided in the vicinity of the throttle valve 28.
  • a hot-wire air flow meter 36 is provided upstream of the throttle valve 28.
  • the air flow meter 36 is configured to detect an intake air amount Ga.
  • An air cleaner 38 is provided upstream of the air flow meter 36.
  • the cylinder head 14 includes an exhaust port 40 communicating with the combustion chamber 16.
  • An exhaust valve 42 is provided at a connection portion between the exhaust port 40 and the combustion chamber 16.
  • An exhaust passage 44 is connected to the exhaust port 40.
  • the exhaust passage 44 is provided with an exhaust purification catalyst (hereinafter referred to as “catalyst”) 46 for purifying exhaust gas.
  • Catalyst exhaust purification catalyst
  • a critical current type air-fuel ratio sensor 48 is provided upstream of the catalyst 46.
  • the air-fuel ratio sensor 48 has a sensor element unit 50 as shown in FIG.
  • FIG. 2 is a cross-sectional view showing the sensor element portion 50 of the air-fuel ratio sensor 48.
  • the sensor element unit 50 has a solid electrolyte layer as the detection element 51.
  • the solid electrolyte layer 51 is made of partially stabilized zirconia and has oxygen ion conductivity.
  • a measurement electrode 52 is provided on one surface of the solid electrolyte layer 51.
  • an atmosphere side electrode (also referred to as “reference gas side electrode”) 53 is provided on the other surface of the solid electrolyte layer 51.
  • Both the measurement electrode 52 and the atmosphere side electrode 53 are made of platinum or the like, and are connected to an ECU 60 described later via leads 58a and 58b, respectively.
  • a porous diffusion resistance layer 54 is formed on one surface of the solid electrolyte layer 51.
  • the porous diffusion resistance layer 54 has a gas permeable layer 54a for covering the measurement electrode 52 and introducing exhaust gas to the measurement electrode 52, and a gas blocking layer 54b for suppressing the permeation of exhaust gas. Yes.
  • the gas permeable layer 54a and the gas barrier layer 54b are made of ceramics such as alumina and zirconia, and have different average pore diameters and porosity.
  • An air introduction duct 55 is formed on the other surface of the solid electrolyte layer 51.
  • the air introduction duct 55 has an air chamber (also referred to as “reference gas chamber”) 56 at the top.
  • the atmosphere side electrode 53 is disposed in the atmosphere chamber 56.
  • the air introduction duct 55 is made of high thermal conductive ceramic such as alumina.
  • a heater 57 is provided on the lower surface of the air introduction duct 55.
  • the heater 57 includes a plurality of heating elements 57a that generate heat when energized, and an insulating layer 57b that covers the heating elements 57a.
  • the heating element 57a is connected to the ECU 60 via a lead 58c.
  • the sensor element unit 50 having such a configuration can detect the oxygen concentration by a linear characteristic and can output a critical current corresponding to the oxygen concentration to the ECU 60.
  • This air-fuel ratio sensor output (critical current) has a correlation with the air-fuel ratio of the exhaust gas. Specifically, the critical current increases as the air-fuel ratio of the exhaust gas becomes leaner, and the critical current decreases as the air-fuel ratio of the exhaust gas becomes richer.
  • the admittance value As of the detection element 51 has a correlation with the temperature of the detection element 51. Using this point, in this embodiment, the temperature of the air-fuel ratio sensor 48 is measured based on the admittance value As of the detection element 51.
  • the system according to the present embodiment includes an ECU (Electronic Control Unit) 60 as a control device.
  • An ignition plug 18, an injector 26, a throttle motor 30 and the like are connected to the output side of the ECU 60.
  • the coolant temperature sensor 8, the crank angle sensor 12, the accelerator opening sensor 32, the throttle opening sensor 34, the air flow meter 36, the air-fuel ratio sensor 48, and the like are connected to the input side of the ECU 60.
  • the ECU 60 calculates the engine speed NE based on the output of the crank angle sensor 12. Further, the ECU 60 calculates the engine load KL based on the accelerator opening AA detected by the accelerator opening sensor 32. The ECU 60 determines the fuel injection amount based on the engine speed NE, the engine load KL, and the like. The ECU 60 is also provided with a timer function for counting time.
  • an exhaust gas component is adsorbed on an electrode portion of an exhaust sensor while the internal combustion engine is stopped.
  • exhaust gas components HC, H 2 O, or O 2 that are unburned components
  • exhaust gas components are adsorbed on the surfaces of various porous ceramic structures of the air-fuel ratio sensor 48.
  • exhaust gas components adsorbed on the air-fuel ratio sensor 48 are collectively referred to as “adsorption species”.
  • the adsorbed species begins to desorb from the surface of the measurement electrode 52, and various reactions start to be activated on the surface.
  • the air-fuel ratio is reduced by generating the reducing substance H 2 on the surface of the measurement electrode 52 or by reducing the reaction point with oxygen on the measurement electrode 52 due to the presence of the adsorbed species.
  • the output of the sensor 48 is temporarily shifted to the rich side.
  • the output of the air-fuel ratio sensor 48 temporarily shifts to the lean side.
  • FIG. 3 is a diagram for explaining the influence of the output deviation of the air-fuel ratio sensor 48 during warm-up.
  • FIG. 3 shows the results of an experiment conducted by the present inventor.
  • the monitor A / F sensor output, the control A / F sensor output, and the element admittance are respectively shown by solid lines.
  • the control A / F sensor is an A / F sensor prepared by imitating a normal A / F sensor disposed in the exhaust passage of the internal combustion engine.
  • the monitor A / F sensor is an A / F sensor prepared for accurately monitoring the air-fuel ratio of the exhaust gas flowing toward the control A / F sensor.
  • the control A / F sensor is heated to the activation temperature by the heater, imitating the warm-up operation state at the start.
  • the element admittance value in FIG. 3 has a correlation with the temperature of the control A / F sensor.
  • the monitoring A / F sensor is always kept at the activation temperature. That is, the air-fuel ratio exhaust gas indicated by the monitor A / F sensor output flows to the control A / F sensor side.
  • the control A / F sensor is in a state in which the above-described influence of the adsorbed species can occur (a state where the adsorbed species are sufficiently adsorbed after being left for a sufficient time after the internal combustion engine is stopped).
  • FIG. 3 will be described along the passage of time from time t 0 to time t 5 .
  • the supply of the exhaust gas is started for the control A / F sensor.
  • the control A / F sensor has not yet reached the activation temperature, and the output value indicates the stoichiometric value.
  • the control A / F sensor output is gradually beginning to bias the rich side.
  • the value of the element admittance is about 300 ° C.
  • the value of the element admittance is appearing in the graph of FIG.
  • FIG. 3 shows measured values from 400 ° C. or higher.
  • the output of the control A / F sensor is started biased rapidly to the rich side.
  • the monitor A / F sensor output shows the vicinity of stoichiometry.
  • adsorbed have been adsorbed species effect on the control A / F sensor has begun to activation.
  • the output shift to the rich side of the control A / F sensor has reached the peak.
  • a / F sensor output for control gradually being restored to the lean side.
  • the A / F sensor output for control matches the A / F sensor output for monitoring. At this point, it can be considered that the influence of the adsorbed species has been completely eliminated.
  • Embodiment 1 When starting an internal combustion engine, there is generally a demand to start air-fuel ratio control (feedback control) using an exhaust sensor output at an early stage. Similarly, in the internal combustion engine 1, it is desirable that the output of the air-fuel ratio sensor 48 can be used at an early stage and the air-fuel ratio feedback control can be started as early as possible.
  • the air-fuel ratio sensor 48 when the temperature of the exhaust sensor rises to the activation temperature, the output characteristics of the exhaust sensor itself are stabilized. Therefore, if the air-fuel ratio sensor 48 has reached the activation temperature, it can be considered that the preparation of the air-fuel ratio sensor 48 has been completed with respect to the temperature condition. Further, conventionally, if the exhaust sensor is at the activation temperature level (or if the exhaust sensor is at a certain high temperature even if it is lower than the activation temperature), the effect of the adsorbed species has disappeared sufficiently. It was thought. Therefore, in the sensor activity determination according to the conventional technique, it is considered that when the air-fuel ratio sensor 48 reaches the activation temperature, it is determined that the air-fuel ratio sensor 48 is in an active state.
  • the inventor of the present application indicates that the influence of the adsorbed species may remain even after the exhaust sensor reaches the activation temperature, that is, even if the exhaust sensor becomes sufficiently high in temperature, the influence of the adsorbed species still remains. Found that there is a case. More specifically, before the time t 5 in FIG. 3, when the control A / F sensor that would reach the activation temperature may occur. Even if the output accuracy of the air-fuel ratio sensor 48 is sufficient, if the effect of the adsorbed species remains, an error due to the effect of the adsorbed species is included in the sensor output. As a result, accurate measurement of the exhaust gas air-fuel ratio is hindered. It is not preferable that the air-fuel ratio control using the output of the air-fuel ratio sensor 48 is started without considering such a situation.
  • the present inventor not only determines whether the air-fuel ratio sensor 48 has reached the activation temperature but also sufficiently removes the influence of the adsorbed species from the output of the air-fuel ratio sensor 48.
  • the active state of the air-fuel ratio sensor 48 is determined based on whether or not it is. In other words, it is determined that the air-fuel ratio sensor 48 is in the active state when the following two conditions are satisfied.
  • the air-fuel ratio sensor 48 has reached the activation temperature, and the output characteristics of the air-fuel ratio sensor 48 are stable.
  • the influence of the adsorbed species is sufficiently removed from the output of the air-fuel ratio sensor 48.
  • the temperature T1 is set from the following viewpoint.
  • adsorption species such as HC and O 2 .
  • Each adsorbed species begins to desorb from the surface of the measurement electrode 52 at a specific temperature. That is, each adsorption species has a unique temperature (hereinafter also referred to as “desorption temperature”) at which it begins to desorb from the surface of the measurement electrode 52.
  • desorption temperature a unique temperature at which it begins to desorb from the surface of the measurement electrode 52.
  • desorption start temperature the temperature at which desorption of adsorbed species starts from the air-fuel ratio sensor 48, in other words, the lowest temperature among the desorption temperatures.
  • Exhaust gas contains a plurality of components having different desorption temperatures when they become adsorbed species.
  • those having a low desorption temperature among the adsorbed species specifically, relatively low-molecular HC and oxygen
  • the adsorbed species having a high desorption temperature specifically, relatively high molecular HC
  • the adsorbed species having a high desorption temperature have a desorption temperature in a temperature range of approximately 700 ° C. or lower.
  • the inventor of the present application estimates that the desorption temperature of adsorbed species in gasoline falls within a range of 300 ° C. or more and 700 ° C.
  • the measurement accuracy of element admittance and element impedance can be secured to a certain degree if the temperature is 400 ° C. or higher. From the viewpoint of accurately measuring time Te. It is preferable to set the temperature T1 to 400 ° C. or higher. In the present embodiment, considering these points, the temperature T1 is set to 500 ° C.
  • the time Te is determined in advance experimentally or by simulation in consideration of the following points.
  • the time until the sensor output value sufficiently converges (time t 5 in FIG. 3) is calculated from the time when the air-fuel ratio sensor 48 reaches the temperature T1, that is, 500 ° C., as a starting point. It is specified beforehand by experiment. Let this time be Te.
  • the inventor of the present application pays attention to the fact that the influence of the adsorbed species can remain even after the exhaust sensor reaches the activation temperature. According to the knowledge of the inventor of the present application, there are actually many cases where the influence of the adsorbed species remains even after the air-fuel ratio sensor 48 reaches the activation temperature. That is, the inventor of the present application avoids the influence of the adsorbed species by setting the time Te longer even if a slight time loss occurs from the time when the air-fuel ratio sensor 48 reaches the activation temperature until the start of use of the sensor output. Thus, the present invention has been found to be effective in starting the internal combustion engine 1 satisfactorily.
  • the length of the time Te is set to a length that exceeds the time when the air-fuel ratio sensor 48 reaches the activation temperature by the heater 57 when the internal combustion engine 1 is started.
  • Te is preferably the time after the temperature T1 until the influence of the adsorbed species disappears from the output value of the air-fuel ratio sensor 48 and the output value of the air-fuel ratio sensor 48 stabilizes. That is, Te is preferably set to a time that can be confirmed that the output of the air-fuel ratio sensor 48 has converged to the actual air-fuel ratio of the exhaust gas, including variations. In consideration of satisfying these conditions, it is preferable that Te is set sufficiently long even if the air temperature sensor 48 is long enough to exceed the activation temperature arrival time. Thereby, the situation where the output of the air-fuel ratio sensor 48 in which the influence of the adsorbed species remains is reliably prevented.
  • the adsorbed species adsorbed on the measurement electrode 52 and the like start desorption in descending order of desorption temperature. Thereafter, the amount of each adsorbed species decreases with the passage of time.
  • Te1 corresponding to the time required for the desorption process of the adsorbed species.
  • Te2 there is also time Te2 for replacing the rich atmosphere gas or the lean atmosphere gas in accordance with the flow rate of the exhaust gas. Te is preferably set in consideration of the time of Te1 and Te2.
  • the precondition is that the air-fuel ratio sensor 48 is sufficiently cooled after the internal combustion engine 1 is stopped and the amount of adsorbed species is expected to be large. Specifically, the case where a period of several hours or more or one day or more has elapsed after the internal combustion engine 1 is stopped is targeted.
  • the active state of the air-fuel ratio sensor 48 is determined when the internal combustion engine 1 is started by performing time measurement using the temperature T1 and the time Te determined as described above.
  • the admittance value As of the detection element 51 is a physical quantity that correlates with the temperature of the air-fuel ratio sensor 48. To be acquired.
  • time measurement is started from that time.
  • the air-fuel ratio sensor 48 is heated by the heater 57, and eventually the temperature of the air-fuel ratio sensor 48 reaches the activation temperature (for example, 750 ° C.). At this time, the condition (i) described above is established. However, in this embodiment, the time Te is sufficiently long as described above. Therefore, at this time, the elapsed time from the measurement start time does not exceed Te. Therefore, the determination that the air-fuel ratio sensor 48 is still active is not made.
  • the time can be measured starting from the time when the temperature of the air-fuel ratio sensor 48 reaches the temperature T1. Then, by including the elapsed time after reaching the desorption start temperature in the basis of the activity determination, the degree of disappearance of the influence of the adsorbed species can be reflected in the activity determination. Thereby, it can suppress that the sensor output which contains the influence of adsorption species in large quantities will be used.
  • the air-fuel ratio sensor 48 when the elapsed time after reaching the temperature T1 is shorter than the time Te, the air-fuel ratio sensor 48 even if the air-fuel ratio sensor 48 (sensor element unit 50) reaches the activation temperature. Is prohibited from being determined to be active. As a result, the use prohibition state of the air-fuel ratio sensor 48 can be secured until the time Te elapses. As a result, the situation in which the output of the air-fuel ratio sensor 48 is used despite the fact that the influence of the adsorbed species remains largely can be reliably suppressed.
  • the time Te is set in advance to a sufficient length (a length that exceeds the time when the air-fuel ratio sensor 48 reaches the activation temperature). Therefore, even if the air-fuel ratio sensor 48 reaches the activation temperature, it is not immediately determined that the air-fuel ratio sensor 48 is in the active state. As described above, in the present embodiment, the demand for early use of the air-fuel ratio sensor 48 output is set, and the air-fuel ratio sensor 48 output use prohibition period is provided beyond the activation temperature arrival time. As a result, the situation where the output of the air-fuel ratio sensor 48 is used despite the influence of the adsorbed species can be reliably suppressed.
  • FIG. 4 is a flowchart of a routine executed by the ECU 60 in the first embodiment, which is repeatedly executed when the internal combustion engine 1 is started. In the first embodiment, it is executed when a period of about one day or more has elapsed after the internal combustion engine 1 is stopped.
  • step 102 it is determined whether or not the engine has been started and whether or not there is an abnormality in the air-fuel ratio sensor 48 (step 102).
  • step 102 it is determined whether or not the sensor element portion 50 is cracked or the leads 58a, 58b, 58c are disconnected. If it is determined in this step that the air-fuel ratio sensor 48 is abnormal, for example, a measure such as setting a sensor abnormality flag to “1” can be taken. When the sensor abnormality flag is set to “1” in this way, for example, a warning lamp (not shown) provided in the vehicle is turned on. Thereby, the vehicle driver can recognize sensor abnormality.
  • step S104 energization to the heater 57 is started and calculation of the admittance value As is started. Thereby, the warm-up of the air-fuel ratio sensor 48 is started, and the temperature of the air-fuel ratio sensor 48 is monitored.
  • step S106 it is determined whether or not the temperature of the sensor element unit 50 has reached the temperature T1 (step S106). In this step, it is determined whether or not the admittance value As is equal to or higher than the admittance value As1 when the temperature of the sensor element unit 50 reaches the temperature T1. If this step condition is not satisfied, the current routine ends.
  • the ECU 60 starts measuring time, starting from the time at the step when the condition is established.
  • step S108 it is determined whether or not the time Te has elapsed since the start of measurement by the ECU 60 (step S108). In this step, it is determined whether the measurement time of the ECU 60, that is, the elapsed time from when the temperature of the sensor element unit 50 reaches the temperature T1, is equal to or greater than Te. Until the establishment of this step is recognized, the routine shifts to END and is temporarily terminated, and then this routine is repeatedly executed again.
  • step S110 If the condition of step S108 is satisfied, it is determined that the air-fuel ratio sensor 48 is in an active state (step S110). In this step, the ECU 60 turns on the air-fuel ratio sensor activation flag. Thereafter, the control of the internal combustion engine 1 shifts to the air-fuel ratio feedback control using the output of the air-fuel ratio sensor 48.
  • the active state of the air-fuel ratio sensor 48 is determined in consideration of the elapsed time from the time when the temperature of the air-fuel ratio sensor 48 reaches the desorption start temperature together with the temperature of the air-fuel ratio sensor 48. be able to. That is, the time can be measured starting from the time when the temperature of the air-fuel ratio sensor 48 reaches the temperature T1. Then, by including the elapsed time after reaching the temperature T1 in the basis of the activity determination, the disappearance degree of the influence of the adsorbed species can be reflected in the activity determination. Thereby, it is possible to suppress the use of the output of the air-fuel ratio sensor 48 including a large amount of the influence of the adsorbed species. As a result, when the internal combustion engine 1 is started, various adverse effects caused by the sensor output deviation, for example, deterioration of air-fuel ratio controllability and adverse influence on drivability can be suppressed.
  • the “determination means” according to the first aspect of the present invention is realized by a series of processing from step S104 to step S110 in the routine of FIG.
  • the “acquisition means” in the second aspect of the invention in the routine of FIG. 4 is obtained by the process of obtaining the admittance value As by the detection element 51 after step S104 in the routine of FIG.
  • the “temperature determination means” in the second invention is realized by the processing of step S106, and the “activity determination means” in the second invention is realized by the processing of steps S108 and S110 in the routine of FIG. .
  • the temperature T1 corresponds to the “predetermined temperature” in the second invention.
  • the desorption temperature of the adsorbed species varies depending on the type of adsorbed species. For example, even when considering that HCs with various molecular numbers are included in the fuel, it is generally estimated that the desorption temperature of adsorbed species falls within the range of 300 ° C. to 700 ° C. for gasoline. It is. That is, it can be estimated that the desorption start temperature is 300 ° C.
  • the temperature T1 of the first embodiment may be set to one temperature selected from the range of 300 ° C. or higher and 700 ° C. or lower, for example, 350 ° C., 400 ° C., 450 ° C., 550 ° C., 600 ° C., or 650 ° C. . In that case, the time Te when the selected temperature is used as the starting point can be experimentally determined in advance according to the temperature.
  • the temperature T1 may be matched with the activation temperature of the air-fuel ratio sensor 48. That is, when the activation temperature of the air-fuel ratio sensor 48 is 750 ° C., for example, the temperature T1 may be set to 750 ° C. In this modification, it is determined that the air-fuel ratio sensor 48 is in an active state after a predetermined time has elapsed since the time when the activation temperature of the air-fuel ratio sensor 48 is reached.
  • the activation flag of the air-fuel ratio sensor 48 is turned ON after the time Te has elapsed.
  • the “active state of the exhaust sensor” as used in the present invention means “a state where the start of use of the exhaust sensor output is permitted” or “the exhaust sensor can accurately measure the air-fuel ratio of the exhaust gas accurately. In other words, it can be rephrased. That is, if the air-fuel ratio sensor 48 has reached the activation temperature, it can be said that the air-fuel ratio sensor 48 is in an active state in terms of temperature conditions.
  • a state where the output of the air-fuel ratio sensor 48 can be used as a value indicating the exhaust gas air-fuel ratio is considered as the active state of the air-fuel ratio sensor 48.
  • an “active temperature flag” regarding the temperature condition of the air-fuel ratio sensor 48 and a “use permission flag” that the output of the air-fuel ratio sensor 48 can be used for air-fuel ratio control are prepared separately.
  • an activation temperature flag and an “adsorption species influence flag” indicating that the influence of adsorption species has been sufficiently removed from the output of the air-fuel ratio sensor 48 are individually prepared.
  • the activation temperature flag is turned ON when the air-fuel ratio sensor 48 reaches the activation temperature.
  • the use permission flag and the adsorption species influence flag are turned off until the time Te elapses.
  • the air-fuel ratio sensor 48 is in the “active state” of the present invention during the period when the use permission flag and the adsorption species influence flag are OFF. Is not reached. At least such modifications are also included in the technical scope of the present invention.
  • the time Te is set longer. That is, a period during which the air-fuel ratio sensor 48 is not determined to be in an active state is provided even after the air-fuel ratio sensor 48 has reached the activation temperature.
  • the present invention is not necessarily limited to this, and the time Te may be set to an appropriate length depending on the situation. That is, when the time until the influence of the adsorbed species disappears is shorter than the time when the air-fuel ratio sensor reaches the activation temperature, the time Te may be set appropriately shorter.
  • the admittance value As is used as a physical quantity having a correlation with the temperature of the air-fuel ratio sensor 48.
  • the temperature of the air-fuel ratio sensor 48 may be measured by a method using element impedance. Further, estimation from an integrated value of power supplied to the heater 57 may be performed. Since there are many known techniques for measuring the temperature of the air-fuel ratio sensor, further explanation is omitted here.
  • the temperature T1 is set in a temperature range equal to or higher than the desorption start temperature of the adsorbed species.
  • the present invention is not limited to this.
  • the temperature T1 may be set to a temperature lower than the desorption start temperature (that is, a temperature lower than 300 ° C. in the first embodiment).
  • the inactive air-fuel ratio sensor 48 is rapidly heated by the heater 57 for the purpose of early use. At this time, when the internal combustion engine 1 is started, the temperature of the air-fuel ratio sensor 48 quickly rises to the target temperature Ttgt (a specific temperature that is the same as or higher than the activation temperature).
  • the duty ratio of the heater 57 when the sensor is warmed up is set to 100%, for example.
  • the amount of adsorbed species gradually decreases. That is, each time the internal combustion engine is started, the physical phenomenon until the adsorbed species are removed while the air-fuel ratio sensor 48 is heated to the target temperature and then the adsorbed species are removed from the vicinity of the air-fuel ratio sensor 48 with time. proceed.
  • the time TTMP is measured starting from a predetermined temperature that is equal to or lower than the target temperature Ttgt. Then, as in the first embodiment, it is determined whether or not the elapsed time after the start of measurement has exceeded a preset target holding time.
  • the target holding time (hereinafter referred to as “Tee”) is set in advance from the same viewpoint as in the first embodiment, that is, to a length that sufficiently eliminates the influence of the output deviation caused by the adsorbed species. deep. Similar to the first embodiment, it is stored in the ECU 60 as a map. When TTMP becomes equal to or higher than Tee, the activation flag of the air-fuel ratio sensor 48 is turned ON.
  • the progress of a series of physical phenomena related to the desorption of adsorbed species can be reflected in the activity determination.
  • the air-fuel ratio sensor to which the present invention is applicable is not limited to the configuration of the air-fuel ratio sensor 48 of the first embodiment.
  • the present invention may be applied to a so-called 2-cell type stacked air-fuel ratio sensor.
  • the activity determination for the air-fuel ratio sensor 48 is performed, but the present invention is not limited to this.
  • the present invention can also be applied to an oxygen sensor, a NOx sensor for detecting the amount of NOx in exhaust gas, and the like.
  • the present invention can be applied to a sensor that is disposed in the exhaust passage of the internal combustion engine 1 and can be influenced by the adsorbed species and that changes the output value according to the air-fuel ratio and components of the exhaust gas. .
  • the present invention is not limited to this. Even in a situation where the engine is shifted to the lean side, the activation determination of the air-fuel ratio sensor may be performed similarly to the first embodiment by appropriately setting the temperature T1 and the target holding time Te.
  • Embodiment 2 FIG.
  • the second embodiment of the present invention will be described below.
  • the second embodiment includes the configuration of FIG. 1 such as the internal combustion engine 1 as in the first embodiment.
  • the second embodiment is different from the first embodiment in that the time Te is changed according to the properties of the fuel input to the internal combustion engine 1.
  • description will be made centering on differences from the first embodiment, and description of items that are the same as those of the first embodiment will be omitted or simplified.
  • FIG. 5 shows a system configuration of the second embodiment. Similar to the first embodiment, the system according to the second embodiment includes the internal combustion engine 1 (shown in a simplified manner), a catalyst 46, an air-fuel ratio sensor 48, and an ECU 60. Other configurations of the first embodiment are not shown in FIG. 5, but are the same as those in FIG.
  • the system of the second embodiment includes a fuel tank 70.
  • the fuel in the fuel tank 70 is supplied to the injector 26 of the internal combustion engine 1 via the fuel pipe 72.
  • a fuel property sensor 74 is disposed in the fuel pipe 72. The fuel property sensor 74 generates an output corresponding to the property of the fuel in the fuel tank 70, and this output is input to the ECU 60.
  • Embodiment 2 The output deviation during the start-up warm-up process of the air-fuel ratio sensor 48 differs depending on the ease of adsorption of adsorbed species and the desorption temperature.
  • the degree of the output deviation in the warm-up process at the start tends to vary greatly as compared with the case of using normal gasoline. Therefore, in the second embodiment, considering the above-described tendency, the values of the temperature T1 and the time Te in the first embodiment are changed according to the fuel properties.
  • FIG. 6 is a flowchart of a routine executed by the ECU 60 in the second embodiment.
  • the routine of FIG. 6 is also repeatedly executed under the same conditions as the routine of FIG. 5 of the first embodiment.
  • the routine of FIG. 6 includes the same steps as the routine of FIG. 5 except for the processing contents of steps S205 and S208. The following description will focus on the differences.
  • step S205 When the routine of FIG. 6 is started, the processing of steps S102 to S104 is executed as in the routine of FIG. Thereafter, the process proceeds to step S205.
  • step S205 the property of the fuel in the fuel tank 70 is acquired based on the fuel property sensor 74.
  • a map of time Te corresponding to the properties of the fuel to be input is created in advance. Specifically, for example, according to the difference in ethanol concentration in the fuel, specifically, the time Te is experimentally determined in advance for each fuel such as E0, E85, and E100.
  • the map of time Te is referred to, and Te (I) that is the target holding time corresponding to the current fuel property I based on the fuel property sensor 74 is acquired.
  • step S208 it is determined whether or not Te (I) obtained in step S205 has elapsed since the start of time measurement in step S106. Thereafter, when Te (I) has elapsed, the process proceeds to step S110, where the sensor activation flag is turned ON. Thereafter, as in the first embodiment, the routine proceeds to air-fuel ratio feedback control.
  • the time Te can be changed according to the fuel property.
  • the variation in the degree of output deviation of the air-fuel ratio sensor 48 due to the difference in fuel properties can be reflected in the time Te.
  • the waiting time until the activation flag ON of the air-fuel ratio sensor 48 by the time Te can be set without excess or deficiency.
  • the fuel property sensor 74 is not limited, and the fuel property may be determined from the output of the air-fuel ratio sensor 48 during the previous operation, or various fuel property estimation methods may be used. Since these methods are already known and are not new matters, explanations thereof are omitted.
  • Embodiment 3 FIG.
  • the third embodiment is based on the same system configuration and operation as the first embodiment.
  • the difference between the third embodiment and the first embodiment will be mainly described.
  • the sensor output is masked stoichiometrically in the same manner as in Japanese Patent Application Laid-Open No. 2008-138569 in the first embodiment. That is, until the activation flag of the air-fuel ratio sensor 48 is turned ON, the output of the air-fuel ratio sensor 48 is fixed to stoichiometric.
  • the masking is released and the actual output of the air-fuel ratio sensor 48 is taken in.
  • the output signal recognized as the output of the air-fuel ratio sensor 48 may change discontinuously and greatly from the stoichiometric output to the actual output. Such a change may be recognized by the control (ECU 60) side as a rough air-fuel ratio. Therefore, in the third embodiment, in order to prevent this influence, after the activation flag of the air-fuel ratio sensor 48 is turned on, a predetermined annealing process (smoothing process in the time direction) is performed on the output signal of the air-fuel ratio sensor 48. ).
  • FIG. 7 is a flowchart of a routine executed by the ECU 60 in the third embodiment.
  • the routine shown in FIG. 7 includes the processing from steps S102 to S110 as in the routine shown in FIG.
  • the routine in FIG. 7 is the same as the flowchart in FIG. 5 except for the processes in steps S300, S302, S304, and S306.
  • step S102 to S110 is executed as in the routine of FIG.
  • the output of the air-fuel ratio sensor 48 is masked by stoichiometry in the process of step S300.
  • step S302 If it is confirmed that the condition in step S302 is satisfied, it is determined that a sufficient time has elapsed since the sensor activation flag was turned on. Therefore, the sensor output smoothing process is finished (or the smoothing process is finished once through two smoothing processes), and the air-fuel ratio control is performed using the actual output signal of the air-fuel ratio sensor 48. Is done.
  • the third embodiment it is possible to suppress the deterioration of the air-fuel ratio controllability, which is a concern at the start of use of the output of the air-fuel ratio sensor 48.
  • Embodiment 4 FIG. [Basic idea of the fourth embodiment]
  • the fourth embodiment will be described on the assumption that the fourth embodiment has the same system configuration as the first embodiment and can perform the same operation.
  • the temperature T1 is set to the activation temperature of the air-fuel ratio sensor 48 (in other words, the target temperature Ttgt of the heater 57). Therefore, in the fourth embodiment, the target holding time functions as a waiting time after the activation temperature of the air-fuel ratio sensor 48 has reached, as in the second modification of the first embodiment described above.
  • the amount of adsorption species adsorbed by the air-fuel ratio sensor 48 (hereinafter also referred to as “adsorption amount”) varies depending on the cooling state of the air-fuel ratio sensor 48 after the internal combustion engine 1 is stopped.
  • the adsorbed species are those in which HC components and the like in the exhaust gas are adsorbed to the sensor element unit 50 and the like mainly under a situation where the temperature of the air-fuel ratio sensor 48 is lowered to about 300 ° C. or less. If the adsorption amount is different, the length of time during which the output deviation of the air-fuel ratio sensor 48 due to the adsorption species remains is different.
  • the target holding time Te is changed based on the cooling state of the air-fuel ratio sensor 48 in consideration of the above-described tendency.
  • the cooling state of the air-fuel ratio sensor 48 is estimated based on the cooling water temperature THWI at the start of the internal combustion engine 1, and the target holding time Te is changed.
  • FIG. 8 is a flowchart of a routine executed by ECU 60 in the fourth embodiment. Steps common to the flowchart of FIG. 5 are denoted by the same reference numerals.
  • FIG. 9 shows a map that the ECU 60 refers to when executing the routine of FIG.
  • FIG. 9 shows an example of a map in which a target holding time (indicated as TWACT in the fourth embodiment) according to the coolant temperature THWI is defined.
  • the map in FIG. 9 is set so that the target holding time TWACT becomes shorter as the coolant temperature THWI is higher.
  • the target holding time TWACT is set to zero. This map is created experimentally in advance.
  • step S400 it is determined whether or not the ignition is ON, that is, whether the engine is in an active state.
  • step S400 the condition of step S400 is established, the cooling water temperature THWI at the time of starting is subsequently acquired based on the output of the cooling water temperature sensor 8 (step S402).
  • step S404 it is determined whether or not the air-fuel ratio sensor 48 has failed. In this step, it is determined whether or not there is an abnormality in the air-fuel ratio sensor 48, similarly to the processing content of step S102 in the routine of FIG.
  • steps S104 and S106 are executed.
  • step S106 After it is determined in step S106 that the air-fuel ratio sensor 48 has reached the temperature T1, the elapsed time is counted by the timer function of the ECU 60 (step S406).
  • the time counted here is denoted as TTMP.
  • step S406 the map of FIG. 9 is subsequently referred to, and the target holding time TWACT corresponding to the cooling water temperature THWI acquired in step S402 is acquired (step S408).
  • step S410 it is determined whether or not TTMP is equal to or higher than TWACT (step S410).
  • the loop processing is entered until the elapsed time TTMP from the time when the air-fuel ratio sensor 48 reaches the temperature T1 exceeds the target holding time TWACT.
  • the output of the air-fuel ratio sensor 48 is masked by stoichiometry during this period. After that, when TTMP becomes TWACT or more, the loop processing is exited.
  • step S104 the sensor activation flag is turned ON, and the current routine ends.
  • the point that the length of the output deviation period changes according to the cooling state of the air-fuel ratio sensor 48 can be reflected in the target holding time.
  • the target holding time can be changed to a length with less excess or deficiency.
  • an intake air temperature or an oil temperature at the start of the internal combustion engine 1 may be used.
  • the time Te may be multiplied by a correction coefficient so that the target holding time becomes shorter as the cooling water temperature THWI is higher.
  • the target holding time TWACT is set to zero. In this case, when the temperature of the sensor element unit 50 reaches the activation temperature, the sensor activation flag in step S110 is immediately turned ON.
  • the present invention is not limited to this, and a certain minute time may be secured as the target holding time.
  • the temperature T1 is set to the activation temperature.
  • the temperature T1 may be appropriately set to a temperature such as 500 ° C. Even in this case, as described above, if a map that reflects the change in the length of the output deviation period according to the cooling state of the air-fuel ratio sensor 48 in the target holding time is created, The same effects as in the fourth embodiment can be obtained.
  • Embodiment 5 FIG. [Basic idea of the fifth embodiment]
  • the temperature T1 is set to the activation temperature of the air-fuel ratio sensor 48 (in other words, the target temperature Ttgt of the heater 57).
  • Embodiment 5 is common to Embodiment 4 in that the target holding time Te in Embodiment 1 is changed based on the cooling state of the air-fuel ratio sensor 48.
  • the target holding time Te is changed based on the temperature of the air-fuel ratio sensor 48 when the internal combustion engine 1 is started.
  • the impedance of the detection element 51 is used as a physical quantity having a correlation with the temperature of the air-fuel ratio sensor 48.
  • the target holding time Te is changed based on the two tendencies ((a) and (b)) described in the fourth embodiment.
  • FIG. 10 is a flowchart of a routine executed by ECU 60 in the fifth embodiment.
  • the same reference numerals are given to the routines having the same processing contents as the routines described in the first to fourth embodiments.
  • FIG. 11 is a map stored in advance in the ECU 60 in the fifth embodiment.
  • the relationship between the impedance value TIMPI (or admittance value As) of the detection element 51 at the time of starting the internal combustion engine 1 and the time TIACT is experimentally defined in a map. Keep it. This map is defined so that the target holding time (indicated as TIACT in the fifth embodiment) becomes shorter as the impedance value TIMPI indicates that the air-fuel ratio sensor 48 is hot.
  • step S500 a process for obtaining the impedance value TIMPI at the time of starting is executed.
  • a technique for obtaining an impedance value for obtaining the temperature of an air-fuel ratio sensor or the like is already known and not a new matter. Therefore, the description is omitted here.
  • steps S404, S104, and S106 are sequentially executed, and further, TTMP counting is started in S406.
  • step S508 the map shown in FIG. 11 is referred to, and the target holding time TIACT is acquired according to the value of TIMPI acquired in step S500 (step S508).
  • step S510 it is determined whether or not TTMP is equal to or greater than TIACT (step S510).
  • the loop processing is entered until the elapsed time from the time when the air-fuel ratio sensor 48 reaches the temperature T1 exceeds the target holding time.
  • the output of the air-fuel ratio sensor 48 is masked stoichiometrically during this period.
  • the sensor activation flag is turned ON in step S104, and the current routine is terminated.
  • the point that the length of the output deviation period changes according to the cooling state of the air-fuel ratio sensor 48 can be reflected in the target holding time.
  • the target holding time can be changed to a length with less excess or deficiency.
  • TIACT is set to zero when the impedance value TIMPI at the start is in a range exceeding the value corresponding to 300 ° C. of the air-fuel ratio sensor 48.
  • the air-fuel ratio sensor 48 is in the temperature range of 300 ° C. or higher, it can be determined that the influence of the output deviation due to the adsorbed species can be ignored because the adsorption amount is very small. It is.
  • the sensor activation flag in step S110 is turned ON.
  • the present invention is not limited to this, and a certain minute time may be secured as the target holding time.
  • the target holding time is changed based on the elapsed time from the previous period stop to the current start (that is, the engine stop period). Also good. It can be estimated that the longer the engine stop period, the greater the amount of adsorption. Therefore, the target holding time may be set longer as the engine stop period is longer.
  • the temperature T1 is set to the activation temperature. However, as in the first embodiment, the temperature T1 may be appropriately set to a temperature such as 500 ° C. Even in this case, if a map that reflects the change in the length of the output deviation period according to the cooling state of the air-fuel ratio sensor 48 in the target holding time is created, the same as in the fifth embodiment is provided. An effect can be obtained.
  • Embodiment 6 FIG. [Basic idea of the sixth embodiment] Hereinafter, the sixth embodiment will be described on the assumption that the sixth embodiment has the same system configuration as that of the first embodiment and can perform the same operation.
  • the temperature T1 is set to the activation temperature of the air-fuel ratio sensor 48 (in other words, the target temperature Ttgt of the heater 57).
  • Embodiment 6 is common to Embodiments 4 and 5 in that the target holding time Te in Embodiment 1 is changed. However, in changing the target holding time, the embodiment focuses on the rich peak value of the air-fuel ratio sensor 48 when the internal combustion engine 1 is started (hereinafter also referred to as “rich peak”). 6 is different from the fourth and fifth embodiments.
  • the inventor of the present application has come up with a method of changing the target holding time based on the rich side peak when the air-fuel ratio sensor is warmed up. That is, in the fifth embodiment, the target holding time is set to be longer as the output indicated by the air-fuel ratio sensor 48 is richer before the activation is determined during warming-up.
  • FIG. 12 is a flowchart of a routine executed by the ECU 60 in the sixth embodiment.
  • the same reference numerals are assigned to the routines having the same processing contents as the routines described in the first to fifth embodiments.
  • FIG. 13 is a map stored in advance in the ECU 60 in the sixth embodiment.
  • the relationship between the rich side peak AFBACTP and the target holding time (referred to as TAFPACT in the sixth embodiment) is experimentally defined in a map. This map is defined so that the richer peak AFBACTP is, the longer TAFPACT is.
  • steps S400 and S404 similar to those in the fourth embodiment and steps S104 and S106 similar to those in the first embodiment are respectively executed.
  • step S106 when the temperature of the air-fuel ratio sensor 48 is still low, such as immediately after the start of the internal combustion engine 1, the condition of step S106 is denied. That is, the condition of step S106 is negated at least once, except when the air-fuel ratio sensor 48 is hot at the time of starting. In this case, the process proceeds to step S600. In the routine of FIG. 12, the process proceeds to step S600 even when the condition is denied in steps S400 and S404. In step S600, processing for acquiring the rich side peak AFBACTP during the sensor warm-up process is executed.
  • the output of the air-fuel ratio sensor 48 is held sequentially, and every time the process proceeds to step S600, the maximum value of the rich-side output value indicated by the air-fuel ratio sensor 48 is rich. Set to side peak AFBACTP.
  • step S106 the condition of step S106 is affirmed. As a result, the process proceeds to step S406, and TTMP counting is started.
  • step S602 the map shown in FIG. 13 is referred to, and the target holding time TAFPACT is acquired according to the value of AFBACTP acquired in step S600 (step S602).
  • step S604 it is determined whether or not TTMP is equal to or higher than TAFPACT (step S604).
  • the loop processing is entered until the elapsed time from the time when the air-fuel ratio sensor 48 reaches the temperature T1 exceeds the target holding time.
  • the output of the air-fuel ratio sensor 48 is masked stoichiometrically during this period.
  • the TTMP exceeds TAFPACT
  • the loop processing is exited.
  • step S104 the sensor activation flag is turned ON, and the current routine ends.
  • the point that the length of the rich side output deviation period changes according to the rich side peak can be reflected in the target holding time.
  • the target holding time can be changed to a length with less excess or deficiency.
  • the rich peak value is stoichiometric or lean
  • the activation flag can be quickly turned ON after the air-fuel ratio sensor 48 reaches the activation temperature.
  • the activity determination of the air-fuel ratio sensor 48 can be quickly performed accordingly, and as a result, the air-fuel ratio feedback control can also be started early.
  • the temperature T1 is set to the activation temperature.
  • the temperature T1 may be appropriately set to a temperature such as 500 ° C. Even in this case, the effect similar to that of the sixth embodiment can be obtained by changing the target holding time longer as the rich peak value is richer.
  • Embodiment 7 FIG.
  • the determination of (ii) described in the first embodiment that is, the output of the air-fuel ratio sensor 48, Judged whether the effects were sufficiently removed.
  • the method of time measurement not only the method of time measurement but, for example, measurement of integrated air amount, element temperature or element admittance is performed, and the influence of adsorbed species is sufficiently removed from the output of the air-fuel ratio sensor 48 with this measurement result. May be determined.
  • Embodiment 8 FIG.
  • the present invention is not limited to a mode in which the active state of the air-fuel ratio sensor 48 is determined based on whether or not a predetermined time has elapsed from the desorption start temperature as in the above-described embodiments.
  • the predetermined time is set so as to exceed the time when the exhaust sensor reaches the activation temperature by heating the heater, and has a length such that the output deviation of the exhaust sensor due to the adsorbed species is substantially eliminated.
  • the activation state of the air-fuel ratio sensor 48 may be determined based on whether or not the output deviation of the air-fuel ratio sensor 48 due to the adsorbed species has finally disappeared. In other words, the measurement may be performed from the start until the time when the adsorbed species has almost disappeared, and the activation state of the exhaust sensor may be determined when this time has elapsed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 この発明は、排気センサ出力の使用可能時期を正しく判定して、吸着種の影響を多量に含む排気センサ出力が使用されることによる悪影響を抑制することができる排気センサの活性判定装置を提供することを目的とする。  空燃比センサ48の暖機中、空燃比センサ48の温度が所定の温度T1に達した時点から、時間を計測する。この時間が、所定の目標保持時間Te以上になったら、空燃比センサ48を活性状態と判定する。目標保持時間Teは、空燃比センサ48に吸着していた吸着種が全て脱離し、かつ、センサ素子部50周辺が完全に排気ガスに置換される程度の長さにすることが好ましい。

Description

排気センサの活性判定装置、内燃機関の制御装置
 この発明は、排気センサの活性判定装置、内燃機関の制御装置に関する。
 従来、例えば、特開2008-138569号公報に開示されているように、排気センサの出力を用いた内燃機関の空燃比制御技術が広く用いられている。排気センサは、活性温度に達することにより排気ガスの空燃比に応じた出力を発する。内燃機関の始動時に、早期に良好なエミッション特性を得るために、排気センサ出力を用いた空燃比制御を早期に開始したいという要求がある。通常、この要求に応えるべく排気センサ内部にヒータが設けられており、内燃機関始動時にはこのヒータが排気センサを所定の活性温度まで速やかに加熱する。
 ところで、排気センサが活性温度に達する前、すなわち本活性状態の前であっても、特定の条件が揃えば、排気センサ出力を利用しても支障がない場合がある。そこで、本活性状態の前でも排気センサ出力を使用可能な状態、すなわち半活性状態を判定することで、より早い段階で排気センサ出力を空燃比制御に使用することができる。
 しかしながら、内燃機関の停止中、排気センサの電極部やセンサ素子の多孔質体部などに、排気ガス成分が吸着する。以下、排気センサに吸着する排気ガス成分を総称して「吸着種」とも呼ぶ。内燃機関始動時に排気センサが加熱されていく途中で、この吸着種は脱離し始める。脱離した吸着種は、排気センサ近傍に存在することにより排気センサの出力に影響を与え、排気ガス空燃比の正確な測定を妨げる。吸着種の影響が残っている間は、排気センサ出力は、排気ガスの空燃比についての正確な値を示していない。このように、脱離吸着種の影響で出力ずれが発生してしまい、排気センサ出力の早期利用が妨げられる問題があった。
 そこで、特開2008-138569号公報にかかる空燃比制御装置では、吸着種の影響が心配される状況下においては、半活性の後から本活性に至るまでの期間、排気センサ出力値をマスクしている。これにより、必要に応じて、吸着種による出力ずれの悪影響を防止するための措置を取ることができる。
特開2008-138569号公報 特開2005-207924号公報 特開平8-75695号公報 特開2006-170849号公報 特開2004-211611合公報
 上述したように、内燃機関の始動時には、一般に、排気センサ出力を用いた空燃比制御を早期に開始したいという要求がある。この要求に応えるべく、上記の従来技術では、基本的に半活性において排気センサ出力を使用することとし、その例外として、吸着種の影響が心配される状況下では、半活性から本活性の期間は排気センサ出力をマスクしている。
 前述したように、吸着種は、内燃機関始動時に排気センサが加熱される途中で、排気センサから脱離していく。ここで、本願発明者は、吸着種の影響が、排気センサが活性温度に至った後にも残存しうること、つまり、排気センサが十分に高温になっていたとしても吸着種の影響が依然として残存しうることを見出した。
 上記の特許文献1の技術は、半活性から本活性までの期間は排気センサ出力をマスクするものの、本活性後には排気センサ出力を用いた空燃比制御(フィードバック制御)を開始するものである。よって、上記従来技術では、吸着種の影響が本活性後にも多く残存している場合には、排気センサ出力に吸着種の影響が多分に含まれているにも関わらず、排気センサ出力を用いた空燃比制御が開始されてしまう。このように、従来の技術は、吸着種に起因する悪影響を回避する点において、未だ改善の余地を残すものであった。
 この発明は、上記のような課題を解決するためになされたもので、排気センサ出力の使用可能時期を正しく判定して、吸着種の影響を多量に含む排気センサ出力が使用されることによる悪影響を抑制することができる排気センサの活性判定装置を提供することを目的とする。
 また、この発明は、機関始動時における、吸着種に起因するセンサ出力ずれの弊害を抑制する構成を備えた内燃機関の制御装置を提供することを目的とする。
 第1の発明は、上記の目的を達成するため、排気センサの活性判定装置であって、
 内燃機関の始動時に排気センサを加熱するためのヒータと、
 前記内燃機関の始動時に、前記排気センサに吸着した排気ガス成分である吸着種が脱離し始めた後に前記吸着種が前記排気センサのもとから実質的に消失する程度の期間が経過したか否かに基づいて、前記排気センサの活性状態を判定する判定手段と、
 を備えることを特徴とする。
 また、第2の発明は、第1の発明において、
 前記排気センサの温度に対して相関を有する物理量を取得する取得手段を、さらに備え、
 前記判定手段が、
 前記物理量に基づいて、前記排気センサの温度が、前記排気センサに吸着した排気ガス成分である吸着種が脱離し始める温度である脱離開始温度以上の温度領域内において予め設定された所定温度に、達したか否かを判定する温度判定手段と、
 前記排気センサの温度が前記所定温度に達した時点からの経過時間に基づいて、前記排気センサの活性状態を判定する活性判定手段と、
 を含むことを特徴とする。
 また、第3の発明は、第1の発明において、
 前記排気センサの温度に対して相関を有する物理量を取得する取得手段を、さらに備え、
 前記ヒータが、内燃機関の始動時に、排気センサを目標温度まで加熱するものであり、
 前記判定手段が、
 前記ヒータの加熱開始後に、前記目標温度以下の温度領域内において予め設定された所定温度に前記排気センサの温度が達した時点からの経過時間に基づいて、前記排気センサの活性状態を判定する活性判定手段を、含むことを特徴とする。
 また、第4の発明は、上記第2または第3の発明において、
 前記活性判定手段が、前記排気センサの温度と前記経過時間とに基づいて前記排気センサの活性状態を判定するものであり、
 該活性判定手段が、
 前記排気センサが活性温度に達したか否かに基づいて、前記排気センサの活性状態を判定する活性温度判定手段と、
 前記経過時間が所定の時間を越えるまでは、前記活性温度判定手段の判定結果にかかわらず、前記排気センサが活性状態に達したと判定されるのを禁止する活性判定禁止手段と、
 を含むことを特徴とする。
 また、第5の発明は、上記第4の発明において、
 前記活性判定禁止手段による禁止が解除される時刻が、内燃機関始動時に前記排気センサを加熱するヒータによって該排気センサが活性温度に達する時刻を越えるように、前記所定の時間を設定する手段を備えることを特徴とする。
 また、第6の発明は、上記第2または第3の発明において、
 前記所定温度が、前記排気センサの活性温度であり、
 前記活性判定手段が、前記前記排気センサが活性温度に達した後、所定の時間が経過したら、前記排気センサが活性状態にあると判定することを特徴とする。
 また、第7の発明は、上記第2または第3の発明において、
 前記活性判定手段が、前記経過時間が所定の時間を超過したか否かに基づいて前記排気センサの活性状態を判定するものであり、
 該所定の時間が、前記ヒータの加熱により前記排気センサが活性温度に達する時点を越えるように設定され且つ吸着種による該排気センサの出力ずれが実質的に消失する程度の長さに設定されていることを特徴とする。
 また、第8の発明は、上記第2乃至7の発明のうちのいずれか1つにおいて、
 前記所定温度が、300℃以上700℃以下の温度領域から選択された温度であることを特徴とする。
 また、第9の発明は、上記第2乃至7の発明のうちのいずれか1つにおいて、
 前記取得手段が取得する物理量が、前記排気センサのインピーダンスまたはアドミタンスであって、
 前記所定温度が400℃以上の温度領域から選択された温度であることを特徴とする。
 また、第10の発明は、上記第4乃至9の発明のうちのいずれか1つにおいて、
 内燃機関の燃料性状を取得する性状取得手段と、
 前記性状取得手段が取得した燃料性状に応じて前記所定の時間を異なる長さに設定する性状条件時間設定手段と、
 を備えることを特徴とする。
 また、第11の発明は、上記第4乃至10の発明のうちのいずれか1つにおいて、
 内燃機関始動中、前記排気センサが非活性である期間に、該排気センサの出力が示す空燃比のリッチ側のピーク値を取得するリッチピーク取得手段と、
 前記リッチピーク取得手段が取得した空燃比がリッチ側に大きいほど、前記所定の時間を長めに設定するリッチ条件時間設定手段と、
 を備えることを特徴とする。
 また、第12の発明は、上記第4乃至11の発明のうちのいずれか1つにおいて、
 内燃機関停止中に前記排気センサに吸着するガス成分の量である停止時吸着量に対して相関を有する量を取得する吸着量取得手段と、
 前記吸着量取得手段が取得した量に応じて、前記所定の時間を変更する吸着量条件時間設定手段を備えることを特徴とする。
 また、第13の発明は、上記第12の発明において、
 前記吸着量取得手段が、内燃機関始動時の水温、吸気温および油温、内燃機関始動時の排気センサ温度およびこれに相関を有する物理量、並びに、内燃機関の停止から始動開始までの期間の長さである停止期間のうち、少なくとも1つを取得する手段を含み、
 前記吸着量条件時間設定手段が、内燃機関始動時の水温若しくは油温が低いほど、内燃機関始動時の排気センサ温度が低温であるほど、または、前記停止期間が長いほど、前記所定の時間を長めに設定する手段を含む、
 ことを特徴とする。
 また、第14の発明は、上記第4乃至10の発明のうちのいずれか1つにおいて、
 上記第11の発明にかかるリッチピーク取得手段およびリッチ条件時間設定手段と、上記第12または第13の発明にかかる吸着量取得手段および吸着量条件時間設定手段と、のうち少なくとも一方の組と、
 前記リッチピーク取得手段が取得した空燃比がストイキまたはリーン側の値を示している場合、または/および、前記吸着量取得手段が示す吸着量が所定の基準値を下回る場合に、前記排気センサが活性温度に達したら該排気センサを活性状態と判定する即時活性判定手段と、
 を備えることを特徴とする。
 また、第15の発明は、上記第1の発明において、
 前記判定手段が、前記内燃機関の積算空気量、前記排気ガスセンサの素子温度および前記排気ガスセンサの素子アドミタンスのうち、少なくとも1つを対象とした計測の結果に基づいて、前記排気センサに吸着した排気ガス成分である吸着種が脱離し始めた後に前記吸着種が前記排気センサのもとから実質的に消失する程度の期間が経過したか否かの判定を行うことを特徴とする。
 第16の発明は、上記の目的を達成するため、内燃機関の制御装置であって、
 排気センサと、
 前記排気センサの活性判定を行う、上記第1乃至15の発明うちのいずれか1つの発明にかかる排気センサの活性判定装置と、
 前記排気センサの出力に基づいて内燃機関の空燃比をフィードバック制御するためのフィードバック制御手段と、
 内燃機関の始動時に、前記活性判定装置の判定結果に基づいて、前記フィードバック制御手段による制御を開始するフィードバック制御開始手段と、
 を備えることを特徴とする。
 また、第17の発明は、上記第16の発明において、
 前記排気センサが、臨界電流式の空燃比センサであることを特徴とする。
 第1の発明によれば、判定手段が、吸着種による排気センサの出力ずれが消失している時点で排気センサが活性状態になったと判定することができる。これにより、吸着種の影響を多量に含む排気センサ出力が使用されてしまうことを抑制することができる。
 第2の発明によれば、排気センサの温度が脱離開始温度に達した時点からの経過時間を考慮に入れて、排気センサの活性状態を判定することができる。排気センサの温度がある程度上昇すれば、排気センサ自体の出力特性は安定する。しかしながら、吸着種の影響は、排気センサが高温になっても残存する場合がある。排気センサが脱離開始温度以上の環境下にあれば、吸着種の量は、時間の経過に応じて減少していく。そこで、第2の発明では、排気センサ温度が脱離開始温度以上の所定温度に達した時点を起算点として、時間が計測される。所定温度到達後の経過時間を活性判定の基礎に含ませることにより、吸着種の影響の消失度合いを活性判定に反映させることができる。これにより、吸着種の影響を多量に含む排気センサ出力が使用されてしまうことを抑制することができる。
 第3の発明によれば、排気センサの温度上昇の過程で、所定温度への到達時点からの経過時間を考慮に入れて、排気センサの活性状態を判定することができる。内燃機関の始動時、非活性状態の排気センサは早期の使用開始を目的としてヒータにより急速に加熱される。このとき、排気センサの温度は、内燃機関の始動時、目標温度まで速やかに上昇する。一方、排気センサの温度が脱離開始温度以上まで上昇すれば、吸着種の量は徐々に減少していく。つまり、毎回の内燃機関始動時に、排気センサが目標温度まで加熱される途中で、吸着種が離脱しその後排気センサ周辺から吸着種が取り除かれるまでの物理現象が、時間の経過とともに進行する。そこで、第3の発明では、内燃機関の始動時に、目標温度以下の予め定めた所定温度に排気センサ温度が到達した時点を起算点にして、時間が計測される。この時間を活性判定の基礎に含ませることにより、吸着種離脱に関する一連の物理現象の進行度を、活性判定に反映させることができる。これにより、吸着種の影響を多量に含む排気センサ出力が使用されてしまうことを、抑制することができる。
 第4の発明によれば、排気センサの温度に基づいて排気センサ活性判定がなされる場合において、吸着種の影響が残っているにもかかわらず排気センサ出力が使用される事態を、抑制できる。すなわち、第4の発明によれば、排気センサが活性温度に至ったとしても、脱離開始温度以後の経過時間が所定の時間よりも短い場合には、排気センサが活性状態にあると判定されることが禁止される。つまり、予め定めておいた時間が経過するまでは、排気センサ出力の使用禁止状態を確保できる。その結果、吸着種の影響が残っているにもかかわらず排気センサ出力が使用される事態を、抑制できる。
 第5の発明によれば、排気センサが活性温度に至ったとしても、即座に排気センサが活性状態にあると判定されることがない。本願発明者の知見によれば、排気センサが活性温度に達した後も吸着種の影響が残存するケースは、現実的に、多いと考えられる。本願発明者は、排気センサ出力の早期使用の要求があるなかで、活性温度到達時刻を越えて排気センサ出力使用禁止期間を設けることが効果的であることを見出した。これにより、吸着種の影響が残る排気センサ出力が使用される事態を、確実に防止することができる。
 第6の発明によれば、排気センサが活性温度に至った時点を起算点としてそこから更に所定の時間が経過した後に、排気センサが活性状態にあると判定される。本願発明者の知見によれば、排気センサが活性温度に達した後も吸着種の影響が残存するケースは、現実的に、多いと考えられる。本願発明者は、排気センサ出力の早期使用の要求があるなかで、敢えて、活性温度到達後に排気センサを活性状態と判定しない時間(言い換えれば、待ち時間)を導入することが効果的であることを見出した。これにより、吸着種の影響が残る排気センサ出力が使用される事態を、確実に防止することができる。
 第7の発明によれば、ヒータの加熱により排気センサが活性温度に達する時点を越えたか否かと、吸着種による排気センサの出力ずれが実質的に消失する程度の時間が経過したか否かの双方を、経過時間と所定の時間との比較に基づいて判断することができる。従って、第6の発明によれば、排気センサの活性温度到達の判定と、吸着種による出力ずれの影響消失の判定とを、時間計測によって一括して行うことができる。
 第8の発明によれば、吸着種の脱離温度が主に分布する温度範囲内から、時間の起算点を決める所定温度の値を定めることができる。すなわち、排気ガスには、吸着種となった際の脱離温度が相違する複数の成分が含まれている。本願発明者の知見によれば、ガソリンでは、吸着種のうち脱離温度が低いもの(具体的には、比較的低分子のHCや、酸素)は、その脱離温度が約300℃以上の温度域に分布している。その一方で、ガソリンでは、吸着種のうち脱離温度が高いもの(具体的には、比較的高分子のHC)は、その脱離温度が大体700℃以下の温度域に収まっている。第8の発明によれば、所定温度の値を、ガソリンにおける吸着種の脱離温度が分散する温度範囲に合わせて、適切に選択することができる。
 第9の発明によれば、排気センサの温度に対して相関を有する物理量として、インピーダンスやアドミタンスが利用される。このとき、これらの電気的物理量がある程度高い精度に達するには、排気センサの温度がある程度上昇していることが必要となる。そこで、第9の発明では、この点を考慮に入れて、400℃以上の温度域から、時間計測の起算点を確定するための所定温度を選択した。これにより、高精度に時間計測を行うことができる。
 第10の発明によれば、燃料性状に応じて、上述した第4乃至6の発明における所定の時間を変更することができる。これにより、燃料性状の相違による排気センサ出力ずれの程度のばらつきを、上述した第4乃至6の発明における所定の時間に反映させることができる。
 第11の発明によれば、リッチ側出力ずれ期間の長さがリッチ側ピークに応じて変化する点を考慮して、リッチ側ピークに応じて、上述した第4乃至6の発明における所定の時間を変更することができる。その結果、より過不足の少ない長さに、上述した第4乃至6の発明における所定の時間を変更することができる。
 第12の発明によれば、吸着種の量に応じて、上述した第4乃至6の発明における所定の時間を変更することができる。その結果、より過不足の少ない長さに、上述した第4乃至6の発明における所定の時間を変更することができる。
 第13の発明によれば、吸着種の量に相関を有する各種の量を利用することにより、吸着種の量が多いほど上述した第4乃至6の発明における所定の時間を長めに設定することができる。
 第14の発明によれば、吸着種の影響が無視できるほどに小さいと判断できる場合には、排気センサが活性温度に達した時点で、排気センサが活性状態にあると判定することができる。よって、吸着種の影響が無視できる場合には、それに応じて排気センサの活性判定も速やかに行うことができる。
 第15の発明によれば、積算空気量、素子温度或いは素子アドミタンスの計測を行い、これをもって排気センサの出力から吸着種の影響が十分に取り除かれていることを判定することができる。
 第16の発明によれば、内燃機関始動時において、吸着種に起因するセンサ出力ずれがもたらす種々の弊害、例えば、空燃比制御性の悪化や、ドライバビリティへの悪影響などを、抑制することができる。
 第17の発明によれば、吸着種に起因する出力ずれの影響が大きい臨界電流式の排気センサに対して、活性状態の判定を的確に行うことができる。
本発明の実施の形態1のシステム構成を説明するための図である。 空燃比センサ48のセンサ素子部50を示す断面図である。 暖機中における空燃比センサ48の出力ずれの影響を説明するための図である。 実施の形態1においてECU60が実行するルーチンのフローチャートである。 本発明の実施の形態2のシステム構成を説明するための図である。 実施の形態2においてECU60が実行するルーチンのフローチャートである。 実施の形態3においてECU60が実行するルーチンのフローチャートである。 実施の形態4においてECU60が実行するルーチンのフローチャートである。 冷却水温THWIに応じた目標保持時間TWACTが規定されたマップの一例である。 実施の形態5においてECU60が実行するルーチンのフローチャートである。 インピーダンス値TIMPIに応じた目標保持時間TIACTが規定されたマップの一例である。 実施の形態6においてECU60が実行するルーチンのフローチャートである。 リッチ側ピークの値AFBACTPに応じた目標保持時間TAFPACTが規定されたマップの一例である。
実施の形態1. 
[実施の形態1のシステム構成の説明]
 図1は、本発明の実施の形態1のシステム構成を説明するための図である。本実施形態のシステムは、内燃機関(以下「エンジン」ともいう。)1を備えている。内燃機関1は複数の気筒2を有しているが、図1には、そのうちの1気筒のみを示している。
 内燃機関1は、内部にピストン4を有するシリンダブロック6を備えている。シリンダブロック6には、内燃機関1の冷却水温THWIを検出する冷却水温センサ8が設けられている。ピストン4は、クランク機構を介してクランクシャフト10と接続されている。クランクシャフト10の近傍には、クランク角センサ12が設けられている。クランク角センサ12は、クランクシャフト10の回転角度(以下「クランク角」という。)CAを検出するように構成されている。
 シリンダブロック6の上部にはシリンダヘッド14が組み付けられている。ピストン4上面からシリンダヘッド14までの空間は燃焼室16を形成している。シリンダヘッド14には、燃焼室16内の混合気に点火する点火プラグ18が設けられている。
 シリンダヘッド14は、燃焼室16と連通する吸気ポート20を備えている。この吸気ポート20と燃焼室16との接続部には吸気バルブ22が設けられている。吸気ポート20には、吸気通路24が接続されている。吸気通路24には、吸気ポート20の近傍に燃料を噴射するインジェクタ26が設けられている。
 インジェクタ26の上流にはスロットルバルブ28が設けられている。スロットルバルブ28は、スロットルモータ30により駆動される電子制御式のバルブである。スロットルバルブ28は、アクセル開度センサ32により検出されるアクセル開度AAに基づいて駆動されるものである。スロットルバルブ28の近傍にはスロットル開度を検出するスロットル開度センサ34が設けられている。
 スロットルバルブ28の上流には、熱線式のエアフロメータ36が設けられている。エアフロメータ36は吸入空気量Gaを検出するように構成されている。エアフロメータ36の上流にはエアクリーナ38が設けられている。
 また、シリンダヘッド14は、燃焼室16と連通する排気ポート40を備えている。排気ポート40と燃焼室16との接続部には排気バルブ42が設けられている。排気ポート40には排気通路44が接続されている。排気通路44には、排気ガスを浄化する排気浄化触媒(以下「触媒」という。)46が設けられている。触媒46の上流には、臨界電流式の空燃比センサ48が設けられている。この空燃比センサ48は、図2に示すようなセンサ素子部50を有している。
 図2は、空燃比センサ48のセンサ素子部50を示す断面図である。センサ素子部50は、検出素子51としての固体電解質層を有している。固体電解質層51は、部分安定化ジルコニアよりなり、酸素イオン導電性を有する。固体電解質層51の一面には、計測電極52が設けられている。また、固体電解質層51の他面には、大気側電極(「基準ガス側電極」ともいう。)53が設けられている。これらの計測電極52及び大気側電極53は、ともに白金等よりなり、リード58a,58bを介して後述のECU60にそれぞれ接続されている。
 また、固体電解質層51の一面には、多孔質拡散抵抗層54が形成されている。多孔質拡散抵抗層54は、計測電極52を覆い、かつ、該計測電極52に排気ガスを導入するためのガス透過層54aと、排気ガスの透過を抑制するガス遮断層54bとを有している。これらのガス透過層54a及びガス遮断層54bは、アルミナやジルコニア等のセラミックスよりなり、平均孔径や気孔率が互いに相違している。
 固体電解質層51の他面には、大気導入ダクト55が形成されている。大気導入ダクト55は、上部に大気室(「基準ガス室」ともいう。)56を有している。この大気室56内に上記大気側電極53が配置されている。大気導入ダクト55は、アルミナ等の高熱伝導性セラミックスよりなる。大気導入ダクト55の下面には、ヒータ57が設けられている。ヒータ57は、通電により発熱する複数の発熱体57aと、該発熱体57aを覆う絶縁層57bとを有している。発熱体57aは、リード58cを介してECU60に接続されている。
 このような構成を有するセンサ素子部50は、酸素濃度を直線的特性にて検出することができ、酸素濃度に応じた臨界電流をECU60に出力し得る。この空燃比センサ出力(臨界電流)は、排気ガスの空燃比と相関を有している。具体的には、排気ガスの空燃比がリーン側になるほど臨界電流は増大し、排気ガスの空燃比がリッチ側になるほど臨界電流は減少する。
 また、検出素子51のアドミタンス値Asは、検出素子51の温度と相関を有する。この点を利用して、本実施形態では、検出素子51のアドミタンス値Asに基づいて、空燃比センサ48の温度を計測する。
 また、本実施の形態のシステムは、制御装置としてのECU(Electronic Control Unit)60を備えている。ECU60の出力側には、点火プラグ18、インジェクタ26、スロットルモータ30等が接続されている。ECU60の入力側には、冷却水温センサ8、クランク角センサ12、アクセル開度センサ32、スロットル開度センサ34、エアフロメータ36、空燃比センサ48等が接続されている。
 ECU60は、クランク角センサ12の出力に基づいて、機関回転数NEを算出する。また、ECU60は、アクセル開度センサ32により検出されるアクセル開度AA等に基づいて、機関負荷KLを算出する。ECU60は、機関回転数NEや機関負荷KL等に基づいて、燃料噴射量を決定する。また、ECU60は、時間をカウントするタイマ機能も備えるものとする。
[吸着種の影響]
 内燃機関の停止中に、排気センサの電極部などに、排気ガス成分が吸着することが公知である。実施の形態1の場合には、内燃機関1の停止中、センサ素子部50の計測電極52に排気ガス成分(未燃成分であるHCや、HOあるいはO)が吸着する。また、空燃比センサ48の各種の多孔質セラミックス構造部の表面に、排気ガス成分が吸着する。以下、空燃比センサ48に吸着する排気ガス成分を総称して「吸着種」とも呼ぶ。
 内燃機関1が始動されると、ヒータ57への通電が開始されることから、センサ素子部50の温度は上昇する。そして、センサ素子部50の温度が特定の温度域を超えると、計測電極52の表面から吸着種が脱離し初め、また、その表面上で種々の反応が活発化し始める。この際、計測電極52の表面上で還元物質であるHが生成されることにより、或いは、計測電極52上の酸素との反応点が吸着種の存在に起因して減ることにより、空燃比センサ48の出力は一時的にリッチ側にシフトする。また、逆に、計測電極52の表面上にOが増えることにより、空燃比センサ48の出力は一時的にリーン側にシフトする。そして、センサ素子部50の昇温と共に吸着種の脱離が進むと、やがては、センサ出力のリッチずれやリーンずれが解消される。
 図3は、暖機中における空燃比センサ48の出力ずれの影響を説明するための図である。図3は、本願発明者が行った実験結果である。図3には、モニタ用A/Fセンサ出力、制御用A/Fセンサ出力、素子アドミタンスが、それぞれ実線で示されている。制御用A/Fセンサは、内燃機関の排気通路に配置される通常のA/Fセンサを模して用意されたA/Fセンサである。モニタ用A/Fセンサは、制御用A/Fセンサに向かって流れ込む排気ガスの空燃比を正確にモニタリングするために用意されたA/Fセンサである。この実験では、制御用A/Fセンサを、始動時暖機運転状況下を模して、ヒータにより活性温度まで加熱する。図3における素子アドミタンスの値は、制御用A/Fセンサの温度と相関を有している。一方、モニタ用A/Fセンサは、常時、活性温度に保たれている。つまり、モニタ用A/Fセンサ出力が示す空燃比の排気ガスが、制御用A/Fセンサ側に流れている。制御用A/Fセンサは、前述した吸着種の影響が生じうる状態(内燃機関停止後、十分な時間放置し、十分に吸着種が吸着した状態)にされたものである。
 図3を、時刻t→tの時間経過に沿って説明する。先ず、時刻tから、制御用A/Fセンサに対して排気ガスの供給が開始される。この時点では、ヒータによる加熱が行われているものの制御用A/Fセンサは未だ活性温度に達しておらず、出力値がストイキを固定的に示している。その後、時刻tに至ると、制御用A/Fセンサ出力が徐々にリッチ側に偏り始めている。この時点で、図3のグラフ中には現れていないが、素子アドミタンスの値は約300℃である。時刻tに至ると、素子アドミタンスの値が図3のグラフ中に現れている。時刻t時点で、制御用A/Fセンサは400℃にある。なお、素子アドミタンスの計測精度が400℃以上の温度範囲で十分に高くなるため、図3には400℃以上から計測値を示している。
 その後、時刻t付近から、制御用A/Fセンサの出力がリッチ側に急速に偏り始めている。これに対し、モニタ用A/Fセンサ出力はストイキ付近を示している。時刻t付近で、制御用A/Fセンサに吸着していた吸着種の影響が活発化し始めていることがわかる。その後、時刻tで、制御用A/Fセンサのリッチ側への出力ずれがピークに達している。そして、時刻t以降になると、制御用A/Fセンサ出力は、リーン側へと徐々に回復している。最終的に、時刻tにおいて、制御用A/Fセンサ出力は、モニタ用A/Fセンサ出力に一致する。この時点で、吸着種による影響が完全に解消されたと考えることができる。
[実施の形態1の動作]
 内燃機関の始動時には、一般的に、排気センサ出力を用いた空燃比制御(フィードバック制御)を早期に開始したいという要求がある。内燃機関1においても同様に、空燃比センサ48の出力を早期に利用可能とし、可能な限り早期に空燃比フィードバック制御を開始できることが望ましい。
 一般的に、排気センサの温度が活性温度まで上昇すれば、排気センサ自体の出力特性は安定する。このため、空燃比センサ48が活性温度に達していれば、温度条件に関しては、空燃比センサ48の準備が完了していると考えることができる。また、従来は、排気センサが活性温度程度になっていれば(或いは、排気センサが、活性温度より低くとも、ある程度高温になっていれば)、吸着種の影響は十分に消失していると考えられていた。よって、従来の技術にかかるセンサ活性判定では、空燃比センサ48が活性温度に達した時点で、空燃比センサ48が活性状態にあるとの判断が下ると考えられる。
 しかしながら、本願発明者は、排気センサが活性温度に至った後にも吸着種の影響が残存する場合があること、つまり、排気センサが十分に高温になっていたとしても吸着種の影響が依然として残存する場合があることを見出した。具体的には、図3における時刻tよりも前に、制御用A/Fセンサが活性温度に達してしまうような場合が生じうる。例え空燃比センサ48の出力精度が十分なものとなっていても、吸着種の影響が残存している場合には、センサ出力に吸着種の影響による誤差が含まれてしまう。その結果、排気ガス空燃比の正確な測定が妨げられてしまう。このような状況を考慮せずに空燃比センサ48の出力を用いた空燃比制御が開始されてしまうことは、好ましくない。
 そこで、本願発明者は、このような吸着種の影響に鑑み、空燃比センサ48が活性温度に達したか否かのみならず、空燃比センサ48の出力から吸着種の影響が十分に取り除かれているか否かに基づいて、空燃比センサ48の活性状態を判定することにした。言い換えれば、下記2つの条件が満たされている場合に、空燃比センサ48が活性状態にあると判定されるようにした。
  (i)空燃比センサ48が活性温度に至っており、空燃比センサ48の出力特性が安定している。
  (ii)空燃比センサ48の出力から吸着種の影響が十分に取り除かれている。
 そして、本願発明者は、上記の(ii)の条件成立を、ヒータ57による空燃比センサ48の暖機途中に時間を計測することにより判別するという手法に想到した。すなわち、本実施形態では、空燃比センサ48の温度が、所定温度(以下、T1とも示し、本実施形態ではT1=500℃とする)に達した後、予め定めた時間(以下、「目標保持時間」とも称し、「Te」とも記す)が経過した後に、空燃比センサ48が活性状態にあるとの判定を下すこととした。つまり、温度T1到達後に時間Teが経過していなければ、空燃比センサ48の温度が活性温度に達していたとしても空燃比センサ48が活性状態であるとは判定されない。
(温度T1の設定)
 本実施形態では、温度T1を次のような観点から設定した。吸着種には、HCやOなどの様々な種類がある。それぞれの吸着種は、特定の温度になると、計測電極52の表面から脱離し始める。つまり、個々の吸着種がそれぞれ、計測電極52の表面から脱離し始める固有の温度(以下、「脱離温度」とも称す。)を備えている。空燃比センサ48の温度がこれらの脱離温度のうち最も低い温度に達した時点で、吸着種の脱離がはじまる。以下、空燃比センサ48から吸着種の脱離が開始する温度、言い換えれば、脱離温度のうち最も低い温度を、「脱離開始温度」とも呼称する。
 排気ガスには、吸着種となった際の脱離温度が相違する複数の成分が含まれている。本願発明者の知見によれば、ガソリンでは、吸着種のうち脱離温度が低いもの(具体的には、比較的低分子のHCや、酸素)は、その脱離温度が約300℃以上の温度域に分布している。その一方で、ガソリンでは、吸着種のうち脱離温度が高いもの(具体的には、比較的高分子のHC)は、その脱離温度が大体700℃以下の温度域に収まっている。本願発明者は、ガソリン中の吸着種の脱離温度は、燃料中に種々の分子数のHCが含まれるなどの点を考慮しても、300℃以上700℃以下の範囲に収まると見積っている。また、本願発明者の知見によれば、400℃以上の温度であれば素子アドミタンスや素子インピーダンスの計測精度をある程度高く確保できると予想されることから、時間Teの計測を精度よく行う観点からは温度T1を400℃以上に設定することが好ましい。本実施形態ではこれらの点を考慮して、温度T1を500℃とした。
(目標保持時間Teの設定)
 時間Teは、下記の点を考慮して、実験的にあるいはシミュレーションによって、予め定めておく。本実施形態では、空燃比センサ48が温度T1すなわち500℃に達した時刻を起算点として、センサ出力値が十分に収束するまでの時刻(図3で言うところの時刻t)までの時間を予め実験で特定しておく。この時刻をTeとする。
 繰り返し述べているように、本願発明者は、吸着種の影響が、排気センサが活性温度に至った後にも残存しうることに着目している。本願発明者の知見によれば、空燃比センサ48が活性温度に達した後も吸着種の影響が残存するケースは、現実的に、多いと考えられる。つまり、本願発明者は、空燃比センサ48の活性温度到達時刻後からセンサ出力使用開始までに若干のタイムロスが生じたとしても、時間Teを長めに設定することが、吸着種の影響を回避して内燃機関1の始動を良好に行う上で効果的であることを見出した。
 そこで、本実施形態では、時間Teの長さが、内燃機関1始動時にヒータ57によって空燃比センサ48が活性温度に達する時刻を越えるような長さに、定められる。Teは、温度T1の後、空燃比センサ48の出力値から吸着種の影響が消失して、空燃比センサ48の出力値が安定するまでの時間とすることが好ましい。すなわち、Teは、空燃比センサ48の出力が、ばらつきを含めて、排気ガスの現実の空燃比に収束したと確認できる程度の時間とすることが好ましい。これらの条件を満たすことを考えた場合には、例え空燃比センサ48の活性温度到達時刻を越えるほどの長さになったとしても、Teは十分に長く設定されることが好ましい。これにより、吸着種の影響が残る空燃比センサ48出力が使用される事態を、確実に防止することができる。
 なお、時間Teを設定する際には、下記の点を考慮することが好ましい。吸着種の影響がセンサ出力値から十分に消失するためには、先ず、吸着種の脱離が十分に進んでいることが必要である。更に、脱離した吸着種の影響が、空燃比センサ48近傍(つまりセンサ素子部50の近傍)から、十分に取り除かれていることが必要である。言い換えれば、吸着種脱離後にセンサ素子部50を取り巻くリッチ雰囲気ガスあるいはリーン雰囲気ガスが、内燃機関1が排出する排気ガスに置換されていることが必要である。
 上述したように、空燃比センサ48の温度が脱離開始温度を越えると、計測電極52等に吸着していた吸着種が、脱離温度の低いものから順に脱離を開始する。その後、各々の吸着種の量が、時間の経過に応じてそれぞれ減少していく。このように、脱離開始温度以上の特定の温度を起算点とした場合、先ず、吸着種の脱離プロセスにおいてかかる時間分Te1がある。そして、このTe1とは別に、排気ガスの流量に応じて、リッチ雰囲気ガスやリーン雰囲気ガスを置換するための時間分Te2も存在する。Teは、Te1およびTe2の時間を考慮して設定することが好ましい。
 なお、実施の形態1では、前提条件として、内燃機関1の停止後、空燃比センサ48が十分に冷えて、吸着種の量が多いと予想される状況を対象とする。具体的には、内燃機関1の停止後、数時間以上、あるいは、1日以上程度の期間が経過している場合を対象とする。
(実施の形態1のセンサ活性状態判定)
 本実施形態では、上記のようにして定めた温度T1と時間Teとを用いた時間計測を行うことにより、内燃機関1の始動時に空燃比センサ48の活性状態を判定する。具体的には、実施の形態1では、内燃機関始動時にヒータ57がセンサ素子部50を加熱している間、空燃比センサ48の温度と相関を示す物理量として、検出素子51のアドミタンス値Asが取得される。アドミタンス値Asが、空燃比センサ48の温度が温度T1に至ったことを示す値まで上昇したら、その時刻を起算点として時間計測が開始される。
 時間計測が開始された後、ヒータ57により空燃比センサ48が加熱され、やがては空燃比センサ48の温度が活性温度に(例えば750℃など)に到達する。このとき、前述した(i)の条件が成立する。しかしながら、本実施形態では、前述したように時間Teを十分に長くとっている。従って、この時点では、計測開始時刻からの経過時間がTeを超えていない。よって、未だ、空燃比センサ48が活性状態にあるとの判定は下されない。
 その後、計測開始時刻からの経過時間が、Teを超えたら、前述した(ii)の条件が成立したと判断される。すなわち、空燃比センサ48の出力から吸着種の影響が十分に取り除かれているとの判断が下される。この時点で、空燃比センサ48が活性状態にあるとの判定が下される。
 以上のように、実施の形態1によれば、空燃比センサ48の温度が温度T1に達した時点を起算点として、時間を計測することができる。そして、活性判定の基礎に脱離開始温度到達後の経過時間を含めることにより、吸着種の影響の消失度合いを、活性判定に反映させることができる。これにより、吸着種の影響を多量に含むセンサ出力が使用されてしまうことを抑制することができる。
 すなわち、実施の形態1によれば、温度T1到達後の経過時間が時間Teよりも短い場合には、空燃比センサ48(センサ素子部50)が活性温度に至ったとしても、空燃比センサ48が活性状態にあると判定されることが禁止される。その結果、時間Teが経過するまでは、空燃比センサ48出力の使用禁止状態が確保できる。その結果、吸着種の影響が多分に残っているにもかかわらず空燃比センサ48出力が使用される事態を、確実に抑制できる。
 また、本実施形態によれば、時間Teが予め上述した十分な長さ(空燃比センサ48の活性温度到達時刻を越える程度の長さ)に、設定されている。したがって、空燃比センサ48が活性温度に至ったとしても、即座に空燃比センサ48が活性状態にあると判定されることがない。このように、本実施形態では、空燃比センサ48出力の早期使用の要求があるなかで、敢えて、活性温度到達時刻を越えて空燃比センサ48出力使用禁止期間が設けられる。その結果、吸着種の影響が残っているにもかかわらず空燃比センサ48出力が使用される事態を、確実に抑制できる。
[実施の形態1の具体的処理]
 以下、図4を用いて、実施の形態1にかかる具体的処理を説明する。図4は、実施の形態1においてECU60が実行するルーチンのフローチャートであり、内燃機関1の始動時に繰り返し実行される。なお、実施の形態1では、内燃機関1の停止後に1日以上程度の期間が経過している場合に実行されるものとする。
 図4に示すルーチンが開始された後、エンジン始動後であるか否か、および、空燃比センサ48に異常が無いかが判別される(ステップ102)。このステップ102では、センサ素子部50の割れや、リード58a,58b,58c等の断線が起こっていないか否かが判別される。このステップで空燃比センサ48に異常が有ると判別された場合には、例えば、センサ異常フラグを“1”にセットするなどの措置を取ることができる。このようにセンサ異常フラグが“1”にセットされると、例えば、車内に設けられた警告ランプ(図示せず)が点灯する。これにより、車両運転者は、センサ異常を認識することができる。
 ステップS102の条件の成立が認められた場合には、ヒータ57への通電が開始されるとともにアドミタンス値Asの算出が開始される(ステップS104)。これにより、空燃比センサ48の暖機が開始され、かつ、空燃比センサ48の温度が監視される。
 続いて、センサ素子部50の温度が温度T1に達したか否かが判定される(ステップS106)。このステップでは、アドミタンス値Asが、センサ素子部50の温度が温度T1に至った場合におけるアドミタンス値As1以上になったか否かが判定される。このステップの条件が成立していない場合には、今回のルーチンが終了する。ステップS106の条件の成立が認められた場合には、当該条件成立時のステップにおける時刻を起算点として、ECU60が時間の計測を開始する。
 その後、ECU60の計測開始後から時間Teが経過したか否かが判定される(ステップS108)。このステップでは、ECU60の計測時間、即ち、センサ素子部50の温度が温度T1に達した時点からの経過時間が、Te以上であるか否かが判定される。このステップの成立が認められるまではルーチンはENDに移行して一旦終了し、その後再び本ルーチンが繰り返し実行される。
 ステップS108の条件が成立した場合には、空燃比センサ48が活性状態にあるとの判定が下される(ステップS110)。このステップでは、ECU60が、空燃比センサ活性フラグをONとする。その後、空燃比センサ48の出力を利用した空燃比フィードバック制御へと、内燃機関1の制御が移行することとなる。
 以上の処理によれば、空燃比センサ48の温度とともに、空燃比センサ48の温度が脱離開始温度に達した時点からの経過時間を考慮に入れて、空燃比センサ48の活性状態を判定することができる。つまり、空燃比センサ48温度が温度T1に達した時点を起算点として、時間を計測することができる。そして、活性判定の基礎に、温度T1到達後の経過時間を含めることにより、吸着種の影響の消失度合いを活性判定に反映させることができる。これにより、吸着種の影響を多量に含む空燃比センサ48出力が使用されてしまうことを抑制することができる。その結果、内燃機関1の始動時において、センサ出力ずれがもたらす種々の弊害、例えば、空燃比制御性の悪化や、ドライバビリティへの悪影響などを、抑制することができる。
 尚、上述した実施の形態1では、図4のルーチンにおけるステップS104からS110にかけての一連の処理によって、前記第1の発明における「判定手段」が実現されている。
 尚、上述した実施の形態1では、図4のルーチンにおけるステップS104以降の、検出素子51によりアドミタンス値Asを取得する処理により、前記第2の発明における「取得手段」が、図4のルーチンにおけるステップS106の処理により、前記第2の発明における「温度判定手段」が、図4のルーチンにおけるステップS108およびS110の処理により、前記第2の発明における「活性判定手段」が、それぞれ実現されている。また、実施の形態1では、温度T1が、前記第2の発明における「所定温度」に、相当している。
[実施の形態1の変形例]
(第1変形例)
 実施の形態1では、温度T1を500℃に設定し、温度T1から時間Teが経過した後に、空燃比センサ48が活性状態にあると判定されている。しかしながら、本発明はこれに限られるものではない。T1を500℃とは異なる温度に設定しても良い。
 前述したように、吸着種の脱離温度は、吸着種の種類に応じて異なる温度になる。例えば、燃料中に種々の分子数のHCが含まれるなどの点を考慮しても、概ね、ガソリンであれば、吸着種の脱離温度は、300℃以上700℃以下の範囲に収まると見積もられる。つまり、脱離開始温度が300℃であると見積もることができる。実施の形態1の温度T1を、300℃以上700℃以下の範囲から選択した1の温度、たとえば、350℃、400℃、450℃、550℃、600℃、または650℃に設定してもよい。その場合には、選択した温度を起算点とした場合の時間Teを、温度に応じて予め実験的に決定しておくことができる。
(第2変形例)
 温度T1を、空燃比センサ48の活性温度に一致させても良い。すなわち、空燃比センサ48の活性温度が例えば750℃だった場合に、温度T1を750℃に設定しても良い。この変形例では、空燃比センサ48の活性温度到達時点を起算点としてそこから更に所定の時間が経過した後に、空燃比センサ48が活性状態にあると判定される。
 実施の形態1でも述べたように、本願発明者の知見によれば、空燃比センサ48が活性温度に達した後も吸着種の影響が残存するケースは、現実的に、多いと考えられる。この変形例によれば、空燃比センサ48出力の早期使用の要求があるなかで、敢えて、活性温度到達後に空燃比センサ48を活性状態と判定しない時間(言い換えれば、センサ活性フラグONまでの待ち時間)が導入される。これにより、吸着種の影響が残る空燃比センサ48出力が使用される事態を、確実に防止することができる。
(第3変形例)
 実施の形態1では、時間Te経過後に、空燃比センサ48の活性フラグをONにしている。ここで、本発明でいうところの「排気センサの活性状態」とは、「排気センサ出力の使用開始が許可されている状態」あるいは「排気センサが真に排気ガスの空燃比を正確に測定できるようになった状態」とも言い換えることができる。すなわち、空燃比センサ48が活性温度に至っていれば、温度条件に関して言えば、空燃比センサ48は活性状態にあるということができる。しかし、本発明では、前述したように、空燃比センサ48の出力を排気ガス空燃比を示す値として利用できる状態を、空燃比センサ48の活性状態として考えている。
 従って、次のような変形も、本発明の技術的範囲に含まれる。例えば、空燃比センサ48の温度条件に関する「活性温度フラグ」と、空燃比センサ48の出力を空燃比制御に使用可能であるという「使用許可フラグ」とを、個別に準備する。あるいは、活性温度フラグと、空燃比センサ48の出力から吸着種の影響が十分に除去されたことを示す「吸着種影響フラグ」とを、個別に準備する。そして、活性温度フラグは、空燃比センサ48が活性温度に達した時点にONとされる。しかし、使用許可フラグや吸着種影響フラグは、時間Teが経過するまでOFFとされる。これにより、空燃比センサ48が温度条件に関して活性状態にあると判定されていても、使用許可フラグや吸着種影響フラグがOFFである期間は、空燃比センサ48は本発明の「活性状態」には達していないと判断される。少なくとも、このような変形例も、本発明の技術的範囲に含まれる。
(第4変形例)
 実施の形態1では、本願発明者の知見に鑑みて、時間Teを長めに設定した。つまり、空燃比センサ48が活性温度に達した後であっても、空燃比センサ48が活性状態とは判定されない期間が設けられた。しかしながら、本発明は必ずしもこれに限られるものではなく、状況に応じて、時間Teを適切な長さに設定すればよい。つまり、吸着種の影響消失までの時間が、空燃比センサの活性温度到達時刻よりも短いような場合には、これに応じて時間Teを適宜に短く設定してもよい。
(第5変形例)
 実施の形態1では、空燃比センサ48の温度に相関を有する物理量として、アドミタンス値Asを利用した。しかしながら、本発明はこれに限られるものではない。素子インビーダンスを用いる手法によって、空燃比センサ48の温度を測定しても良い。また、ヒータ57への供給電力積算値からの推定などを行っても良い。空燃比センサの温度計測に関しては、多くの公知技術があるため、ここではこれ以上の説明を省略する。
(第6変形例)
 実施の形態1では、温度T1を、吸着種の脱離開始温度以上の温度域で設定している。しかしながら、本発明はこれに限られるものではない。以下述べるように、温度T1を、脱離開始温度未満の温度(つまり実施の形態1で言えば300℃未満の温度)に設定しても良い。
 内燃機関1の始動時、非活性状態の空燃比センサ48は早期の使用開始を目的としてヒータ57により急速に加熱される。このとき、空燃比センサ48の温度は、内燃機関1の始動時、目標温度Ttgt(活性温度と同じ若しくはそれより高温の特定温度)まで速やかに上昇する。センサ暖機時のヒータ57のデューティ比は、例えば100%などに設定される。
 空燃比センサ48の温度が脱離開始温度以上まで上昇すれば、吸着種の量は徐々に減少していく。つまり、毎回の内燃機関始動時に、空燃比センサ48が目標温度まで加熱される途中で、吸着種が離脱しその後空燃比センサ48周辺から吸着種が取り除かれるまでの物理現象が、時間の経過とともに進行する。
 そこで、本変形例では、内燃機関1の始動時に、目標温度Ttgt以下の予め定めた所定温度を起算点にして時間TTMPが計測される。そして、実施の形態1と同様に、計測開始後の経過時間が、事前に設定しておいた目標保持時間を越えたか否かが判定される。目標保持時間(以下、「Tee」と記す)は、実施の形態1と同様の観点から、すなわち、吸着種に起因する出力ずれの影響が十分に消失する程度の長さに、予め設定しておく。実施の形態1と同様に、マップとしてECU60に記憶しておく。そして、TTMPがTee以上となったら、空燃比センサ48の活性フラグをONにする。
 以上のように、空燃比センサ暖機過程で時間計測を行いこの時間を活性判定の基礎に含めることにより、吸着種離脱に関する一連の物理現象の進行度を、活性判定に反映させることができる。これにより、実施の形態1と同様に、吸着種の影響を多量に含む空燃比センサ48出力が使用されてしまうことを、抑制することができる。
(第7変形例)
 本発明を適用可能な空燃比センサは、実施の形態1の空燃比センサ48の構成に限定されない。例えば、いわゆる2セルタイプの積層型空燃比センサに対して、本発明を適用しても良い。
 なお、近年では、素子表面の多孔質セラミックスコーティング層を厚くし、センサの保護機能を強化する構造がとられてきている。これは、内燃機関の冷間始動時における排気管中の飛散凝縮水に対して、素子強度を向上させることを目的としている。このような構造では、セラミックスコーティング層の表面積が大きくなるため、これに応じて、吸着種の吸着量が多くなる傾向にある。こういったタイプの空燃比センサは、吸着種の影響がより長期に渡って残存するおそれが高く、本発明を適用する意義が高い。
 なお、実施の形態1では空燃比センサ48に対する活性判定が行われたが、本発明はこれに限られるものではない。酸素センサや、排気ガス中のNOxの量を検出するためのNOxセンサなどにも、本発明を適用することができる。内燃機関1の排気通路に配置されて吸着種の影響を受けうるセンサであって、排気ガスの空燃比、成分に応じて出力値を変化させるセンサに対して、本発明を適用することができる。
 なお、実施の形態1では、主に、センサ出力がリッチ側にずれる場合を取り上げたが、本発明はこれに限られるものではない。リーン側にずれるような状況下に対しても、温度T1および目標保持時間Teを適宜に設定することにより、実施の形態1と同様に空燃比センサの活性判定を行えばよい。
実施の形態2.
 以下、本発明の実施の形態2を説明する。実施の形態2は、実施の形態1と同様に、内燃機関1などの図1の構成を備える。実施の形態2は、内燃機関1に投入された燃料の性状に応じて時間Teを変更する点で、実施の形態1に相違する。以下、実施の形態1との相違点を中心に説明し、実施の形態1との重複事項は説明を省略若しくは簡略化する。
[実施の形態2のシステム構成の説明]
 図5は、実施の形態2のシステム構成を示す。実施の形態2のシステムは、実施の形態1と同様に、内燃機関1(簡略化して示す)、触媒46、空燃比センサ48、およびECU60を備えている。その他実施の形態1の構成は、図5では図示を省略するが、図1と同じく存在するものとする。
 実施の形態2のシステムは、燃料タンク70を備える。燃料タンク70の燃料が、燃料配管72を介して、内燃機関1のインジェクタ26へと供給される。燃料配管72には、燃料性状センサ74が配置されている。燃料性状センサ74は燃料タンク70内の燃料の性状に応じた出力を発し、この出力はECU60に入力される。
[実施の形態2の動作および具体的処理]
 空燃比センサ48の始動時暖機過程での出力ずれは、吸着種の吸着のし易さや、脱離温度によっても異なる。特に、エタノール混合燃料を使用するFFVでは、通常のガソリン使用時と比較して、始動時暖機過程での出力ずれの程度が大きくばらつく傾向にある。そこで、実施の形態2では、上記のような傾向を考慮して、燃料性状に応じて、実施の形態1における温度T1および時間Teの値を変更する。
 図6は、実施の形態2においてECU60が実行するルーチンのフローチャートである。図6のルーチンも、実施の形態1の図5のルーチンと同様の条件下で繰り返し実行されるものとする。図6のルーチンは、ステップS205、S208の処理内容を除き、図5のルーチンと同じステップを備える。以下の説明は、相違点を中心に説明する。
 図6のルーチンが開始されると、図5のルーチンと同様にステップS102~S104の処理が実行される。その後、ステップS205に至る。
 ステップS205では、燃料性状センサ74に基づいて、燃料タンク70内の燃料の性状が取得される。ここで、実施の形態2では、予め、投入される燃料の性状に応じた、時間Teのマップを作成しておくこととする。具体的には、例えば、燃料中のエタノール濃度の相違に応じて、具体的には、E0、E85、E100などといった燃料ごとに、時間Teを予め実験的に決定しておく。ステップS205では、時間Teのマップが参照され、燃料性状センサ74に基づく現在の燃料性状Iに応じた目標保持時間であるTe(I)が取得される。
 その後、実施の形態1と同様にステップS106でECU60の時間計測が開始された後、ステップS208に至る。ステップS208では、ステップS106における時間計測開始時から、ステップS205で得られたTe(I)が経過したか否かが判定される。その後、Te(I)が経過したら、ステップS110へと移行してセンサ活性フラグがONとされる。その後、実施の形態1と同様に、空燃比フィードバック制御へと移行する。
 以上説明したように、実施の形態2によれば、燃料性状に応じて、時間Teを変更することができる。これにより、燃料性状の相違による空燃比センサ48の出力ずれの程度のばらつきを、時間Teに反映させることができる。その結果、時間Teによる空燃比センサ48の活性フラグONまでの待ち時間を、過不足無く、設定することができる。
 なお、燃料性状センサ74に限定されず、前回の運転中の空燃比センサ48の出力から燃料性状を判定したり、各種の燃料性状の推定手法を利用しても良い。これらの手法は既に公知であり、新規な事項ではないため、説明を省略する。
実施の形態3.
 実施の形態3は、実施の形態1と同じシステム構成、動作を前提とするものである。以下、実施の形態3と実施の形態1との相違点を中心に説明する。
 実施の形態3では、実施の形態1において、特開2008-138569号公報と同様に、センサ出力をストイキにマスキングする。つまり、空燃比センサ48の活性フラグがONになるまでは、空燃比センサ48の出力はストイキに固定される。
 ここで、空燃比センサ48の活性フラグがONにされた瞬間、マスキングが解除されて空燃比センサ48の実際の出力が取り込まれる。この際に、空燃比センサ48の出力として認識される出力信号が、ストイキ出力から実際の出力へと不連続的に大きく変化してしまうおそれがある。こういった変化を、制御(ECU60)側が空燃比荒れと認識してしまうおそれがある。そこで、実施の形態3では、この影響を防止するために、空燃比センサ48の活性フラグONの後、空燃比センサ48の出力信号に対して所定のなまし処理(時間方向への平滑化処理)を行うこととした。
 図7は、実施の形態3においてECU60が実行するルーチンのフローチャートである。図7のルーチンは、図5のルーチンと同じくステップS102~S110までの処理を備えている。図7のルーチンは、ステップS300、S302、S304、S306の処理を除き、図5のフローチャートと同じである。
 図7のルーチンでは、図5のルーチンと同様に、ステップS102~S110までの処理が実行される。ステップS102、S106、S108のそれぞれで条件不成立であるときには、ステップS300の処理において空燃比センサ48の出力がストイキにマスクされる。
 ステップS110の処理を経て空燃比センサ48の活性フラグがONとされると、続いて、センサ活性フラグONの後、所定時間(例えば1秒程度)が経過したか否かが判定される(ステップS302)。このステップの条件が否定された場合には、現在はセンサ活性フラグONの直後であり、センサ出力のなまし処理が必要であるとの判断が下される。そして、ステップS306において、センサ出力のなまし処理が行われる。なお、実施の形態3では、一例として下記の信号処理を行う。
 今回センサ出力 = (前回センサ出力×63+今回センサ出力)/64
なお、前回センサ出力の初期値は、ストイキ出力である。
 ステップS302の条件の成立が認められた場合には、センサ活性フラグONから十分な時間が経過したものと判断される。よって、センサ出力のなまし処理を終了(あるいは、一旦2回なまし処理などを経て、最終的になまし処理を終了)し、空燃比センサ48の実際の出力信号を利用して空燃比制御が行われる。
 以上説明したように、実施の形態3によれば、空燃比センサ48の出力の使用開始時期に懸念される、空燃比制御性の悪化を抑制することができる。
実施の形態4.
[実施の形態4の基本的思想]
 以下、実施の形態4が実施の形態1と同じシステム構成を有し、同様の動作を実行可能であることを前提に、実施の形態4を説明する。但し、実施の形態4では、実施の形態1~3とは異なり、温度T1を、空燃比センサ48の活性温度(言い換えれば、ヒータ57の目標温度Ttgt)に設定する。よって、実施の形態4では、前述した実施の形態1の第2変形例のように、目標保持時間が、空燃比センサ48の活性温度到達後における待ち時間として機能する。
 空燃比センサ48に吸着する吸着種の量(以下、「吸着量」とも称す)は、内燃機関1の停止後における空燃比センサ48の冷却状況によって、変化する。吸着種は、主に、空燃比センサ48の温度が約300℃以下に低下した状況下において、排気ガス中のHC成分等がセンサ素子部50等に吸着したものである。吸着量が相違すれば、吸着種に起因する空燃比センサ48の出力ずれが残存する時間の長さが異なる。
 ここで、本願発明者は、下記の2つの傾向に着目した。
 (a)空燃比センサ48が完全に冷えた(常温以下まで低下した)状態からの暖機時には、空燃比センサ48の活性温度到達後にも、出力ずれが長時間に渡って残る。
 (b)空燃比センサ48が前回の機関停止後からあまり冷えていない状態からの再暖機(例えば、内燃機関1の停止後数時間以内での再暖機)の場合には、空燃比センサ48の活性温度到達後の出力ずれは、比較的、短時間で消失する。
 そこで、実施の形態4では、上述した傾向を考慮して、空燃比センサ48の冷却状況に基づいて、目標保持時間Teを変更することにした。具体的には、実施の形態4では、内燃機関1の始動時の冷却水温THWIに基づいて、空燃比センサ48の冷却状況を推定し、目標保持時間Teを変更することとした。
[実施の形態4の動作および具体的処理]
 図8は、実施の形態4においてECU60が実行するルーチンのフローチャートである。図5のフローチャートと共通のステップには、同じ符号を付す。
 図9は、図8のルーチン実行時にECU60が参照するマップを示している。図9は、冷却水温THWIに応じた目標保持時間(実施の形態4では、TWACTと記す)が規定されたマップの一例を示す。図9のマップは、冷却水温THWIが高いほど、目標保持時間TWACTが短めになるように設定されている。そして、冷却水温THWIが十分に高い場合には(実施の形態4では40℃)、目標保持時間TWACTは零に設定されている。このマップは、予め実験的に作成しておくこととする。
 図8のルーチンでは、先ず、センサ活性判定ルーチン開始後、イグニッションがONすなわちエンジン活動状態にあるか否かが判定される(ステップS400)。ステップS400の条件が成立している場合には、続いて、冷却水温センサ8の出力に基づいて、始動時における冷却水温THWIが取得される(ステップS402)。続いて、エンジン始動後、空燃比センサ48が故障していないかが判定される(ステップS404)。このステップでは、図5等のルーチンにおけるステップS102の処理内容と同様に、空燃比センサ48に異常が無いかが判定される。その後、図5等のルーチンと同様に、ステップS104,S106の処理が実行される。
 ステップS106において空燃比センサ48が温度T1に到達したと判定された後、ECU60が有するタイマ機能によって経過時間がカウントされる(ステップS406)。実施の形態4では、ここでカウントされる時間をTTMPと記す。
 ステップS406の後、続いて、図9のマップが参照され、ステップS402で取得された冷却水温THWIに応じた目標保持時間TWACTが取得される(ステップS408)。
 次いで、TTMPが、TWACT以上になったか否かが判定される(ステップS410)。このステップでは、空燃比センサ48が温度T1に到達した時刻からの経過時間TTMPが、目標保持時間TWACTを越えるまで、ループ処理に入る。なお、実施の形態4では、この期間、空燃比センサ48の出力がストイキにマスクされている。その後、TTMPがTWACT以上になった時点でループ処理から抜ける。最終的に、ステップS104でセンサ活性フラグがONとされて、今回のルーチンが終了する。
 以上の処理によれば、出力ずれ期間の長さが空燃比センサ48の冷却状況に応じて変化する点を、目標保持時間に反映させることができる。その結果、より過不足の少ない長さに、目標保持時間を変更することができる。
 なお、冷却水温に代えて、内燃機関1の始動時における吸気温や油温などを利用しても良い。
 また、本実施形態では図9に示すマップを作成したが、本発明はこれに限られない。例えば、冷却水温THWIが高いほど目標保持時間が短めになるように、時間Teに補正係数を乗ずるなどしてもよい。
 また、本実施形態では、始動時の冷却水温が高い場合には、空燃比センサ48に対するHC成分の吸着量が殆ど無いと判断して、目標保持時間TWACTが零に設定される。この場合には、センサ素子部50の温度が活性温度に達した時点で、速やかに、ステップS110におけるセンサ活性フラグがONとされる。しかしながら、本発明はこれに限られず、目標保持時間として、ある程度の微小時間を確保しても良い。
 なお、実施の形態4では、温度T1を活性温度に設定したが、実施の形態1のように、温度T1を500℃などの温度に適宜に設定してもよい。この場合であっても、上記の説明のように、出力ずれ期間の長さが空燃比センサ48の冷却状況に応じて変化する点を目標保持時間に反映させたマップを作成しておけば、実施の形態4と同様の効果を得ることができる。
実施の形態5.
[実施の形態5の基本的思想]
 以下、実施の形態5が実施の形態1と同じシステム構成を有し、同様の動作を実行可能であることを前提に、実施の形態5を説明する。但し、実施の形態5も、実施の形態4と同様に、温度T1を、空燃比センサ48の活性温度(言い換えれば、ヒータ57の目標温度Ttgt)に設定する。
 実施の形態5は、空燃比センサ48の冷却状況に基づいて実施の形態1における目標保持時間Teを変更する点で、実施の形態4と共通する。しかしながら、実施の形態5では、実施の形態4とは異なり、内燃機関1の始動時における空燃比センサ48の温度に基づいて、目標保持時間Teが変更される。実施の形態5では、空燃比センサ48の温度に相関を有する物理量として、検出素子51のインピーダンスを利用する。実施の形態5においても、実施の形態4で述べた2つの傾向((a)および(b))に基づいて、目標保持時間Teが変更される。
[実施の形態5の動作および具体的処理]
 以下、実施の形態5の動作を、実施の形態5における具体的処理と共に説明する。図10は、実施の形態5においてECU60が実行するルーチンのフローチャートである。図10のルーチンにおいて、実施の形態1~4において説明したルーチンと同じ処理内容のルーチンには、同じ符号を付している。
 図11は、実施の形態5においてECU60に予め記憶されるマップである。実施の形態5では、図11に示すように、内燃機関1の始動時における検出素子51のインピーダンス値TIMPI(または、アドミタンス値Asでもよい)と、時間TIACTとの関係を実験的にマップに規定しておく。このマップは、インピーダンス値TIMPIが空燃比センサ48が高温であることを示すほど、目標保持時間(実施の形態5では、TIACTと記す)が短めになるように、規定されている。
 図10のルーチンでは、先ず、実施の形態4と同様にステップS400の処理が実行される。その後、始動時におけるインピーダンス値TIMPIを取得する処理が実行される(ステップS500)。空燃比センサなどの温度を求めるためにインピーダンス値を得る技術は、既に公知であり新規な事項ではない。従って、ここでは説明を省略する。ステップS500の処理実行後、ステップS404,S104、S106が順次実行され、さらに、S406においてTTMPのカウントが開始される。
 続いて、図11に示したマップが参照され、ステップS500で取得されたTIMPIの値に応じて、目標保持時間TIACTが取得される(ステップS508)。
 次いで、TTMPが、TIACT以上になったか否かが判定される(ステップS510)。このステップでは、空燃比センサ48が温度T1に到達した時刻からの経過時間が、目標保持時間を越えるまで、ループ処理に入る。なお、実施の形態5でも、この期間、空燃比センサ48の出力がストイキにマスクされている。その後、TTMPがTIACT以上になった時点でループ処理から抜ける。最終的に、ステップS104でセンサ活性フラグがONとされて、今回のルーチンが終了する。
 以上の処理によれば、出力ずれ期間の長さが空燃比センサ48の冷却状況に応じて変化する点を、目標保持時間に反映させることができる。その結果、より過不足の少ない長さに、目標保持時間を変更することができる。
 なお、本実施形態では、図11に示したように、始動時のインピーダンス値TIMPIが、空燃比センサ48の300℃相当値を超える範囲にある場合には、TIACTが零に設定される。これは、本願発明者の知見によれば、空燃比センサ48が300℃以上の温度域にある場合には、吸着量が微量であるため吸着種による出力ずれの影響が無視できると判断できるからである。この場合には、センサ素子部50の温度が活性温度(例えば750℃)に達した時点で、ステップS110におけるセンサ活性フラグがONとされる。しかしながら、本発明はこれに限られず、目標保持時間として、ある程度の微小時間を確保しても良い。
 なお、実施の形態4や実施の形態5のほかにも、例えば、前回の期間停止時から今回の始動時までの経過時間(すなわち、機関停止期間)に基づいて、目標保持時間を変更してもよい。機関停止期間が長いほど、吸着量も多いと推定できる。よって機関停止期間が長いほど目標保持時間を長く設定するようにしてもよい。
 なお、実施の形態5では、温度T1を活性温度に設定したが、実施の形態1のように、温度T1を500℃などの温度に適宜に設定してもよい。この場合であっても、出力ずれ期間の長さが空燃比センサ48の冷却状況に応じて変化する点を目標保持時間に反映させたマップを作成しておけば、実施の形態5と同様の効果を得ることができる。
 実施の形態6.
[実施の形態6の基本的思想]
 以下、実施の形態6が実施の形態1と同じシステム構成を有し、同様の動作を実行可能であることを前提に、実施の形態6を説明する。但し、実施の形態5も、実施の形態4と同様に、温度T1を、空燃比センサ48の活性温度(言い換えれば、ヒータ57の目標温度Ttgt)に設定する。
 実施の形態6は、実施の形態1における目標保持時間Teを変更する点で、実施の形態4および5と共通する。しかしながら、目標保持時間を変更する際に、内燃機関1の始動時における空燃比センサ48のリッチ側のピーク値(以下、「リッチ側ピーク」とも称す)に着目している点で、実施の形態6は実施の形態4,5とは異なる。
 本願発明者の知見によれば、吸着種の影響を考える上で、下記の2つの傾向を考慮することが好ましい。
 (1)空燃比センサ冷却時にセンサ素子部(実施の形態1ではセンサ素子部50)に吸着する吸着種の量が多いほど、吸着種の酸化が起こりにくくなる。
 (2)空燃比センサ暖機時のセンサ周辺の雰囲気がリッチであるほど、吸着種の酸化が起こりにくくなる。
 吸着種の酸化が起こりにくくなる(妨げられる)ことにより、空燃比センサ暖機過程でのリッチ側出力ずれが長期に渡って継続することになる。
 そこで、本願発明者は、空燃比センサ暖機時におけるリッチ側ピークに基づいて、目標保持時間を変更する手法に想到した。すなわち、実施の形態5では、始動時暖機中の活性判定前に、空燃比センサ48が示した出力がリッチであるほど、目標保持時間を長めに設定することにした。
[実施の形態6の動作および具体的処理]
 以下、実施の形態6の動作を、実施の形態6における具体的処理と共に説明する。図12は、実施の形態6においてECU60が実行するルーチンのフローチャートである。図12のルーチンにおいて、実施の形態1~5において説明したルーチンと同じ処理内容のルーチンには、同じ符号を付している。
 図13は、実施の形態6においてECU60に予め記憶されるマップである。実施の形態6では、図13に示すように、リッチ側ピークAFBACTPと、目標保持時間(実施の形態6では、TAFPACTと記す)との関係を実験的にマップに規定しておく。このマップは、リッチ側ピークAFBACTPがリッチであるほど、TAFPACTが長めになるように、規定されている。
 図12のルーチンでは、先ず、実施の形態4と同様のステップS400,S404や、実施の形態1と同様のステップS104、S106が、それぞれ実行される。
 ここで、内燃機関1の始動開始直後など空燃比センサ48の温度が未だ低い場合には、ステップS106の条件が否定される。即ち、始動時に空燃比センサ48が高温である場合などを除き、少なくとも一回は、ステップS106の条件が否定される。この場合、ステップS600へと処理が移る。なお、図12のルーチンでは、ステップS400やS404において条件が否定されている場合も、ステップS600へと処理が進んでいる。ステップS600では、センサ暖機過程中のリッチ側ピークAFBACTPを取得する処理が実行される。すなわち、本ルーチンの実行中は空燃比センサ48の出力が逐次的に保持されており、ステップS600に処理が進むごとにそれまでに空燃比センサ48が示したリッチ側出力値の最大値がリッチ側ピークAFBACTPに設定される。
 図12のルーチンが繰り返し実行されている過程で、空燃比センサ48の暖機も進む。やがて、空燃比センサ48が温度T1に達した段階で、ステップS106の条件が肯定される。その結果、ステップS406に処理が進み、TTMPのカウントが開始される。
 続いて、図13に示したマップが参照され、ステップS600で取得されたAFBACTPの値に応じて、目標保持時間TAFPACTが取得される(ステップS602)。
 次いで、TTMPが、TAFPACT以上になったか否かが判定される(ステップS604)。このステップでは、空燃比センサ48が温度T1に到達した時刻からの経過時間が、目標保持時間を越えるまで、ループ処理に入る。なお、実施の形態6でも、この期間、空燃比センサ48の出力がストイキにマスクされている。その後、TTMPがTAFPACT以上になった時点でループ処理から抜ける。最終的に、ステップS104でセンサ活性フラグがONとされて、今回のルーチンが終了する。
 以上の処理によれば、リッチ側出力ずれ期間の長さがリッチ側ピークに応じて変化する点を、目標保持時間に反映させることができる。その結果、より過不足の少ない長さに、目標保持時間を変更することができる。
 なお、実施の形態6において、リッチ側ピークの値がストイキあるいはリーンであった場合には、リッチ側出力ずれ期間が存在しないとみなすことができる。そこで、図13のマップでは、AFBACTPがストイキの場合、TAFPACTを零にしている。図13では省略しているが、リーンでもTAFPACTが零とされる。これにより、リッチ側出力ずれが無い場合には、空燃比センサ48が活性温度に達した後、速やかに活性フラグをONにすることができる。その結果、吸着種の影響が無視できる場合には、それに応じて空燃比センサ48の活性判定も速やかに行うことができ、結果的に空燃比フィードバック制御も早期に開始することができる。
 なお、実施の形態6では、温度T1を活性温度に設定したが、実施の形態1のように、温度T1を500℃などの温度に適宜に設定してもよい。この場合であっても、リッチ側ピークの値がリッチであるほど目標保持時間を長く変更することにより、実施の形態6と同様の効果を得ることができる。
実施の形態7.
 実施の形態1乃至6では、ヒータ57による空燃比センサ48の暖機途中に時間を計測することによって、実施の形態1で述べた(ii)の判定つまり空燃比センサ48の出力から吸着種の影響が十分に取り除かれているかどうかを判定した。一方、時間計測という手法に限らず、例えば、積算空気量、素子温度或いは素子アドミタンスの計測を行い、この計測結果をもって、空燃比センサ48の出力から吸着種の影響が十分に取り除かれていることを判定してもよい。
実施の形態8.
 本発明は、上述した各実施形態のように脱離開始温度からの所定時間の経過の有無によって空燃比センサ48の活性状態を判定する形態に限られるものではない。この所定時間は、ヒータ加熱により排気センサが活性温度に達する時点を越えるように設定され且つ吸着種によるこの排気センサの出力ずれが実質的に消失する程度の長さを有する。本発明によれば、その他の例として、最終的に吸着種による空燃比センサ48の出力ずれが消失しているか否かによって空燃比センサ48の活性状態を判定しても良い。つまり、始動から、吸着種がほぼ消失している時点まで計測をし、この時点が経過したことをもって排気センサの活性状態を判定してもよい。
1 内燃機関
8 冷却水温センサ
26 インジェクタ
44 排気通路
46 触媒
48 空燃比センサ
50 センサ素子部
51 検出素子
52 計測電極
53 大気側電極
54 多孔質拡散抵抗層
57 ヒータ
70 燃料タンク
72 燃料配管
74 燃料性状センサ

Claims (17)

  1.  内燃機関の始動時に排気センサを加熱するためのヒータと、
     前記内燃機関の始動時に、前記排気センサに吸着した排気ガス成分である吸着種が脱離し始めた後に前記吸着種が前記排気センサのもとから実質的に消失する程度の期間が経過したか否かに基づいて、前記排気センサの活性状態を判定する判定手段と、
     を備えることを特徴とする排気センサの活性判定装置。
  2.  前記排気センサの温度に対して相関を有する物理量を取得する取得手段を、さらに備え、
     前記判定手段が、
     前記物理量に基づいて、前記排気センサの温度が、前記排気センサに吸着した排気ガス成分である吸着種が脱離し始める温度である脱離開始温度以上の温度領域内において予め設定された所定温度に、達したか否かを判定する温度判定手段と、
     前記排気センサの温度が前記所定温度に達した時点からの経過時間に基づいて、前記排気センサの活性状態を判定する活性判定手段と、
     を含むことを特徴とする請求項1に記載の排気センサの活性判定装置。
  3.  前記ヒータが、内燃機関の始動時に、排気センサを目標温度まで加熱するものであり、
     前記排気センサの温度に対して相関を有する物理量を取得する取得手段を、さらに備え、
     前記判定手段が、
     前記ヒータの加熱開始後に、前記目標温度以下の温度領域内において予め設定された所定温度に前記排気センサの温度が達した時点からの経過時間に基づいて、前記排気センサの活性状態を判定する活性判定手段を、含むことを特徴とする請求項1に記載の排気センサの活性判定装置。
  4.  前記活性判定手段が、前記排気センサの温度と前記経過時間とに基づいて前記排気センサの活性状態を判定するものであり、
     該活性判定手段が、
     前記排気センサが活性温度に達したか否かに基づいて、前記排気センサの活性状態を判定する活性温度判定手段と、
     前記経過時間が所定の時間を越えるまでは、前記活性温度判定手段の判定結果にかかわらず、前記排気センサが活性状態に達したと判定されるのを禁止する活性判定禁止手段と、
     を含むことを特徴とする請求項2または3に記載の排気センサの活性判定装置。
  5.  前記活性判定禁止手段による禁止が解除される時刻が、内燃機関始動時に前記排気センサを加熱するヒータによって該排気センサが活性温度に達する時刻を越えるように、前記所定の時間を設定する手段を備えることを特徴とする請求項4に記載の排気センサの活性判定装置。
  6.  前記所定温度が、前記排気センサの活性温度であり、
     前記活性判定手段が、前記前記排気センサが活性温度に達した後、所定の時間が経過したら、前記排気センサが活性状態にあると判定することを特徴とする請求項2または3に記載の排気センサの活性判定装置。
  7.  前記活性判定手段が、前記経過時間が所定の時間を超過したか否かに基づいて前記排気センサの活性状態を判定するものであり、
     該所定の時間が、前記ヒータの加熱により前記排気センサが活性温度に達する時点を越えるように設定され且つ吸着種による該排気センサの出力ずれが実質的に消失する程度の長さに設定されていることを特徴とする請求項2または3に記載の排気センサの活性判定装置。
  8.  前記所定温度が、300℃以上700℃以下の温度領域から選択された温度であることを特徴とする請求項2乃至7のいずれか1項に記載の排気センサの活性判定装置。
  9.  前記取得手段が取得する物理量が、前記排気センサのインピーダンスまたはアドミタンスであって、
     前記所定温度が400℃以上の温度領域から選択された温度であることを特徴とする請求項2乃至7のいずれか1項に記載の排気センサの活性判定装置。
  10.  内燃機関の燃料性状を取得する性状取得手段と、
     前記性状取得手段が取得した燃料性状に応じて前記所定の時間を異なる長さに設定する性状条件時間設定手段と、
     を備えることを特徴とする請求項4乃至9のいずれか1項に記載の排気センサの活性判定装置。
  11.  内燃機関始動中、前記排気センサが非活性である期間に、該排気センサの出力が示す空燃比のリッチ側のピーク値を取得するリッチピーク取得手段と、
     前記リッチピーク取得手段が取得した空燃比がリッチ側に大きいほど、前記所定の時間を長めに設定するリッチ条件時間設定手段と、
     を備えることを特徴とする請求項4乃至10のいずれか1項に排気センサの活性判定装置。
  12.  内燃機関停止中に前記排気センサに吸着するガス成分の量である停止時吸着量に対して相関を有する量を取得する吸着量取得手段と、
     前記吸着量取得手段が取得した量に応じて、前記所定の時間を変更する吸着量条件時間設定手段を備えることを特徴とする請求項4乃至11のいずれか1項に排気センサの活性判定装置。
  13.  前記吸着量取得手段が、内燃機関始動時の水温、吸気温および油温、内燃機関始動時の排気センサ温度およびこれに相関を有する物理量、並びに、内燃機関の停止から始動開始までの期間の長さである停止期間のうち、少なくとも1つを取得する手段を含み、
     前記吸着量条件時間設定手段が、内燃機関始動時の水温若しくは油温が低いほど、内燃機関始動時の排気センサ温度が低温であるほど、または、前記停止期間が長いほど、前記所定の時間を長めに設定する手段を含む、
     ことを特徴とする請求項12に記載の排気センサの活性判定装置。
  14.  請求項11に記載のリッチピーク取得手段およびリッチ条件時間設定手段と、請求項12または13に記載の吸着量取得手段および吸着量条件時間設定手段と、のうち少なくとも一方の組と、
     前記リッチピーク取得手段が取得した空燃比がストイキまたはリーン側の値を示している場合、または/および、前記吸着量取得手段が示す吸着量が所定の基準値を下回る場合に、前記排気センサが活性温度に達したら該排気センサを活性状態と判定する即時活性判定手段と、
     を備えることを特徴とする請求項4乃至10に記載の排気センサの活性判定装置。
  15.  前記判定手段が、前記内燃機関の積算空気量、前記排気ガスセンサの素子温度および前記排気ガスセンサの素子アドミタンスのうち、少なくとも1つを対象とした計測の結果に基づいて、前記排気センサに吸着した排気ガス成分である吸着種が脱離し始めた後に前記吸着種が前記排気センサのもとから実質的に消失する程度の期間が経過したか否かの判定を行うことを特徴とする請求項1に記載の排気センサの活性判定装置。
  16.  排気センサと、
     前記排気センサの活性判定を行う、請求項1乃至15のいずれか1項に記載の排気センサの活性判定装置と、
     前記排気センサの出力に基づいて内燃機関の空燃比をフィードバック制御するためのフィードバック制御手段と、
     内燃機関の始動時に、前記活性判定装置の判定結果に基づいて、前記フィードバック制御手段による制御を開始するフィードバック制御開始手段と、
     を備えることを特徴とする内燃機関の制御装置。
  17.  前記排気センサが、臨界電流式の空燃比センサであることを特徴とする請求項16に記載の内燃機関の制御装置。
PCT/JP2009/067148 2008-10-09 2009-10-01 排気センサの活性判定装置、内燃機関の制御装置 WO2010041585A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801398969A CN102177431B (zh) 2008-10-09 2009-10-01 排气传感器的活性判定装置、内燃机的控制装置
US13/061,850 US8291893B2 (en) 2008-10-09 2009-10-01 Device for determining activation of exhaust gas sensor and control device for internal combustion engine
JP2010532882A JP4915478B2 (ja) 2008-10-09 2009-10-01 排気センサの活性判定装置、内燃機関の制御装置
EP09819120.8A EP2336759B1 (en) 2008-10-09 2009-10-01 Exhaust gas sensor activity assessment device, and internal combustion engine control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008263139 2008-10-09
JP2008-263139 2008-10-09

Publications (1)

Publication Number Publication Date
WO2010041585A1 true WO2010041585A1 (ja) 2010-04-15

Family

ID=42100535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067148 WO2010041585A1 (ja) 2008-10-09 2009-10-01 排気センサの活性判定装置、内燃機関の制御装置

Country Status (5)

Country Link
US (1) US8291893B2 (ja)
EP (1) EP2336759B1 (ja)
JP (1) JP4915478B2 (ja)
CN (1) CN102177431B (ja)
WO (1) WO2010041585A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175592A1 (ja) * 2012-05-23 2013-11-28 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP2016188622A (ja) * 2015-03-30 2016-11-04 トヨタ自動車株式会社 内燃機関の制御装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411998B1 (ja) * 2012-12-28 2014-02-12 富士重工業株式会社 温度センサの診断装置
JP6426151B2 (ja) * 2013-04-22 2018-11-21 ウッド ストーン コーポレーションWood Stone Corporation ピザオーブン
KR20160149549A (ko) * 2015-06-18 2016-12-28 현대자동차주식회사 산소센서 히터 제어시스템 및 이의 제어방법
KR101734263B1 (ko) * 2015-07-13 2017-05-11 현대자동차 주식회사 람다 센서의 피독 제거 장치 및 방법
JP6447569B2 (ja) * 2016-05-02 2019-01-09 トヨタ自動車株式会社 窒素酸化物センサの制御装置
JP6828647B2 (ja) * 2017-09-29 2021-02-10 株式会社デンソー 制御装置
JP6844555B2 (ja) * 2018-02-08 2021-03-17 トヨタ自動車株式会社 センサシステム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241652A (ja) * 1985-04-18 1986-10-27 Honda Motor Co Ltd 酸素濃度センサの活性化判別方法
JPH0875695A (ja) 1994-09-06 1996-03-22 Toyota Motor Corp 酸素濃度センサの付着物除去装置
JP2000180400A (ja) * 1998-12-15 2000-06-30 Toyota Motor Corp 酸素濃度検出装置
JP2001013107A (ja) * 1999-06-28 2001-01-19 Unisia Jecs Corp 空燃比検出装置
JP2004132840A (ja) * 2002-10-10 2004-04-30 Denso Corp ガス濃度検出装置
JP2004211611A (ja) 2003-01-06 2004-07-29 Nissan Motor Co Ltd 内燃機関の空燃比制御装置
JP2005055279A (ja) * 2003-08-04 2005-03-03 Toyota Motor Corp 内燃機関の排気ガスセンサの制御装置
JP2005207924A (ja) 2004-01-23 2005-08-04 Toyota Motor Corp 排気センサの制御装置
JP2006170849A (ja) 2004-12-16 2006-06-29 Toyota Motor Corp ガス濃度センサの活性判定装置
JP2008138569A (ja) 2006-11-30 2008-06-19 Toyota Motor Corp 内燃機関の空燃比制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2704991B2 (ja) * 1989-09-12 1998-01-26 本田技研工業株式会社 ヒータ付排気濃度センサの活性化判別方法
DE59304054D1 (de) * 1993-05-14 1996-11-07 Siemens Ag Verfahren zur Unterscheidung der Fehlerursachen im Gemischbildungs- bzw. Gemischregelungssystem einer Brennkraftmaschine
DE19953718A1 (de) * 1999-11-09 2001-05-10 Pierburg Ag Anordnung zur Abgasregelung
JP3755646B2 (ja) * 2001-05-22 2006-03-15 三菱電機株式会社 O2センサの故障診断装置および方法
JP3985590B2 (ja) * 2001-07-27 2007-10-03 株式会社デンソー ガス濃度センサのヒータ制御装置
US6634210B1 (en) * 2002-04-17 2003-10-21 Delphi Technologies, Inc. Particulate sensor system
CN1795377A (zh) * 2003-03-26 2006-06-28 纳幕尔杜邦公司 分析气体混合物的设备
JP2004340859A (ja) * 2003-05-19 2004-12-02 Hitachi Unisia Automotive Ltd 酸素センサの活性化判定方法
DE102005061548B4 (de) * 2005-12-22 2007-12-06 Pierburg Gmbh Verfahren zum Betreiben eines Abgasmassenstromsensors
JP4857821B2 (ja) * 2006-03-06 2012-01-18 日産自動車株式会社 車両の制御方法及び制御装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241652A (ja) * 1985-04-18 1986-10-27 Honda Motor Co Ltd 酸素濃度センサの活性化判別方法
JPH0875695A (ja) 1994-09-06 1996-03-22 Toyota Motor Corp 酸素濃度センサの付着物除去装置
JP2000180400A (ja) * 1998-12-15 2000-06-30 Toyota Motor Corp 酸素濃度検出装置
JP2001013107A (ja) * 1999-06-28 2001-01-19 Unisia Jecs Corp 空燃比検出装置
JP2004132840A (ja) * 2002-10-10 2004-04-30 Denso Corp ガス濃度検出装置
JP2004211611A (ja) 2003-01-06 2004-07-29 Nissan Motor Co Ltd 内燃機関の空燃比制御装置
JP2005055279A (ja) * 2003-08-04 2005-03-03 Toyota Motor Corp 内燃機関の排気ガスセンサの制御装置
JP2005207924A (ja) 2004-01-23 2005-08-04 Toyota Motor Corp 排気センサの制御装置
JP2006170849A (ja) 2004-12-16 2006-06-29 Toyota Motor Corp ガス濃度センサの活性判定装置
JP2008138569A (ja) 2006-11-30 2008-06-19 Toyota Motor Corp 内燃機関の空燃比制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175592A1 (ja) * 2012-05-23 2013-11-28 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JPWO2013175592A1 (ja) * 2012-05-23 2016-01-12 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP2016188622A (ja) * 2015-03-30 2016-11-04 トヨタ自動車株式会社 内燃機関の制御装置
US9803577B2 (en) 2015-03-30 2017-10-31 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling internal combustion engine

Also Published As

Publication number Publication date
CN102177431B (zh) 2013-07-03
EP2336759A4 (en) 2015-03-04
EP2336759A1 (en) 2011-06-22
EP2336759B1 (en) 2018-11-21
US8291893B2 (en) 2012-10-23
US20110155113A1 (en) 2011-06-30
JP4915478B2 (ja) 2012-04-11
JPWO2010041585A1 (ja) 2012-03-08
CN102177431A (zh) 2011-09-07

Similar Documents

Publication Publication Date Title
JP4915478B2 (ja) 排気センサの活性判定装置、内燃機関の制御装置
US8744729B2 (en) Apparatus and method for detecting abnormal air-fuel ratio variation among cylinders of multi-cylinder internal combustion engine
JP4496549B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
US7743759B2 (en) Gas sensor controller
US8863498B2 (en) Exhaust gas purification apparatus of an internal combustion engine
CN107076045B (zh) 内燃发动机的控制装置和控制方法
JP5024676B2 (ja) 触媒劣化抑制装置
US8327620B2 (en) NOx sensor compensation
US20110192146A1 (en) Multicylinder internal combustion engine, inter-cylinder air/fuel ratio imbalance determination apparatus, and method therefor
US9903292B2 (en) Abnormality diagnosis system of air-fuel ratio sensor
JP2009030455A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常を検出するための装置及び方法
WO2011070688A1 (ja) 内燃機関の空燃比気筒間インバランス判定装置
EP2118459A2 (en) Catalyst monitoring system and catalyst monitoring method
KR101399192B1 (ko) 내연 기관의 배출 제어 시스템
US8418439B2 (en) NOx sensor ambient temperature compensation
JP2007198158A (ja) 水素エンジンの空燃比制御装置
JP2009281328A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
US8401765B2 (en) Inter-cylinder air-fuel ratio imbalance determination apparatus for internal combustion engine
JP2008138569A (ja) 内燃機関の空燃比制御装置
US8000883B2 (en) Control apparatus and method for air-fuel ratio sensor
JP2008064007A (ja) 内燃機関の制御装置
JP4780465B2 (ja) 酸素センサの故障診断装置
JP2004353494A (ja) 空燃比検出装置及び空燃比制御装置
JP2009097962A (ja) 酸素センサの故障診断装置
JP2008261757A (ja) 酸素センサの故障診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139896.9

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819120

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010532882

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009819120

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13061850

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE