WO2010041402A1 - テトラフルオロ化合物の製造方法 - Google Patents

テトラフルオロ化合物の製造方法 Download PDF

Info

Publication number
WO2010041402A1
WO2010041402A1 PCT/JP2009/005130 JP2009005130W WO2010041402A1 WO 2010041402 A1 WO2010041402 A1 WO 2010041402A1 JP 2009005130 W JP2009005130 W JP 2009005130W WO 2010041402 A1 WO2010041402 A1 WO 2010041402A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
compound represented
tetrafluoro
bis
Prior art date
Application number
PCT/JP2009/005130
Other languages
English (en)
French (fr)
Inventor
宮下康弘
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to EP09818942.6A priority Critical patent/EP2348010B1/en
Priority to CN200980139469.0A priority patent/CN102171175B/zh
Priority to US13/121,267 priority patent/US8481774B2/en
Priority to JP2010532796A priority patent/JP5379149B2/ja
Publication of WO2010041402A1 publication Critical patent/WO2010041402A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/30Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reactions not involving the formation of esterified sulfo groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/22Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of halogens; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/48Preparation of compounds having groups
    • C07C41/50Preparation of compounds having groups by reactions producing groups
    • C07C41/52Preparation of compounds having groups by reactions producing groups by substitution of halogen only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/287Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of halogen; by substitution of halogen atoms by other halogen atoms

Definitions

  • the present invention relates to a method for producing a tetrafluoro compound from an alkyne compound and a method for producing a tetrafluoro nitrogen-containing heterocyclic compound using the method.
  • Patent Documents 1 and 2 Non-Patent Documents 1 to 4, etc.
  • these methods require reduction using expensive LiAlH 4 or the like.
  • An object of the present invention is to provide a method for producing a tetrafluoronitrogen-containing heterocyclic compound such as tetrafluoropyrrolidine with good yield and at low cost.
  • the present inventors have produced a tetrafluoro compound represented by the formula (II) with high yield by reacting an alkyne compound represented by the following formula (I) with a fluorine gas.
  • the present inventors have found that a tetrafluoro nitrogen-containing heterocyclic compound can be produced at a low cost and in a high yield by using this method for the production of tetrafluoro nitrogen-containing heterocyclic compounds such as tetrafluoropyrrolidine.
  • R 1 and R 2 each independently represents a hydrogen atom or an OH protecting group
  • R 3 to R 6 each independently represents a hydrogen atom or an alkyl group
  • n 1 and n 2 Each independently represents an integer of 1 or more
  • a fluorine gas is reacted with the formula (II)
  • the present invention also provides [2] (A) Formula (I)
  • R 1 and R 2 each independently represents a hydrogen atom or an OH protecting group
  • R 3 to R 6 each independently represents a hydrogen atom or an alkyl group
  • n 1 and n 2 Are each independently an integer of 1 or more
  • a tetrafluoro compound can be produced from an alkyne compound in a high yield, and as a result, a tetrafluoro nitrogen-containing heterocyclic compound can be produced at a low cost and in a high yield using that method.
  • the alkyne compound represented by the formula (II) is reacted with fluorine gas.
  • the tetrafluoro compound represented by these is manufactured.
  • the alkyne compound represented by the formula (I) used in the present invention is as follows.
  • the substituents R 1 and R 2 each independently represent a hydrogen atom or a protecting group for an OH group.
  • a protecting group generally used for protecting the OH group can be used. Specific examples thereof include a lower alkyl group such as a methyl group; a lower alkoxyalkyl group such as a methoxymethyl group and an ethoxyethyl group; an optionally substituted benzyl group (the substituent includes a nitro group, a lower alkoxy group, and the like).
  • R 3 to R 6 each independently represent a hydrogen atom or an alkyl group.
  • the alkyl group include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-pentyl group, and n-hexyl group.
  • it is a C1-6 alkyl group.
  • n1 and n2 each independently represents an integer of 1 or more, preferably 1 to 3.
  • the fluorination reaction of the alkyne compound represented by the formula (I) in the solvent is performed by fluorinating the alkyne compound represented by the formula (I) using a fluorine gas.
  • a fluorine gas usually, the alkyne compound represented by the formula (I) is added to a solvent, and this solution is reacted with bubbling fluorine gas under stirring.
  • the fluorine gas may be used as it is, or may be diluted with an inert gas (nitrogen gas, helium gas, etc.).
  • the amount to be used is generally 1 to 10 mol, preferably 2 to 4 mol, per 1 mol of the compound represented by the formula (I).
  • the reaction temperature is usually -196 to 25 ° C, preferably -78 to 10 ° C.
  • the reaction time is usually 1 to 10 hours, preferably 2 to 4 hours.
  • the solvent used in fluorination will not be specifically limited if it is a solvent inactive with respect to fluorine gas.
  • perfluoroalkanes such as perfluoropentane, perfluorohexane, perfluoroheptane, and perfluorooctane
  • perfluorocycloalkanes such as perfluorocyclopentane, perfluorocyclohexane, perfluorocycloheptane, and perfluorocyclooctane
  • Those substituted with atoms eg, CFCl 3 and the like
  • perfluoroether perfluoroalkylamine
  • trifluoroacetic acid acetonitrile and the like.
  • solvents may be used alone or in combination of two or more.
  • a mixed solvent such as CFCl 3 and acetonitrile is used.
  • the amount of the solvent used is 1 to 20 L, preferably 5 to 10 L, per mole of the alkyne compound represented by the formula (I).
  • a compound having an OH group protecting group it can be deprotected to form an OH group by a known method or the like.
  • the manufacturing method of the tetrafluoro nitrogen-containing heterocyclic compound represented by Formula (IV) It has the following processes. Step 1 above. As shown, the tetrafluoro compound represented by the formula (II) is produced by reacting the compound represented by the formula (I) with a fluorine gas. In addition, when the tetrafluoro compound represented by the formula (II) has an OH group protecting group, it may be deprotected to form an OH group in the first step.
  • the tetrafluoro nitrogen-containing heterocyclic compound represented by these or its salt is manufactured.
  • R 7 and R 8 are, for example, halogen atoms such as chlorine atom and bromine atom; methanesulfonyloxy group, ethanesulfonyloxy group, trifluoromethanesulfonyloxy group, benzenesulfonyloxy And a group capable of leaving the nucleophile such as an organic sulfonyloxy group such as a p-toluenesulfonyloxy group.
  • R 1 and R 2 are hydrogen atoms
  • the compound represented by the formula (II) is converted into an OH group by hydrolysis when R 1 and R 2 are protecting groups for OH groups.
  • the compound represented by the formula (III) can be obtained by reacting with a reagent such as thionyl chloride, methanesulfonyl chloride, 4-toluenesulfonyl chloride, trifluoromethanesulfonic anhydride, etc. in a solvent.
  • a reagent such as thionyl chloride, methanesulfonyl chloride, 4-toluenesulfonyl chloride, trifluoromethanesulfonic anhydride, etc.
  • the amount of the reagent to be converted to the leaving group is usually 2 to 10 mol, preferably 2 to 3 mol, relative to 1 mol of the compound represented by the formula (II).
  • the reaction temperature is generally ⁇ 78 to 200 ° C., preferably ⁇ 5 to 20 ° C.
  • the reaction time is usually 1 to 24 hours, preferably 2 to 4 hours.
  • Examples of the solvent that can be used for conversion to the leaving group include tetrahydrofuran, acetonitrile, toluene, chloroform, and dichloromethane. These solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is 1 to 10 L, preferably 1 to 3 L, per 1 mol of the tetrafluoro compound represented by the formula (II).
  • R 3 to R 6 , n1 and n2 are the same as defined in the formula (I).
  • R 9 is a hydrogen atom or an amino-protecting group.
  • protecting groups generally used for protecting N can be used. Specific examples thereof include t-butyl group; allyl group; trisubstituted silyl groups such as trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, triisopropylsilyl group, dimethylhexylsilyl group, t-butyldiphenylsilyl group, etc.
  • An optionally substituted benzyl group (the substituent includes a nitro group, a lower alkoxy group, etc.); a lower alkoxycarbonyl group such as a t-butoxycarbonyl group; a halogeno lower alkoxycarbonyl group; Good benzyloxycarbonyl groups (substituents include nitro groups, lower alkoxy groups, etc.); acyl groups such as acetyl groups and benzoyl groups.
  • Examples of the tetrafluoro nitrogen-containing heterocyclic compound represented by the formula (IV) include the following.
  • Examples of the salt of the tetrafluoro nitrogen-containing heterocyclic compound represented by the formula (IV) include salts with inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, fumaric acid And salts with organic acids such as maleic acid, succinic acid, citric acid and tartaric acid.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, fumaric acid
  • organic acids such as maleic acid, succinic acid, citric acid and tartaric acid.
  • a compound represented by the formula (III) By reacting a compound represented by the formula (III) with a primary amine compound represented by the formula NH 2 R 9 (wherein R 9 represents a hydrogen atom or a protecting group for an amino group), The tetrafluoro nitrogen-containing heterocyclic compound represented can be obtained.
  • the primary amine compound represented by the formula NH 2 R 9 include t-butylamine, allylamine, trimethylsilylamine, benzylamine, t-butoxycarbonylamine, and benzoylamine.
  • the amount of the primary amine compound to be used is generally 1 to 10 mol, preferably 1 to 3 mol, per 1 mol of the compound represented by the formula (III).
  • the reaction temperature is usually 0 to 200 ° C., preferably 0 to 80 ° C.
  • the reaction time is usually 1 to 24 hours, preferably 5 to 20 hours.
  • chloroform, ethanol, etc. are mentioned, for example. These solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is 1 to 10 L, preferably 1 to 3 L, relative to 1 mol of the tetrafluoro compound represented by the formula (II).
  • an appropriate method can be appropriately selected according to the kind of the protecting group.
  • the deprotection method include the method described in PROTECTIVE GROUPS IN ORGANIC SYNTHESIS 2nd. Ed.
  • the protecting group is a t-butyl group, t-butoxycarbonyl group or the like, it may be treated with an acid such as trifluoroacetic acid, hydrochloric acid, sulfuric acid, p-toluenesulfonic acid or methanesulfonic acid.
  • the protecting group is a benzyl group or the like, hydrogenolysis can be performed in the presence of a palladium catalyst or the like.
  • the desired product can be isolated by purification by a conventional post-treatment operation and, if desired, known and conventional purification means such as distillation, recrystallization, column chromatography and the like.
  • A% represents an area ratio percentage
  • Example 2 A crude product containing the compound (3) obtained in Example 1 (19.45 g (120 mmol, 77 mmol in terms of pure content)) and pyridine (23.7 g, 300 mmol) in a methylene chloride solution in a range of ⁇ 5 to 5 ° C.
  • reaction solution was added to saturated sodium bicarbonate water. Subsequently, extraction was performed three times with methylene chloride, and the organic layer was washed with water and then dehydrated with magnesium sulfate. After the dehydrating agent was filtered off, the solvent was distilled off under reduced pressure to obtain 1.54 g of a crude product of 2,2,3,3-tetrafluorobutane-1,4-diol diacetate. To the crude product was added 5 ml of dilute sulfuric acid, and the mixture was heated to reflux for 3 hours. The reaction solution was cooled and then added to ice-cooled saturated sodium bicarbonate water.
  • 2-butyne-1,4-diol 1.53 g of 2-butyne-1,4-diol bis (2,2,2-trifluoroacetate) instead of diacetate was used in the same manner as in Example 1, and 2 , 2,3,3-Tetrafluorobutane-1,4-diol (0.18 g) was obtained.
  • 1,4-bis (methoxymethoxy) -2-butyne (0.96 g, 5.5 mmol) was weighed into a reaction vessel having a cooling device and a gas inlet, and dissolved in a mixed solvent of 10 ml of acetonitrile and 30 ml of trichlorofluoromethane. .
  • the solution was cooled to ⁇ 50 ° C. while blowing nitrogen (50 ml / min) and purged with nitrogen for 15 minutes. Thereafter, fluorine gas diluted to 10% with nitrogen was blown in at a rate of 50 ml / min for 123 minutes.
  • 1,4-bis (pivaloyloxy) was used in the same manner as in Example 4 except that 1.40 g of 1,4-bis (pivaloyloxy) -2-butyne was used instead of 1,4-bis (methoxymethoxy) -2-butyne. 2.11 g of a crude product of -2,2,3,3-tetrafluorobutane was obtained. From analysis by gas chromatography, 1,4-bis (pivaloyloxy) -2,2,3,3-tetrafluorobutane in the crude product was 18 A%.
  • 1,4-bis (t-butoxycarbonyloxy) -2-butyne (1.57 g) was used in place of 1,4-bis (methoxymethoxy) -2-butyne, and 1,4-bis (methoxymethoxy) -2-butyne was used in the same manner as in Example 4.
  • 2.29 g of a crude product of bis (t-butoxycarbonyloxy) -2,2,3,3-tetrafluorobutane was obtained. From analysis by gas chromatography, 1,4-bis (t-butoxycarbonyloxy) -2,2,3,3-tetrafluorobutane in the crude product was 18 A%.
  • 1,4-bis (t-butyldimethylsilyloxy) -2-butyne (1.73 g) was used in place of 1,4-bis (methoxymethoxy) -2-butyne, and 1,4 bis (methoxymethoxy) -2-butyne was synthesized in the same manner as in Example 4. 2.49 g of a crude product of bis (t-butyldimethylsilyloxy) -2,2,3,3-tetrafluorobutane was obtained. From analysis by gas chromatography, 1,4-bis (t-butyldimethylsilyloxy) -2,2,3,3-tetrafluorobutane in the crude product was 25 A%.
  • 1,4-bis (methoxysulfonyl) -2-butyne was used in place of 1,4-bis (methoxymethoxy) -2-butyne and 1.30 g of 1,4-bis (methylsulfonyloxy) -2-butyne was used in the same manner as in Example 4. 1.97 g of a crude product of methylsulfonyloxy) -2,2,3,3-tetrafluorobutane was obtained. From analysis by gas chromatography, 1,4-bis (methylsulfonyloxy) -2,2,3,3-tetrafluorobutane in the crude product was 7 A%.
  • 1,4-bis (perfluorobenzyloxy) -2-butyne (2.35 g) was used instead of 1,4-bis (methoxymethoxy) -2-butyne, and 1,4-bis (meth) was synthesized in the same manner as in Example 4. 3.06 g of a crude product of (perfluorobenzyloxy) -2,2,3,3-tetrafluorobutane was obtained. From analysis by gas chromatography, 1,4-bis (perfluorobenzyloxy) -2,2,3,3-tetrafluorobutane in the crude product was 19 A%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrrole Compounds (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Hydrogenated Pyridines (AREA)
  • Pyridine Compounds (AREA)

Abstract

 テトラフルオロピロリジンなどのテトラフルオロ含窒素複素環化合物を収率よく、安価に製造する方法を提供する。(A)式(I)で表される化合物とフッ素ガスとを反応させることにより式(II)で表されるテトラフルオロ化合物を製造する工程、(B)式(II)で表されるテトラフルオロ誘導体を式(III)で表される化合物に変換する工程、及び(C)式(III)で表される化合物と式NHで表されるアミン化合物とを反応させて、式(IV)で表されるテトラフルオロ含窒素複素環化合物又はその塩を製造する工程を有する。

Description

テトラフルオロ化合物の製造方法
 本発明は、アルキン化合物からテトラフルオロ化合物を製造する方法及びその方法を用いてテトラフルオロ含窒素複素環化合物を製造する方法に関する。
 本願は、2008年10月7日に出願された日本国特許出願第2008-260485号に対し優先権を主張し、その内容をここに援用する。
 従来、テトラフルオロ含窒素複素環化合物の製造法として、例えば、テトラフルオロピロリジンは以下のようにして製造する方法が知られている(特許文献1、2、非特許文献1~4など)。しかしながら、これらの方法では、高価なLiAlH等を用いた還元を必要としていた。
Figure JPOXMLDOC01-appb-C000001
WO03/101449号パンフレット 米国特許第4474700号公報 J.Am.Chem.Soc.,1950,72,3642 J.Am.Chem.Soc.,1947,69,281 J.Am.Chem.Soc.,1951,73,1103 J.Org.Chem.1965,30,3009
 本発明の課題は、テトラフルオロピロリジンなどのテトラフルオロ含窒素複素環化合物を収率よく、安価に製造する方法を提供することにある。
 本発明者らは、鋭意検討の結果、下記式(I)で表されるアルキン化合物をフッ素ガスと反応させることにより、式(II)で表されるテトラフルオロ化合物が収率よく製造されることを見出し、その方法をテトラフルオロピロリジンなどのテトラフルオロ含窒素複素環化合物の製造に用いることにより、テトラフルオロ含窒素複素環化合物を安価に収率よく製造できる事を見出した。
 すなわち本発明は、
[1]式(I)
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは、夫々独立して、水素原子又はOH基の保護基を示し、R~Rは、夫々独立して、水素原子又はアルキル基を示し、n1及びn2は、夫々独立して、1以上の整数を示す)で表されるアルキン化合物とフッ素ガスとを反応させることを特徴とする式(II)
Figure JPOXMLDOC01-appb-C000003
(式中、R~R、n1及びn2は前記定義と同じである)で表されるテトラフルオロ化合物の製造方法に関する。
又、本発明は、
[2](A)式(I)
Figure JPOXMLDOC01-appb-C000004
(式中、R及びRは、夫々独立して、水素原子又はOH基の保護基を示し、R~Rは、夫々独立して、水素原子又はアルキル基を示し、n1及びn2は、夫々独立して、1以上の整数を示す)で表される化合物とフッ素ガスとを反応させることにより式(II)
Figure JPOXMLDOC01-appb-C000005
(式中、R~R、n1及びn2は前記定義と同じである)で表されるテトラフルオロ化合物を製造する工程、
(B)式(II)で表されるテトラフルオロ誘導体を式(III)
Figure JPOXMLDOC01-appb-C000006
(式中、R~Rは前記定義と同じであり、R及びRは、脱離基を示す)で表される化合物に変換する工程、及び
(C)式(III)で表される化合物と式NH(式中、Rは水素原子又はアミノ基の保護基を示す)で表されるアミン化合物とを反応させて、式(IV)
Figure JPOXMLDOC01-appb-C000007
(式中、R~R、R、n1及びn2は前記定義と同じである)で表されるテトラフルオロ含窒素複素環化合物を製造する工程
を有することを特徴とする、式(IV)で表されるテトラフルオロ含窒素複素環化合物又はその塩の製造方法に関する。
 本発明により、アルキン化合物からテトラフルオロ化合物を収率よく製造することができ、その結果、その方法を用いてテトラフルオロ含窒素複素環化合物を安価に収率よく製造することができる。
1.式(II)で表されるテトラフルオロ化合物の製造方法
 式(I)
Figure JPOXMLDOC01-appb-C000008
で表されるアルキン化合物を、フッ素ガスと反応させることにより、式(II)
Figure JPOXMLDOC01-appb-C000009
で表されるテトラフルオロ化合物が製造される。
 本発明で使用される式(I)で表されるアルキン化合物は、以下のとおりである。
 置換基R及びRは、夫々独立して、水素原子又はOH基の保護基を示す。
 OH基の保護基としては、一般にOH基を保護するのに用いられている保護基が使用できる。その具体例としては、メチル基等の低級アルキル基;メトキシメチル基、エトキシエチル基等の低級アルコキシアルキル基;置換されていてもよいベンジル基(置換基としてはニトロ基、低級アルコキシ基等が挙げられる);低級アルコキシカルボニル基;ハロゲノ低級アルコキシカルボニル基;置換されていてもよいベンジルオキシカルボニル基(置換基としてはニトロ基、低級アルコキシ基等が挙げられる);アセチル基、ベンゾイル基等のアシル基;トリフェニルメチル基;テトラヒドロピラニル基;メタンスルホニル基;p-トルエンスルホニル基;トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基、ジメチルヘキシルシリル基、t-ブチルジフェニルシリル基等のトリ置換シリル基等が例示される。
 R~Rは、夫々独立して、水素原子又はアルキル基を示す。
 アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、ノニル基、イソノニル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等が挙げられる。好ましくは、C1-6のアルキル基である。
 n1及びn2は、夫々独立して1以上の整数を示し、好ましくは、1~3である。
 式(I)で表される化合物は、具体的には、
Figure JPOXMLDOC01-appb-C000010
等が例示される。
 式(I)で表されるアルキン化合物の溶媒中でのフッ素化反応は、式(I)で表されるアルキン化合物をフッ素ガスを用いてフッ素化することにより行われる。通常は、式(I)で表されるアルキン化合物を溶媒に添加して、この溶液に撹拌下、フッ素ガスをバブリングしながら反応させる。
 フッ素ガスは、そのまま用いてもよく、不活性ガス(窒素ガス、ヘリウムガス等)で希釈して用いてもよい。使用量は、式(I)で表される化合物1モルに対して、通常1~10モル、好ましくは、2~4モルである。反応温度は、通常-196~25℃、好ましくは-78~10℃である。反応時間は、通常1~10時間、好ましくは2~4時間である。
 また、フッ素化において使用される溶媒は、フッ素ガスに対して不活性な溶媒であれば特に限定されない。
 例えば、ペルフルオロペンタン、ペルフルオロヘキサン、ペルフルオロヘプタン、ペルフルオロオクタン等のペルフルオロアルカン;ペルフルオロシクロペンタン、ペルフルオロシクロヘキサン、ペルフルオロシクロヘプタン、ペルフルオロシクロオクタン等のペルフルオロシクロアルカン;上記のうち、一部のフッ素を他のハロゲン原子に置き換えたもの(例、CFCl等);ペルフルオロエーテル;ペルフルオロアルキルアミン;トリフルオロ酢酸;アセトニトリルなどが挙げられる。これらの溶媒は単独で用いてもよく、2種類以上を混合して用いても良い。好ましくは、CFClとアセトニトリルのような混合溶媒が挙げられる。用いる溶媒の量としては、式(I)で表されるアルキン化合物1モル当り1~20L、好ましくは5~10Lである。
 なお、OH基の保護基を有している化合物の場合は、公知の方法等により脱保護してOH基とすることができる。
 上記方法により製造される式(II)で表されるテトラフルオロ化合物としては、具体的には、
Figure JPOXMLDOC01-appb-C000011
等が例示される。
2.式(IV)で表されるテトラフルオロ含窒素複素環化合物の製造方法
 以下の工程を有する。
第1工程
 上記1.で示されるように、式(I)で表される化合物とフッ素ガスとを反応させることにより式(II)で表されるテトラフルオロ化合物を製造する。なお、式(II)で表されるテトラフルオロ化合物がOH基の保護基を有している場合は、第1工程において、脱保護してOH基としてもよい。
第2工程
 式(II)で表されるテトラフルオロ誘導体を式(III)
Figure JPOXMLDOC01-appb-C000012
で表される化合物に変換する。
第3工程
 式(III)で表される化合物と式NHで表されるアミン化合物とを反応させて、式(IV)
Figure JPOXMLDOC01-appb-C000013
で表されるテトラフルオロ含窒素複素環化合物又はその塩を製造する。
第4工程
 上記式(IV)のRがアミノ基の保護基の場合は、第3工程の後、さらに、溶媒中、式(IV)で表される化合物を脱保護して式(V)
Figure JPOXMLDOC01-appb-C000014
で表される化合物又はその塩を製造することもできる。
(第2工程の説明)
 第2工程において得られる式(III)において、R及びRは、例えば、塩素原子、臭素原子等のハロゲン原子;メタンスルホニルオキシ基、エタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ベンゼンスルホニルオキシ基、p-トルエンスルホニルオキシ基等の有機スルホニルオキシ基等、求核試薬に対して脱離する基である。
 式(II)で表される化合物を、R及びRが水素原子である場合は、そのまま、R及びRがOH基の保護基である場合は、加水分解してOH基に変換した後、溶媒中で、塩化チオニル、メタンスルホニルクロリド、4-トルエンスルホニルクロリド、無水トリフルオロメタンスルホン酸等の試薬と反応させることにより、式(III)で表される化合物を得ることができる。
 脱離基に変換する試薬の使用量は、式(II)で表される化合物1モルに対して、通常2~10モル、好ましくは、2~3モルである。反応温度は、通常-78~200℃、好ましくは-5~20℃である。反応時間は、通常1~24時間、好ましくは2~4時間である。
 また、脱離基に変換する際に使用しうる溶媒としては、例えば、テトラヒドロフラン、アセトニトリル、トルエン、クロロホルム、ジクロロメタンなどが挙げられる。これらの溶媒は単独で用いてもよく、2種類以上を混合して用いても良い。用いる溶媒の量としては、式(II)で表されるテトラフルオロ化合物1モル当り1~10L、好ましくは1~3Lである。
(第3工程の説明)
 第3工程において得られる式(IV)において、R~R,n1及びn2は前記式(I)における定義と同じである。Rは水素原子又はアミノ基の保護基である。
 Rのアミノ基の保護基としては、一般にNを保護するために用いられている保護基が使用できる。その具体例としては、t-ブチル基;アリル基;トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基、ジメチルヘキシルシリル基、t-ブチルジフェニルシリル基等のトリ置換シリル基;置換されていてもよいベンジル基(置換基としてはニトロ基、低級アルコキシ基等が挙げられる。);t-ブトキシカルボニル基等の低級アルコキシカルボニル基;ハロゲノ低級アルコキシカルボニル基;置換されていてもよいベンジルオキシカルボニル基(置換基としてはニトロ基、低級アルコキシ基等が挙げられる。);アセチル基、ベンゾイル基等のアシル基等が挙げられる。
 式(IV)で表されるテトラフルオロ含窒素複素環化合物としては、以下のものが例示できる。
Figure JPOXMLDOC01-appb-C000015
 式(IV)で表されるテトラフルオロ含窒素複素環化合物の塩としては、塩酸、臭化水素酸、ヨウ化水素酸、硝酸、硫酸、リン酸等の無機酸との塩、酢酸、フマル酸、マレイン酸、コハク酸、クエン酸、酒石酸等の有機酸との塩等が挙げられる。
 式(III)で表される化合物と式NH(Rは水素原子又はアミノ基の保護基を示す)で表される1級アミン化合物とを反応させることにより、式(IV)で表されるテトラフルオロ含窒素複素環化合物を得ることができる。
 式NHで表される1級アミン化合物としては、t-ブチルアミン、アリルアミン、トリメチルシリルアミン、ベンジルアミン、t-ブトキシカルボニルアミン、ベンゾイルアミン等が挙げられる。
 1級アミン化合物の使用量は、式(III)で表される化合物1モルに対して、通常1~10モル、好ましくは、1~3モルである。反応温度は、通常0~200℃、好ましくは0~80℃である。反応時間は、通常1~24時間、好ましくは5~20時間である。
 また、使用しうる溶媒としては、例えば、クロロホルム、エタノールなどが挙げられる。これらの溶媒は単独で用いてもよく、2種類以上を混合して用いても良い。用いる溶媒の量としては、式(II)で表されるテトラフルオロ化合物1モルに対して1~10L、好ましくは1~3Lである。
(第4工程の説明)
 式(IV)で表される化合物の脱保護は、保護基の種類に応じて、適宜適切な方法を選ぶことができる。脱保護の方法としては、例えば、プロテクティヴ・グループス・イン・オーガニックシンセシス第2版(PROTECTIVE GROUPS IN ORGANIC SYNTHESIS 2nd. Ed.)記載の方法があげられる。例えば、保護基がt-ブチル基、t-ブトキシカルボニル基等の場合は、トリフルオロ酢酸、塩酸、硫酸、p-トルエンスルホン酸、メタンスルホン酸等の酸で処理すればよい。また、保護基がベンジル基等の場合は、パラジウム触媒などの存在下で水素化分解を行うことができる。
 反応終了後は、通常の後処理操作、及び所望により蒸留、再結晶、カラムクロマトグラフィー等の公知慣用の精製手段により精製して、目的物を単離することができる。
 以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。なお、以下の実施例においてA%は面積比百分率を示す。
[実施例1]
Figure JPOXMLDOC01-appb-C000016
 冷却装置及びガス吹き込み口を有する反応容器に、化合物(1)0.94g(5.5mmol)及びCFCl30mlを入れ、-78℃に冷却後、窒素パージし、その後10%Fを含むNガスを50ml/minの速度で55分間吹き込んだ。その後、アセトニトリルを10ml添加し、温度を5~10℃に調整しながら、10%Fを含むNガスを50ml/minの速度で55分間吹き込んだ。フッ素化反応終了後、窒素パージし、過剰のフッ素を除き、反応液を重曹中に注加した。次いで、塩化メチレンで抽出し有機層を水洗後、硫酸マグネシウムで脱水し、溶媒を留去して化合物(2)の粗生成物1.29gを得た。
 さらに、化合物(2)の粗生成物1.29gに希硫酸5mlを加え加熱還流させながら加水分解を行い、反応終了後、水とエーテルを加え、有機層を飽和食塩水で洗浄し、硫酸マグネシウムで脱水した。溶媒を留去して化合物(3)(2,2,3,3-テトラフルオロブタンジオール)の粗生成物0.48gを得た。ガスクロマトグラフィーにより、組成物中の化合物(3)は64%であった。
[実施例2]
 実施例1で得られた化合物(3)を含む粗生成物19.45g(120mmol、純分換算で、77mmol)、ピリジン23.7g(300mmol)の塩化メチレン溶液に-5~5℃の範囲で無水トリフルオロメタンスルホン酸72.8g(257mmol)を滴下し、同温度で1時間、さらに室温で1時間反応した後、水洗し、硫酸マグネシウムで乾燥後、溶媒を留去して目的物である2,2,3,3-テトラフルオロ-1,4-ビス(トリフルオロメタンスルホニルオキシ)-ブタンを含む粗生成物を得た。
 得られた上記粗生成物、ベンジルアミン12.8g(120mmol)、及びトリエチルアミン30.4g(300mmol)のエタノール溶液を20時間還流した。室温に冷却後、溶媒を留去し、エーテルを加え、有機層をアルカリ、及び飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。
 硫酸マグネシウムを濾過したエーテル溶液に0℃~室温の範囲で、塩化水素ガスを1時間吹き込んだ。
 その後、窒素ガスを吹き込み余分な塩化水素を除去した後、析出した結晶を濾過、エーテルで洗浄し、目的とする3,3,4,4-テトラフルオロ-1-ベンジル-ピロリジン塩酸塩16.9g(純分換算収率82%)を得た。
 得られた3,3,4,4-テトラフルオロ-1-ベンジル-ピロリジン塩酸塩16.9g、及び10%Pd/C 1.8gのエタノール溶液を常圧下で水素ガスと接触するように室温で3時間、攪拌した。濾過後、溶媒を留去し、目的とする3,3,4,4-テトラフルオロ-ピロリジン塩酸塩11g(収率98%)を得た。
〔実施例3〕
Figure JPOXMLDOC01-appb-C000017
 冷却装置およびガス吹き込み口を有する反応容器に、2-ブチン-1,4-ジオール ジアセテート0.94g(5.5mmol)を秤量し、アセトニトリル10mlとトリクロロフルオロメタン30mlの混合溶媒に溶解した。その溶液に窒素(50ml/min)を吹き込みながら-50℃に冷却し、15分間窒素パージした。その後窒素で10%に希釈したフッ素ガスを50ml/minの速度で123分間吹き込んだ。フッ素化反応終了後、反応液に-50℃で窒素(50ml/min)を15分間吹き込み過剰のフッ素を除去し、反応液を飽和重曹水中に加えた。次いで、塩化メチレンで3回抽出し、有機層を水洗した後硫酸マグネシウムで脱水した。脱水剤を濾別した後、溶媒を減圧留去して2,2,3,3-テトラフルオロブタン-1,4-ジオール ジアセテートの粗生成物1.54gを得た。粗生成物に希硫酸5mlを加え、3時間加熱還流した。反応液を冷却した後、氷冷した飽和重曹水中に加えた。次いで酢酸エチルを加え、不溶物をセライト濾過した。濾液を分液した後、水層を酢酸エチルで2回抽出し、有機層を飽和食塩水で洗浄した後硫酸マグネシウムで脱水した。脱水剤を濾別した後、溶媒を減圧留去して2,2,3,3-テトラフルオロブタン-1,4-ジオールの粗生成物0.22gを得た。
〔実施例4〕
Figure JPOXMLDOC01-appb-C000018
 2-ブチン-1,4-ジオール ジアセテートの代わりに2-ブチン-1,4-ジオール ビス(2,2,2-トリフルオロアセテート)1.53gを用い、実施例1と同様の方法で2,2,3,3-テトラフルオロブタン-1,4-ジオールの粗生成物0.18gを得た。
〔実施例5〕
Figure JPOXMLDOC01-appb-C000019
 冷却装置およびガス吹き込み口を有する反応容器に、2-ブチン-1,4-ジオール ジアセテート0.95g(5.6mmol)を秤量し、アセトニトリル10mlとトリクロロフルオロメタン30mlの混合溶媒に溶解した。その溶液に窒素(50ml/min)を吹き込みながら-50℃に冷却し、15分間窒素パージした。その後窒素で10%に希釈したフッ素ガスを50ml/minの速度で123分間吹き込んだ。フッ素化反応終了後、反応液に-50℃で窒素(50ml/min)を1時間吹き込み過剰のフッ素を除去し、溶媒を減圧留去して2,2,3,3-テトラフルオロブタン-1,4-ジオール ジアセテートの粗生成物1.67gを得た。粗生成物に希硫酸5mlを加え、3時間加熱還流した。反応液を冷却した後、氷冷した酢酸エチルと重曹中に加えた。不溶物をセライト濾過した後有機層を硫酸マグネシウムで脱水した。脱水剤を濾別した後、溶媒を減圧留去して2,2,3,3-テトラフルオロブタン-1,4-ジオールの粗生成物0.33gを得た。
〔実施例6〕
Figure JPOXMLDOC01-appb-C000020
 冷却装置およびガス吹き込み口を有する反応容器に、1,4-ビス(メトキシメトキシ)-2-ブチン0.96g(5.5mmol)を秤量し、アセトニトリル10mlとトリクロロフルオロメタン30mlの混合溶媒に溶解した。その溶液に窒素(50ml/min)を吹き込みながら-50℃に冷却し、15分間窒素パージした。その後窒素で10%に希釈したフッ素ガスを50ml/minの速度で123分間吹き込んだ。フッ素化反応終了後、反応液に-50℃で窒素(50ml/min)を15分間吹き込み過剰のフッ素を除去し、反応液を飽和重曹水中に加えた。次いで、酢酸エチルで3回抽出し、有機層を水洗した後硫酸マグネシウムで脱水した。脱水剤を濾別した後、溶媒を減圧留去して1,4-ビス(メトキシメトキシ)-2,2,3,3-テトラフルオロブタンの粗生成物1.41gを得た。ガスクロマトグラフィーによる分析から、粗生成物中の1,4-ビス(メトキシメトキシ)-2,2,3,3-テトラフルオロブタンは26A%であった。
〔実施例6〕
Figure JPOXMLDOC01-appb-C000021
 1,4-ビス(メトキシメトキシ)-2-ブチンの代わりに1,4-ビス(ピバロイルオキシ)-2-ブチン1.40gを用い、実施例4と同様の方法で1,4-ビス(ピバロイルオキシ)-2,2,3,3-テトラフルオロブタンの粗生成物2.11gを得た。ガスクロマトグラフィーによる分析から、粗生成物中の1,4-ビス(ピバロイルオキシ)-2,2,3,3-テトラフルオロブタンは18A%であった。
〔実施例7〕
Figure JPOXMLDOC01-appb-C000022
 1,4-ビス(メトキシメトキシ)-2-ブチンの代わりに1,4-ビス(t-ブトキシカルボニルオキシ)-2-ブチン1.57gを用い、実施例4と同様の方法で1,4-ビス(t-ブトキシカルボニルオキシ)-2,2,3,3-テトラフルオロブタンの粗生成物2.29gを得た。ガスクロマトグラフィーによる分析から、粗生成物中の1,4-ビス(t-ブトキシカルボニルオキシ)-2,2,3,3-テトラフルオロブタンは18A%であった。
〔実施例8〕
Figure JPOXMLDOC01-appb-C000023
 1,4-ビス(メトキシメトキシ)-2-ブチンの代わりに1,4-ビス(t-ブチルジメチルシリルオキシ)-2-ブチン1.73gを用い、実施例4と同様の方法で1,4-ビス(t-ブチルジメチルシリルオキシ)-2,2,3,3-テトラフルオロブタンの粗生成物2.49gを得た。ガスクロマトグラフィーによる分析から、粗生成物中の1,4-ビス(t-ブチルジメチルシリルオキシ)-2,2,3,3-テトラフルオロブタンは25A%であった。
〔実施例9〕
Figure JPOXMLDOC01-appb-C000024
 1,4-ビス(メトキシメトキシ)-2-ブチンの代わりに1,4-ビス(メチルスルホニルオキシ)-2-ブチン1.30gを用い、実施例4と同様の方法で1,4-ビス(メチルスルホニルオキシ)-2,2,3,3-テトラフルオロブタンの粗生成物1.97gを得た。ガスクロマトグラフィーによる分析から、粗生成物中の1,4-ビス(メチルスルホニルオキシ)-2,2,3,3-テトラフルオロブタンは7A%であった。
〔実施例10〕
Figure JPOXMLDOC01-appb-C000025
 1,4-ビス(メトキシメトキシ)-2-ブチンの代わりに1,4-ビス(パーフルオロベンゾイルオキシ)-2-ブチン2.60gを用い、実施例4と同様の方法で1,4-ビス(パーフルオロベンゾイルオキシ)-2,2,3,3-テトラフルオロブタンの粗生成物3.26gを得た。ガスクロマトグラフィーによる分析から、粗生成物中の1,4-ビス(パーフルオロベンゾイルオキシ)-2,2,3,3-テトラフルオロブタンは27A%であった。
〔実施例11〕
 1,4-ビス(メトキシメトキシ)-2-ブチンの代わりに1,4-ビス(パーフルオロベンジルオキシ)-2-ブチン2.35gを用い、実施例4と同様の方法で1,4-ビス(パーフルオロベンジルオキシ)-2,2,3,3-テトラフルオロブタンの粗生成物3.06gを得た。ガスクロマトグラフィーによる分析から、粗生成物中の1,4-ビス(パーフルオロベンジルオキシ)-2,2,3,3-テトラフルオロブタンは19A%であった。

Claims (3)

  1. 式(I)
    Figure JPOXMLDOC01-appb-C000027
    (式中、R及びRは、夫々独立して、水素原子又はOH基の保護基を示し、R~Rは、夫々独立して、水素原子又はアルキル基を示し、n1及びn2は、夫々独立して、1以上の整数を示す)で表されるアルキン化合物とフッ素ガスとを反応させることを特徴とする、式(II)
    Figure JPOXMLDOC01-appb-C000028
    (式中、R~R、n1及びn2は前記定義と同じである)で表されるテトラフルオロ化合物の製造方法。
  2. (A)式(I)
    Figure JPOXMLDOC01-appb-C000029
    (式中、R及びRは、夫々独立して、水素原子又はOH基の保護基を示し、R~Rは、夫々独立して、水素原子又はアルキル基を示し、n1及びn2は、夫々独立して、1以上の整数を示す)で表される化合物とフッ素ガスとを反応させることにより式(II)
    Figure JPOXMLDOC01-appb-C000030
    (式中、R~R、n1及びn2は前記定義と同じである)で表されるテトラフルオロ化合物を製造する工程、
    (B)式(II)で表されるテトラフルオロ誘導体を式(III)
    Figure JPOXMLDOC01-appb-C000031
    (式中、R~Rは前記定義と同じであり、R及びRは、脱離基を示す)で表される化合物に変換する工程、及び
    (C)式(III)で表される化合物と式NH(式中、Rは水素原子又はアミノ基の保護基を示す)で表されるアミン化合物とを反応させて、式(IV)
    Figure JPOXMLDOC01-appb-C000032
    (式中、R~R、R,n1及びn2は前記定義と同じである)で表されるテトラフルオロ含窒素複素環化合物を製造する工程
    を有することを特徴とする、式(IV)で表されるテトラフルオロ含窒素複素環化合物又はその塩の製造方法。
  3. さらに、式(IV)(ただし、R9はアミノ基の保護基を表す)で表される化合物を脱保護して式(V)
    Figure JPOXMLDOC01-appb-C000033
    (式中、R~R、n1及びn2は前記定義と同じである)で表される化合物を製造する工程を有することを特徴とする請求項2記載のテトラフルオロ含窒素複素環化合物又はその塩の製造方法。
PCT/JP2009/005130 2008-10-07 2009-10-02 テトラフルオロ化合物の製造方法 WO2010041402A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09818942.6A EP2348010B1 (en) 2008-10-07 2009-10-02 Method for producing tetrafluoro compound
CN200980139469.0A CN102171175B (zh) 2008-10-07 2009-10-02 四氟化合物的制备方法
US13/121,267 US8481774B2 (en) 2008-10-07 2009-10-02 Method for producing tetrafluoro compound
JP2010532796A JP5379149B2 (ja) 2008-10-07 2009-10-02 テトラフルオロ化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008260485 2008-10-07
JP2008-260485 2008-10-07

Publications (1)

Publication Number Publication Date
WO2010041402A1 true WO2010041402A1 (ja) 2010-04-15

Family

ID=42100363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005130 WO2010041402A1 (ja) 2008-10-07 2009-10-02 テトラフルオロ化合物の製造方法

Country Status (5)

Country Link
US (1) US8481774B2 (ja)
EP (1) EP2348010B1 (ja)
JP (1) JP5379149B2 (ja)
CN (1) CN102171175B (ja)
WO (1) WO2010041402A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107892663B (zh) * 2017-12-04 2019-08-13 武汉药明康德新药开发有限公司 一种3,3,4,4-四氟吡咯烷的合成方法
CN115991644B (zh) * 2023-03-22 2023-06-20 山东京新药业有限公司 一种2,3,4,5-四氟苯甲酰氯的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474700A (en) 1981-07-02 1984-10-02 E. I. Du Pont DeNemours and Company β-Substituted polyfluoropropionate salts and derivatives
WO2003101449A2 (en) 2002-06-04 2003-12-11 Pfizer Products Inc. Process for the preparation of 3,3,4,4-tetrafluoropyrrolidine and derivatives thereof
US20050043292A1 (en) * 2003-08-20 2005-02-24 Pfizer Inc Fluorinated lysine derivatives as dipeptidyl peptidase IV inhibitors
JP2008260485A (ja) 2007-04-13 2008-10-30 Toyota Motor Corp 車両

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE825446A (fr) * 1974-02-25 1975-08-12 Procede de coprecipitation de malachite et de bismuth, procede de preparation d'un complexe acetylure cuivreux a partir du coprecipite obtenu, et complexe ainsi produit
DE19753458A1 (de) * 1997-12-02 1999-06-10 Basf Ag Verfahren zur Herstellung eines Katalysators und nach diesem Verfahren erhältliche Katalysatoren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474700A (en) 1981-07-02 1984-10-02 E. I. Du Pont DeNemours and Company β-Substituted polyfluoropropionate salts and derivatives
WO2003101449A2 (en) 2002-06-04 2003-12-11 Pfizer Products Inc. Process for the preparation of 3,3,4,4-tetrafluoropyrrolidine and derivatives thereof
US20050043292A1 (en) * 2003-08-20 2005-02-24 Pfizer Inc Fluorinated lysine derivatives as dipeptidyl peptidase IV inhibitors
JP2008260485A (ja) 2007-04-13 2008-10-30 Toyota Motor Corp 車両

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
J. AM. CHEM. SOC., vol. 69, 1947, pages 281
J. AM. CHEM. SOC., vol. 72, 1950, pages 3642
J. AM. CHEM. SOC., vol. 73, 1951, pages 1103
J. ORG. CHEM., vol. 30, 1965, pages 3009
JIKKEN KAGAKU KOZA, 5TH EDITION, vol. 13, 20 February 2004 (2004-02-20), pages 357 - 363, XP008142360 *
JOURNAL OF THE CHEMICAL SOCIETY, 1964, pages 874 - 876, XP008137421 *
PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, 16 August 1999 (1999-08-16), pages 708 - 715, XP008136650 *
See also references of EP2348010A4 *
SHIN JIKKEN KAGAKU KOZA, vol. 14, 22 February 1979 (1979-02-22), pages 325 - 331, XP008138424 *
THE JOURNAL ORGANIC CHEMISTRY, vol. 32, 1967, pages 4124 - 4126, XP008136449 *

Also Published As

Publication number Publication date
JP5379149B2 (ja) 2013-12-25
EP2348010A1 (en) 2011-07-27
CN102171175A (zh) 2011-08-31
US20110178323A1 (en) 2011-07-21
CN102171175B (zh) 2014-05-14
US8481774B2 (en) 2013-07-09
EP2348010A4 (en) 2012-06-27
JPWO2010041402A1 (ja) 2012-03-01
EP2348010B1 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP2013505259A5 (ja)
TW201825491A (zh) 製備細胞凋亡誘導劑的方法
EP2611776B1 (en) Production method of intermediate compound for synthesizing medicament
WO2015037460A1 (ja) 光学活性な3-(ビフェニル-4-イル)-2-[(t-ブトキシカルボニル)アミノ]プロパン-1-オールの製造方法
EP3412666A1 (en) Process and intermediates for the preparation of bcl-2 inhibitors including venetoclax through reductive amination
JP5301431B2 (ja) キラルな環状β−アミノカルボキサミドの製造方法
JP2018506541A (ja) Nep阻害剤を調製するための方法および中間体
WO2018082441A1 (zh) 4-亚甲基哌啶或其酸加成盐的制备方法
JP5379149B2 (ja) テトラフルオロ化合物の製造方法
JP4876165B2 (ja) キノロン中間体を調製するための水素化物還元法
US8940919B2 (en) Compound, method for producing the same, and method for producing oseltamivir phosphate
WO2016121777A1 (ja) ピラジンカルボキサミド化合物の製造方法及びその合成中間体
JP5017101B2 (ja) 不斉四置換炭素原子含有化合物の製法
JP6483145B2 (ja) アミドアセタール、ケテン−n,o−アセタール、又はエステルイミドからアミンを製造するための接触水素化
JP6961595B2 (ja) 4−アルコキシ−3−トリフルオロメチルベンジルアルコールの製造方法
EP3746425B1 (en) Methods for producing (6s,15s)-3,8,13,18-tetraazaicosane-6,15-diol
WO2016194881A1 (ja) アルキルアミン誘導体の製造方法及びその製造中間体
US9394251B2 (en) Silodosin intermediate and preparation method therefor
CN108017573B (zh) 4-亚甲基哌啶或其酸加成盐的制备方法
CN111233751B (zh) 一种3,3-二氟-4-氨基哌啶类化合物及其衍生物的制备方法
JP7515510B2 (ja) (3r,4r)-1-ベンジル-n,4-ジメチルピペリジン-3-アミンまたはその塩の製造方法、およびそれを使用したトファシチニブの製造方法
JP5704763B2 (ja) トランス−4−アミノシクロペンタ−2−エン−1−カルボン酸誘導体の製造
JP2005112804A (ja) インドリルメチルアミノピロリジン誘導体およびその製造法
JP2703048B2 (ja) プロリン誘導体の製法
WO2012165268A1 (ja) エステル化合物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139469.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09818942

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13121267

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010532796

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009818942

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE