JP2004211611A - 内燃機関の空燃比制御装置 - Google Patents

内燃機関の空燃比制御装置 Download PDF

Info

Publication number
JP2004211611A
JP2004211611A JP2003000075A JP2003000075A JP2004211611A JP 2004211611 A JP2004211611 A JP 2004211611A JP 2003000075 A JP2003000075 A JP 2003000075A JP 2003000075 A JP2003000075 A JP 2003000075A JP 2004211611 A JP2004211611 A JP 2004211611A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
determination
sensor output
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003000075A
Other languages
English (en)
Inventor
Hajime Oguma
元 小熊
Kengo Kubo
賢吾 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003000075A priority Critical patent/JP2004211611A/ja
Publication of JP2004211611A publication Critical patent/JP2004211611A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】空燃比センサが活性化する際のセンサ出力のオーバシュートによる空燃比クローズドループ制御における過補正を防止する。
【解決手段】内燃機関の冷間始動後、空燃比センサの温度上昇に伴って、センサ出力は上昇もしくは下降する。センサ出力が活性化判定上限値以上もしくは活性化判定下限値以下となったら、活性判定フラグ1を「1」とする。その後、センサ出力はオーバシュートするが、演算タイミング毎にセンサ出力AFSの変化量ΔAFSを求め、その絶対値が所定の判定値以下の状態がn回継続したら、オーバシュートが終了してセンサ出力が安定したものとして、活性判定フラグ2を「1」とし、クローズドループ制御を開始する。n回継続を条件とすることで、オーバシュートのピーク付近で変化量ΔAFSが小さくなっても、誤判定を生じることはない。
【選択図】 図4

Description

【0001】
【発明の属する技術分野】
この発明は、排気系に空燃比センサを備えた内燃機関の空燃比制御装置に関する。
【0002】
【従来の技術】
内燃機関の排気系に空燃比センサを備え、この空燃比センサによって検出される排気空燃比に基づいて、例えば燃料噴射量を増減変化させることで、内燃機関の空燃比を目標空燃比例えば理論空燃比にクローズドループ制御する空燃比制御装置が知られているが、この種の空燃比制御装置においては、内燃機関の始動後なるべく早期にクローズドループ制御を開始することが排気浄化性能の上で望ましいので、ヒータにより空燃比センサを加熱するとともに、空燃比センサのセンサ出力に基づいて該空燃比センサが活性化したか監視し、活性化したと判定した時点でクローズドループ制御を開始するのが一般的である。
【0003】
特許文献1に開示されているように、空燃比センサのセンサ出力は、センサ素子の抵抗値を流れる電流値を計測することによって得ており、冷間始動後は、センサ素子の温度上昇とともにセンサ素子の抵抗値が漸増(増加)もしくは漸減(減少)するので、空燃比センサが活性状態となったかどうかの判定に際しては、センサ出力を、活性判定上限値(リーン側基準値)および活性判定下限値(リッチ側基準値)と比較し、センサ出力が活性判定上限値以上となるか、あるいは活性判定下限値以下となったら、空燃比センサが活性状態となったと判定している。
【0004】
【特許文献1】
特開2001−208714号公報
【0005】
【発明が解決しようとする課題】
図11は、冷間始動後における空燃比センサのセンサ出力の変化と実際の空燃比変化とを併せて示したものであり、この例では、空燃比センサの温度上昇によってT1時点でセンサ出力が活性判定上限値以上となり、この時点で空燃比センサが活性化したと判定されて、空燃比のクローズドループ制御が開始される。
【0006】
しかしながら、図示するように、空燃比センサのセンサ出力は、活性化の際に、実際の空燃比相当の値を越えて一時的にオーバシュートする特性がある。従って、T1時点でクローズドループ制御を開始すると、センサ出力が実際よりリーンもしくはリッチ(図示例ではリーン)となった状態でフィードバックが始まるため、過補正となり、一時的な運転性の悪化や排気性能の悪化あるいは目標空燃比への収束の遅れ、といった不具合が生じる。
【0007】
【課題を解決するための手段】
そこで、この発明は、上記のオーバシュートが終了した時点を最終的な空燃比センサの活性完了と判定するようにしたものである。
【0008】
すなわち、この発明に係る内燃機関の空燃比制御装置は、内燃機関の排気系に設けられた空燃比センサと、内燃機関の始動後に上記空燃比センサが活性化したことを該空燃比センサの出力から判定する活性化判定手段と、この空燃比センサの活性化後、内燃機関の空燃比を目標空燃比に沿ってクローズドループ制御する空燃比制御手段と、を備えている。そして、上記活性化判定手段は、センサ出力が所定の活性判定上限値以上となるか、または所定の活性判定下限値以下となった後、センサ出力の変化量絶対値が所定の判定値よりも小さくなったときに、空燃比センサが活性化したと判定する。
【0009】
つまり、センサ出力は、活性判定上限値もしくは活性判定下限値を越えた後、オーバシュートすることがあるが、一時的なオーバシュートが終わると、センサ出力の変化は緩やかとなる。従って、センサ出力の変化量(これは例えば単位時間当たりの変化量あるいは出力特性の傾きなどで示される)の絶対値が所定の判定値よりも小さくなったら、センサ出力が安定しているものとみなし、空燃比センサが活性化したと判定するのである。
【0010】
そのため、上記空燃比制御手段が、上記活性化判定手段により空燃比センサが活性化したと判定したときに空燃比のクローズドループ制御を開始するようにすれば、センサ出力によるオーバシュートの影響を受けることがない。
【0011】
また、センサ出力が所定の活性判定上限値以上となるか、または所定の活性判定下限値以下となったときに仮の活性化判定を行い、この仮の活性化判定がなされたときに相対的に小さなフィードバックゲインでの空燃比制御を開始し、オーバシュートが終了して上記活性化判定手段により空燃比センサが活性化したと最終的に判定したときに相対的に大きなフィードバックゲインでの空燃比制御を開始するようにしてもよい。この方法によれば、早期にクローズドループ制御を開始しつつ、オーバシュートによる過補正を回避できる。
【0012】
さらに本発明では、上記変化量絶対値が所定の判定値よりも小さい状態が所定の時間に亘って継続したことを条件として空燃比センサが活性化したと判定することが望ましい。これにより、オーバシュートのピーク付近で一時的に変化量が小さくなったときに、センサ出力が安定したと誤判定することがない。
【0013】
同様に、オーバシュートのピーク付近で一時的に変化量が小さくなったときに、センサ出力が安定したと誤判定することがないように、センサ出力が所定の活性判定上限値以上となるか、または所定の活性判定下限値以下となった後、さらにセンサ出力の増減方向が反転したことを条件とし、その後、センサ出力の変化量絶対値が所定の判定値よりも小さくなったときに、空燃比センサが活性化したと判定するようにしてもよい。
【0014】
あるいは、上記活性判定上限値よりリーン側のオーバシュート判定上限値および上記活性判定下限値よりリッチ側のオーバシュート判定下限値を設け、センサ出力が所定の活性判定上限値以上となるか、または所定の活性判定下限値以下となった後、さらに上記オーバシュート判定上限値もしくはオーバシュート判定下限値を2回横切ったことを条件とし、その後、センサ出力の変化量絶対値が所定の判定値よりも小さくなったときに、空燃比センサが活性化したと判定するようにしてもよい。
【0015】
【発明の効果】
この発明に係る内燃機関の空燃比制御装置によれば、センサ出力のオーバシュートが終了してセンサ出力が安定した時点で空燃比センサが活性化したと判定するので、センサ出力のオーバシュートによる初期の過補正に起因した一時的な運転性の悪化や排気性能の悪化あるいは目標空燃比への収束の遅れを回避できる。
【0016】
さらに、請求項2〜請求項4の発明によれば、オーバシュートのピーク付近で一時的にセンサ出力の変化量が小さくなったときの誤判定を確実に防止できる。
【0017】
【発明の実施の形態】
以下、この発明の好ましい実施の形態を図面に基づいて詳細に説明する。
【0018】
図1は、この発明に係る空燃比制御装置の一実施例を示す構成説明図であって、内燃機関本体1の燃焼室に臨むように燃料噴射弁4が設けられているとともに、点火プラグ5を備えている。上記燃料噴射弁4は、エンジンコントロールユニット11からの噴射パルス信号によって開弁し、そのパルス幅に比例した量の燃料を噴射供給する。なお、このような筒内直噴型ではなく、吸気ポートへ向けて燃料を噴射するポート噴射型とすることもできる。内燃機関本体1の吸気通路2には、吸入空気量を可変制御するスロットル装置3が介装されているとともに、これよりも上流側に、吸入空気量を検出するエアフロメータ13が設けられている。上記スロットル装置3は、電動モータ等からなるアクチュエータ3Aを備えたいわゆる電子制御スロットル弁であり、図示せぬアクセルペダルに対し設けられるアクセル開度センサ14からのアクセル開度信号に基づいて、上記エンジンコントロールユニット11によって、その開度が制御される。
【0019】
内燃機関本体1の排気通路6には、三元触媒を用いた触媒コンバータ7が介装されており、その上流側に、排気空燃比を検出するために、空燃比センサ16が配設されている。この実施例では、空燃比センサ16として、リーン領域からリッチ領域まで連続的に出力が変化する広域型空燃比センサが用いられているが、単にリーンであるかリッチであるかを検出し得る単純な酸素センサを用いることも可能である。また、始動後早期に活性化するように、電気ヒータを内蔵したいわゆるヒータ付空燃比センサとして構成されている。
【0020】
また、内燃機関本体1には、クランクシャフトの回転に基づいてRef信号(基準位置信号)ならびにPos信号(1°信号)を出力するクランク角センサ12と、冷却水温を検出する水温センサ15と、が設けられている。上記エンジンコントロールユニット11は、上記のクランク角センサ12、エアフロメータ13、水温センサ15等の検出信号に基づいて基本噴射パルス幅Tpを算出するとともに、空燃比センサ16の検出信号に基づいて、空燃比のクローズドループ制御を行う。すなわち、主に吸入空気量および機関回転数から基本噴射パルス幅Tpを求めるとともに、上記空燃比センサ16の検出信号に基づくPI制御等によって空燃比フィードバック補正係数αを逐次算出し、上記基本噴射パルス幅Tpに上記補正係数αを乗じて、最終的な噴射パルス幅Tiつまり燃料噴射量を決定する。この空燃比フィードバック制御により、実際の空燃比は、目標空燃比を中心として周期的に振れるように変動することになる。一方、機関の冷間始動後、空燃比センサ16の温度が上昇して活性化するまでの間は、上記空燃比フィードバック補正係数αが「1」にクランプされ、冷却水温などのパラメータに応じた他の補正係数でもって燃料噴射量がオープンループ制御される。
【0021】
図2は、内燃機関の始動後に上記空燃比センサ16が活性化したか判定する活性判定のフローチャートである。ステップ1では、イグニッションスイッチがONとなったか判定しており、ONであれば、ステップ2で、後述する活性判定フラグ1,2がいずれも「1」であるかを判定する。いずれも「1」である場合には、活性化が完了したものとしてこのルーチンを終了する。
【0022】
活性化判定としては、ステップ3でセンサ出力を読み込み、ステップ4において、このセンサ出力が所定の活性判定上限値以上となったか、あるいは、所定の活性判定下限値以下となったか、繰り返し判定する。そして、所定の活性判定上限値以上、あるいは、所定の活性判定下限値以下の場合には、ステップ5へ進み、活性判定フラグ1を「1」にセットする。なお、この図2のルーチンは、例えば10ms毎に実行され、従って、センサ出力は10ms毎に読み込まれる。
【0023】
次に、ステップ6で、センサ出力のオーバシュートが終了してセンサ出力が安定したものとなったか繰り返し判定し、「安定」と判定したら、ステップ7へ進んで、活性判定フラグ2を「1」にセットする。
【0024】
図3のフローチャートは、上記ステップ6の第1実施例の詳細を示すものであり、まずステップ11において、センサ出力の変化量として、今回のセンサ出力と前回読み込んだセンサ出力との差ΔAFSを逐次算出する。つまり、このΔAFSは、10ms毎の変化量となる。次に、ステップ12で、この変化量ΔAFSの絶対値が所定の判定値以下であるかを判定し、判定値以下であった場合は、ステップ13へ進む。ステップ13では、このように変化量ΔAFSの絶対値が判定値以下であった状態がn回連続したか判定し、n回連続した場合にのみ、センサ出力が安定したものとして図2のステップ7へ進む。
【0025】
図4は、上記第1実施例の作用を示す説明図であって、一例として、図11と同じく、空燃比センサ16の温度上昇によってセンサ出力が上昇する例を示す。
この場合、センサ出力AFSは、図示する10ms毎の演算タイミングでもって読み込まれ、逐次、変化量ΔAFSが求められる。活性判定上限値を越えてからオーバシュートのピークに達するまでのセンサ出力上昇区間、ならびにオーバシュートのピークを過ぎた後のセンサ出力下降区間においては、単位時間当たりの変化量ΔAFSは大きく、判定値以下とはならない。また、オーバシュートのピーク付近では、センサ出力AFSが増加から減少に転ずるので、読み込みのタイミングによっては、変化量ΔAFSが非常に小さいものとなり得るが、図示するように、この状態は、多数回は継続しない。オーバシュートが終了し、センサ出力AFSが安定したものとなれば、変化量ΔAFSが判定値以下の状態が継続する。従って、本実施例のように、変化量ΔAFSの絶対値が判定値以下であることを所定の回数n回にわたって判定することにより、オーバシュートのピークで誤判定を生じることなく、オーバシュートが終了してセンサ出力が安定した時点を確実に判定できる。なお、センサ出力AFSのサンプリング間隔としては上述したように10ms程度が好ましく、この場合、nは10回程度が好ましい。
【0026】
次に、図5のフローチャートは、上記ステップ6の第2実施例を示す。まずステップ21において、センサ出力の変化量として、今回のセンサ出力と前回読み込んだセンサ出力との差ΔAFSを逐次算出する。つまり、このΔAFSは、10ms毎の変化量となる。次に、ステップ22で、今回の変化量ΔAFSと前回算出した変化量ΔAFSの正負を対比し、正負が反転したか否かを判定する。つまり、図6に示すように、センサ出力AFSが上昇する方向にオーバシュートが生じている場合には、ピークに達するまでは、変化量ΔAFSは正であり、ピークを過ぎると、変化量ΔAFSは負となる。従って、今回の変化量ΔAFSが負で、前回の変化量ΔAFSが正であれば、オーバシュートのピークを過ぎたと判断することができる。なお、オーバシュートが逆にセンサ出力AFSの下降方向に生じる場合(ステップ4で活性判定下限値以下と判定した場合)には、負から正へ反転したときに、オーバシュートのピークを過ぎたと判断できる。
【0027】
ステップ22でオーバシュートのピークを過ぎたことを検出したら、ステップ23,24へ進み、変化量ΔAFSを逐次算出するとともに、その絶対値が所定の判定値以下であるかを繰り返し判定する。判定値以下であった場合は、センサ出力が安定したものとして図2のステップ7へ進む。なお、この場合の判定値は、前述した第1実施例の判定値と同一であってもよく、あるいは、1回のみで「安定」と判定することを考慮して第1実施例とは異なる値に設定してもよい。
【0028】
次に、図7のフローチャートは、上記ステップ6の第3実施例を示す。図8に示すように、この第3実施例においては、活性判定上限値より高いレベルつまりリーン側に、オーバシュート判定上限値を設定するとともに、活性判定下限値より低いレベルつまりリッチ側にオーバシュート判定下限値を設定し、センサ出力AFSをこれらのオーバシュート判定値(上限値、下限値)と対比することで、オーバシュートのピークが過ぎたことを判定する。具体的には、ステップ31で、センサ出力AFSがオーバシュート判定上限値もしくはオーバシュート判定下限値を2回横切ったか判定する。図8の例では、活性判定上限値を越えた後、オーバシュートによってオーバシュート判定上限値を横切り、さらに、ピークを過ぎた後に、オーバシュート判定上限値を再び横切って、該オーバシュート判定上限値以下となる。従って、この段階で、2回横切ったことになり、オーバシュートのピークを過ぎたことを判断できる。
【0029】
ステップ31でオーバシュートのピークを過ぎたことを検出したら、ステップ32,33へ進み、変化量ΔAFSを逐次算出するとともに、その絶対値が所定の判定値以下であるかを繰り返し判定する。判定値以下であった場合は、センサ出力が安定したものとして図2のステップ7へ進む。なお、この場合の判定値は、やはり前述した第1実施例の判定値と同一であってもよく、あるいは、第1実施例とは異なる値であってもよい。
【0030】
図9は、前述したフィードバック補正係数αの演算処理のフローチャートであって、ステップ41で空燃比センサ16の活性化が完了しているか否か、具体的には、活性判定フラグ1,2の双方が「1」となっているか判定する。活性化が完了していれば、ステップ42で、他のフィードバック条件が成立しているか判定し、ここでYESであれば、燃料噴射量のクローズドループ制御を行う。つまり、ステップ43で空燃比センサ16のセンサ出力を読み込み、ステップ44で、これに基づいて、フィードバック補正係数αを算出する。一方、ステップ41もしくはステップ42でNOの場合は、ステップ45へ進んで、フィードバック補正係数αを「1」つまり100パーセントにクランプし、燃料噴射量をオープンループ制御する。
【0031】
従って、この実施例では、空燃比センサ16が活性化してオーバシュートが終了した後に、空燃比のクローズドループ制御が開始され、オーバシュートによる過補正を生じることがない。
【0032】
次に図10は、フィードバック補正係数αの演算処理の異なる実施例を示すフローチャートである。この実施例では、ステップ51でまず活性判定フラグ1が「1」となっているか判定する。活性判定フラグ1が「1」であれば、仮の活性化判定がなされているものとして、ステップ52で、他のフィードバック条件が成立しているか判定し、ここでYESであれば、燃料噴射量のクローズドループ制御を開始する。つまり、ステップ56で空燃比センサ16のセンサ出力を読み込み、ステップ57で、これに基づいて、フィードバック補正係数αを算出する。
【0033】
ここで、ステップ53では、活性判定フラグ2の状態を判定し、活性判定フラグ2が「0」であれば、仮の活性化判定状態であるので、ステップ54で、相対的に小さなフィードバックゲイン(低速ゲイン)を選択する。また、活性判定フラグ2が「1」であれば、空燃比センサ16の活性化が最終まで完了しているので、ステップ55で、相対的に大きなフィードバックゲイン(高速ゲイン)を選択する。ステップ57のフィードバック補正係数αの演算は、選択されたフィードバックゲインを用いて行われる。
【0034】
一方、ステップ51もしくはステップ52でNOの場合は、ステップ58へ進んで、フィードバック補正係数αを「1」つまり100パーセントにクランプし、燃料噴射量をオープンループ制御する。
【0035】
このように、本実施例では、空燃比センサ16のセンサ出力が所定の活性判定上限値以上、あるいは、所定の活性判定下限値以下となった場合に、仮の活性化判定を行って、小さなフィードバックゲインによる空燃比クローズドループ制御を開始する。フィードバックゲインが小さなことにより、緩やかなフィードバックがなされることになり、センサ出力のオーバシュートに対する過補正が抑制される。そして、オーバシュートが終了して最終的に活性化したと判定した時点で、フィードバックゲインが高くなり、応答性の高い空燃比クローズドループ制御に移行する。従って、クローズドループ制御の開始を遅らせることなく、オーバシュートによる影響を回避することができる。
【図面の簡単な説明】
【図1】この発明に係る空燃比制御装置の一実施例を示す構成説明図。
【図2】活性判定の処理の流れを示すフローチャート。
【図3】その要部の第1実施例を示すフローチャート。
【図4】この第1実施例の作用を説明する機関始動後の空燃比およびセンサ出力の変化を示すタイムチャート。
【図5】第2実施例を示すフローチャート。
【図6】この第2実施例の作用を説明する図4と同様のタイムチャート。
【図7】第3実施例を示すフローチャート。
【図8】この第3実施例の作用を説明する図4と同様のタイムチャート。
【図9】フィードバック補正係数αの演算処理のフローチャート。
【図10】フィードバック補正係数αの演算処理の異なる実施例を示すフローチャート。
【図11】始動後の空燃比およびセンサ出力の変化の一例を示すタイムチャート。
【符号の説明】
4…燃料噴射弁
11…エンジンコントロールユニット
16…空燃比センサ

Claims (6)

  1. 内燃機関の排気系に設けられた空燃比センサと、内燃機関の始動後に上記空燃比センサが活性化したことを該空燃比センサの出力から判定する活性化判定手段と、この空燃比センサの活性化後、内燃機関の空燃比を目標空燃比に沿ってクローズドループ制御する空燃比制御手段と、を備えてなる内燃機関の空燃比制御装置において、
    上記活性化判定手段は、センサ出力が所定の活性判定上限値以上となるか、または所定の活性判定下限値以下となった後、センサ出力の変化量絶対値が所定の判定値よりも小さくなったときに、空燃比センサが活性化したと判定することを特徴とする内燃機関の空燃比制御装置。
  2. 上記変化量絶対値が所定の判定値よりも小さい状態が所定の時間に亘って継続したことを条件として空燃比センサが活性化したと判定することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
  3. センサ出力が所定の活性判定上限値以上となるか、または所定の活性判定下限値以下となった後、さらにセンサ出力の増減方向が反転したことを条件とし、その後、センサ出力の変化量絶対値が所定の判定値よりも小さくなったときに、空燃比センサが活性化したと判定することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
  4. 上記活性判定上限値よりリーン側のオーバシュート判定上限値および上記活性判定下限値よりリッチ側のオーバシュート判定下限値を設け、
    センサ出力が所定の活性判定上限値以上となるか、または所定の活性判定下限値以下となった後、さらに上記オーバシュート判定上限値もしくはオーバシュート判定下限値を2回横切ったことを条件とし、その後、センサ出力の変化量絶対値が所定の判定値よりも小さくなったときに、空燃比センサが活性化したと判定することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
  5. 上記空燃比制御手段は、上記活性化判定手段により空燃比センサが活性化したと判定したときに空燃比のクローズドループ制御を開始することを特徴とする請求項1〜4のいずれかに記載の内燃機関の空燃比制御装置。
  6. 上記活性化判定手段は、センサ出力が所定の活性判定上限値以上となるか、または所定の活性判定下限値以下となったときに仮の活性化判定を行い、
    上記空燃比制御手段は、この仮の活性化判定がなされたときに相対的に小さなフィードバックゲインでの空燃比制御を開始し、上記活性化判定手段により空燃比センサが活性化したと最終的に判定したときに相対的に大きなフィードバックゲインでの空燃比制御を開始することを特徴とする請求項1〜4のいずれかに記載の内燃機関の空燃比制御装置。
JP2003000075A 2003-01-06 2003-01-06 内燃機関の空燃比制御装置 Pending JP2004211611A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003000075A JP2004211611A (ja) 2003-01-06 2003-01-06 内燃機関の空燃比制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000075A JP2004211611A (ja) 2003-01-06 2003-01-06 内燃機関の空燃比制御装置

Publications (1)

Publication Number Publication Date
JP2004211611A true JP2004211611A (ja) 2004-07-29

Family

ID=32818516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000075A Pending JP2004211611A (ja) 2003-01-06 2003-01-06 内燃機関の空燃比制御装置

Country Status (1)

Country Link
JP (1) JP2004211611A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155605A (ja) * 2005-12-07 2007-06-21 Toyota Motor Corp 排気ガスセンサシステム
WO2010041585A1 (ja) 2008-10-09 2010-04-15 トヨタ自動車株式会社 排気センサの活性判定装置、内燃機関の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155605A (ja) * 2005-12-07 2007-06-21 Toyota Motor Corp 排気ガスセンサシステム
WO2010041585A1 (ja) 2008-10-09 2010-04-15 トヨタ自動車株式会社 排気センサの活性判定装置、内燃機関の制御装置
US8291893B2 (en) 2008-10-09 2012-10-23 Toyota Jidosha Kabushiki Kaisha Device for determining activation of exhaust gas sensor and control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP2007332894A (ja) 内燃機関の制御装置
WO1995023284A1 (fr) Detecteur du type de carburant d'un moteur a combustion interne
US5664544A (en) Apparatus and method for control of an internal combustion engine
JPH076425B2 (ja) 内燃エンジンの始動後における燃料供給制御方法
JP2737426B2 (ja) 内燃機関の燃料噴射制御装置
JP3973390B2 (ja) 内燃機関の吸気圧検出方法
JP2004211611A (ja) 内燃機関の空燃比制御装置
JPH0686829B2 (ja) 内燃エンジンの空燃比フィ−ドバック制御方法
JP3973387B2 (ja) 内燃機関の吸気圧検出方法
JPH07325066A (ja) 空燃比センサー用加熱手段の制御装置
JP2004197693A (ja) 内燃機関の空燃比制御装置
JPH09228824A (ja) 触媒劣化検出装置
JP3601101B2 (ja) 内燃機関の空燃比制御装置
JP4064092B2 (ja) エンジンの空燃比制御装置
JP3988425B2 (ja) 内燃機関の排出ガス浄化制御装置
JP2596054Y2 (ja) 内燃機関の空燃比フィードバック制御装置
JP4073563B2 (ja) 内燃機関の制御装置
JP2712086B2 (ja) 内燃エンジンの空燃比制御方法
JP3493697B2 (ja) エンジンの空燃比制御装置
JP2712089B2 (ja) 内燃エンジンの空燃比制御方法
JP2996676B2 (ja) 内燃エンジンの空燃比制御方法
JPH0543253Y2 (ja)
JPH10122057A (ja) エンジンのegr制御装置
JP3608443B2 (ja) 内燃機関の空燃比制御装置
JP3627608B2 (ja) 空燃比センサの活性判定装置