WO2010038621A1 - 半導体レーザ装置および表示装置 - Google Patents

半導体レーザ装置および表示装置 Download PDF

Info

Publication number
WO2010038621A1
WO2010038621A1 PCT/JP2009/066226 JP2009066226W WO2010038621A1 WO 2010038621 A1 WO2010038621 A1 WO 2010038621A1 JP 2009066226 W JP2009066226 W JP 2009066226W WO 2010038621 A1 WO2010038621 A1 WO 2010038621A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
laser element
layer
green
blue
Prior art date
Application number
PCT/JP2009/066226
Other languages
English (en)
French (fr)
Inventor
畑 雅幸
康光 久納
野村 康彦
三郎 中島
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US12/812,715 priority Critical patent/US20100284433A1/en
Priority to CN2009801386567A priority patent/CN102171899A/zh
Publication of WO2010038621A1 publication Critical patent/WO2010038621A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0215Bonding to the substrate
    • H01S5/0216Bonding to the substrate using an intermediate compound, e.g. a glue or solder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion

Definitions

  • the present invention relates to a semiconductor laser device and a display device, and more particularly to a semiconductor laser device and a display device including a plurality of semiconductor laser elements.
  • Japanese Patent Application Laid-Open No. 2001-230502 discloses a first light emitting element having a laser oscillation unit capable of emitting light in the 400 nm band and two laser oscillation units capable of emitting light in the 500 nm band and 700 nm band, respectively.
  • a light emitting device including two light emitting elements is disclosed.
  • the first light-emitting element and the second light-emitting element emit red light (R), green light (G), and blue light (B) corresponding to the three primary colors of light, so that full-color display is achieved. It is configured to be usable as a light source for the apparatus.
  • one laser oscillation section (light emitting point) is provided for each oscillation wavelength band.
  • the light output of is adjusted.
  • ideal white light can be reproduced.
  • each laser oscillation unit is provided for each oscillation wavelength band (three wavelength bands of red, green, and blue). Even when it is desired to obtain a desired hue (mixed color) by changing the output for each of the green and blue laser oscillation units, there is a problem in that it may not be possible to flexibly cope with this.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to provide a semiconductor laser device and a display device capable of easily obtaining a desired hue. is there.
  • a semiconductor laser device includes a green semiconductor laser element having one or more laser light emitting units and a blue semiconductor laser having one or more laser light emitting units.
  • An element and a red semiconductor laser element having one or a plurality of laser emitting portions, and at least two of the green semiconductor laser element, the blue semiconductor laser element, and the red semiconductor laser element are relatively total.
  • the number of laser light emitting portions of a semiconductor laser element having a small output is the number of laser light emitting portions of a semiconductor laser device having a plurality of laser light emitting portions having a relatively large total output, or one laser light emitting having a relatively large output. There are more relationships than the number of semiconductor laser elements having a portion.
  • the total output is relatively small in at least two of the green semiconductor laser element, the blue semiconductor laser element, and the red semiconductor laser element.
  • the number of the laser light emitting portions of the semiconductor laser element is equal to the number of the laser light emitting portions of the semiconductor laser element having a plurality of laser light emitting portions having a relatively large total output, or one laser light emitting portion having a relatively large output.
  • the laser element is used in a semiconductor laser element in which the total output is set to be relatively small.
  • the total output of the laser device is easily adjusted can be configured to have a desired output.
  • a semiconductor laser element having a relatively large output (total output) and a semiconductor laser element having a relatively small output (total output) whose output is appropriately adjusted can be combined.
  • a desired hue can be easily obtained.
  • a laser element that emits green light and blue light has a larger output than a red semiconductor laser element that easily obtains a large output.
  • the number of green and blue semiconductor laser elements can be larger than the number of red semiconductor laser elements, so that the outputs of the green and blue semiconductor laser elements can be easily adjusted. Thereby, ideal white light can be obtained easily.
  • the semiconductor laser device preferably, when the number of laser light emitting portions of each of the green semiconductor laser element, the blue semiconductor laser element, and the red semiconductor laser element is n1, n2, and n3, n1 > N2> n3.
  • the laser oscillation unit that emits green light and blue light can easily obtain a relatively large output.
  • the output of each laser light emitting part in the green or blue semiconductor laser element is reduced. Since the output of each laser emission part is small, the temperature rise of the green semiconductor laser element or the blue semiconductor laser element can be suppressed.
  • the area of the laser light emitting part in the green or blue semiconductor laser element can be increased according to the number of laser light emitting parts, the heat generated by the semiconductor laser element can be dissipated through a wider surface area. Thereby, since the deterioration of the green semiconductor laser element or the blue semiconductor laser element is suppressed, the life of the semiconductor laser element can be extended.
  • the green semiconductor laser element and the blue semiconductor laser element are formed on a common substrate for the green semiconductor laser element and the blue semiconductor laser element.
  • a green semiconductor laser element and a blue semiconductor laser element that emit light having different oscillation wavelengths are formed on different substrates, and then compared with a case where they are arranged in a package at a predetermined interval. Since the green semiconductor laser device and the blue semiconductor laser device are integrated on a common substrate, the width of the semiconductor laser device can be reduced by the integration. Thereby, the integrated semiconductor laser device can be easily arranged in the package.
  • the green semiconductor laser element is a monolithic type in which a plurality of laser light emitting portions are formed, and the blue semiconductor laser element is formed in which a plurality of laser light emitting portions are formed.
  • Monolithic type the green semiconductor laser element and the blue semiconductor laser element are integrated on the common substrate for each oscillation wavelength, and therefore the width of each semiconductor laser element is integrated. Can be reduced. Thereby, even when a large number of laser light emitting portions are required, it can be easily arranged in a package in the state of an integrated laser element.
  • the red semiconductor laser element is bonded to at least one of the green semiconductor laser element and the blue semiconductor laser element.
  • the green semiconductor laser element formed by increasing the number of laser light emitting portions side by side, and the red semiconductor laser element and the blue semiconductor laser element are linear (for example, laterally).
  • the laser light emitting portions of the respective laser elements can be arranged in parallel in the joining direction of the laser elements so as to be close to each other.
  • the semiconductor laser elements can be arranged so as to gather in the central region. Thereby, a plurality of laser beams emitted from the semiconductor laser device can be brought close to the optical axis of the optical system, so that the semiconductor laser device and the optical system can be easily adjusted.
  • the semiconductor laser device preferably, a plurality of bases to which the green semiconductor laser element, the blue semiconductor laser element, and the red semiconductor laser element are joined, and a plurality of parts electrically connected to the outside and insulated from each other.
  • the green semiconductor laser element includes an electrode formed on the surface opposite to the base, and when the number of the laser light emitting portions of the green semiconductor laser element is n1, The electrodes of at least two green semiconductor laser elements are connected to different terminals. If constituted in this way, since it can be individually driven according to the number of laser light emitting parts, the green semiconductor laser element having a larger number of laser light emitting parts than the red semiconductor laser element and the blue semiconductor laser element can be driven. The output of the green semiconductor laser element can be easily adjusted according to the required total output.
  • the green semiconductor laser element is preferably formed on the surface of the substrate and has a semipolar main surface.
  • the blue semiconductor laser device includes one active layer, and includes a second active layer formed on the surface of the substrate and having a main surface having a plane orientation substantially the same as the semipolar plane.
  • the first active layer includes a first well layer having a thickness of 3 nm or more, and the second active layer includes a second well layer having a compressive strain.
  • the “green semiconductor laser element” refers to a semiconductor laser element having an oscillation wavelength in the range of about 500 nm to about 565 nm.
  • the “thickness” in the present invention is the thickness of a single well layer when the quantum well structure of the active layer has a single quantum well (SQW) structure.
  • SQW single quantum well
  • MQW well
  • the compressive strain is a strain caused by a compressive force generated due to a difference in lattice constant between the underlayer and the well layer.
  • the well layer when the well layer is grown in a pseudo-lattice matching with the substrate in a state where the in-plane lattice constant without strain of the well layer is larger than the in-plane lattice constant without strain of the substrate, When the well layer is grown in a pseudo-lattice-matched manner on a layer (such as a clad layer or a barrier layer) having an in-plane lattice constant smaller than the in-plane lattice constant of the well layer without any compression, appear.
  • a layer such as a clad layer or a barrier layer
  • the extending direction of the optical waveguide in which the optical gain of the blue semiconductor laser element is maximized and the extending direction of the optical waveguide in which the optical gain of the green semiconductor laser element is maximized may be substantially matched. it can.
  • the first well layer is made of InGaN. If comprised in this way, a green semiconductor laser element with still higher efficiency can be produced.
  • the second well layer is preferably made of InGaN. If comprised in this way, a blue semiconductor laser element with still higher efficiency can be produced.
  • the thickness of the first well layer is preferably the second well layer. It is larger than the thickness.
  • the green semiconductor laser element including the first active layer having the semipolar main surface and the blue semiconductor laser element including the second active layer having the semipolar main surface are more effective than the green semiconductor laser element.
  • the second active layer of the blue semiconductor laser element Since it is considered that the blue semiconductor laser element having a small compressive strain in the active layer and having a short oscillation wavelength is less likely to change in the extending direction of the optical waveguide where the optical gain is maximized, the second active layer of the blue semiconductor laser element
  • the thickness of the second well layer can be made smaller than the thickness of the first well layer of the first active layer of the green semiconductor laser device.
  • the semipolar plane is preferably a (0001) plane or (000 -1) It is a surface inclined about 10 degrees or more and about 70 degrees or less with respect to the plane. If comprised in this way, the extending direction of the optical waveguide by which an optical gain is maximized with a green semiconductor laser element and a blue semiconductor laser element can be matched substantially more reliably.
  • the blue semiconductor laser element and the green semiconductor laser element are respectively
  • the optical waveguide further includes an optical waveguide extending in a direction in which the [0001] direction is projected onto the main surface of the semipolar plane.
  • the optical waveguide in the direction in which the [0001] direction is projected onto the main surface of the semipolar plane, the optical gain of each of the blue semiconductor laser element and the green semiconductor laser element can be maximized, and the blue semiconductor The blue light of the laser element and the green light of the green semiconductor laser element can be emitted from a common resonator surface.
  • the blue semiconductor laser element is preferably a nitridation formed on the surface of the substrate and having a nonpolar principal surface.
  • the green semiconductor laser element includes a third active layer made of a material-based semiconductor, and the green semiconductor laser element is formed on the surface of the substrate and has a fourth active surface made of a nitride-based semiconductor having a principal surface having substantially the same plane orientation as the nonpolar surface. Including layers.
  • the “nonpolar plane” is a broad concept including all crystal planes other than the c plane ((0001) plane) which is a polar plane, and includes an m plane ((1-100) plane) and A non-polar surface of (H, K, -HK, 0) surface such as a surface ((11-20) surface) and a surface (semipolar surface) inclined from c surface ((0001) surface) Including.
  • the piezoelectric field generated in the first active layer and the second active layer can be reduced as compared with the case where the main surface is a c-plane which is a polar surface.
  • the third active layer has a quantum well structure having a third well layer made of InGaN
  • the fourth active layer has a quantum well structure having a fourth well layer made of InGaN
  • the thickness of the third well layer is larger than the thickness of the fourth well layer.
  • the third well layer of the blue semiconductor laser element and the green semiconductor laser element are not formed in the c-plane. It is necessary to increase the In composition of the fourth well layer. Further, when the third well layer and the fourth well layer made of InGaN are formed, the oscillation wavelength of the green semiconductor laser element is larger than the oscillation wavelength of the blue semiconductor laser element. The layer needs to have a larger In composition than the third well layer of the blue semiconductor laser element.
  • the in-plane lattice constants of the third well layer and the fourth well layer become larger than the lattice constants of the crystal lattices on the surface on which the third well layer and the fourth well layer are grown.
  • the in-plane compressive strain of the third well layer and the fourth well layer is larger, and misfit dislocations are likely to occur in the third well layer and the fourth well layer.
  • the fourth well layer of the green semiconductor laser element has a larger compressive strain than the third well layer of the blue semiconductor laser element, and crystal defects are likely to occur.
  • the In composition is increased by making the thickness of the third well layer of the third active layer of the blue semiconductor laser device larger than the thickness of the fourth well layer of the fourth active layer of the green semiconductor laser device. Since the thickness of the fourth well layer in which crystal defects tend to occur can be reduced, it is possible to suppress the occurrence of crystal defects in the fourth well layer of the green semiconductor laser element.
  • the nonpolar plane is preferably a substantially (11-22) plane.
  • the substantially (11-22) plane has a smaller piezo electric field than the other semipolar planes, so that the amount of change in the oscillation wavelength of the blue semiconductor laser element and the green semiconductor laser element is reduced. be able to.
  • the main surface of the substrate preferably has substantially the same plane orientation as the nonpolar plane. If comprised in this way, a semiconductor layer is only grown on the board
  • a blue semiconductor laser element including a third active layer having a nonpolar main surface and a green semiconductor laser element including a fourth active layer having a nonpolar main surface can be easily formed.
  • the blue semiconductor laser element is formed on the surface on one side of the substrate and the fifth from the substrate side.
  • the active layer, the first semiconductor layer, and the first electrode are stacked in this order, and the green semiconductor laser element is formed so as to be adjacent to the blue semiconductor laser element, and the sixth active layer is formed from the substrate side.
  • the second semiconductor layer and the second electrode are stacked in this order, formed on the first electrode via the first fusion layer, and formed on the second electrode via the second fusion layer.
  • the substrate has a surface on the other side opposite to the one side, and the thickness of the blue semiconductor laser element from the surface on the other side to the surface of the first semiconductor layer on the one side is t1, One from the other surface
  • the thickness of the green semiconductor laser element to the surface of the second semiconductor layer is t2
  • the thickness of the first electrode is t3
  • the thickness of the second electrode is t4
  • the relationship is t3> t4 when t1 ⁇ t2.
  • the blue semiconductor including the first electrode can be appropriately adjusted by adjusting the thickness t3 of the first electrode and the thickness t4 of the second electrode.
  • the difference between the thickness (t1 + t3) of the laser element and the thickness (t2 + t4) of the green semiconductor laser element including the second electrode can be further reduced. That is, even if there is a difference in the thicknesses t1 and t2 from the substrate to the first semiconductor layer or the second semiconductor layer in the blue semiconductor laser element and the green semiconductor laser element, the difference (difference between the thickness t1 and the thickness t2).
  • the semiconductor laser device can be bonded to the fusion layer (the first fusion layer and the second fusion layer by a junction down method or the like).
  • the fusion layer it is not necessary for the fusion layer to absorb the difference in thickness of the semiconductor laser element, so that the fusion layer can be suppressed to the minimum necessary amount.
  • an inconvenience that an electrical short circuit between the laser elements occurs due to the excess fusion layer protruding after bonding is suppressed, so that the yield in forming the semiconductor laser element can be improved. .
  • the support base is a submount. If comprised in this way, when joining this semiconductor laser apparatus to a submount via a fusion layer (a 1st fusion layer and a 2nd fusion layer) by a junction down system, two fusion layers to be used are used. Each of the semiconductor laser elements can be suppressed to a necessary minimum amount. Therefore, a semiconductor laser device with improved yield can be easily formed.
  • the first electrode is composed of a first pad electrode
  • the second electrode is a second pad electrode. Consists of. If comprised in this way, by adjusting the thickness of a 1st pad electrode and a 2nd pad electrode appropriately, respectively, the blue semiconductor laser element and green semiconductor laser element which were formed on the surface of the one side of a common board
  • the thickness of the first pad electrode is larger than the thickness of the second pad electrode
  • the thickness of the second pad electrode is the thickness of the first pad electrode. Bigger than. If comprised in this way, the blue semiconductor laser element and green semiconductor which were formed on the surface of the one side of a common board
  • a display device includes a red semiconductor laser element having one or more laser light emitting units, a green semiconductor laser element having one or more laser light emitting units, and one or more lasers.
  • a semiconductor laser element including a blue semiconductor laser element having a light emitting portion, wherein at least two of the red semiconductor laser element, the green semiconductor laser element, and the blue semiconductor laser element emit a relatively long wavelength.
  • a semiconductor laser device having a relationship in which the number of light emitting portions is larger than the number of laser light emitting portions of a semiconductor laser element that emits a relatively short wavelength, and a modulation unit that modulates light from the semiconductor laser device.
  • a semiconductor having a relatively small total output in at least two of the green semiconductor laser element, the blue semiconductor laser element, and the red semiconductor laser element is the number of laser light emitting portions of a semiconductor laser element having a plurality of laser light emitting portions having a relatively large total output, or a semiconductor having one laser light emitting portion having a relatively large output.
  • a semiconductor laser device When a semiconductor laser device is configured based on a semiconductor laser element having a large output or a total output by configuring more than the number of laser elements, in a semiconductor laser element in which the total output is set to be relatively small, Since the number of individual semiconductor laser elements to be configured is larger, the semiconductor laser element The total output is easily adjusted can be configured to have a desired output. As a result, a semiconductor laser element having a relatively large output (total output) and a semiconductor laser element having a relatively small output (total output) whose output is appropriately adjusted can be combined. When used as a light source, a desired hue can be easily obtained.
  • a laser element that emits green light and blue light has a larger output than a red semiconductor laser element that easily obtains a large output.
  • the number of green and blue semiconductor laser elements can be larger than the number of red semiconductor laser elements, so that the outputs of the green and blue semiconductor laser elements can be easily adjusted. Thereby, a semiconductor laser device from which an ideal white light source can be easily obtained can be obtained.
  • FIG. 19 is a cross-sectional view taken along the line 5000-5000 in FIG. It is sectional drawing which showed the structure of the 2 wavelength semiconductor laser element part which comprises the semiconductor laser apparatus by 5th Embodiment of this invention. It is a figure for demonstrating the manufacturing process of the semiconductor laser apparatus by 5th Embodiment of this invention. It is a figure for demonstrating the manufacturing process of the semiconductor laser apparatus by 5th Embodiment of this invention. It is a figure for demonstrating the manufacturing process of the semiconductor laser apparatus by 5th Embodiment of this invention. It is a figure for demonstrating the manufacturing process of the semiconductor laser apparatus by 5th Embodiment of this invention. It is a figure for demonstrating the manufacturing process of the semiconductor laser apparatus by 5th Embodiment of this invention. It is a figure for demonstrating the manufacturing process of the semiconductor laser apparatus by 5th Embodiment of this invention. It is a figure for demonstrating the manufacturing process of the semiconductor laser apparatus by 5th Embodiment of this invention. It is a figure for demonstrating the
  • the RGB three-wavelength semiconductor laser element unit 90 is connected to the upper surface (on the C2 side) of the pedestal 110 via the conductive adhesive layer 1 such as AuSn solder. Surface).
  • the RGB three-wavelength semiconductor laser element section 90 includes a red semiconductor laser element 10 having an oscillation wavelength of about 655 nm, a green semiconductor laser element 30 having an oscillation wavelength of about 530 nm, and a blue semiconductor laser element 50 having a wavelength of about 460 nm.
  • one red semiconductor laser element 10 has a rated output of about 800 mW
  • one green semiconductor laser element 30 has a rated output of about 90 mW
  • One blue semiconductor laser element 50 has a rated output of about 300 mW.
  • the RGB three-wavelength semiconductor laser element unit 90 includes three green semiconductor laser elements 30, two blue semiconductor laser elements 50, and one red semiconductor laser element 10. ing. That is, when the number n1 of the green semiconductor laser elements 30 and the number n2 of the blue semiconductor laser elements 50 are compared, the number n1 of the green semiconductor laser elements 30 having a relatively small total output is a blue semiconductor having a relatively large total output. More than the number n2 of laser elements 50 (n1> n2). Further, even when the number n1 of the green semiconductor laser elements 30 and the number n3 of the red semiconductor laser elements 10 are compared, the number n1 of the green semiconductor laser elements 30 having a relatively small total output is relatively large in the total output. The number of red semiconductor laser elements 50 is larger than the number n3 (n1> n3).
  • each color semiconductor laser element is viewed from one side end (B1 side) when viewed from the front (emission direction of each color laser beam) side of the semiconductor laser device 100. It arrange
  • the green semiconductor laser elements 30 having the largest number in the direction (B direction) in which the semiconductor laser elements of the respective colors are arranged are arranged on both sides of the red semiconductor laser element 10 and the blue semiconductor laser element 50. Therefore, green light having three light emitting points (laser light emitting unit), blue light having two light emitting points, and white light in a state where red light from one light emitting point is appropriately mixed can be obtained. It is configured to be.
  • the red semiconductor laser device 10 includes an n-type contact layer 12 made of Si-doped GaAs, an n-type cladding layer 13 made of Si-doped AlGaInP, on the upper surface of an n-type GaAs substrate 11.
  • the p-type cladding layer 15 has a convex portion extending in a stripe shape along the laser light emission direction, and a flat portion extending on both sides (B direction) of the convex portion.
  • the convex portion of the p-type cladding layer 15 forms a ridge 20 having a width of about 2.5 ⁇ m for forming an optical waveguide.
  • a current blocking layer 16 made of SiO 2 is formed so as to cover the upper surface of the p-type cladding layer 15 other than the ridge 20.
  • a p-side pad electrode 17 made of Au or the like is formed so as to cover the top surfaces of the ridge 20 and the current blocking layer 16.
  • an n-side electrode 18 is formed on the lower surface of the n-type GaAs substrate 11 (the surface on the C1 side).
  • the green semiconductor laser device 30 includes an n-type GaN layer 32 made of Ge-doped GaN, an n-type cladding layer 33 made of n-type AlGaN, on the upper surface of the n-type GaN substrate 31.
  • the p-type cladding layer 35 has a convex portion extending in a stripe shape along the laser beam emission direction, and a flat portion extending on both sides (B direction) of the convex portion.
  • the convex portion of the p-type cladding layer 35 forms a ridge 40 having a width of about 2 ⁇ m for constituting an optical waveguide.
  • a current blocking layer 36 made of SiO 2 is formed so as to cover the upper surface of the p-type cladding layer 35 other than the ridge 40.
  • a p-side pad electrode 37 made of Au or the like is formed so as to cover the upper surfaces of the ridge 40 and the current blocking layer 36.
  • an n-side electrode 38 is formed in which a Ti layer, a Pt layer, and an Au layer are stacked in this order from the n-type GaN substrate 31 side.
  • the blue semiconductor laser device 50 includes an n-type GaN layer 52 made of Ge-doped GaN, an n-type clad layer 53 made of n-type AlGaN, and an n-type GaN substrate 51.
  • the p-type cladding layer 55 has a convex portion extending in a stripe shape along the laser light emission direction, and a flat portion extending on both sides (B direction) of the convex portion.
  • the convex portion of the p-type cladding layer 55 forms a ridge 60 having a width of about 1.7 ⁇ m for forming an optical waveguide.
  • a current blocking layer 56 made of SiO 2 is formed so as to cover the upper surface of the p-type cladding layer 55 other than the ridge 60.
  • a p-side pad electrode 57 made of an Au layer or the like is formed so as to cover the top surfaces of the ridge 60 and the current blocking layer 56.
  • an n-side electrode 58 is formed in which a Ti layer, a Pt layer, and an Au layer are stacked in this order from the n-type GaN substrate 51 side.
  • the semiconductor laser device 100 includes a pedestal 110 on which the RGB three-wavelength semiconductor laser element unit 90 is placed, and five lead terminals 101 that are electrically insulated from the pedestal 110 and penetrate the bottom 107a. , 102, 103, 104, and 105, and a stem 107 provided with a lead terminal 106 (broken line) that is electrically connected to the base 110 and the bottom 107a.
  • the three green semiconductor laser elements 30 are connected to lead terminals 101, 102, and 105 through metal wires 71, 72, and 73 wire-bonded to the p-side pad electrodes 37 (see FIG. 2), respectively. ing.
  • the p-side pad electrode 37 is an example of the “electrode” in the present invention, and each of the lead terminals 101, 102, and 105 is an example of the “terminal” in the present invention.
  • the two blue semiconductor laser elements 50 are commonly connected to one lead terminal 103 via metal wires 74 and 75 wire-bonded to the respective p-side pad electrodes 57 (see FIG. 2).
  • the red semiconductor laser device 10 is connected to the lead terminal 104 via a metal wire 76 wire-bonded to the p-side pad electrode 17 (see FIG. 2).
  • the base 91 on which the semiconductor laser elements (10, 30 and 50) are placed is made of a conductive material such as AlN, and is electrically connected to the pedestal 110 via the conductive adhesive layer 1. Yes.
  • the semiconductor laser device 100 includes lead terminals (101, 102, 103, 104 and 105) in which the p-side electrodes (17, 37 and 57) of the semiconductor laser elements (10, 30 and 50) are insulated from each other. And the n-side electrode (18, 38 and 58) is connected to a common negative terminal (lead terminal 106 (see FIG. 1)) (cathode common).
  • the red semiconductor laser element 10, the green semiconductor laser element 30, and the blue semiconductor laser element 50 have a light emitting surface and a light reflecting surface at both ends in the cavity direction (direction perpendicular to the paper surface of FIG. 1). Is formed.
  • a low-reflectivity dielectric multilayer film is formed on the light emission surface of each semiconductor laser element (the surface on the emission direction side of each color laser beam), and the light reflection surface (emission of laser light of each color).
  • a dielectric multilayer film having a high reflectivity is formed on the surface opposite to the direction).
  • the dielectric multilayer film GaN, AlN, BN, Al 2 O 3 , SiO 2 , ZrO 2 , Ta 2 O 5 , Nb 2 O 5 , La 2 O 3 , SiN, AlON and MgF 2 ,
  • a multilayer film made of Ti 3 O 5 , Nb 2 O 3, or the like which is a material having a different hybrid ratio can be used.
  • a light guide layer, a carrier block layer, or the like may be formed between the n-type cladding layer and the active layer. Further, a contact layer or the like may be formed on the opposite side of the n-type cladding layer from the active layer. Further, a light guide layer, a carrier block layer, or the like may be formed between the active layer and the p-type cladding layer. Further, a contact layer or the like preferably having a smaller band gap than the p-type cladding layer may be formed on the opposite side of the p-type cladding layer from the active layer. A p-side ohmic electrode may be formed on the p-type cladding layer side of the p-side pad electrode.
  • the n-type contact layer 12 and the n-type cladding layer 13 are formed on the upper surface of the n-type GaAs substrate 11 by using the MOCVD method.
  • the MQW active layer 14 and the p-type cladding layer 15 are sequentially formed, and then the ridge 20, the current blocking layer 16, and the p-side pad electrode 17 are formed.
  • the lower surface of the n-type GaAs substrate 11 is polished, and then an n-side electrode 18 is formed on the lower surface of the n-type GaAs substrate 11 to produce a wafer of the red semiconductor laser device 10.
  • the wafer is cleaved in a bar shape so as to have a predetermined resonator length, and a plurality of chips of the red semiconductor laser device 10 (see FIG. 1) are formed by dividing the device in the resonator direction.
  • the green semiconductor laser element 30 and the blue semiconductor laser element 50 are formed by the same manufacturing process as that of the red semiconductor laser element 10.
  • three green semiconductor laser elements 30, two blue semiconductor laser elements 50, and one red semiconductor laser element 10 are used using a ceramic collet (not shown). Are fixed via the conductive adhesive layer 2 while being pressed against the base 91.
  • the semiconductor laser elements of the respective colors have the laser beams of the respective colors substantially parallel to each other and viewed from the laser beam emission direction side from one side end (B1 side) to the other side end (B2 side). In this direction, green, blue, green, red, green, and blue are arranged in this order. In this way, the RGB three-wavelength semiconductor laser element unit 90 is formed.
  • the conductive adhesive layer is pressed while pressing the RGB three-wavelength semiconductor laser element portion 90 against the pedestal 110 provided on the stem 107 so that the emission directions of the laser beams of the respective colors are directed to the front direction of the bottom portion 107a of the stem 107. 1 is joined.
  • the base 91 is electrically connected to the lead terminal 106 via the base 110.
  • the p-side pad electrode 37 of each of the green semiconductor laser elements 30 and the lead terminals 101, 102, and 105 are connected by metal wires 71, 72, and 73, respectively. Further, the p-side pad electrode 57 and the lead terminal 103 of each blue semiconductor laser element 50 are connected by metal wires 74 and 75, respectively. Further, the p-side pad electrode 17 of the red semiconductor laser element 10 and the lead terminal 104 are connected by a metal wire 76. In this way, the semiconductor laser device 100 according to the first embodiment is formed.
  • the configuration of the projector device 150 which is an example of the “display device” of the present invention, on which the semiconductor laser device 100 according to the first embodiment of the present invention is mounted will be described.
  • the projector device 150 an example in which individual semiconductor laser elements constituting the semiconductor laser device 100 are turned on substantially simultaneously will be described.
  • the projector device 150 includes a semiconductor laser device 100, an optical system 120 including a plurality of optical components, and a control unit 145 that controls the semiconductor laser device 100 and the optical system 120.
  • the laser light emitted from the semiconductor laser device 100 is modulated by the optical system 120 and then projected onto the external screen 144 or the like.
  • the optical system 120 is an example of the “modulation means” in the present invention.
  • the laser light emitted from the semiconductor laser device 100 is converted into parallel light having a predetermined beam diameter by the dispersion angle control lens 122 composed of a concave lens and a convex lens, and then incident on the fly eye integrator 123.
  • the fly-eye integrator 123 is configured so that two fly-eye lenses made up of eyelet-shaped lens groups face each other, so that the light quantity distribution when entering the liquid crystal panels 129, 133 and 140 is uniform.
  • the lens action is given to the light incident from the dispersion angle control lens 122. That is, the light transmitted through the fly-eye integrator 123 is adjusted so as to be incident with a spread of an aspect ratio (for example, 16: 9) corresponding to the size of the liquid crystal panels 129, 133, and 140.
  • the light transmitted through the fly eye integrator 123 is collected by the condenser lens 124.
  • the condenser lens 124 Of the light transmitted through the condenser lens 124, only red light is reflected by the dichroic mirror 125, while green light and blue light are transmitted through the dichroic mirror 125.
  • the red light is incident on the liquid crystal panel 129 via the incident side polarizing plate 128 after being collimated by the lens 127 through the mirror 126.
  • the liquid crystal panel 129 modulates red light by being driven in accordance with a red drive signal (R image signal).
  • dichroic mirror 130 only green light out of the light transmitted through the dichroic mirror 125 is reflected, while blue light passes through the dichroic mirror 130.
  • the green light is incident on the liquid crystal panel 133 through the incident-side polarizing plate 132 after being collimated by the lens 131.
  • the liquid crystal panel 133 modulates green light by being driven according to a green driving signal (G image signal).
  • the blue light transmitted through the dichroic mirror 130 passes through the lens 134, the mirror 135, the lens 136, and the mirror 137, is further collimated by the lens 138, and then enters the liquid crystal panel 140 through the incident-side polarizing plate 139. Is done.
  • the liquid crystal panel 140 modulates blue light by being driven according to a blue driving signal (B image signal).
  • the red light, the green light, and the blue light modulated by the liquid crystal panels 129, 133, and 140 are combined by the dichroic prism 141 and then incident on the projection lens 143 through the output side polarizing plate 142.
  • the projection lens 143 adjusts the zoom and focus of the projected image by displacing a lens group for forming an image of projection light on the projection surface (screen 144) and a part of the lens group in the optical axis direction. Built-in actuator for.
  • the control unit 145 causes the steady voltage as the R signal related to the driving of the red semiconductor laser element 10, the G signal related to the driving of the green semiconductor laser element 30, and the B signal related to the driving of the blue semiconductor laser element 50.
  • the semiconductor laser device 100 is controlled to be supplied to each laser element.
  • the red semiconductor laser element 10, the green semiconductor laser element 30, and the blue semiconductor laser element 50 of the semiconductor laser device 100 are configured to oscillate substantially simultaneously.
  • the control unit 145 controls the light intensity of each of the red semiconductor laser element 10, the green semiconductor laser element 30, and the blue semiconductor laser element 50 of the semiconductor laser device 100, so that the hue of the pixels projected on the screen 144 The brightness and the like are controlled. Accordingly, a desired image is projected on the screen 144 by the control unit 145. In this way, the projector device 150 on which the semiconductor laser device 100 according to the first embodiment of the present invention is mounted is configured.
  • FIG. 1, FIG. 4, and FIG. 5 the configuration of a projector device 190, which is another example of the “display device” of the present invention, on which the semiconductor laser device 100 according to the first embodiment of the present invention is mounted. Will be described.
  • the projector apparatus 190 an example in which individual semiconductor laser elements constituting the semiconductor laser apparatus 100 are turned on in time series will be described.
  • the projector device 190 includes the semiconductor laser device 100, the optical system 160, and a control unit 185 that controls the semiconductor laser device 100 and the optical system 160.
  • the laser light from the semiconductor laser device 100 is modulated by the optical system 160 and then projected onto the screen 181 or the like.
  • the optical system 160 is an example of the “modulation means” in the present invention.
  • the laser light emitted from the semiconductor laser device 100 is converted into parallel light by the lens 162, and then enters the light pipe 164.
  • the inner surface of the light pipe 164 is a mirror surface, and the laser light travels through the light pipe 164 while being repeatedly reflected by the inner surface of the light pipe 164. At this time, the intensity distribution of the laser light of each color emitted from the light pipe 164 is made uniform by the multiple reflection action in the light pipe 164.
  • the laser light emitted from the light pipe 164 is incident on the digital micromirror device (DMD) element 166 via the relay optical system 165.
  • DMD digital micromirror device
  • the DMD element 166 is composed of a group of minute mirrors arranged in a matrix. Further, the DMD element 166 expresses the gradation of each pixel by switching the light reflection direction at each pixel position between a first direction A toward the projection lens 180 and a second direction B deviating from the projection lens 180. (Modulation) function. Of the laser light incident on each pixel position, the light (ON light) reflected in the first direction A is incident on the projection lens 180 and projected onto the projection surface (screen 181). The light (OFF light) reflected in the second direction B by the DMD element 166 is absorbed by the light absorber 167 without entering the projection lens 180.
  • the control unit 185 controls the pulse power to be supplied to the semiconductor laser device 100, whereby the red semiconductor laser element 10, the green semiconductor laser device 30, and the blue semiconductor laser of the semiconductor laser device 100 are controlled.
  • the element 50 is configured to be divided in time series and periodically driven one element at a time.
  • the control unit 185 causes the DMD element 166 of the optical system 160 to synchronize with the driving states of the red semiconductor laser element 10, the green semiconductor laser element 30, and the blue semiconductor laser element 50, respectively. ) To modulate the light in accordance with the gradation.
  • an R signal related to driving of the red semiconductor laser element 10 (see FIG. 1)
  • a G signal related to driving of the green semiconductor laser element 30 (see FIG. 1)
  • a blue semiconductor laser element 50 The B signal related to the driving (see FIG. 1) is supplied to each laser element of the semiconductor laser device 100 by the control unit 185 (see FIG. 4) in a state of being divided in time series so as not to overlap each other.
  • the control unit 185 outputs the B image signal, the G image signal, and the R image signal to the DMD element 166, respectively.
  • the blue light of the blue semiconductor laser element 50 is emitted based on the B signal in the timing chart shown in FIG. 5, and the blue light is modulated by the DMD element 166 based on the B image signal at this timing. Is done. Further, green light from the green semiconductor laser element 30 is emitted based on the G signal output next to the B signal, and at this timing, the green light is modulated by the DMD element 166 based on the G image signal. The Further, red light from the red semiconductor laser element 10 is emitted based on the R signal output next to the G signal, and at this timing, the red light is modulated by the DMD element 166 based on the R image signal.
  • the blue light of the blue semiconductor laser element 50 is emitted based on the B signal output next to the R signal.
  • the blue light is again emitted from the DMD element 166 based on the B image signal. Modulated.
  • an image by laser light irradiation based on the B image signal, the G image signal, and the R image signal is projected onto the projection surface (screen 181).
  • the projector device 190 on which the semiconductor laser device 100 according to the first embodiment of the present invention is mounted is configured.
  • the number n1 (three) of the green semiconductor laser elements 30 is larger than the number n2 (two) of the blue semiconductor laser elements 50, and the green semiconductor laser
  • the semiconductor laser device 100 is based on the red semiconductor laser element 10 having a large output.
  • the number of individual semiconductor laser devices constituting the laser device is larger than that in the red semiconductor laser device 10. Therefore, the total output of each of the green semiconductor laser element 30 and the blue semiconductor laser element 50 is easily adjusted to have a desired output. It can be configured to.
  • the red semiconductor laser element 10 having a relatively large output and the relatively small output green semiconductor laser element 30 and the blue semiconductor laser element 50 having the total output appropriately adjusted can be appropriately combined.
  • the semiconductor laser device 100 is used as a light source, a desired hue can be easily obtained.
  • the number n1 (three) of the green semiconductor laser elements 30 is larger than the number n2 (two) of the blue semiconductor laser elements 50, and the number n1 (3 of green semiconductor laser elements 30).
  • the number of 50 can be provided in preference to the number of red semiconductor laser elements 10. Thereby, the total output of the green semiconductor laser element 30 and the blue semiconductor laser element 50 can be easily adjusted, so that the semiconductor laser device 100 in which ideal white light can be easily obtained can be easily formed.
  • the output of each laser light emitting portion can be suppressed small. Since the output of the laser emitting part is small, the temperature rise of the green semiconductor laser element 30 and the blue semiconductor laser element 50 can be suppressed. Further, in the green semiconductor laser element 30 and the blue semiconductor laser element 50, the area of the laser light emitting portion increases according to the number of laser light emitting portions, so that the heat generated by the semiconductor laser device can be dissipated through a wider surface area. . Thereby, since the deterioration of the green semiconductor laser element 30 and the blue semiconductor laser element 50 is suppressed, the lifetime of the semiconductor laser element can be extended.
  • each p-side pad electrode 37 is connected to different lead terminals 101, 102, and 105 via metal wires 71, 72, and 73, respectively.
  • the green semiconductor laser elements 30 having more laser emission parts than the red semiconductor laser element 10 and the blue semiconductor laser element 50 can be individually driven according to the number of laser emission parts. Accordingly, the total output of the green semiconductor laser element 30 can be easily adjusted.
  • the RGB three-wavelength semiconductor laser element portion 290 is fixed on the upper surface (surface on the C2 side) of the pedestal 206.
  • the green semiconductor laser element section 230 has a total of about 200 mW by integrating the green semiconductor laser elements 230a to 230d each having an output of about 50 mW on one substrate 231. Has output.
  • the blue semiconductor laser element section 250 has a total of about 600 mW by integrating the blue semiconductor laser elements 250a to 250c each having an output of about 200 mW on a single substrate 251. Has output.
  • one red semiconductor laser element 210 having a power of about 350 mW, a green semiconductor laser element part 230, and a blue semiconductor laser element part 250 are connected to the upper surface (on the C2 side) of the base 291.
  • the RGB three-wavelength semiconductor laser element portion 290 is formed by fixing the surface of the substrate at a predetermined interval.
  • the number of laser light emitting portions (four) of the green semiconductor laser element portion 230 having a relatively small total output is relatively high.
  • the number of red semiconductor laser elements 210 having a large output is larger than the number (one).
  • the number of laser light emitting units (four) of the green semiconductor laser element unit 230 is provided more than the number of laser emitting units (three) of the blue semiconductor laser element unit 250 having a relatively large total output.
  • the laser beam emission direction (A1 direction) is orthogonal to the B direction at the approximate center in the width direction (B direction) of the semiconductor laser device 200 on the base 291.
  • the green semiconductor laser element portion 230 is disposed so as to be adjacent to the green semiconductor laser element portion 230 on one side end side (B1 direction side) on the base 291 and the emission direction of the laser light is green.
  • the red semiconductor laser element 210 is arranged so as to be substantially parallel to the emission direction (A1 direction) of the laser light from the semiconductor laser element unit 230.
  • the blue semiconductor laser element portion 250 is adjacent to the green semiconductor laser element portion 230 on the opposite side (B2 direction) to the red semiconductor laser element 210, and the laser light is emitted from the green semiconductor laser element portion 230. It arrange
  • the resonator length (about 2 mm) of the red semiconductor laser element 210 is longer than the resonator lengths of the green semiconductor laser element portion 230 and the blue semiconductor laser element portion 250 (both are about 1 mm).
  • the three semiconductor laser elements are arranged so that the respective light emission surfaces coincide with substantially the same plane.
  • the green semiconductor laser elements 230a to 230d are integrally formed on the substrate 231 with the recess 5 therebetween.
  • one p-side pad electrode 237 is formed from the green semiconductor laser elements 230a to 230d on the surface of the green semiconductor laser elements 230a to 230d on the p-type cladding layer 35 side (C2 side).
  • An n-side electrode 238 is formed on the lower surface (C1 side) of the substrate 231.
  • the blue semiconductor laser elements 250a to 250c are integrally formed on the substrate 251 with a recess 6 reaching the n-type GaN layer 52 from the upper surface (surface on the C2 side) of the blue semiconductor laser element portion 250. Is formed.
  • the current blocking layer 56 is formed so as to cover the side surface and the bottom surface of the recess 6.
  • one p-side pad electrode 257 is formed from the blue semiconductor laser elements 250a to 250c on the surface of the blue semiconductor laser elements 250a to 250c on the p-type cladding layer 55 side (C2 side).
  • An n-side electrode 258 is formed on the lower surface (C1 side) of the substrate 251.
  • the other configuration of the blue semiconductor laser element unit 250 is the same as that of the blue semiconductor laser element 50 of the first embodiment.
  • the semiconductor laser device 200 includes a pedestal 206 on which the RGB three-wavelength semiconductor laser element unit 290 is mounted, and three lead terminals 201 that are electrically insulated from the pedestal 206 and penetrate the bottom 205a. , 202 and 203, and a stem 205 provided with a pedestal 206 and another lead terminal (not shown) that is electrically connected to the base 205a.
  • the red semiconductor laser element 210 is connected to the lead terminal 201 through a metal wire 271 wire-bonded to the p-side pad electrode 17.
  • the green semiconductor laser element 230 is connected to the lead terminal 202 via a metal wire 272 that is wire-bonded to the p-side pad electrode 237.
  • the blue semiconductor laser element 250 is connected to the lead terminal 203 through a metal wire 273 wire-bonded to the p-side pad electrode 257. Further, the red semiconductor laser element 210, the green semiconductor laser element part 230, and the blue semiconductor laser element part 250 are formed on the upper surface (surface on the C2 side) of the base 291 through a conductive adhesive layer (not shown) such as AuSn solder.
  • the base 291 is electrically connected to the base 206 via a conductive adhesive layer (not shown) such as AuSn solder. As shown in FIG. 6, each color laser beam is emitted from the resonator end face on the A1 side of the RGB three-wavelength semiconductor laser element portion 290.
  • the four green semiconductor laser elements 230a to 230d are formed on the common substrate 231 to form the monolithic green semiconductor laser element portion 230, and the three blue semiconductor laser elements
  • the monolithic blue semiconductor laser element portion 250 By forming the monolithic blue semiconductor laser element portion 250 by forming 250a to 250c on a common substrate 251, the green semiconductor laser element portion 230 and the blue semiconductor laser element portion 250 are common to each oscillation wavelength. Since they are integrated on the substrate, the width in the B direction of the green semiconductor laser element portion 230 and the blue semiconductor laser element portion 250 can be reduced by the amount of integration.
  • a third embodiment will be described with reference to FIG. 6 and FIGS.
  • a monolithic two-wavelength semiconductor laser element portion 370 and a single red semiconductor laser element 10 are arranged on a base 391 to constitute the RGB three-wavelength semiconductor laser element portion 390.
  • the RGB three-wavelength semiconductor laser element portion 390 is fixed on the upper surface of the pedestal 206 as shown in FIG.
  • the green semiconductor laser element unit 330 constituting the two-wavelength semiconductor laser element unit 370 is integrated with green semiconductor laser elements 330a to 330c each having an output of about 100 mW.
  • the blue semiconductor laser element unit 350 has a total output and (11-22) plane in a state where the blue semiconductor laser elements 350a and 350b each having an output of about 120 mW are integrated to have a total output of about 240 mW.
  • n-type GaN substrate 331 having a main surface made of A single red semiconductor laser element 10 having a power of about 800 mW and a two-wavelength semiconductor laser element unit 370 are predetermined on the upper surface of the base 391 through a conductive adhesive layer (not shown) such as AuSn solder.
  • the RGB three-wavelength semiconductor laser element portion 390 is formed by being fixed with an interval of.
  • the green semiconductor laser element portion 330 and the blue semiconductor laser element portion 350 are integrated on a common n-type GaN substrate 331 having a (11-22) principal surface. Is formed.
  • the n-type GaN substrate 331 is an example of the “substrate” in the present invention.
  • the (11-22) plane of the n-type GaN substrate 331 is about 58 ° from the c plane ((0001) plane) toward the [11-20] direction. It is composed of a semipolar surface composed of inclined surfaces. As the semipolar plane, it is preferable to use a plane inclined by about 10 ° or more and about 70 ° or less from the c-plane. As a result, the green semiconductor laser element portion 330 and the blue semiconductor laser element portion 350 can substantially match the extending direction of the optical waveguide in which the optical gain is maximized.
  • the (11-22) plane has a smaller piezoelectric field than other semipolar planes, it is possible to suppress a decrease in the light emission efficiency of the blue semiconductor laser element portion 350 and the green semiconductor laser element portion 330. Is possible. Therefore, it is more preferable to use the above-described (11-22) plane as the main surface of the n-type GaN substrate 331.
  • the blue semiconductor laser element portion 350 includes an n-type GaN layer 52 and a Si-doped n-type having a thickness of about 2 ⁇ m on a region on the [ ⁇ 1100] direction (B1 direction) side of the upper surface of the n-type GaN substrate 331.
  • An n-type cladding layer 53a made of Al 0.07 Ga 0.93 N
  • an n-type carrier block layer 53b made of Si-doped n-type Al 0.16 Ga 0.84 N having a thickness of about 5 nm, and about 100 nm
  • An n-type light guide layer 53c made of Si-doped n-type In 0.02 Ga 0.98 N having a thickness is formed.
  • the active layer 54 in the blue semiconductor laser element portion 350 has a main surface composed of the same (11-22) plane as that of the n-type GaN substrate 331.
  • the active layer 54 is a four-layer barrier made of undoped In 0.02 Ga 0.98 N having a thickness of about 20 nm on the upper surface of the n-type light guide layer 53c.
  • the layers 54a and three well layers 54b made of undoped In 0.20 Ga 0.80 N having a thickness t5 of about 3 nm are alternately stacked.
  • the in-plane lattice constant of the well layer 54b is larger than the in-plane lattice constant of the n-type GaN substrate 331, compressive strain is applied in the in-plane direction. That is, the well layer 54b of the active layer 54 of the blue semiconductor laser element portion 350 has an In composition of about 20%.
  • the (11-22) plane is used as the main surface of the active layer 54 as compared with the case where the polar c-plane ((0001) plane) and other semipolar surfaces are applied to the main surface of the active layer 54. As a result, the piezoelectric field in the active layer 54 can be reduced.
  • the polarization direction that maximizes the oscillator strength within the main surface of the blue semiconductor laser element portion 350 is a direction perpendicular to the m-plane ((1-100) plane) that is a nonpolar plane [1- 100] direction.
  • the blue semiconductor laser element portion 350 includes a p-type light guide made of Mg-doped p-type In 0.02 Ga 0.98 N having a thickness of about 100 nm on the upper surface of the active layer 54.
  • a p-type cladding layer 55c made of 93 N and a p-type contact layer 55d made of Mg-doped p-type In 0.02 Ga 0.98 N having a thickness of about 10 nm are formed.
  • a stripe-shaped stripe formed in a substantially central portion in the B direction (B1 direction and B2 direction) of the blue semiconductor laser element portion 350 by the p-type cladding layer 55c and the p-type contact layer 55d.
  • the ridge 360 is formed to extend along the direction ([ ⁇ 1-123] direction) in which the optical waveguide extends, which is the direction in which the [0001] direction is projected onto the (11-22) plane.
  • a current blocking layer 376 made of an insulating film is formed so as to cover the side surface of 55c and expose the upper surface of the ridge 360.
  • the current blocking layer 376 is made of SiO 2 and has a thickness of about 250 nm.
  • the current blocking layer 376 includes a predetermined region on the upper surface of the n-type GaN substrate 331 (a region exposed from the blue semiconductor laser element unit 350 and the green semiconductor laser element unit 330) and a p described later of the green semiconductor laser element unit 330.
  • the upper surface of the flat portion of the type cladding layer 35c, the side surface of the ridge 340 described later, and the side surfaces of the n-type semiconductor layer (33), the active layer 34, and the p-type semiconductor layer (35) are partially covered. It is formed so that the upper surface is exposed.
  • the current blocking layer 376 is formed so as to cover the side surface and the bottom surface of the recess 7.
  • the p-side ohmic electrode 56 is formed.
  • blue semiconductor laser elements 350 a and 350 b arranged in the blue semiconductor laser element section 350 side by side in the direction (B direction) in which the laser elements are arranged across the recess 6 are green semiconductors on the upper surface of the n-type GaN substrate 331.
  • a recess 8 is formed on the opposite side (B1 side) from the laser element portion 330.
  • the green semiconductor laser elements 330a to 330c arranged side by side in the direction (B direction) in which the laser elements are arranged across the recess 7 in the green semiconductor laser element section 330 are blue semiconductor laser elements.
  • An n-type GaN layer 32 having a thickness of about 1 ⁇ m and a thickness of about 2 ⁇ m are formed in a region on the [1-100] direction (B2 direction) side on the upper surface of the n-type GaN substrate 331 which is the same substrate as the portion 350.
  • the active layer 34 in the green semiconductor laser element section 330 has the same main surface as the (11-22) plane as the n-type GaN substrate 331.
  • the active layer 34 is a two-layer barrier made of undoped In 0.02 Ga 0.98 N having a thickness of about 20 nm on the upper surface of the n-type light guide layer 33c. It has an SQW structure in which layers 34a and one well layer 34b made of undoped In 0.33 Ga 0.67 N having a thickness t6 of about 3.5 nm are alternately stacked.
  • the in-plane lattice constant of the well layer 34b is larger than the in-plane lattice constant of the n-type GaN substrate 331 (see FIG. 10), compressive strain is applied in the in-plane direction. Further, the compressive strain of the well layer 34 b of the green semiconductor laser element portion 330 is larger than the compressive strain of the well layer 54 b of the blue semiconductor laser element portion 350.
  • the thickness t6 of the well layer 34b is preferably less than about 6 nm.
  • the active layer 34b of the active layer 34 has an SQW structure as compared to the case where the active layer 34 has an MQW structure, so that the well layer 34b has a layer structure. It is possible to maintain.
  • the well layer 34b is an example of the “second well layer” in the present invention. That is, the well layer 34b of the active layer 34 of the green semiconductor laser element section 330 has an In composition of about 33%, which is larger than the In composition (about 20%) of the well layer 54b of the active layer 54 of the blue semiconductor laser element section 350. Have.
  • the extending direction of the optical waveguide (ridge 340) in which the gain of the green semiconductor laser elements 330a to 330c is maximized and the extending direction of the optical waveguide (ridge 360) in which the gain of the blue semiconductor laser element section 350 is maximized. are in the same direction ([ ⁇ 1-123] direction).
  • the direction is the same direction ([ ⁇ 1-123] direction) when the In composition is about 30% or more, the thickness of the well layer made of InGaN having the (11-22) principal surface is about If it is less than 3 nm, the phenomenon that the main polarization direction in the (11-22) plane is rotated by 90 ° (from [1-100] direction) to [ ⁇ 1-123] direction) is found. Yes.
  • the thickness t6 of the well layer 34b is more preferably about 3 nm or more.
  • the well layer 34b made of InGaN having an In composition of about 33% and having a main surface of (11-22) plane has a thickness t6 of about 3.5 nm (about 3 nm or more).
  • the in-plane lattice constant of the well layer 34b is larger than the in-plane lattice constant of the n-type GaN substrate 331 (see FIG. 10), compressive strain is applied in the in-plane direction.
  • the compressive strain of the well layer 34b of the green semiconductor laser element portion 330 is larger than the compressive strain of the well layer 54b of the blue semiconductor laser element portion 350.
  • the (11-22) plane is the main surface of the active layer 34 as compared with the case where the c-plane ((0001) plane), which is a polar surface, and other semipolar surfaces are the main surfaces of the active layer 34.
  • the piezoelectric field in the active layer 34 can be reduced.
  • the thickness t6 (about 3.5 nm) of the well layer 34b of the active layer 34 of the green semiconductor laser elements 330a to 330c shown in FIG. 12 is the well layer 54b of the active layer 54 of the blue semiconductor laser element portion 350 shown in FIG.
  • Each layer is configured to be larger than the thickness t5 (about 3 nm) (t6> t5).
  • the green semiconductor laser devices 330a to 330c have p-type light made of Mg-doped p-type In 0.05 Ga 0.95 N having a thickness of about 100 nm on the upper surface of the active layer 34.
  • a p-type cladding layer 35c made of .90 N and a p-type contact layer 35d made of Mg-doped p-type In 0.02 Ga 0.98 N having a thickness of about 10 nm are formed.
  • the stripe-shaped ridge 340 formed in the substantially central portion in the B direction (B1 direction and B2 direction) of the green semiconductor laser elements 330a to 330c is a direction in which the [0001] direction is projected onto the (11-22) plane. It is formed so as to extend along a direction in which a certain optical waveguide extends ([ ⁇ 1-123] direction).
  • the Al composition (about 10%) of the n-type cladding layer 33a and the p-type cladding layer 35c of the green semiconductor laser elements 330a to 330c is the same as that of the n-type cladding layer 53a and the p-type cladding layer 55c of the blue semiconductor laser element portion 350. It is comprised so that it may become large compared with Al composition (about 7%). Further, the Al composition (about 20%) of the n-type carrier block layer 33b and the p-type carrier block layer 35b of the green semiconductor laser elements 330a to 330c is the same as that of the n-type carrier block layer 53b and the p-type carrier of the blue semiconductor laser element portion 350.
  • the block layer 55b is configured to be larger than the Al composition (about 16%). Further, the In composition (about 5%) of the n-type light guide layer 33c and the p-type light guide layer 35a of the green semiconductor laser elements 330a to 330c is the same as that of the n-type light guide layer 53c and the p-type light of the blue semiconductor laser element portion 350.
  • the guide layer 55a is configured to be larger than the In composition (about 2%).
  • the Al compositions of the n-type cladding layer 33a, the n-type carrier block layer 33b, the p-type carrier block layer 35b and the p-type cladding layer 35c of the green semiconductor laser devices 330a to 330c are respectively blue semiconductor laser devices 350a and 350b.
  • the n-type cladding layer 53a, the n-type carrier block layer 53b, the p-type carrier block layer 55b, and the p-type cladding layer 55c preferably have a larger Al composition.
  • the Al composition of the blue semiconductor laser elements 350a and 350b and the green semiconductor laser elements 330a to 330c the light confinement function is lowered, while the crystal lattice lattice of the AlGaN and the n-type GaN substrate 331 is reduced. It is possible to reduce the occurrence of cracks and warping due to different constants.
  • the In composition of the n-type light guide layer 33c and the p-type light guide layer 35a of the green semiconductor laser elements 330a to 330c is the same as that of the n-type light guide layer 53c and the p-type light guide layer 55a of the blue semiconductor laser elements 350a and 350b. A larger value than the In composition is preferable.
  • a p-side ohmic electrode 36 made of the same material as the p-side ohmic electrode 56 of the blue semiconductor laser element portion 350 is formed on the upper surface of the p-type contact layer 35d.
  • the two-wavelength semiconductor laser element portion 370 is a recess that reaches the n-type GaN layer 32 from the upper surface (the C2 side surface) of the two-wavelength semiconductor laser element portion 370 on the n-type GaN substrate 331.
  • Three green semiconductor laser elements 330a to 330c are formed with a gap 7 therebetween, and adjacent to the green semiconductor laser element 330a side with a recess 8 reaching the n-type GaN substrate 331 from the upper surface of the two-wavelength semiconductor laser element section 370.
  • two blue semiconductor laser elements 350 a and 350 b are formed with a recess 6 reaching the n-type GaN layer 52 from the upper surface of the two-wavelength semiconductor laser element portion 370.
  • the current made of SiO 2 covers the both side surfaces of the ridge 340 of the green semiconductor laser devices 330a to 330c, the flat portion of the p-type cladding layer 35c, and the inner side surface and the bottom surface of the concave portion 7.
  • a block layer 376 is formed.
  • the current blocking layer 376 is formed so as to cover the inner surface and the bottom surface of the recess 8, the both side surfaces of the ridge 360 of the blue semiconductor laser element 350, and the flat portion of the p-type cladding layer 55c.
  • the p-side ohmic electrode 36 is electrically connected in order from the p-side ohmic electrode 36 so as to be electrically connected.
  • a p-side pad electrode 337 is formed by laminating a Ti layer having a thickness of 100 nm, a Pd layer having a thickness of about 100 nm, and an Au layer having a thickness of about 3 ⁇ m, and blue semiconductor laser elements 350a and 350b.
  • a p-side pad electrode 357 having the same structure as the p-side pad electrode 337 and electrically connected to the p-side ohmic electrode 56 is formed on the current blocking layer 376.
  • the blue semiconductor laser elements 350a and 350b and the green semiconductor laser elements 330a to 330c are each perpendicular to the direction in which the optical waveguide extends ([-123] direction).
  • a resonator surface is formed. That is, the blue semiconductor laser element unit 350 and the green semiconductor laser element unit 330 are configured to have resonator surfaces having the same plane orientation.
  • the other configurations of the green semiconductor laser elements 330a to 330c and the blue semiconductor laser elements 350a and 350b constituting the two-wavelength semiconductor laser element section 370 are the green semiconductor laser element section 230 and the second embodiment, respectively. This is the same as the blue semiconductor laser element portion 250.
  • the red semiconductor laser element 10 is arranged on the B1 side on the base 391, and the two-wavelength semiconductor laser element unit 370 is arranged on the B2 side.
  • the resonator length (about 2 mm) of the red semiconductor laser element 10 is longer than the resonator length (about 1 mm) of the two-wavelength semiconductor laser element portion 370.
  • the red semiconductor laser element 10 is connected to the lead terminal 201 through a metal wire 371 wire-bonded to the p-side pad electrode 17.
  • the green semiconductor laser element 330 of the two-wavelength semiconductor laser element unit 370 is connected to the lead terminal 203 via a metal wire 372 that is wire-bonded to the p-side pad electrode 337.
  • the blue semiconductor laser element portion 350 is connected to the lead terminal 202 through a metal wire 373 wire-bonded to the p-side pad electrode 357.
  • the remaining structure of the semiconductor laser device 300 according to the third embodiment is similar to that of the aforementioned second embodiment.
  • the blue color is formed on the upper surface of the n-type GaN substrate 331 having the main surface consisting of (11-22) plane by MOCVD.
  • a p-type cladding layer 55c is sequentially formed.
  • n-type GaN layer 32, the n-type cladding layer 33a, the n-type carrier block layer 33b, the n-type light guide layer 33c, the active layer 34, and the p-type light guide layers 35a, p which leave the region and become the green semiconductor laser element portion 330
  • a type carrier block layer 35b and a p-type cladding layer 35c are sequentially formed.
  • a recess 6 whose bottom surface reaches the n-type GaN layer 52 is formed.
  • a recess 7 whose bottom surface reaches the n-type GaN layer 32 is formed in order to separate the semiconductor layer into the green semiconductor laser elements 330a, 330b and 330c.
  • p-type contact layers 35d and 55d and p Side ohmic electrodes 36 and 56 are formed.
  • a current blocking layer 376 is formed so as to cover the surface of the p-type cladding layer 35c (55c) and the side surfaces and the bottom surface of each of the concave portion 6, the concave portion 7, and the concave portion 8.
  • p-side pad electrodes 337 and 357 are formed for the respective laser elements so as to cover a predetermined region of current blocking layer 376 and p-side ohmic electrodes 36 and 56.
  • the p-side pad electrode 337 is formed on the side surface and the bottom surface of the recess 7 and used in common for the green semiconductor laser elements 330a to 330c. Further, a p-side pad electrode 357 is formed on the side surface and the bottom surface of the recess 6 and used in common for the blue semiconductor laser elements 350a and 350b.
  • the green semiconductor laser element portion 330 is formed on the surface of the same n-type GaN substrate 331 as the n-type GaN substrate 331 on which the blue semiconductor laser element portion 350 is formed. By doing so, it is possible to prevent the active layer 34 of the green semiconductor laser element portion 330, which is easily deteriorated by heat due to a large In composition, from being affected by heat when forming the blue semiconductor laser element portion 350. It is. In this manner, the blue semiconductor laser element portion 350 and the green semiconductor laser element portion 330 that are separated at a predetermined interval in the B direction by the concave portion 8 whose bottom reaches the n-type GaN substrate 331 are manufactured.
  • the lower surface of the n-type GaN substrate 331 is polished to a thickness of about 100 ⁇ m, and then an n-side electrode 378 is formed on the lower surface of the n-type GaN substrate 331 to produce a wafer of the two-wavelength semiconductor laser element portion 370. .
  • a resonator plane perpendicular to the extending direction of the optical waveguide ([ ⁇ 1-123] direction) is formed at a predetermined position by etching.
  • the resonator surface may be formed by cleaving a predetermined position on the wafer.
  • a plurality of two-wavelength semiconductor laser element portions 370 are formed by dividing the elements along the resonator direction ([ ⁇ 1-123] direction) into chips.
  • the red semiconductor laser element 10 and the two-wavelength semiconductor laser element unit 370 are fixed to each other through a conductive adhesive layer such as AuSn solder while being pressed against the base 391.
  • a wavelength semiconductor laser element portion 390 is formed.
  • the other manufacturing processes of the third embodiment are the same as those of the second embodiment.
  • the green semiconductor laser element portion 330 and the blue semiconductor laser element portion 350 and the blue semiconductor laser element portion 350 are formed on the common n-type GaN substrate 331, thereby the green semiconductor laser element portion 330 and the blue semiconductor laser element portion.
  • the green semiconductor laser element unit 330 and the blue semiconductor laser element unit 350 are common compared to the case where the unit 350 is formed on a separate substrate and then disposed in the package (on the base 391) with a predetermined interval. Since the two-wavelength semiconductor laser element portion 370 integrated on the n-type GaN substrate 331 is formed, the width in the B direction of the two-wavelength semiconductor laser element portion 370 can be reduced.
  • the two-wavelength semiconductor laser device portion 370 is easily arranged in the package (on the base 391). be able to.
  • the well layer 34b of the active layer 34 having the main surface composed of the (11-22) plane of the green semiconductor laser devices 330a to 330c constituting the green semiconductor laser device section 330 is formed by about 3.
  • the optical waveguide extending direction ([-123] direction) in which the optical gain of the blue semiconductor laser elements 350a and 350b is maximized and the green semiconductor laser element section 330 are The extending direction of the optical waveguide ([ ⁇ 1-123] direction) in which the optical gain is maximized can be matched.
  • the optical gain of the blue semiconductor laser element 350 is maximized by setting the In composition of the well layer 34b to at least about 30% and setting the thickness of the well layer 34b to at least about 3 nm.
  • the extending direction of the optical waveguide ([ ⁇ 1-123] direction) and the extending direction of the optical waveguide ([ ⁇ 1-123] direction) in which the optical gain of the green semiconductor laser element unit 330 is maximized can be matched. .
  • the well layer 34b of the active layer 34 of the green semiconductor laser element section 330 is made of InGaN having an In composition larger than the In composition of the well layer 54b of the active layer 54 of the blue semiconductor laser element section 350.
  • the thickness t6 (about 3.5 nm: see FIG. 12) of the well layer 34b is made larger (t6> t5) than the thickness t5 (about 3 nm: see FIG. 11) of the well layer 54b.
  • the crystal lattice of the well layer 54b having a large In composition and the crystal lattice of the underlying layer (barrier layer 54a) having a small In composition on which the well layer 54b is grown The occurrence of misfit dislocations caused by different lattice constants can be suppressed.
  • the (11-22) plane that is inclined by about 58 ° is used as the semipolar plane, so that the green semiconductor laser element section 330 and the blue semiconductor laser element section 350 can be more reliably connected.
  • the extending direction of the optical waveguide in which the optical gain is maximized can be substantially matched.
  • the blue semiconductor laser element portion 350 and the green semiconductor laser element portion 330 are projected in the direction ([ ⁇ 1-123] direction) in which the [0001] direction is projected onto the (11-22) plane, respectively.
  • the optical gain of each of the blue semiconductor laser element 350 and the green semiconductor laser element part 330 can be maximized, and the blue light and the green semiconductor laser element part 330 of the blue semiconductor laser element part 350 can be maximized.
  • the green light can be emitted from a common resonator surface.
  • the active layer 54 of the blue semiconductor laser element unit 350 is made of InGaN having a (11-22) principal surface which is the same principal surface as the n-type GaN substrate 331, and a green semiconductor laser.
  • the active layer 34 of the element unit 330 is made of InGaN having the (11-22) main surface which is the same main surface as the n-type GaN substrate 331, so that the active layer 34 and the blue semiconductor of the green semiconductor laser device unit 330 are formed.
  • the (11-22) plane is obtained by growing a semiconductor layer on the surface of an n-type GaN substrate 331 having the same (11-22) plane as the active layer 54 of the laser element portion 350 and made of GaN.
  • the blue semiconductor laser element portion 350 and the green semiconductor laser element portion 330 are projected in the direction ([ ⁇ 1-123] direction) in which the [0001] direction is projected onto the (11-22) plane, respectively.
  • the respective optical gains of the blue semiconductor laser element portion 350 and the green semiconductor laser element portion 330 can be maximized, and the blue light and the green semiconductor laser element portion of the blue semiconductor laser element portion 350 can be maximized.
  • 330 green light can be emitted from a common resonator surface.
  • the In composition (about 5%) of the n-type light guide layer 33c and the p-type light guide layer 35a of the green semiconductor laser element unit 330 is equal to the n-type light guide layer of the blue semiconductor laser element unit 350.
  • the n-type light guide layer 33c and the p-type light guide layer 35a are configured to be larger than the In composition (about 2%) of the 53c and the p-type light guide layer 55a. Since the light can be confined in the active layer (the active layers 34 and 54) more than the type light guide layer 55a, the green light of the green semiconductor laser element section 330 can be confined in the active layer 34 more. As a result, in the green semiconductor laser element unit 330, whose light emission efficiency is inferior to that of the blue semiconductor laser element unit 350, light confinement similar to that of the blue semiconductor laser element unit 350 can be ensured.
  • the Al composition (about 20%) of the n-type carrier block layer 33b and the p-type carrier block layer 35b of the green semiconductor laser element unit 330 is the same as the n-type carrier block layer 53b of the blue semiconductor laser element 350.
  • the n-type carrier block layer 33b and the p-type carrier block layer 35b are configured to be larger than the Al composition (about 16%) of the p-type carrier block layer 55b. Since the light can be confined more in the active layer (active layers 34 and 54) than the carrier block layer 55b, the green light of the green semiconductor laser element portion 330 can be confined in the active layer 34 more. As a result, in the green semiconductor laser element unit 330, whose light emission efficiency is inferior to that of the blue semiconductor laser element unit 350, light confinement similar to that of the blue semiconductor laser element unit 350 can be ensured.
  • the Al composition (about 10%) of the n-type cladding layer 33a and the p-type cladding layer 35c of the green semiconductor laser element unit 330 is the same as the n-type cladding layer 55a and the p-type of the blue semiconductor laser element 350.
  • the clad layer 55c By configuring the clad layer 55c to be larger than the Al composition (about 7%), the n-type clad layer 33a and the p-type clad layer 35c emit light more than the n-type clad layer 55a and the p-type clad layer 55c. Since it can be further confined in the active layer (active layers 34 and 54), the green light of the green semiconductor laser element section 330 can be confined in the active layer 34 more.
  • Modification of the third embodiment A modification of the third embodiment will be described with reference to FIG. 10, FIG. 12, and FIG.
  • the thickness of the active layer 54 of the blue semiconductor laser elements 350a and 350b is larger than the thickness of the active layer 34 of the green semiconductor laser elements 330a to 330c. Will be described.
  • the active layer 54 of the blue semiconductor laser elements 350a and 350b according to the modification of the third embodiment has an SQW structure made of InGaN having a (11-22) principal surface as shown in FIG. Yes. That is, the active layer 54 is formed on the upper surface of the n-type light guide layer 53c, and includes two barrier layers 54c made of undoped In 0.02 Ga 0.98 N each having a thickness of about 20 nm, and two layers The well layer 54d is made of undoped In 0.20 Ga 0.80 N and is disposed between the barrier layers 54c and has a thickness t7 of about 8 nm.
  • the in-plane lattice constant of the well layer 54d is larger than the in-plane lattice constant of the n-type GaN substrate 331 (see FIG. 10), compressive strain is applied in the in-plane direction.
  • the thickness t7 of the well layer 54d is preferably 6 nm or more and less than 15 nm.
  • the active layer 54 has a nonpolar principal surface such as an m-plane ((1-100) plane) and a-plane ((11-20) plane)
  • the main surface of the (11-22) plane can suppress the crystal growth of the well layer 54d from becoming difficult, an increase in crystal defects due to an increase in the In composition in the active layer 54. Can be suppressed.
  • InGaN is an example of the “nitride-based semiconductor” in the present invention
  • the well layer 54d is an example of the “third well layer” in the present invention.
  • the thickness t7 (about 8 nm) of the well layer 54d having an In composition of 20% of the active layer 54 of the blue semiconductor laser elements 350a and 350b shown in FIG. 13 is the activity of the green semiconductor laser elements 330a to 330c shown in FIG.
  • the well layer 34b having a 33% In composition of the layer 34 is configured to be larger than the thickness t6 (about 2.5 nm) (t7> t6).
  • the thickness of the well layer in the active layer is preferably about 10 nm or less from the viewpoint of suppressing the generation of crystal defects.
  • the thickness of the well layer is preferably about 3 nm or less from the viewpoint of suppressing the generation of crystal defects.
  • the active layer 54 has an MQW structure, it is preferable that a value obtained by adding the thicknesses of the well layers of the active layer is within the above numerical value.
  • the well layer 34b is an example of the “fourth well layer” in the present invention.
  • the In composition of the n-type light guide layer 33c and the p-type light guide layer 35a of the green semiconductor laser elements 330a to 330c constituting the green semiconductor laser element part 330 is determined by the blue semiconductor laser element constituting the blue semiconductor laser element part 350.
  • a larger one than the In composition of the n-type light guide layer 53c and the p-type light guide layer 55a of 350a and 350b is preferable.
  • a green semiconductor laser element portion 330 including an active layer 34 made of InGaN having a (11-22) principal surface is formed, whereby a c-plane ((0001) plane)
  • the piezoelectric fields generated in the active layers 34 and 54 can be reduced as compared to the case where the main surface is made of, so that the energy bands of the well layer 34b of the active layer 34 and the well layer 54b of the active layer 54 due to the piezoelectric field are reduced.
  • the inclination can be reduced.
  • the amount of change (variation width) in the oscillation wavelength of the blue semiconductor laser element portion 350 and the green semiconductor laser element portion 330 can be further reduced, so that the blue color formed on the surface of the same n-type GaN substrate 331 is reduced.
  • a decrease in yield of the semiconductor laser device 300 including the semiconductor laser element unit 350 and the green semiconductor laser element unit 330 can be suppressed.
  • the piezoelectric field is small, the amount of change (variation width) of the oscillation wavelength of the blue semiconductor laser element portion 350 and the green semiconductor laser element portion 330 with respect to the amount of change in the carrier density of the active layers 34 and 54 is further reduced. be able to.
  • the (11-22) plane has a smaller piezo electric field than the other semipolar planes. Therefore, the oscillation of the blue semiconductor laser element portion 350 and the green semiconductor laser element portion 330 is performed. The amount of change in wavelength can be reduced.
  • a nonpolar surface such as an m-plane ((1-100) plane) and a-plane ((11-20) plane) that is perpendicular to the c-plane ((0001) plane) is used as the principal plane
  • the semiconductor layers (active layers 34 and 54) having the main surface of the (11-22) plane can be easily formed.
  • the thickness t7 (about 8 nm: see FIG. 13) of the well layer 54d having compressive strain of the active layer 54 of the blue semiconductor laser element unit 350 is set as the activity of the green semiconductor laser element unit 330.
  • the well layer 34b in which crystal defects are likely to occur because the In composition is large by making the thickness 34 larger than the thickness t6 (about 2.5 nm: see FIG. 12) of the well layer 34b having compressive strain of the layer 34 (t7> t6). , The occurrence of crystal defects can be suppressed.
  • the well layer 54d of the active layer 54 of the blue semiconductor laser element portion 350 is configured to be made of InGaN having an In composition of about 20% or less, and the thickness of the well layer 54d.
  • t7 (about 8 nm) is set to about 6 nm or more and about 15 nm or less
  • the well layer 34b of the active layer 34 of the green semiconductor laser element section 330 is configured to be made of InGaN having an In composition larger than about 20%
  • production can be suppressed.
  • the n-type GaN substrate 331 is configured to have a main surface of (11-22) plane, so that the active layer 54 of the blue semiconductor laser element portion 350 and the green semiconductor laser can be obtained. Only by forming a semiconductor layer on the n-type GaN substrate 331 having the same (11-22) principal surface as the active layer 34 of the element part 330, the active layer 54 having a nonpolar principal surface was included. It is possible to easily form the green semiconductor laser element portion 330 including the blue semiconductor laser element portion 350 and the active layer 34 having a nonpolar main surface.
  • the active layer 34 of the green semiconductor laser element unit 330 has the SQW structure, so that the well layer 34b of the active layer 34 is compared with the case where the active layer 34 has the MQW structure. It can be suppressed that the active layer 34 does not have a layer structure due to the excessively small thickness t6 (see FIG. 12).
  • the active layers 34 and 54 have the (11-22) plane as the main surface, respectively, so that the m-plane ((1-100) plane) and a Unlike the case where the main surface is a nonpolar surface such as the surface ((11-20) surface), the crystal growth in the active layers 34 and 54 becomes difficult by using the (11-22) surface as the main surface. Therefore, it is possible to suppress an increase in crystal defects due to an increase in the In composition in the active layers 34 and 54.
  • the (11-22) plane which is a semipolar plane, is a plane inclined by about 58 ° from the c plane ((0001) plane) toward the [11-20] direction.
  • the optical gain of the green semiconductor laser element portion 330 including the active layer 34 having the above can be further increased.
  • the remaining effects of the modification of the third embodiment are similar to those of the aforementioned third embodiment.
  • FIGS. 14 to 17 are a plan view and a cross-sectional view showing the structure of the semiconductor laser device according to the fourth embodiment of the present invention.
  • the red semiconductor laser used in the second embodiment is formed on the surface of the two-wavelength semiconductor laser element portion 370 used in the third embodiment.
  • FIG. 15 shows a cross section taken along the line 4000-4000 in FIG.
  • FIG. 16 shows a cross section taken along the line 4100-4100 in FIG.
  • the RGB three-wavelength semiconductor laser element portion 490 is fixed on the upper surface of the pedestal 206 as shown in FIG.
  • a wavelength semiconductor laser element unit 490 is configured.
  • the RGB three-wavelength semiconductor laser element portion 490 is made of SiO 2 formed on the surface of the two-wavelength semiconductor laser element portion 370 having a width of about 400 ⁇ m in the B direction.
  • a red semiconductor laser element 210 having a width of about 100 ⁇ m is bonded in the B direction via an insulating film 480 and a conductive adhesive layer 3 made of AuSn solder or the like.
  • the RGB three-wavelength semiconductor laser element portion 490 is slightly on one side (B2 side) from the substantially central portion in the direction (B direction) in which the semiconductor laser elements in the B direction on the base 491 are arranged. ).
  • the insulating film 480 is a partial region (wire bond region 357 a) on the A1 side of the p-side pad electrode 357 on the laser light emitting direction (A1 direction) side of the blue semiconductor laser element portion 350. ) And a part of the p-side pad electrode 337 of the green semiconductor laser element portion 330 (region near the end on the B2 side) is exposed to the outside. Further, an electrode layer 481 made of Au is formed so as to cover the insulating film 480 in a predetermined region near the end of the blue semiconductor laser element 350 on the side opposite to the laser light emission direction (A2 direction). Thereby, in the red semiconductor laser element 210 (see FIG.
  • the electrode layer 481 has an end region (wire bond region 481a) on the side (B1 side) where the blue semiconductor laser element portion 350 is formed as viewed from the front (see FIG. 16). It is formed so as to be exposed to the outside (B1 side).
  • the red semiconductor laser element 210 is connected to the lead terminal 202 via a metal wire 471 wire-bonded to the wire bond region 481a of the electrode layer 481.
  • the green semiconductor laser element portion 330 of the two-wavelength semiconductor laser element portion 370 is connected to the lead terminal 203 via a metal wire 472 wire bonded to the wire bond region 337a of the p-side pad electrode 337.
  • the blue semiconductor laser element portion 350 is connected to the lead terminal 201 through a metal wire 473 wire-bonded to the wire bond region 357a of the p-side pad electrode 357.
  • the n-side electrode 18 of the red semiconductor laser element 210 is connected to the base 491 through a metal wire 474.
  • the remaining structure of the semiconductor laser apparatus 400 according to the fourth embodiment is similar to that of the aforementioned second embodiment.
  • the wafer-state red semiconductor laser element 210 in which the ridges 20 are formed at intervals of about 400 ⁇ m and the wafer are manufactured by the same manufacturing process as in the second and third embodiments.
  • a two-wavelength semiconductor laser element portion 370 in a state is produced.
  • the current blocking layer 376 leaves the wire bond region 357a (B1 side) of the p-side pad electrode 357 and the wire bond region 337a (B2 side) of the p-side pad electrode 337.
  • An insulating film 480 is formed so as to cover the upper surface of () in the resonator direction (A direction).
  • an electrode layer 481 having a wire bond region 481a is formed on the upper surface of the insulating film 480 excluding the p-side pad electrode 357 on the side where the blue semiconductor laser element portion 350 is formed.
  • the wafer on which the two-wavelength semiconductor laser element unit 370 is formed and the wafer on which the red semiconductor laser element 210 is formed are bonded using the conductive adhesive layer 3 while facing each other, whereby the RGB three-wavelength semiconductor in the wafer state A laser element portion 490 is formed.
  • a part of the wafer on which the red semiconductor laser element 210 is formed is etched so that the width becomes about 100 ⁇ m.
  • the wafer on which the RGB three-wavelength semiconductor laser element portion 490 is formed so as to have a predetermined resonator length is cleaved in a bar shape and divided into elements in the resonator direction, whereby the RGB three-wavelength semiconductor laser element portion 490 (FIG. 14).
  • a plurality of chips are formed.
  • the RGB three-wavelength semiconductor laser element portion 490 is fixed via a conductive adhesive layer (not shown) while pressing the RGB three-wavelength semiconductor laser element portion 490 against the base 491.
  • the electrode layer (wire bond region) and the lead terminal are connected to each other by a metal wire. In this way, the semiconductor laser device 400 according to the fourth embodiment is formed.
  • the required number is large.
  • the two-wavelength semiconductor laser element portions 370 and the red semiconductor laser elements 210 that are formed side by side are arranged linearly (for example, arranged in a horizontal row on the base 491), the two wavelengths Since the laser light emitting part of the semiconductor laser element part 370 and the laser light emitting part of the red semiconductor laser element 210 can be arranged in parallel at a predetermined interval in the bonding direction (C direction), they can be brought closer to each other.
  • the RGB three-wavelength semiconductor laser element portion 490 can be formed so that the laser light emitting portions are gathered in the central region of the package (base 491). Thereby, since a plurality of laser beams emitted from the RGB three-wavelength semiconductor laser element unit 490 can be brought close to the optical axis of the optical system, the semiconductor laser device 400 and the optical system can be easily adjusted.
  • the remaining effects of the fourth embodiment are similar to those of the aforementioned first embodiment.
  • FIGS. 20 shows the detailed structure of the monolithic two-wavelength semiconductor laser element portion 570 shown in FIG. 19 with the vertical direction (C1 direction and C2 direction) reversed from FIG.
  • the RGB three-wavelength semiconductor laser element portion 590 including the two-wavelength semiconductor laser element portion 570 and the red semiconductor laser element 210 is made of AuSn solder or the like. It is joined to the upper surface of a base 591 made of AlN or the like through a conductive adhesive layer 4 (4a and 4b) that is formed by a junction down method.
  • the conductive adhesive layers 4a and 4b are examples of the “first fusion layer” and the “second fusion layer” of the present invention, respectively, and the base 591 is the “support base” of the present invention. It is an example.
  • blue semiconductor laser elements 550a and 550b which constitute the blue semiconductor laser element portion 550 and are arranged side by side in the direction (B direction) in which the laser elements are arranged across the recess 6, are respectively shown in FIG.
  • an n-type cladding layer 513 made of n-type AlGaN having a thickness of about 2 ⁇ m
  • InGaN An active layer 514 in which quantum well layers and barrier layers are alternately stacked and a p-type cladding layer 515 made of p-type AlGaN having a thickness of about 0.3 ⁇ m are formed.
  • the active layer 514 and the p-type cladding layer 515 are examples of the “fifth active layer” and the “first semiconductor layer” in the present invention, respectively.
  • the p-type cladding layer 515 has a convex portion 515a and flat portions extending on both sides (B direction) of the convex portion 515a.
  • a ridge 520 for forming an optical waveguide is formed by the convex portion 515a of the p-type cladding layer 515.
  • a p-side ohmic electrode 516 made of a Cr layer and an Au layer is formed on the ridge 520 in the order closer to the p-type cladding layer 515.
  • a current blocking layer 517 made of SiO 2 is formed so as to cover the flat portion of the p-type cladding layer 515 and the side surface of the ridge 520.
  • a p-side pad electrode 518 made of Au or the like is formed on the top surfaces of the ridge 520 and the current blocking layer 517.
  • the p-side pad electrode 518 is an example of the “first pad electrode” in the present invention.
  • the green semiconductor laser element portion 530 is formed on the upper surface of the n-type GaN substrate 331 with the recess 8 on the side opposite to the blue semiconductor laser element 550 (B1 side).
  • Green semiconductor laser elements 530a, 530b, and 530c arranged in the green semiconductor laser element section 530 along the direction (B direction) in which the laser elements are arranged across the recess 7 are the upper surfaces of the n-type GaN substrate 331, respectively.
  • An n-type GaN layer 512 having a thickness of about 1 ⁇ m, an n-type cladding layer 533 made of n-type AlGaN having a thickness of about 3 ⁇ m, and a quantum well layer and a barrier layer made of InGaN are alternately disposed on the upper surface 331a.
  • the active layer 534 and the p-type cladding layer 535 are examples of the “sixth active layer” and the “second semiconductor layer” in the present invention, respectively.
  • the p-type cladding layer 535 has a convex portion 535a and flat portions extending on both sides (B direction) of the convex portion 535a.
  • a ridge 540 for forming an optical waveguide is formed by the convex portion 535a of the p-type cladding layer 535.
  • a p-side ohmic electrode 536 composed of a Cr layer and an Au layer is formed on the ridge 540 in the order closer to the p-type cladding layer 535.
  • a current blocking layer 517 extending from the blue semiconductor laser element portion 550 is formed so as to cover the flat portion of the p-type cladding layer 535 and the side surface of the ridge 540.
  • a p-side pad electrode 538 made of Au or the like is formed on the top surfaces of the ridge 540 and the current blocking layer 517.
  • the p-side pad electrode 538 is an example of the “second pad electrode” in the present invention.
  • the p-side ohmic electrode 516 (first ohmic electrode layer) and the p-side pad electrode 518 (first pad electrode) are examples of the “first electrode” in the present invention
  • the electrode layer) and the p-side pad electrode 538 (second pad electrode) are examples of the “second electrode” in the present invention.
  • a blue semiconductor laser is provided by providing a first ohmic electrode layer between the first semiconductor layer and the first pad electrode and a second ohmic electrode layer between the second semiconductor layer and the second pad electrode.
  • the p-side contact resistance of the element unit 550 and the green semiconductor laser element unit 530 can be reduced.
  • an n-side electrode 539 is formed on the lower surface 331b of the n-type GaN substrate 331, in which a Ti layer, a Pt layer, and an Au layer are stacked in this order from the n-type GaN substrate 331 side.
  • the length of the base 591 in the resonator direction (direction A) is formed larger than the resonator length of the two-wavelength semiconductor laser element portion 570.
  • wiring electrodes 594 and 593 made of Au described later are formed at positions corresponding to the p-side pad electrodes 518 and 538, respectively.
  • the wiring electrodes 593 and 594 extend in a strip shape in the A direction (see FIG. 19) and are longer than the resonator length of the two-wavelength semiconductor laser element portion 570. Accordingly, as shown in FIG.
  • the two-wavelength semiconductor laser element portion 570 of the wiring electrodes 593 and 594 is joined to the blue semiconductor laser element portion 550 and the green semiconductor laser element portion 530 of the two-wavelength semiconductor laser element portion 570. It is configured to be connected to the outside through a metal wire that is wire-bonded to a region that is not.
  • the lower surface 331 b of the n-type GaN substrate 331 in the blue semiconductor laser element portion 550 From the lower surface 331b of the n-type GaN substrate 331 to the upper surface of the convex portion 535a of the p-type cladding layer 535 in the green semiconductor laser device portion 530, than the thickness t1 of the semiconductor device layer from the upper surface to the upper surface of the convex portion 515a of the p-type cladding layer 515.
  • the thickness t3 from the lower surface of the p-side ohmic electrode 516 (upper surface of the convex portion 515a) of the blue semiconductor laser element portion 550 to the upper surface of the p-side pad electrode 518 is equal to the thickness of the p-side ohmic electrode 536 of the green semiconductor laser element portion 530.
  • the thickness (t1 + t3) from the lower surface 331b of the n-type GaN substrate 331 of the blue semiconductor laser element portion 550 to the lower surface of the conductive adhesive layer 4 (4a), and the n-type GaN substrate 331 of the green semiconductor laser element portion 530 are obtained.
  • the thickness (t2 + t4) from the lower surface 331b to the lower surface of the conductive adhesive layer 4 (4b) is substantially the same.
  • the “thickness” in the fifth embodiment indicates the thickness of each electrode and the fusion layer between the upper surface of the convex portion (ridge) and the lower surface of the base 591.
  • the thickness t13 of the p-side pad electrode 518 is formed larger than the thickness t14 of the p-side pad electrode 538 (t13> t14). Further, the thickness of the p-type cladding layer 535 of the green semiconductor laser element portion 530 is larger than the thickness of the p-type cladding layer 515 of the blue semiconductor laser element portion 550 and the n-type cladding layer 533 of the green semiconductor laser element portion 530 The thickness is larger than the thickness of the n-type cladding layer 513 of the blue semiconductor laser element portion 550.
  • the upper surface (C2 side surface) of the p-side pad electrode 518 and the upper surface (C2 side) of the p-side pad electrode 538 are substantially flush with each other (shown by a broken line).
  • the two-wavelength semiconductor laser element portion 570 is fixed to the base 591 via the conductive adhesive layers 4a and 4b having substantially the same thickness in the C direction.
  • the lower surface 331b is an example of the “other surface” of the present invention, and the upper surface of the convex portion 515a and the upper surface of the convex portion 535a are respectively “the surface of the first semiconductor layer” and “second surface” of the present invention. It is an example of “the surface of the semiconductor layer”.
  • a wiring electrode 592 made of Au is formed in a region of the upper surface of the base 591 where the red semiconductor laser element 210 is bonded.
  • the p-side pad electrode 217 (see FIG. 19) and the wiring electrode 592 are bonded via the conductive adhesive layer 1, and the red semiconductor laser element 210 is formed on the upper surface of the base 591. It is joined to the top by a junction down method.
  • the wiring electrode 592 is connected to the lead terminal 202 via a wire-bonded metal wire 595.
  • the n-side electrode 218 is electrically connected to the base 206 via a wire-bonded metal wire 596.
  • the wiring electrode 593 electrically connected to the p-side pad electrode 538 (see FIG. 19) of the green semiconductor laser element portion 530 is connected to the lead terminal 201 via a wire-bonded metal line 597
  • the wiring electrode 594 electrically connected to the p-side pad electrode 518 (see FIG. 19) of the blue semiconductor laser element portion 550 is connected to the lead terminal 203 via a wire-bonded metal wire 598.
  • the two-wavelength semiconductor laser element portion 570 is electrically connected to the pedestal 206 via a metal wire 599 that is wire-bonded to the n-side electrode 539.
  • the p-side pad electrodes (217, 518, and 538) of the respective semiconductor laser elements are connected to the lead terminals that are insulated from each other, and the n-side electrodes (218 and 539) are shared. It is configured to be connected to the negative terminal (cathode common).
  • each color laser beam is emitted from the resonator end face on the A1 side of the RGB three-wavelength semiconductor laser element portion 590.
  • a selective growth mask 541 made of SiO 2 is formed on the upper surface 331a of the n-type GaN substrate 331 using photolithography. Is patterned. The mask 541 is patterned so as to extend in the A direction (perpendicular to the paper surface) with a predetermined interval in the B direction. After that, as shown in FIG. 22, the n-type cladding layer 513, the active layer 514, and the p-type cladding layer 515 are formed on the upper surface 331 a of the n-type GaN substrate 331 exposed from the opening 541 a of the mask 541 using the MOCVD method. Is selectively grown to form a semiconductor element layer 510c.
  • the mask 541 is removed.
  • a mask 542 that covers a predetermined region of the upper surface 331a of the n-type GaN substrate 331 and the entire surface of the semiconductor element layer 510c that becomes the blue semiconductor laser element portion 550 is patterned.
  • the n-type cladding layer 533, the active layer 534, and the p-type cladding layer 535 are selectively grown on the upper surface 331a of the n-type GaN substrate 331 exposed from the opening 542a of the mask 542 by using the MOCVD method.
  • a semiconductor element layer 530d is formed.
  • the semiconductor element layer 530d is formed to have a thickness approximately 1.2 ⁇ m larger than the semiconductor element layer 510c to be the blue semiconductor laser element 550. Thereafter, the mask 542 is removed. Thereby, the semiconductor element layers 510c and 530c are formed with the recess 8 therebetween.
  • a recess 6 whose bottom surface reaches the n-type GaN layer 512 for separating the semiconductor element layer 510c into the blue semiconductor laser elements 550a and 550b is formed, and the semiconductor element layer 530c is changed into the green semiconductor laser elements 530a, 530b and 530c.
  • p-side ohmic electrodes 516 and 536 are formed on the surfaces of the p-type cladding layers 515 and 535, respectively, as shown in FIG. To do.
  • a resist (not shown) extending in a stripe shape in the A direction (the direction perpendicular to the paper surface) is patterned on the p-side ohmic electrodes 516 and 536, and dry etching is performed using the resist as a mask.
  • two ridges 520 and three ridges 540 are formed in the p-type cladding layers 515 and 535, respectively.
  • the element structure of the blue semiconductor laser element part 550 and the element structure of the green semiconductor laser element part 530 are predetermined on the n-type GaN substrate 331 (upper surface 331a) in the element width direction (B direction) B direction. Formed at intervals.
  • each of the semiconductor element layers 510c and 530d other than the upper surfaces (surfaces on the C1 side) of the p-side ohmic electrodes 516 and 536 (the respective recesses 7 and 8) using a plasma CVD method or the like.
  • a current blocking layer 517 is formed so as to cover (including side and bottom surfaces).
  • the resist 543 is patterned so as to cover a predetermined region on the surface of the current blocking layer 517 using photolithography.
  • the resist 543 is patterned so that only a predetermined region of the current blocking layer 517 continuing above the ridge 520 (540) and on both sides of the ridge 520 (540) is exposed.
  • the resist 543 is formed corresponding to the thickness in the height direction (C direction) of the semiconductor element layers 510c and 530d, the element structure region of the blue semiconductor laser element portion 550 and the elements of the green semiconductor laser element portion 530 are formed.
  • an Au metal layer 545 (545a and 545b) is deposited on the opening 543a of the resist 543 (a portion where the p-side ohmic electrodes 516 and 536 are exposed) using a vacuum evaporation method. Thereby, the opening 543a is almost completely filled with the Au metal layer 545.
  • the upper surface (surface on the C1 side) of the Au metal layer 545 becomes substantially flush with chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • the thickness of the Au metal layer 545 is adjusted.
  • polishing is started in the C2 direction first from the upper surface of the Au metal layer 545b on the side where the green semiconductor laser element portion 530 is formed.
  • the height H1 from the upper surface 331a of the n-type GaN substrate 331 to the upper surface of the Au metal layer 545b is substantially equal to the height H2 from the upper surface 331a of the n-type GaN substrate 331 to the upper surface of the Au metal layer 545a.
  • the CMP process ends.
  • the Au metal layer 545a becomes the p-side pad electrode 518 (thickness t13), and the Au metal layer 545b becomes the p-side pad electrode 538 (thickness t14).
  • a two-wavelength semiconductor laser element portion 570 having substantially the same height from the lower surface 331b of the n-type GaN substrate 331 to the upper surface of the p-side pad electrode 518 (538) is obtained.
  • an n-side electrode 539 is formed on the lower surface 331b of the n-type GaN substrate 331. Thereby, a two-wavelength semiconductor laser element portion 570 in a wafer state is formed.
  • the wafer is cleaved in a bar shape in the B direction so as to have a resonator length of about 600 ⁇ m in the A direction, and at the position of the broken line 800 (see FIG. 26) along the A direction (direction perpendicular to the paper surface).
  • a plurality of chips of the two-wavelength semiconductor laser element portion 570 are formed.
  • a base 591 having strip-shaped wiring electrodes 592, 593, and 594 formed on the surface and having a predetermined shape is prepared.
  • the conductive adhesive layer 1 having a thickness of about 1 ⁇ m is formed in advance on the surface of the wiring electrode 592
  • the conductive adhesive layer 4 having a thickness of about 1 ⁇ m is formed on the surfaces of the wiring electrodes 593 and 594. It is formed in advance.
  • the two-wavelength semiconductor laser element portion 570 and the base 591 are joined by thermocompression bonding while facing each other.
  • the p-side pad electrode 518 corresponds to the wiring electrode 594 and the p-side pad electrode 538 corresponds to the wiring electrode 593.
  • the end of the base 591 on the A1 side and the resonator end face on the A1 side (light emitting side) of the two-wavelength semiconductor laser element portion 570 are arranged on substantially the same plane. The two-wavelength semiconductor laser element portion 570 and the base 591 are joined.
  • the red semiconductor laser element 210 and the base 591 are joined by thermocompression while facing each other.
  • the p-side pad electrode 17 is bonded so as to face the wiring electrode 592.
  • the red semiconductor is so arranged that the end of the base 591 on the A1 side and the resonator end face of the red semiconductor laser element 210 on the A1 side (light emitting side) are arranged on substantially the same plane.
  • the laser element 210 and the base 591 are joined.
  • the lower surface 591a (see FIG. 19) of the base 591 is joined to the upper surface of the base 206 (see FIG. 18), and the metal wires 596 are connected to the n-side electrodes 218 and 539 and the wiring electrodes 592 to 594, respectively. 599, 595, 597, and 598 are electrically connected by wire bonding. In this manner, the semiconductor laser device 500 (see FIG. 18) according to the fifth embodiment is formed.
  • the thickness t4 from the upper surface to the p-side pad electrode 538 has a relationship of t3> t4, so that the convex portion 515a of the p-type cladding layer 515 is formed from the lower surface 331b of the n-type GaN substrate 331 of the blue semiconductor laser element 550.
  • the difference (difference between the thickness t1 and the thickness t2) is determined by the thickness of the p-side electrode layer. It is possible to appropriately adjust using the difference (difference between the thickness t3 and the thickness t4). As a result, the thicknesses of the blue semiconductor laser element 550 and the green semiconductor laser element part 530 including the common n-type GaN substrate 331 can be made substantially uniform, so that the semiconductor laser device 500 (two-wavelength semiconductor laser element part 570) is connected to the junction.
  • the conductive adhesive layer 4 When bonding to the base 591 via the conductive adhesive layer 4 in the down mode, the conductive adhesive layer 4 does not need to absorb the difference in thickness of the semiconductor laser element, so the conductive adhesive layer 4 (4a and 4b) Can be minimized. As a result, an inconvenience that an electrical short circuit between the laser elements occurs due to the excess conductive adhesive layer 4 protruding after bonding is suppressed, so that the yield in forming the semiconductor laser device 500 is improved. be able to.
  • the thickness t13 of the p-side pad electrode 518 and the thickness t14 of the p-side pad electrode 538 have a relationship of t13> t14, the blue semiconductor laser element 550 and the green semiconductor laser element portion The difference in thickness from 530 can be reduced. Thereby, when this semiconductor laser device 500 is joined to the base 591 by the junction down method, the conductive adhesive layer 1 can be suppressed to the minimum necessary amount.
  • the conductive adhesive layer 4 to be used is the blue semiconductor laser element 550 and the green semiconductor laser. In the joint portion between the element portion 530 and the base 591, both can be suppressed to a necessary minimum amount.
  • the p-side pad electrodes 518 and 538 are configured so as to be in contact with the p-side ohmic electrode 516 and the p-side ohmic electrode 536, respectively.
  • the thicknesses of the blue semiconductor laser element 550 and the green semiconductor laser element portion 530 formed on the surface of the common n-type GaN substrate 331 (on the upper surface 331a) can be easily aligned. Can do.
  • the thickness of the p-type cladding layer 535 of the green semiconductor laser element portion 530 is formed to be larger than the thickness of the p-type cladding layer 515 of the blue semiconductor laser element portion 550, so that generally the blue semiconductor
  • the light confinement effect of the p-type cladding layer of the green semiconductor laser device which tends to be weaker than the light confinement effect of the p-type cladding layer in the laser element, can be improved.
  • the remaining effects of the fifth embodiment are similar to those of the aforementioned first embodiment.
  • the oscillation wavelength, the rated output, and the number (number of laser light emitting portions) of each of the green semiconductor laser element 30, the blue semiconductor laser element 50, and the red semiconductor laser element 10 are described.
  • the oscillation wavelength, the rated output, and the number of each of the green semiconductor laser element 30, the blue semiconductor laser element 50, and the red semiconductor laser element 10 described in each embodiment are applied to other embodiments. can do.
  • the numbers n1, n2, and n3 of the green semiconductor laser element 30, the blue semiconductor laser element 50, and the red semiconductor laser element 10 constituting the RGB three-wavelength semiconductor laser element unit 90 are three, although examples of two and one are shown, the present invention is not limited to this.
  • n1> n2> n3 may be satisfied, and the number of green semiconductor laser elements 30, blue semiconductor laser elements 50, and red semiconductor laser elements 10 is configured to be, for example, four, two, and one. May be. Alternatively, a plurality of red semiconductor laser elements 10 may be provided. For example, the number of green semiconductor laser elements 30, blue semiconductor laser elements 50, and red semiconductor laser elements 10 may be six, four, and two. You may comprise.
  • RGB three-wavelength semiconductor laser element unit may be configured by using one, or three green semiconductor laser elements each having an output of about 90 mW, and a blue semiconductor laser element having an output of about 150 mW.
  • the RGB three-wavelength semiconductor laser element unit may be configured by using four and one red semiconductor laser element having an output of about 800 mW.
  • the RGB three-wavelength semiconductor laser element unit 490 is configured to obtain white light using about 635 nm red light, about 520 nm green light, and about 480 nm blue light is shown.
  • the present invention is not limited to this. That is, as in the third embodiment, the RGB three-wavelength semiconductor laser element unit may be configured using red light of about 655 nm, green light of about 520 nm, and blue light of about 480 nm.
  • the red semiconductor laser element 210 is disposed on the monolithic two-wavelength semiconductor laser element unit 370 in which the green semiconductor laser element 330 and the blue semiconductor laser element 350 are integrated.
  • the present invention is not limited to this. That is, a red semiconductor laser element may be bonded on the green semiconductor laser element of the second embodiment, and a red semiconductor laser element may be bonded on the blue semiconductor laser element of the second embodiment.
  • the bases (91, 291, 391, 491, and 591) to which the RGB three-wavelength semiconductor laser element portion is bonded are configured by a substrate made of AlN.
  • the present invention is not limited to this.
  • the base may be configured using a conductive material having good thermal conductivity, such as Fe or Cu.
  • an RGB cladding layer is formed by a ridge waveguide semiconductor laser in which an upper cladding layer having a ridge is formed on a flat active layer, and a dielectric block layer is formed on the side surface of the ridge.
  • the semiconductor laser element portion is formed, the present invention is not limited to this.
  • the RGB three-wavelength semiconductor laser element portion may be formed by a type of semiconductor laser.
  • the well layer of the active layer of the green semiconductor laser element is configured to have a thickness of about 3.5 nm, but the present invention is not limited to this.
  • the well layer of the active layer of the green semiconductor laser element may be configured to have a thickness of 3 nm or more.
  • the present invention is not limited to this. That is, the thickness of the well layer of the active layer of the blue semiconductor laser element is not particularly limited.
  • the thickness of the well layer of the active layer of the blue semiconductor laser element is preferably smaller than the thickness of the well layer of the active layer of the green semiconductor laser element.
  • the active layer of the blue semiconductor laser element is configured to have the MQW structure and the active layer of the green semiconductor laser element is configured to have the SQW structure.
  • the invention is not limited to this. That is, the active layer of the blue semiconductor laser element may be configured to have an SQW structure, or the active layer of the green semiconductor laser element may be configured to have an MQW structure.
  • the well layer of the active layer of the green semiconductor laser element is made of InGaN having an In composition of 33%, but the present invention is not limited to this. That is, the composition of the well layer of the active layer of the green semiconductor laser element is not particularly limited.
  • the well layer of the active layer of the green semiconductor laser element is preferably configured to be made of InGaN having an In composition of 30% or more.
  • the plane orientation of the main surface of the active layer of the blue semiconductor laser element and the active layer of the green semiconductor laser element is a (11-22) plane that is a semipolar plane as an example of a nonpolar plane.
  • You may use as a surface orientation of the main surface of an active layer and the active layer of a green semiconductor laser element.
  • the semipolar plane is preferably a plane inclined by about 10 degrees or more and about 70 degrees or less with respect to the (0001) plane or the (000-1) plane.
  • the example in which the active layer made of InGaN having the (11-22) principal surface is formed on the upper surface of the n-type GaN substrate has been described. It is not limited to this.
  • an active layer made of InGaN having a (11-22) principal surface may be formed on the upper surface of a substrate made of Al 2 O 3 , SiC, LiAlO 2, LiGaO 2 or the like.
  • the well layer of the blue semiconductor laser element and the well layer of the green semiconductor laser element are made of InGaN.
  • the present invention is not limited to this.
  • the well layer of the blue semiconductor laser element and the well layer of the green semiconductor laser element may be composed of AlGaN, AlInGaN, InAlN, or the like. At this time, the thickness and composition of the active layer of the blue semiconductor laser element are appropriately changed.
  • the blue semiconductor laser element and the barrier layer of the green semiconductor laser element are made of InGaN.
  • the present invention is not limited to this.
  • the barrier layers of the blue semiconductor laser element and the green semiconductor laser element may be composed of GaN.
  • an active layer made of InGaN having a (11-22) principal surface is formed on an n-type GaN substrate having a (11-22) principal surface.
  • the present invention is not limited to this. That is, an r-plane ((1-102) plane) in which a nitride-based semiconductor (for example, InGaN) having a (11-22) plane, a (1-103) plane, or a (1-126) plane is pre-grown.
  • a sapphire substrate having the main surface may be used.
  • an active layer (well layer) made of InGaN is formed on an n-type GaN substrate
  • an active layer (well layer) made of InGaN may be formed on an Al x Ga 1-x N substrate.
  • an active layer (well layer) made of InGaN may be formed on the In y Ga 1-y N substrate.
  • the In composition of the In y Ga 1-y N substrate it is possible to reduce strain in the active layer (well layer).
  • the active layer (well layer thickness and In composition) of the blue semiconductor laser element and the active layer (well layer) thickness and In composition of the green semiconductor laser element are appropriately changed.
  • the plane orientation of the main surface of the active layer of the blue semiconductor laser element and the active layer of the green semiconductor laser element is a semipolar plane as an example of a nonpolar plane (11 ⁇ 22)
  • a semipolar plane 11 ⁇ 22
  • other nonpolar planes nonpolar planes and semipolar planes
  • the plane orientations of the main surfaces of the active layer of the blue semiconductor laser element and the active layer of the green semiconductor laser element may be used as the plane orientations of the main surfaces of the active layer of the blue semiconductor laser element and the active layer of the green semiconductor laser element.
  • the surface orientations of the main surfaces of the active layer of the blue semiconductor laser element and the active layer of the green semiconductor laser element are nonpolar, such as a-plane ((11-20) plane) and m-plane ((1-100) plane)
  • the upper surface position of the p-side pad electrode 518 of the blue semiconductor laser element 550 and the upper surface position of the p-side pad electrode 538 of the green semiconductor laser element portion 530 are substantially the same position.
  • the base 591 is joined to the lower surface
  • the present invention is not limited to this.
  • the two-wavelength semiconductor laser element 570 may be configured to be bonded to the lower surface of the base 591 in a state where a slight shift has occurred in the upper surface position of the p-side pad electrode.
  • the thickness of the blue semiconductor laser element 550 including the n-type GaN substrate 331 is smaller than the thickness of the green semiconductor laser element 530 including the n-type GaN substrate 331 is shown.
  • the present invention is not limited to this. That is, the thickness of the blue semiconductor laser element 550 including the n-type GaN substrate 331 is formed to be larger than the thickness of the green semiconductor laser element 530 including the n-type GaN substrate 331, thereby forming a two-wavelength semiconductor laser element. Also good. In this case, the thickness of the p-side pad electrode 518 of the blue semiconductor laser element 550 is formed smaller than the thickness of the p-side pad electrode 538 of the green semiconductor laser element portion 530.
  • the upper surfaces (C2 side) of the p-side pad electrodes 518 and 538 are aligned in substantially the same plane, so that the two-wavelength semiconductor laser element is attached to the base 591 via the conductive adhesive layer having substantially the same thickness in the C direction. It is possible to fix.
  • the blue semiconductor laser element and the green semiconductor laser element are formed on the surface of the n-type GaN substrate.
  • the present invention is not limited to this.
  • the blue semiconductor laser element and the green semiconductor laser element may be formed after forming a peeling layer, a common n-type contact layer, or the like on the surface of the growth substrate. Then, after bonding the two-wavelength semiconductor laser element to the support base or the red semiconductor laser element, only the growth substrate is peeled off, so that the “substrate” of the present invention comprises only an n-type contact layer or the like.
  • a device may be formed.
  • an n-side electrode is formed on the lower surface of the n-type contact layer after the growth substrate is peeled off.
  • the common n-type contact layer may also serve as the n-type cladding layer of one laser element.
  • the thickness of the p-type cladding layer of the green semiconductor laser element is larger than the thickness of the p-type cladding layer of the blue semiconductor laser element, but the present invention is not limited to this. Absent.
  • the thickness of the blue semiconductor laser element (the thickness from the lower surface of the n-type GaN substrate to the upper surface of the p-type cladding layer) is the thickness of the green semiconductor laser device (the thickness from the lower surface of the n-type GaN substrate to the upper surface of the p-type cladding layer).
  • the thickness of the p-type cladding layer (first semiconductor layer) of the blue semiconductor laser element is larger than the thickness of the p-type cladding layer (second semiconductor layer) of the green semiconductor laser element. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

 所望の色相を容易に得ることが可能な半導体レーザ装置が得られる。この半導体レーザ装置(100)は、1つまたは複数のレーザ発光部を有する緑色半導体レーザ素子(30)と、1つまたは複数のレーザ発光部を有する青色半導体レーザ素子(50)と、1つまたは複数のレーザ発光部を有する赤色半導体レーザ素子(10)とを備える。そして、緑色半導体レーザ素子、青色半導体レーザ素子および赤色半導体レーザ素子のうちの少なくとも2つの半導体レーザ素子は、相対的に合計出力の小さい半導体レーザ素子のレーザ発光部の個数が、相対的に合計出力が大きい複数のレーザ発光部を有する半導体レーザ素子のレーザ発光部の個数、または、相対的に出力が大きい1つのレーザ発光部を有する半導体レーザ素子の個数よりも多い関係を有する。

Description

半導体レーザ装置および表示装置
 本発明は、半導体レーザ装置および表示装置に関し、特に、複数の半導体レーザ素子を備えた半導体レーザ装置および表示装置に関する。
 近年、光源としてレーザ光を用いたディスプレイの開発が盛んに行われている。特に、小型ディスプレイ用の光源として半導体レーザ素子を用いることが期待されている。この場合、RGB各色を出射する半導体レーザを1つのパッケージに搭載することにより、光源の更なる小型化が可能となる。
 そこで、従来では、赤色半導体レーザ素子と緑色半導体レーザ素子と青色半導体レーザ素子とを搭載した発光装置が、特開2001-230502号公報に提案されている。
 特開2001-230502号公報には、400nm帯の光を発光可能なレーザ発振部を有する第1の発光素子と、500nm帯および700nm帯の光をそれぞれ発光可能な2つのレーザ発振部を有する第2の発光素子とを備えた発光装置が開示されている。この発光装置では、第1の発光素子および第2の発光素子が、光の3原色に対応する赤色光(R)、緑色光(G)および青色光(B)を出射することにより、フルカラー表示装置の光源としての利用が可能なように構成されている。なお、この発光装置では、各レーザ発振部(発光点)は、発振波長帯域ごとに1個ずつ設けられている。
 ここで、たとえば、理想的な白色光を再現するフルカラー表示装置では、RGB各色の光束(ルーメン)比で表した場合、R:G:B=約2:7:1となるように各発光素子の光出力が調整される。約650nmの赤色光と、約530nmの緑色光と、約480nmの青色光とを用いる場合、レーザ出力換算比で、R:G:B=約18.7:8.1:7.1に調整されることにより理想的な白色光が再現できる。また、約650nmの赤色光と、約550nmの緑色光と、約460nmの青色光とを用いる場合、レーザ出力換算比で、R:G:B=約18.7:7:16.7に調整されることにより理想的な白色光が再現できる。このように、フルカラー表示装置では、レーザ光の発振波長に応じて各発光素子に要求される出力には大きな差が求められる。特に、赤色光を発する発光素子には、緑色光や青色光を発する発光素子よりも大きな出力が必要とされる。
特開2001-230502号公報
 しかしながら、上記特開2001-230502号公報に開示された発光装置では、各レーザ発振部が発振波長帯域(赤色、緑色および青色の3つの波長帯域)ごとに1個ずつ設けられているため、赤色、緑色および青色のレーザ発振部ごとに出力を異ならせて所望の色相(混色)を得たい場合であっても、これに柔軟に対応できない場合があるという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、所望の色相を容易に得ることが可能な半導体レーザ装置および表示装置を提供することである。
 上記目的を達成するために、この発明の第1の局面による半導体レーザ装置は、1つまたは複数のレーザ発光部を有する緑色半導体レーザ素子と、1つまたは複数のレーザ発光部を有する青色半導体レーザ素子と、1つまたは複数のレーザ発光部を有する赤色半導体レーザ素子とを備え、緑色半導体レーザ素子、青色半導体レーザ素子および赤色半導体レーザ素子のうちの少なくとも2つの半導体レーザ素子は、相対的に合計出力の小さい半導体レーザ素子のレーザ発光部の個数が、相対的に合計出力が大きい複数のレーザ発光部を有する半導体レーザ素子のレーザ発光部の個数、または、相対的に出力が大きい1つのレーザ発光部を有する半導体レーザ素子の個数よりも多い関係を有する。
 この発明の第1の局面による半導体レーザ装置では、上記のように、緑色半導体レーザ素子、青色半導体レーザ素子および赤色半導体レーザ素子のうちの少なくとも2つの半導体レーザ素子において、相対的に合計出力の小さい半導体レーザ素子のレーザ発光部の個数を、相対的に合計出力が大きい複数のレーザ発光部を有する半導体レーザ素子のレーザ発光部の個数、または、相対的に出力が大きい1つのレーザ発光部を有する半導体レーザ素子の個数よりも多く構成することによって、出力または合計出力が大きい半導体レーザ素子を基準に半導体レーザ装置を構成する場合、合計出力が相対的に小さく設定される半導体レーザ素子では、レーザ素子を構成する個々の半導体レーザ素子の個数がより多く設けられているので、半導体レーザ素子の合計出力が容易に調整されて所望の出力を有するように構成することができる。これにより、相対的に出力(合計出力)が大きい半導体レーザ素子と、出力が適切に調整された相対的に小さい出力(合計出力)の半導体レーザ素子とを組み合わせることができるので、半導体レーザ装置を光源として利用する場合に、所望の色相を容易に得ることができる。なお、たとえば、赤色、緑色および青色の半導体レーザ素子を用いて白色光を得る際、緑色光および青色光を出射するレーザ素子が、大きな出力を得やすい赤色半導体レーザ素子と比較して大きな出力を得るのが難しい場合に、緑色および青色半導体レーザ素子の数を赤色半導体レーザ素子の数よりも多く設けることができるので、緑色および青色半導体レーザ素子の出力を容易に調整することができる。これにより、理想的な白色光を容易に得ることができる。
 上記第1の局面による半導体レーザ装置において、好ましくは、緑色半導体レーザ素子、青色半導体レーザ素子および赤色半導体レーザ素子の各々のレーザ発光部の個数を、それぞれ、n1、n2およびn3とした場合、n1>n2>n3の関係を有する。このように構成すれば、たとえば、上記3種類の半導体レーザ素子を用いて白色光を得る際、緑色光および青色光を出射するレーザ発振部は、比較的大きな出力が得られやすい赤色半導体レーザ素子と比較して大きな出力を得るのが難しい場合に、青色光および緑色光を出射するレーザ発振部の数を赤色半導体レーザ素子のレーザ発振部の数よりも優先して多く設けることができる。これにより、緑色および青色半導体レーザ素子の出力を容易に調整することができるので、理想的な白色光が得られやすい半導体レーザ装置を容易に形成することができる。
 また、緑色半導体レーザ素子または青色半導体レーザ素子のレーザ発光部の個数が、赤色半導体レーザ素子のレーザ発光部の個数よりも多い場合、緑色または青色半導体レーザ素子における個々のレーザ発光部の出力を小さく抑えることができるので、個々のレーザ発光部の出力が小さい分、緑色半導体レーザ素子または青色半導体レーザ素子の温度上昇を抑制することができる。加えて、緑色または青色半導体レーザ素子におけるレーザ発光部の面積をレーザ発光部の個数に応じて増やすことができるので、半導体レーザ素子の発熱をより広い表面積を介して放熱させることができる。これにより、緑色半導体レーザ素子または青色半導体レーザ素子の劣化が抑制されるので、半導体レーザ素子の長寿命化を図ることができる。
 上記第1の局面による半導体レーザ装置において、好ましくは、緑色半導体レーザ素子および青色半導体レーザ素子は、緑色半導体レーザ素子と青色半導体レーザ素子とに共通の基板上に形成されている。このように構成すれば、異なる発振波長の光を出射する緑色半導体レーザ素子および青色半導体レーザ素子を別々の基板上に形成した後に、所定の間隔を隔ててパッケージ内に配置する場合と比較して、緑色半導体レーザ素子および青色半導体レーザ素子が共通の基板上に集積化されて形成されるので、集積化される分、半導体レーザ素子の幅を小さくすることができる。これにより、集積化された半導体レーザ素子をパッケージ内に容易に配置することができる。
 上記第1の局面による半導体レーザ装置において、好ましくは、緑色半導体レーザ素子は、複数のレーザ発光部が形成されたモノリシック型であるとともに、青色半導体レーザ素子は、複数のレーザ発光部が形成されたモノリシック型である。このように構成すれば、緑色半導体レーザ素子および青色半導体レーザ素子が、発振波長別にそれぞれに共通の基板上に集積化されて形成されるので、集積化される分、それぞれの半導体レーザ素子の幅を小さくすることができる。これにより、レーザ発光部の数を多く必要とする場合においても、集積化されたレーザ素子の状態でパッケージ内に容易に配置することができる。
 上記第1の局面による半導体レーザ装置において、好ましくは、赤色半導体レーザ素子は、緑色半導体レーザ素子または青色半導体レーザ素子の少なくともいずれかに接合されている。このように構成すれば、要求される個数が最も多いためにレーザ発光部の数を横並びに増やして形成した緑色半導体レーザ素子と、赤色半導体レーザ素子および青色半導体レーザ素子とを直線的(たとえば横一列方向)に配置する場合と比較して、各々のレーザ素子のレーザ発光部を、レーザ素子の接合方向にも並列的に配置して互いに近づけることができるので、複数のレーザ発光部がパッケージの中央領域に集まるように半導体レーザ素子を配置することができる。これにより、半導体レーザ装置から出射される複数のレーザ出射光を光学系の光軸に近づけることができるので、半導体レーザ装置と光学系との調整を容易に行うことができる。
 上記第1の局面による半導体レーザ装置において、好ましくは、緑色半導体レーザ素子、青色半導体レーザ素子および赤色半導体レーザ素子が接合される基台と、外部と電気的に接続されるとともに互いに絶縁された複数の端子とをさらに備え、緑色半導体レーザ素子は、基台とは反対側の表面上に形成された電極を含み、緑色半導体レーザ素子のレーザ発光部の個数をn1とした場合、n1個のうちの少なくとも2つの緑色半導体レーザ素子の電極は、各々が異なる端子に接続されている。このように構成すれば、赤色半導体レーザ素子や青色半導体レーザ素子よりもレーザ発光部の数が多い緑色半導体レーザ素子に対して、レーザ発光部の数に応じて個別に駆動させることができるので、要求される合計出力に応じて緑色半導体レーザ素子の出力を容易に調整することができる。
 上記緑色半導体レーザ素子および青色半導体レーザ素子が共通の基板上に形成されている構成において、好ましくは、緑色半導体レーザ素子は、基板の表面上に形成されるとともに半極性面の主面を有する第1活性層を含み、青色半導体レーザ素子は、基板の表面上に形成されるとともに半極性面と略同一の面方位の主面を有する第2活性層を含み、第1活性層は、圧縮歪を有するとともに3nm以上の厚みを有する第1井戸層を含み、第2活性層は、圧縮歪を有する第2井戸層を含む。ここで、「緑色半導体レーザ素子」とは、発振波長が約500nm以上約565nm以下の範囲にある半導体レーザ素子を指す。また、本発明における「厚み」とは、活性層の量子井戸構造が単一量子井戸(SQW)構造を有する場合は、単一の井戸層の厚みであり、活性層の量子井戸構造が多重量子井戸(MQW)構造を有する場合は、MQW構造を構成する多層の井戸層のそれぞれの井戸層の厚みを示している。また、圧縮歪とは、下地層と井戸層との間の格子定数の差に起因して発生する圧縮力による歪のことである。たとえば、井戸層の無歪での面内格子定数が、基板の無歪での面内格子定数に比べて大きい状態で、井戸層が基板に擬似格子整合して成長されている場合や、歪のない井戸層の面内格子定数に比べて小さい面内格子定数を有する層(クラッド層や障壁層など)の上に井戸層が擬似格子整合して成長されている場合などにおいて、圧縮歪は発生する。このように構成すれば、同一の基板の表面上に、半極性面の主面を有する第1活性層を含む緑色半導体レーザ素子および半極性面の主面を有する第2活性層を含む青色半導体レーザ素子を形成する場合において、青色半導体レーザ素子の光学利得が最大化される光導波路の延びる方向と緑色半導体レーザ素子の光学利得が最大化される光導波路の延びる方向とを略一致させることができる。
 この場合、好ましくは、第1井戸層は、InGaNからなる。このように構成すれば、さらに効率の高い緑色半導体レーザ素子を作製することができる。
 上記第1活性層が圧縮歪を有する第1井戸層を含み、第2活性層が圧縮歪を有する第2井戸層を含む構成において、好ましくは、第2井戸層は、InGaNからなる。このように構成すれば、さらに効率の高い青色半導体レーザ素子を作製することができる。
 上記第1活性層が圧縮歪を有する第1井戸層を含み、第2活性層が圧縮歪を有する第2井戸層を含む構成において、好ましくは、第1井戸層の厚みは、第2井戸層の厚みよりも大きい。ここで、半極性面の主面を有する第1活性層を含む緑色半導体レーザ素子と、半極性面の主面を有する第2活性層を含む青色半導体レーザ素子とでは、緑色半導体レーザ素子よりも活性層における圧縮歪が小さく発振波長の短い青色半導体レーザ素子の方が、光学利得が最大化される光導波路の延びる方向の変化は起こりにくいと考えられるので、青色半導体レーザ素子の第2活性層の第2井戸層の厚みを、緑色半導体レーザ素子の第1活性層の第1井戸層の厚みよりも小さくすることができる。これにより、青色半導体レーザ素子の第2活性層において、第2井戸層の結晶格子と、第2井戸層が成長されている下地層の結晶格子との格子定数が異なることにより生じるミスフィット転位の発生を抑制することができる。
 上記第1活性層が圧縮歪を有する第1井戸層を含み、第2活性層が圧縮歪を有する第2井戸層を含む構成において、好ましくは、半極性面は、(0001)面または(000-1)面に対して約10度以上約70度以下傾いた面である。このように構成すれば、より確実に、緑色半導体レーザ素子と青色半導体レーザ素子とで光学利得が最大化される光導波路の延びる方向を略一致させることができる。
 上記第1活性層が圧縮歪を有する第1井戸層を含み、第2活性層が圧縮歪を有する第2井戸層を含む構成において、好ましくは、青色半導体レーザ素子および緑色半導体レーザ素子は、それぞれ、半極性面の主面に[0001]方向を投影した方向に延びる光導波路をさらに含む。ここで、半導体レーザ素子の光学利得を最大化するためには、光導波路を活性層からの発光の主たる偏光方向に対して垂直に形成することが必要とされる。すなわち、半極性面の主面に[0001]方向を投影した方向に光導波路を形成することによって、青色半導体レーザ素子および緑色半導体レーザ素子の光学利得をそれぞれ最大化することができるとともに、青色半導体レーザ素子の青色光と緑色半導体レーザ素子の緑色光とを共通の共振器面から出射させることができる。
 上記緑色半導体レーザ素子および青色半導体レーザ素子が共通の基板上に形成されている構成において、好ましくは、青色半導体レーザ素子は、基板の表面上に形成されるとともに非極性面の主面を有する窒化物系半導体からなる第3活性層を含み、緑色半導体レーザ素子は、基板の表面上に形成されるとともに非極性面と略同一の面方位の主面を有する窒化物系半導体からなる第4活性層を含む。なお、本発明において、「非極性面」とは、極性面であるc面((0001)面)以外のすべての結晶面を含む広い概念であり、m面((1-100)面)およびa面((11-20)面)などの(H、K、-H-K、0)面の無極性面と、c面((0001)面)から傾いた面(半極性面)とを含む。このように構成すれば、極性面であるc面の主面を有する場合に比べて、第1活性層および第2活性層に発生するピエゾ電界を小さくすることができる。これにより、ピエゾ電界による第1活性層の第1井戸層および第2活性層の第2井戸層におけるエネルギーバンドの傾きを小さくすることができるので、青色半導体レーザ素子および緑色半導体レーザ素子の発振波長の変化量(変動幅)をより小さくすることができる。この結果、同一の基板の表面上に形成された青色半導体レーザ素子および緑色半導体レーザ素子を備える集積型の半導体レーザ装置の歩留まりの低下を抑制することができる。
 この場合、好ましくは、第3活性層は、InGaNからなる第3井戸層を有する量子井戸構造を有し、第4活性層は、InGaNからなる第4井戸層を有する量子井戸構造を有し、第3井戸層の厚みは、第4井戸層の厚みよりも大きい。このように構成すれば、非極性面ではピエゾ電界の影響が小さいので、青色半導体レーザ素子および緑色半導体レーザ素子の発振波長は、c面((0001)面)に形成する場合と比べて、それぞれのピーク波長よりも短波長側にシフトされる。これにより、青色半導体レーザ素子および緑色半導体レーザ素子の発振波長を長波長側にシフトさせるためには、c面に形成する場合よりも、青色半導体レーザ素子の第3井戸層および緑色半導体レーザ素子の第4井戸層のIn組成をより大きくする必要がある。さらに、InGaNからなる第3井戸層および第4井戸層を形成する際に、緑色半導体レーザ素子の発振波長は、青色半導体レーザ素子の発振波長と比べて大きいので、緑色半導体レーザ素子の第4井戸層は、青色半導体レーザ素子の第3井戸層と比べてIn組成をより大きくする必要がある。このように、In組成を大きくすると、第3井戸層および第4井戸層の面内の格子定数が、第3井戸層および第4井戸層を成長させる面の結晶格子の格子定数よりさらに大きくなることによって、第3井戸層および第4井戸層の面内の圧縮歪がより大きく、第3井戸層および第4井戸層にミスフィット転位が発生しやすい。また、緑色半導体レーザ素子の第4井戸層は、青色半導体レーザ素子の第3井戸層よりも圧縮歪が大きく、結晶欠陥が発生しやすい。この場合に、青色半導体レーザ素子の第3活性層の第3井戸層の厚みを、緑色半導体レーザ素子の第4活性層の第4井戸層の厚みよりも大きくすることによって、In組成が大きいために結晶欠陥が発生しやすい第4井戸層の厚みを小さくすることができるので、緑色半導体レーザ素子の第4井戸層において、結晶欠陥が生じるのを抑制することができる。
 上記緑色半導体レーザ素子が第3活性層を含み、青色半導体レーザ素子が第4活性層を含む構成において、好ましくは、非極性面は、略(11-22)面である。このように構成すれば、略(11-22)面は、他の半極性面と比べて、ピエゾ電界がより小さいので、青色半導体レーザ素子および緑色半導体レーザ素子の発振波長の変化量を小さくすることができる。
 上記緑色半導体レーザ素子が第3活性層を含み、青色半導体レーザ素子が第4活性層を含む構成において、好ましくは、基板の主面は、非極性面と略同一の面方位を有する。このように構成すれば、青色半導体レーザ素子の第3活性層および緑色半導体レーザ素子の第4活性層と略同一の非極性面の面方位の主面を有する基板上に半導体層を成長させるだけで、非極性面の主面を有する第3活性層を含んだ青色半導体レーザ素子および非極性面の主面を有する第4活性層を含んだ緑色半導体レーザ素子を容易に形成することができる。
 上記緑色半導体レーザ素子および青色半導体レーザ素子が共通の基板上に形成されている構成において、好ましくは、青色半導体レーザ素子は、基板の一方側の表面上に形成されるとともに、基板側から第5活性層、第1半導体層および第1電極の順に積層されて構成され、緑色半導体レーザ素子は、青色半導体レーザ素子に対して隣接して並ぶように形成されるとともに、基板側から第6活性層、第2半導体層および第2電極の順に積層されて構成され、第1電極上に第1融着層を介して形成され、かつ、第2電極上に第2融着層を介して形成された支持基台をさらに備え、基板は、一方側と反対側に他方側の表面を有し、他方側の表面から一方側の第1半導体層の表面までの青色半導体レーザ素子の厚みをt1、他方側の表面から一方側の第2半導体層の表面までの緑色半導体レーザ素子の厚みをt2、第1電極の厚みをt3および第2電極の厚みをt4とした場合、t1<t2のときt3>t4の関係を有し、t1>t2のときt3<t4の関係を有する。このように構成すれば、たとえば、青色半導体レーザ素子の基板の他方側の表面から第1半導体層の一方側の表面までの厚みt1と、緑色半導体レーザ素子の基板の他方側の表面から第2半導体層の一方側の表面までの厚みt2とに差が生じる場合であっても、第1電極の厚みt3および第2電極の厚みt4を適宜調整することによって、第1電極を含めた青色半導体レーザ素子の厚み(t1+t3)と第2電極を含めた緑色半導体レーザ素子の厚み(t2+t4)との差をより小さくすることができる。すなわち、青色半導体レーザ素子および緑色半導体レーザ素子における基板から第1半導体層または第2半導体層までの各々の厚みt1およびt2に差が生じても、その差(厚みt1と厚みt2との差)を第1電極および第2電極の厚みの違い(t3とt4との差)を利用して調整することができる。これにより、共通の基板を含む青色半導体レーザ素子および緑色半導体レーザ素子の厚みを揃えることができるので、この半導体レーザ装置をジャンクションダウン方式などにより融着層(第1融着層および第2融着層)を介して支持基台に接合する場合、融着層に半導体レーザ素子の厚みの差を吸収させる必要がないので、融着層を必要最小限の量に抑えることができる。この結果、接合後に余分な融着層がはみ出すことに起因してレーザ素子同志の電気的な短絡が生じるという不都合が抑制されるので、半導体レーザ素子を形成する際の歩留まりを向上させることができる。
 この場合、好ましくは、支持基台は、サブマウントである。このように構成すれば、この半導体レーザ装置をジャンクションダウン方式により融着層(第1融着層および第2融着層)を介してサブマウントに接合する場合、使用する融着層を2つの半導体レーザ素子においてそれぞれ必要最小限の量に抑えることができる。したがって、歩留まりが向上する半導体レーザ装置を容易に形成することができる。
 上記青色半導体レーザ素子が第1電極を有し、緑色半導体レーザ素子が第2電極を有する構成において、好ましくは、第1電極は、第1パッド電極からなり、第2電極は、第2パッド電極からなる。このように構成すれば、第1パッド電極および第2パッド電極の厚みをそれぞれ適切に調整することにより、共通の基板の一方側の表面上に形成された青色半導体レーザ素子および緑色半導体レーザ素子の厚みを容易に揃えることができる。
 この場合、好ましくは、t3>t4の場合、第1パッド電極の厚みは、第2パッド電極の厚みよりも大きく、t3<t4の場合、第2パッド電極の厚みは、第1パッド電極の厚みよりも大きい。このように構成すれば、第1パッド電極および第2パッド電極の厚みを上記の条件に応じて調整することにより、共通の基板の一方側の表面上に形成された青色半導体レーザ素子および緑色半導体レーザ素子の厚みが揃えられるので、この半導体レーザ装置をジャンクションダウン方式により融着層を介してサブマウントに接合する場合、使用する融着層を2つの半導体レーザ素子においてそれぞれ必要最小限の量に抑えることができる。
 この発明の第2の局面による表示装置は、1つまたは複数のレーザ発光部を有する赤色半導体レーザ素子と、1つまたは複数のレーザ発光部を有する緑色半導体レーザ素子と、1つまたは複数のレーザ発光部を有する青色半導体レーザ素子とを含み、赤色半導体レーザ素子、緑色半導体レーザ素子および青色半導体レーザ素子のうちの少なくとも2つの半導体レーザ素子は、相対的に長い波長を出射する半導体レーザ素子のレーザ発光部の個数が、相対的に短い波長を出射する半導体レーザ素子のレーザ発光部の個数よりも多い関係を有する半導体レーザ装置と、半導体レーザ装置からの光の変調を行う変調手段とを備える。
 この発明の第2の局面による表示装置では、上記のように、緑色半導体レーザ素子、青色半導体レーザ素子および赤色半導体レーザ素子のうちの少なくとも2つの半導体レーザ素子において、相対的に合計出力の小さい半導体レーザ素子のレーザ発光部の個数を、相対的に合計出力が大きい複数のレーザ発光部を有する半導体レーザ素子のレーザ発光部の個数、または、相対的に出力が大きい1つのレーザ発光部を有する半導体レーザ素子の個数よりも多く構成することによって、出力または合計出力が大きい半導体レーザ素子を基準に半導体レーザ装置を構成する場合、合計出力が相対的に小さく設定される半導体レーザ素子では、レーザ素子を構成する個々の半導体レーザ素子の個数がより多く設けられているので、半導体レーザ素子の合計出力が容易に調整されて所望の出力を有するように構成することができる。これにより、相対的に出力(合計出力)が大きい半導体レーザ素子と、出力が適切に調整された相対的に小さい出力(合計出力)の半導体レーザ素子とを組み合わせることができるので、半導体レーザ装置を光源として利用する場合に、所望の色相を容易に得ることができる。なお、たとえば、赤色、緑色および青色の半導体レーザ素子を用いて白色光を得る際、緑色光および青色光を出射するレーザ素子が、大きな出力を得やすい赤色半導体レーザ素子と比較して大きな出力を得るのが難しい場合に、緑色および青色半導体レーザ素子の数を赤色半導体レーザ素子の数よりも多く設けることができるので、緑色および青色半導体レーザ素子の出力を容易に調整することができる。これにより、理想的な白色光源が容易に得られる半導体レーザ装置を得ることができる。
本発明の第1実施形態による半導体レーザ装置の構造を示した正面図である。 本発明の第1実施形態による半導体レーザ装置の詳細構造を示した断面図である。 本発明の第1実施形態による半導体レーザ装置が搭載された一例によるプロジェクタ装置の構成図である。 本発明の第1実施形態による半導体レーザ装置が搭載された他の例によるプロジェクタ装置の構成図である。 本発明の第1実施形態による半導体レーザ装置が搭載された他の例によるプロジェクタ装置における制御部が時系列的に信号を発信する状態を示したタイミングチャートである。 本発明の第2実施形態による半導体レーザ装置の構造を示した平面図である。 本発明の第2実施形態による半導体レーザ装置の構造を示した断面図である。 本発明の第2実施形態による半導体レーザ装置の構造を示した断面図である。 本発明の第3実施形態による半導体レーザ装置の構造を示した平面図である。 本発明の第3実施形態による半導体レーザ装置の構造を示した断面図である。 本発明の第3実施形態による半導体レーザ装置を構成する青色半導体レーザ素子の活性層の構造を示した断面図である。 本発明の第3実施形態による半導体レーザ装置を構成する緑色半導体レーザ素子の活性層の構造を示した断面図である。 本発明の第3実施形態の変形例による半導体レーザ装置を構成する青色半導体レーザ素子の活性層の構造を示した断面図である。 本発明の第4実施形態による半導体レーザ装置の構造を示した平面図である。 本発明の第4実施形態による半導体レーザ装置の構造を示した断面図である。 本発明の第4実施形態による半導体レーザ装置の構造を示した断面図である。 本発明の第4実施形態による半導体レーザ装置の構造を示した平面図である。 本発明の第5実施形態による半導体レーザ装置の構造を示した上面図である。 図18の5000-5000線に沿った断面図である。 本発明の第5実施形態による半導体レーザ装置を構成する2波長半導体レーザ素子部の構造を示した断面図である。 本発明の第5実施形態による半導体レーザ装置の製造プロセスを説明するための図である。 本発明の第5実施形態による半導体レーザ装置の製造プロセスを説明するための図である。 本発明の第5実施形態による半導体レーザ装置の製造プロセスを説明するための図である。 本発明の第5実施形態による半導体レーザ装置の製造プロセスを説明するための図である。 本発明の第5実施形態による半導体レーザ装置の製造プロセスを説明するための図である。 本発明の第5実施形態による半導体レーザ装置の製造プロセスを説明するための図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 (第1実施形態)
 まず、図1および図2を参照して、本発明の第1実施形態による半導体レーザ装置100の構造について説明する。
 本発明の第1実施形態による半導体レーザ装置100では、図1に示すように、RGB3波長半導体レーザ素子部90が、AuSn半田などの導電性接着層1を介して台座110の上面(C2側の面)上に固定されている。また、RGB3波長半導体レーザ素子部90は、約655nmの発振波長を有する赤色半導体レーザ素子10と、約530nmの発振波長を有する緑色半導体レーザ素子30と、約460nmの波長を有する青色半導体レーザ素子50とは、各色のレーザ光が略平行で、かつ、半導体レーザ装置100の正面方向に出射されるように、AuSn半田などの導電性接着層2を介して基台91の上面上に所定の間隔を隔てて固定されている。
 また、1つの赤色半導体レーザ素子10は、約800mWの定格出力を有するとともに、1つの緑色半導体レーザ素子30は、約90mWの定格出力を有している。また、1つの青色半導体レーザ素子50は、約300mWの定格出力を有している。
 ここで、赤色光655nm、緑色光530nmおよび青色光460nmを用いて白色光を得るためには、RGB3波長半導体レーザ素子部90における上記3種類の半導体レーザ素子のワット換算の出力比を、赤色:緑色:青色=24.5:8.1:16.7に調整することが要求される(光束(ルーメン)比では、赤色光:緑色光:青色光=2:7:1に相当する)。
 したがって、図1に示すように、RGB3波長半導体レーザ素子部90は、3個の緑色半導体レーザ素子30と、2個の青色半導体レーザ素子50と、1個の赤色半導体レーザ素子10とによって構成されている。すなわち、緑色半導体レーザ素子30の個数n1と青色半導体レーザ素子50の個数n2とを比較すると、相対的に合計出力の小さい緑色半導体レーザ素子30の個数n1が、相対的に合計出力の大きい青色半導体レーザ素子50の個数n2よりも多く(n1>n2)設けられている。また、緑色半導体レーザ素子30の個数n1と赤色半導体レーザ素子10の個数n3とを比較しても、相対的に合計出力の小さい緑色半導体レーザ素子30の個数n1が、相対的に合計出力の大きい赤色半導体レーザ素子50の個数n3よりも多く(n1>n3)設けられている。
 また、第1実施形態では、図1に示すように、各色半導体レーザ素子は、半導体レーザ装置100の正面(各色レーザ光の出射方向)側から見て、一方の側端部(B1側)から他方の側端部(B2側)に向かって、緑色、青色、緑色、赤色、緑色および青色の順に並ぶように配置されている。これにより、RGB3波長半導体レーザ素子部90では、各色の半導体レーザ素子が配列する方向(B方向)において最も個数の多い緑色半導体レーザ素子30が、赤色半導体レーザ素子10および青色半導体レーザ素子50の両側に配置されるので、3つの発光点(レーザ発光部)を有する緑色光、2つの発光点を有する青色光、および、1つの発光点の赤色光が適切に混合された状態の白色光が得られるように構成されている。
 また、図2に示すように、赤色半導体レーザ素子10は、n型GaAs基板11の上面上に、SiドープGaAsからなるn型コンタクト層12と、SiドープAlGaInPからなるn型クラッド層13と、AlGaInP障壁層およびGaInP井戸層が交互に積層されたMQW活性層14、および、ZnドープAlGaInPからなるp型クラッド層15とが形成されている。
 また、p型クラッド層15は、レーザ光の出射方向に沿ってストライプ状に延びる凸部と、凸部の両側(B方向)に延びる平坦部とを有している。このp型クラッド層15の凸部によって、光導波路を構成するための幅約2.5μmのリッジ20が形成されている。また、p型クラッド層15のリッジ20以外の上面上を覆うように、SiOからなる電流ブロック層16が形成されている。また、リッジ20および電流ブロック層16の上面を覆うように、Auなどからなるp側パッド電極17が形成されている。また、n型GaAs基板11の下面(C1側の面)上に、n型GaAs基板11側からAuGe層、Ni層およびAu層の順に積層されたn側電極18が形成されている。
 また、図2に示すように、緑色半導体レーザ素子30は、n型GaN基板31の上面上に、GeドープGaNからなるn型GaN層32と、n型AlGaNからなるn型クラッド層33と、InGaNからなる量子井戸層および障壁層が交互に積層されたMQW活性層34と、p型AlGaNからなるp型クラッド層35とが形成されている。
 また、p型クラッド層35は、レーザ光の出射方向に沿ってストライプ状に延びる凸部と、凸部の両側(B方向)に延びる平坦部とを有している。このp型クラッド層35の凸部によって、光導波路を構成するための幅約2μmのリッジ40が形成されている。また、p型クラッド層35のリッジ40以外の上面上を覆うように、SiOからなる電流ブロック層36が形成されている。また、リッジ40および電流ブロック層36の上面を覆うように、Auなどからなるp側パッド電極37が形成されている。また、n型GaN基板31の下面上に、n型GaN基板31側からTi層、Pt層およびAu層の順に積層されたn側電極38が形成されている。
 また、図2に示すように、青色半導体レーザ素子50は、n型GaN基板51の上面上に、GeドープGaNからなるn型GaN層52と、n型AlGaNからなるn型クラッド層53と、InGaNからなる量子井戸層および障壁層が交互に積層されたMQW活性層54と、p型AlGaNからなるp型クラッド層55とが形成されている。
 また、p型クラッド層55は、レーザ光の出射方向に沿ってストライプ状に延びる凸部と、凸部の両側(B方向)に延びる平坦部とを有している。このp型クラッド層55の凸部によって、光導波路を構成するための幅約1.7μmのリッジ60が形成されている。また、p型クラッド層55のリッジ60以外の上面上を覆うように、SiOからなる電流ブロック層56が形成されている。また、リッジ60および電流ブロック層56の上面を覆うように、Au層などからなるp側パッド電極57が形成されている。また、n型GaN基板51の下面上に、n型GaN基板51側からTi層、Pt層およびAu層の順に積層されたn側電極58が形成されている。
 また、図1に示すように、半導体レーザ装置100は、RGB3波長半導体レーザ素子部90を載置する台座110と、台座110と電気的に絶縁されるとともに底部107aを貫通する5つのリード端子101、102、103、104および105と、台座110および底部107aに電気的に導通するリード端子106(破線)とが設けられたステム107とを備えている。
 また、3個の緑色半導体レーザ素子30は、各々のp側パッド電極37(図2参照)にワイヤボンディングされた金属線71、72および73を介してリード端子101、102および105にそれぞれ接続されている。なお、p側パッド電極37は、本発明の「電極」の一例であり、リード端子101、102および105は、それぞれ、本発明の「端子」の一例である。
 また、2個の青色半導体レーザ素子50は、各々のp側パッド電極57(図2参照)にワイヤボンディングされた金属線74および75を介して1つのリード端子103に共通に接続されている。また、赤色半導体レーザ素子10は、p側パッド電極17(図2参照)にワイヤボンディングされた金属線76を介してリード端子104に接続されている。また、各半導体レーザ素子(10、30および50)を載置する基台91は、AlNなどの導電性を有する材料からなり、導電性接着層1を介して台座110に電気的に接続されている。これにより、半導体レーザ装置100は、各半導体レーザ素子(10、30および50)のp側電極(17、37および57)が、互いに絶縁されたリード端子(101、102、103、104および105)に接続されるとともに、n側電極(18、38および58)が共通の負極端子(リード端子106(図1参照))に接続される状態(カソードコモン)に構成されている。
 また、赤色半導体レーザ素子10、緑色半導体レーザ素子30および青色半導体レーザ素子50には、共振器方向(図1の紙面に垂直な方向)の両端部に、光出射面と光反射面とがそれぞれ形成されている。また、各半導体レーザ素子の光出射面(各色のレーザ光の出射方向側の面)には、低反射率の誘電体多層膜が形成されているとともに、光反射面(各色のレーザ光の出射方向と反対側の面)には、高反射率の誘電体多層膜が形成されている。ここで、誘電体多層膜としては、GaN、AlN、BN、Al、SiO、ZrO、Ta、Nb、La、SiN、AlONおよびMgFや、これらの混成比の異なる材料であるTiやNbなどからなる多層膜を用いることができる。
 なお、赤色半導体レーザ素子10、緑色半導体レーザ素子30、および青色半導体レーザ素子50において、n型クラッド層と活性層との間に、光ガイド層やキャリアブロック層などが形成されていてもよい。また、n型クラッド層の活性層と反対側にコンタクト層などが形成されていてもよい。また、活性層とp型クラッド層との間に、光ガイド層やキャリアブロック層などが形成されていてもよい。また、p型クラッド層の活性層と反対側に、p型クラッド層よりも好ましくはバンドギャップが小さいコンタクト層などが形成されていてもよい。また、p側パッド電極のp型クラッド層側に、p側オーミック電極が形成されていてもよい。
 次に、図1および図2を参照して、第1実施形態による半導体レーザ装置100の製造プロセスについて説明する。
 第1実施形態による半導体レーザ装置100の製造プロセスでは、まず、図2に示すように、MOCVD法を用いて、n型GaAs基板11の上面上に、n型コンタクト層12、n型クラッド層13、MQW活性層14およびp型クラッド層15を順次形成し、その後、リッジ20、電流ブロック層16およびp側パッド電極17を形成する。その後、n型GaAs基板11の下面を研磨した後、n型GaAs基板11の下面上にn側電極18を形成して赤色半導体レーザ素子10のウェハを作製する。最後に、所定の共振器長を有するようにウェハをバー状に劈開するとともに共振器方向に素子分割することにより赤色半導体レーザ素子10(図1参照)の複数個のチップが形成される。
 また、上記赤色半導体レーザ素子10と同様の製造プロセスにより、緑色半導体レーザ素子30および青色半導体レーザ素子50が形成される。
 その後、図1に示すように、セラミック製のコレット(図示せず)を用いて、3個の緑色半導体レーザ素子30と、2個の青色半導体レーザ素子50と、1個の赤色半導体レーザ素子10とを、基台91に対して押圧しながら導電性接着層2を介して固定する。このとき、各色の半導体レーザ素子は、各色のレーザ光が略平行で、かつ、レーザ光の出射方向側から見て一方の側端部(B1側)から他方の側端部(B2側)に向かって、緑色、青色、緑色、赤色、緑色および青色の順に並ぶように配置される。このようにして、RGB3波長半導体レーザ素子部90が形成される。その後、各色のレーザ光の出射方向がステム107の底部107aの正面方向に向くように、RGB3波長半導体レーザ素子部90を、ステム107に設けられた台座110に対して押圧しながら導電性接着層1を介して接合する。これにより、基台91が台座110を介してリード端子106に電気的に接続される。
 その後、図1に示すように、緑色半導体レーザ素子30の各々のp側パッド電極37とリード端子101、102および105とを、金属線71、72および73によりそれぞれ接続する。また、青色半導体レーザ素子50の各々のp側パッド電極57とリード端子103とを、金属線74および75によりそれぞれ接続する。また、赤色半導体レーザ素子10のp側パッド電極17とリード端子104とを金属線76により接続する。このようにして、第1実施形態による半導体レーザ装置100が形成される。
 次に、図3を参照して、本発明の第1実施形態による半導体レーザ装置100が搭載された本発明の「表示装置」の一例であるプロジェクタ装置150の構成について説明する。なお、プロジェクタ装置150では、半導体レーザ装置100を構成する個々の半導体レーザ素子が略同時に点灯される例について説明する。
 プロジェクタ装置150では、図3に示すように、半導体レーザ装置100と、複数の光学部品からなる光学系120と、半導体レーザ装置100および光学系120を制御する制御部145とを備えている。これにより、半導体レーザ装置100から出射されたレーザ光が、光学系120により変調された後、外部のスクリーン144などに投影されるように構成されている。なお、光学系120は、本発明の「変調手段」の一例である。
 また、光学系120において、半導体レーザ装置100から出射されたレーザ光は、凹レンズと凸レンズとからなる分散角制御レンズ122により所定ビーム径を有する平行光に変換された後、フライアイインテグレータ123に入射される。また、フライアイインテグレータ123では、蝿の目状のレンズ群からなる2つのフライアイレンズが向き合うように構成されており、液晶パネル129、133および140に入射する際の光量分布が均一となるように分散角制御レンズ122から入射される光に対してレンズ作用を付与する。すなわち、フライアイインテグレータ123を透過した光は、液晶パネル129、133および140のサイズに対応したアスペクト比(たとえば16:9)の広がりをもって入射できるように調整されている。
 また、フライアイインテグレータ123を透過した光は、コンデンサレンズ124によって集光される。また、コンデンサレンズ124を透過した光のうち、赤色光のみがダイクロイックミラー125によって反射される一方、緑色光および青色光はダイクロイックミラー125を透過する。
 そして、赤色光は、ミラー126を経てレンズ127による平行化の後に入射側偏光板128を介して液晶パネル129に入射される。この液晶パネル129は、赤色用の駆動信号(R画像信号)に応じて駆動されることにより赤色光を変調する。
 また、ダイクロイックミラー130では、ダイクロイックミラー125を透過した光のうちの緑色光のみが反射される一方、青色光はダイクロイックミラー130を透過する。
 そして、緑色光は、レンズ131による平行化の後に入射側偏光板132を介して液晶パネル133に入射される。この液晶パネル133は、緑色用の駆動信号(G画像信号)に応じて駆動されることにより緑色光を変調する。
 また、ダイクロイックミラー130を透過した青色光は、レンズ134、ミラー135、レンズ136およびミラー137を経て、さらにレンズ138によって平行化がなされた後、入射側偏光板139を介して液晶パネル140に入射される。この液晶パネル140は、青色用の駆動信号(B画像信号)に応じて駆動されることにより青色光を変調する。
 その後、液晶パネル129、133および140によって変調された赤色光、緑色光および青色光は、ダイクロイックプリズム141により合成された後、出射側偏光板142を介して投写レンズ143へと入射される。また、投写レンズ143は、投写光を被投写面(スクリーン144)上に結像させるためのレンズ群と、レンズ群の一部を光軸方向に変位させて投写画像のズームおよびフォーカスを調整するためのアクチュエータを内蔵している。
 また、プロジェクタ装置150では、制御部145によって赤色半導体レーザ素子10の駆動に関するR信号、緑色半導体レーザ素子30の駆動に関するG信号および青色半導体レーザ素子50の駆動に関するB信号としての定常的な電圧が、半導体レーザ装置100の各レーザ素子に供給されるように制御される。これによって、半導体レーザ装置100の赤色半導体レーザ素子10、緑色半導体レーザ素子30および青色半導体レーザ素子50は、実質的に同時に発振されるように構成されている。また、制御部145によって半導体レーザ装置100の赤色半導体レーザ素子10、緑色半導体レーザ素子30および青色半導体レーザ素子50の各々の光の強度を制御することによって、スクリーン144に投写される画素の色相や輝度などが制御されるように構成されている。これにより、制御部145によって所望の画像がスクリーン144に投写される。このようにして、本発明の第1実施形態による半導体レーザ装置100が搭載されたプロジェクタ装置150が構成されている。
 次に、図1、図4および図5を参照して、本発明の第1実施形態による半導体レーザ装置100が搭載された本発明の「表示装置」の他の例であるプロジェクタ装置190の構成について説明する。なお、プロジェクタ装置190では、半導体レーザ装置100を構成する個々の半導体レーザ素子が時系列的に点灯される例について説明する。
 プロジェクタ装置190は、図4に示すように、半導体レーザ装置100と光学系160と、半導体レーザ装置100および光学系160を制御する制御部185とを備えている。これにより、半導体レーザ装置100からのレーザ光が、光学系160により変調された後、スクリーン181などに投影されるように構成されている。なお、光学系160は、本発明の「変調手段」の一例である。
 また、光学系160において、半導体レーザ装置100から出射されたレーザ光は、それぞれ、レンズ162により平行光に変換された後、ライトパイプ164に入射される。
 ライトパイプ164は内面が鏡面となっており、レーザ光は、ライトパイプ164の内面で反射を繰り返しながらライトパイプ164内を進行する。この際、ライトパイプ164内での多重反射作用によって、ライトパイプ164から出射される各色のレーザ光の強度分布が均一化される。また、ライトパイプ164から出射されたレーザ光は、リレー光学系165を介してデジタルマイクロミラーデバイス(DMD)素子166に入射される。
 DMD素子166は、マトリクス状に配置された微小なミラー群からなる。また、DMD素子166は、各画素位置の光の反射方向を、投写レンズ180に向かう第1の方向Aと投写レンズ180から逸れる第2の方向Bとに切り替えることにより各画素の階調を表現(変調)する機能を有している。各画素位置に入射されるレーザ光のうち第1の方向Aに反射された光(ON光)は、投写レンズ180に入射されて被投写面(スクリーン181)に投写される。また、DMD素子166によって第2の方向Bに反射された光(OFF光)は、投写レンズ180には入射されずに光吸収体167によって吸収される。
 また、プロジェクタ装置190では、制御部185によりパルス電源が半導体レーザ装置100に供給されるように制御されることによって、半導体レーザ装置100の赤色半導体レーザ素子10、緑色半導体レーザ素子30および青色半導体レーザ素子50は、時系列的に分割されて1素子ずつ周期的に駆動されるように構成されている。また、制御部185によって、光学系160のDMD素子166は、赤色半導体レーザ素子10、緑色半導体レーザ素子30および青色半導体レーザ素子50の駆動状態とそれぞれ同期しながら、各画素(R、GおよびB)の階調に合わせて光を変調するように構成されている。
 具体的には、図5に示すように、赤色半導体レーザ素子10(図1参照)の駆動に関するR信号、緑色半導体レーザ素子30(図1参照)の駆動に関するG信号、および青色半導体レーザ素子50(図1参照)の駆動に関するB信号が、互いに重ならないように時系列的に分割された状態で、制御部185(図4参照)によって、半導体レーザ装置100の各レーザ素子に供給される。また、このB信号、G信号およびR信号に同期して、制御部185からB画像信号、G画像信号、R画像信号がそれぞれDMD素子166に出力される。
 これにより、図5に示したタイミングチャートにおけるB信号に基づいて、青色半導体レーザ素子50の青色光が発光されるとともに、このタイミングで、B画像信号に基づいて、DMD素子166により青色光が変調される。また、B信号の次に出力されるG信号に基づいて、緑色半導体レーザ素子30の緑色光が発光されるとともに、このタイミングで、G画像信号に基づいて、DMD素子166により緑色光が変調される。さらに、G信号の次に出力されるR信号に基づいて、赤色半導体レーザ素子10の赤色光が発光されるとともに、このタイミングで、R画像信号に基づいて、DMD素子166により赤色光が変調される。その後、R信号の次に出力されるB信号に基づいて、青色半導体レーザ素子50の青色光が発光されるとともに、このタイミングで、再度、B画像信号に基づいて、DMD素子166により青色光が変調される。上記の動作が繰り返されることによって、B画像信号、G画像信号およびR画像信号に基づいたレーザ光照射による画像が、被投写面(スクリーン181)に投写される。このようにして、本発明の第1実施形態による半導体レーザ装置100が搭載されたプロジェクタ装置190が構成されている。
 第1実施形態では、上記のように、緑色半導体レーザ素子30の個数n1(3個)が、青色半導体レーザ素子50の個数n2(2個)よりも多くなるように構成し、かつ、緑色半導体レーザ素子30の個数n1(3個)が、赤色半導体レーザ素子10の個数n3(1個)よりも多くなるように構成することによって、出力が大きい赤色半導体レーザ素子10を基準に半導体レーザ装置100を構成する場合、合計出力が相対的に小さく設定される緑色半導体レーザ素子30や青色半導体レーザ素子50では、レーザ素子を構成する個々の半導体レーザ素子の個数が赤色半導体レーザ素子10よりも多く設けられているので、緑色半導体レーザ素子30および青色半導体レーザ素子50の各々の合計出力が容易に調整されて所望の出力を有するように構成することができる。これにより、相対的に出力が大きい赤色半導体レーザ素子10と、合計出力が適切に調整された相対的に小さい出力の緑色半導体レーザ素子30および青色半導体レーザ素子50とを適切に組み合わせることができるので、半導体レーザ装置100を光源として利用する場合に、所望の色相を容易に得ることができる。
 また、第1実施形態では、緑色半導体レーザ素子30の個数n1(3個)が、青色半導体レーザ素子50の個数n2(2個)よりも多く、かつ、緑色半導体レーザ素子30の個数n1(3個)が、赤色半導体レーザ素子10の個数n3(1個)よりも多く構成することによって、上記3種類の半導体レーザ素子を用いて白色光を得る際、特に緑色半導体レーザ素子30の出力(約270mW)および青色半導体レーザ素子50の出力(約600mW)は、比較的大きな出力が得られやすい赤色半導体レーザ素子10(約800mW)と比較して小さいので、緑色半導体レーザ素子30および青色半導体レーザ素子50の数を赤色半導体レーザ素子10の数よりも優先して多く設けることができる。これにより、緑色半導体レーザ素子30および青色半導体レーザ素子50の合計出力を容易に調整することができるので、理想的な白色光が得られやすい半導体レーザ装置100を容易に形成することができる。
 また、第1実施形態では、緑色半導体レーザ素子30および青色半導体レーザ素子50の数(レーザ発光部の数)を増やすことによって、個々のレーザ発光部の出力を小さく抑えることができるので、個々のレーザ発光部の出力が小さい分、緑色半導体レーザ素子30および青色半導体レーザ素子50の温度上昇を抑制することができる。また、緑色半導体レーザ素子30および青色半導体レーザ素子50では、レーザ発光部の個数に応じてレーザ発光部の面積が増加するので、半導体レーザ素子の発熱をより広い表面積を介して放熱させることができる。これにより、緑色半導体レーザ素子30および青色半導体レーザ素子50の劣化が抑制されるので、半導体レーザ素子の長寿命化を図ることができる。
 また、第1実施形態では、3個の緑色半導体レーザ素子30は、各々のp側パッド電極37が、金属線71、72および73を介して異なるリード端子101、102および105にそれぞれ接続されることによって、赤色半導体レーザ素子10や青色半導体レーザ素子50よりもレーザ発光部の多い緑色半導体レーザ素子30を、レーザ発光部の数に応じて個別に駆動することができるので、要求される出力に応じて緑色半導体レーザ素子30の合計出力を容易に調整することができる。
 (第2実施形態)
 図6~図8を参照して、この第2実施形態では、上記第1実施形態と異なり、4つの緑色半導体レーザ素子230a~230dが集積化されたモノリシック型の緑色半導体レーザ素子部230と、3つの青色半導体レーザ素子250a~250cが集積化されたモノリシック型の青色半導体レーザ素子部250と、1つの赤色半導体レーザ素子210とを基台291上に配置してRGB3波長半導体レーザ素子部290を構成する場合について説明する。
 本発明の第2実施形態による半導体レーザ装置200では、図6に示すように、RGB3波長半導体レーザ素子部290が台座206の上面(C2側の面)上に固定されている。
 ここで、第2実施形態では、約635nmの赤色光、約530nmの緑色光および約460nmの青色光を用いて白色光を得るためには、RGB3波長半導体レーザ素子部290における上記3種類の半導体レーザ素子のワット換算の出力比を、赤色:緑色:青色=9.2:8.1:16.7に調整することが要求される。
 したがって、図7に示すように、緑色半導体レーザ素子部230は、各々が約50mWの出力を有する緑色半導体レーザ素子230a~230dが1枚の基板231上に集積化されることにより約200mWの合計出力を有している。また、図8に示すように、青色半導体レーザ素子部250は、各々が約200mWの出力を有する青色半導体レーザ素子250a~250cが1枚の基板251上に集積化されることにより約600mWの合計出力を有している。そして、図6に示すように、約350mWの出力を有する1個の赤色半導体レーザ素子210と、緑色半導体レーザ素子部230と、青色半導体レーザ素子部250とを基台291の上面(C2側の面)上に所定の間隔を隔てて固定することにより、RGB3波長半導体レーザ素子部290が構成されている。
 すなわち、第2実施形態では、各々の半導体レーザ素子のレーザ発光部の個数を比較すると、相対的に合計出力の小さい緑色半導体レーザ素子部230のレーザ発光部の個数(4つ)が、相対的に出力の大きい赤色半導体レーザ素子210の個数(1つ)よりも多く設けられている。また、緑色半導体レーザ素子部230のレーザ発光部(4つ)は、相対的に合計出力の大きい青色半導体レーザ素子部250のレーザ発光部の個数(3つ)よりも多く設けられている。
 また、第2実施形態では、図6に示すように、基台291上の半導体レーザ装置200の幅方向(B方向)の略中央に、レーザ光の出射方向(A1方向)がB方向に直交するように緑色半導体レーザ素子部230が配置されるとともに、基台291上の一方の側端部側(B1方向側)に緑色半導体レーザ素子部230に隣接するとともに、レーザ光の出射方向が緑色半導体レーザ素子部230からのレーザ光の出射方向(A1方向)と略平行になるように赤色半導体レーザ素子210が配置されている。また、青色半導体レーザ素子部250は、赤色半導体レーザ素子210とは反対側(B2方向)に緑色半導体レーザ素子部230に隣接するとともに、レーザ光の出射方向が緑色半導体レーザ素子部230からのレーザ光の出射方向(A1方向)と略平行になるように配置されている。ここで、赤色半導体レーザ素子210の共振器長(約2mm)は、緑色半導体レーザ素子部230および青色半導体レーザ素子部250の共振器長(共に約1mm)よりも長い。また、3つの半導体レーザ素子は、各々の光出射面が略同一平面に一致するように配置されている。
 また、緑色半導体レーザ素子230a~230dは、図7に示すように、凹部5を隔てて基板231上に一体的に形成されている。なお、緑色半導体レーザ素子230a~230dのp型クラッド層35側(C2側)の表面上には、緑色半導体レーザ素子230aから230dにわたって1つのp側パッド電極237が形成されている。また、基板231の下面(C1側)上にはn側電極238が形成されている。
 また、青色半導体レーザ素子250a~250cは、図8に示すように、青色半導体レーザ素子部250の上面(C2側の面)からn型GaN層52に達する凹部6を隔てて基板251上に一体的に形成されている。また、電流ブロック層56は、凹部6の側面および底面を覆うように形成されている。なお、青色半導体レーザ素子250a~250cのp型クラッド層55側(C2側)の表面上には、青色半導体レーザ素子250aから250cにわたって1つのp側パッド電極257が形成されている。また、基板251の下面(C1側)上にはn側電極258が形成されている。なお、青色半導体レーザ素子部250のその他の構成は、上記第1実施形態の青色半導体レーザ素子50と同様である。
 また、図6に示すように、半導体レーザ装置200は、RGB3波長半導体レーザ素子部290を載置する台座206と、台座206と電気的に絶縁されるとともに底部205aを貫通する3つのリード端子201、202および203と、台座206および底部205aに電気的に導通するもう1つのリード端子(図示せず)とが設けられたステム205とを備えている。
 また、赤色半導体レーザ素子210は、p側パッド電極17にワイヤボンディングされた金属線271を介してリード端子201に接続されている。また、緑色半導体レーザ素子230は、p側パッド電極237にワイヤボンディングされた金属線272を介してリード端子202に接続されている。また、青色半導体レーザ素子250は、p側パッド電極257にワイヤボンディングされた金属線273を介してリード端子203に接続されている。また、赤色半導体レーザ素子210、緑色半導体レーザ素子部230および青色半導体レーザ素子部250は、AuSn半田などの導電性接着層(図示せず)を介して基台291の上面(C2側の面)上に電気的に接続されているとともに、基台291は、AuSn半田などの導電性接着層(図示せず)を介して台座206に電気的に接続されている。なお、図6に示すように、RGB3波長半導体レーザ素子部290のA1側の共振器端面から各色レーザ光が出射されるように構成されている。
 なお、第2実施形態による半導体レーザ装置200の製造プロセスは、上記第1実施形態と同様である。
 第2実施形態では、上記のように、4つの緑色半導体レーザ素子230a~230dを共通の基板231上に形成してモノリシック型の緑色半導体レーザ素子部230を形成するとともに、3つの青色半導体レーザ素子250a~250cを共通の基板251上に形成してモノリシック型の青色半導体レーザ素子部250を形成することによって、緑色半導体レーザ素子部230および青色半導体レーザ素子部250が、発振波長別にそれぞれに共通の基板上に集積化されて形成されるので、集積化される分、緑色半導体レーザ素子部230および青色半導体レーザ素子部250のB方向の幅を小さくすることができる。これにより、レーザ発光部の数を多く必要とする場合(たとえば緑色半導体レーザ素子部230では4つ)においても、集積化されたレーザ素子の状態でパッケージ内(基台291上)に容易に配置することができる。なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
 (第3実施形態)
 図6および図8~図12を参照して、第3実施形態について説明する。この第3実施形態では、上記第2実施形態と異なり、3つの緑色半導体レーザ素子330a~330cからなる緑色半導体レーザ素子部330と2つの青色半導体レーザ素子350aおよび350bからなる青色半導体レーザ素子部350とが集積化されたモノリシック型の2波長半導体レーザ素子部370と、1つの赤色半導体レーザ素子10とを基台391上に配置してRGB3波長半導体レーザ素子部390を構成する場合について説明する。
 本発明の第3実施形態による半導体レーザ装置300では、図9に示すように、RGB3波長半導体レーザ素子部390が台座206の上面上に固定されている。
 ここで、第3実施形態では、約655nmの赤色光、約520nmの緑色光および約480nmの青色光を用いて白色光を得るためには、RGB3波長半導体レーザ素子部390における上記3種類の半導体レーザ素子のワット換算の出力比を、赤色:緑色:青色=24.5:9.9:7.2に調整することが要求される。
 したがって、図9に示すように、2波長半導体レーザ素子部370を構成する緑色半導体レーザ素子部330は、各々が約100mWの出力を有する緑色半導体レーザ素子330a~330cが集積化されて約300mWの合計出力を有するとともに、青色半導体レーザ素子部350は、各々が約120mWの出力を有する青色半導体レーザ素子350aおよび350bが集積化されて約240mWの合計出力を有した状態で(11-22)面からなる主面を有する共通のn型GaN基板331上に形成されている。そして、約800mWの出力を有する1個の赤色半導体レーザ素子10と2波長半導体レーザ素子部370とをAuSn半田などの導電性接着層(図示せず)を介して基台391の上面上に所定の間隔を隔てて固定されることによりRGB3波長半導体レーザ素子部390が形成されている。ここで、2波長半導体レーザ素子部370は、緑色半導体レーザ素子部330と青色半導体レーザ素子部350とが(11-22)面の主面を有する共通のn型GaN基板331上に集積化されて形成されている。なお、n型GaN基板331は、本発明の「基板」の一例である。
 また、第3実施形態では、図10に示すように、n型GaN基板331の(11-22)面は、c面((0001)面)から[11-20]方向に向かって約58°傾いた面からなる半極性面により構成されている。なお、半極性面としては、c面から約10°以上約70°以下傾いた面を用いるのが好ましい。これにより、緑色半導体レーザ素子部330と青色半導体レーザ素子部350とで、光学利得が最大化される光導波路の延びる方向を互いに略一致させることが可能となる。なお、(11-22)面は、他の半極性面と比べてピエゾ電界がより小さいので、青色半導体レーザ素子部350および緑色半導体レーザ素子部330の発光効率が低下するのを抑制することが可能である。したがって、n型GaN基板331の主面として上記した(11-22)面を用いるのがより好ましい。
 また、青色半導体レーザ素子部350は、n型GaN基板331の上面の[-1100]方向(B1方向)側の領域上に、n型GaN層52と、約2μmの厚みを有するSiドープn型Al0.07Ga0.93Nからなるn型クラッド層53aと、約5nmの厚みを有するSiドープn型Al0.16Ga0.84Nからなるn型キャリアブロック層53bと、約100nmの厚みを有するSiドープn型In0.02Ga0.98Nからなるn型光ガイド層53cとが形成されている。
 また、青色半導体レーザ素子部350における活性層54は、n型GaN基板331と同じ(11-22)面からなる主面を有している。具体的には、図11に示すように、活性層54は、n型光ガイド層53cの上面上に、約20nmの厚みを有するアンドープIn0.02Ga0.98Nからなる4層の障壁層54aと、約3nmの厚みt5を有するアンドープIn0.20Ga0.80Nからなる3層の井戸層54bとが交互に積層されて構成されている。ここで、井戸層54bの面内格子定数は、n型GaN基板331の面内の格子定数よりも大きいので、面内方向に圧縮歪が印加されている。すなわち、青色半導体レーザ素子部350の活性層54の井戸層54bは、約20%のIn組成を有している。また、極性面であるc面((0001)面)および他の半極性面を活性層54の主面に適用する場合と比べて、(11-22)面を活性層54の主面とすることによって、活性層54におけるピエゾ電界を小さくすることが可能である。
 また、青色半導体レーザ素子部350の主面内で振動子強度の最大となる偏光方向は、無極性面であるm面((1-100)面)に対して垂直な方向である[1-100]方向になるように構成されている。
 また、図10に示すように、青色半導体レーザ素子部350は、活性層54の上面上に、約100nmの厚みを有するMgドープp型In0.02Ga0.98Nからなるp型光ガイド層55aと、約20nmの厚みを有するMgドープp型Al0.16Ga0.84Nからなるp型キャリアブロック層55bと、約700nmの厚みを有するMgドープp型Al0.07Ga0.93Nからなるp型クラッド層55cと、約10nmの厚みを有するMgドープp型In0.02Ga0.98Nからなるp型コンタクト層55dとが形成されている。
 また、図10に示すように、p型クラッド層55cとp型コンタクト層55dとによって、青色半導体レーザ素子部350のB方向(B1方向およびB2方向)の略中央部に形成されたストライプ状のリッジ360は、(11-22)面に[0001]方向を投影した方向である光導波路の延びる方向([-1-123]方向)に沿って延びるように形成されている。
 また、p型クラッド層55cの平坦部の上面と、リッジ360の側面と、n型半導体層(53)、活性層54、p型光ガイド層55a、p型キャリアブロック層55bおよびp型クラッド層55cの側面とを覆い、リッジ360の上面が露出するように、絶縁膜からなる電流ブロック層376が形成されている。この電流ブロック層376は、SiOからなるとともに、約250nmの厚みを有する。また、電流ブロック層376は、n型GaN基板331の上面の所定領域(青色半導体レーザ素子部350および緑色半導体レーザ素子部330から露出された領域)と、緑色半導体レーザ素子部330の後述するp型クラッド層35cの平坦部の上面と、後述するリッジ340の側面と、n型半導体層(33)、活性層34およびp型半導体層(35)の一部の側面とを覆い、リッジ340の上面が露出するように形成されている。また、電流ブロック層376は、凹部7の側面および底面を覆うように形成されている。また、p型コンタクト層55dの上面上には、p型コンタクト層55dから近い順に、約5nmの厚みを有するPt層と、約100nmの厚みを有するPd層と、約150nmの厚みを有するAu層とが積層されたp側オーミック電極56が形成されている。
 また、青色半導体レーザ素子部350において凹部6を隔ててレーザ素子が配列する方向(B方向)に並んで配置された青色半導体レーザ素子350aおよび350bは、n型GaN基板331の上面上に緑色半導体レーザ素子部330とは反対側(B1側)に凹部8を隔てて形成されている。また、緑色半導体レーザ素子部330において凹部7を隔ててレーザ素子が配列する方向(B方向)に並んで配置された緑色半導体レーザ素子330a~330cは、図10に示すように、青色半導体レーザ素子部350と同一の基板であるn型GaN基板331の上面上の[1-100]方向(B2方向)側の領域に、約1μmの厚みを有するn型GaN層32と、約2μmの厚みを有するSiドープn型Al0.10Ga0.90Nからなるn型クラッド層33aと、約5nmの厚みを有するSiドープn型Al0.20Ga0.80Nからなるn型キャリアブロック層33bと、約100nmの厚みを有するSiドープn型In0.05Ga0.95Nからなるn型光ガイド層33cとが形成されている。
 また、緑色半導体レーザ素子部330における活性層34は、n型GaN基板331と同じ(11-22)面からなる主面を有している。具体的には、図12に示すように、活性層34は、n型光ガイド層33cの上面上に、約20nmの厚みを有するアンドープIn0.02Ga0.98Nからなる2層の障壁層34aと、約3.5nmの厚みt6を有するアンドープIn0.33Ga0.67Nからなる1層の井戸層34bとが交互に積層されたSQW構造を有している。ここで、井戸層34bの面内格子定数は、n型GaN基板331(図10参照)の面内の格子定数よりも大きいので、面内方向に圧縮歪が印加されている。また、緑色半導体レーザ素子部330の井戸層34bの圧縮歪は、青色半導体レーザ素子部350の井戸層54bの圧縮歪よりも大きい。なお、井戸層34bの厚みt6は、約6nm未満が好ましい。また、活性層34の井戸層34bの厚みt6は十分に小さいことにより、活性層34がMQW構造を有する場合と比べて、活性層34がSQW構造を有することによって、井戸層34bは層構造を維持することが可能である。なお、井戸層34bは、本発明の「第2井戸層」の一例である。すなわち、緑色半導体レーザ素子部330の活性層34の井戸層34bは、青色半導体レーザ素子部350の活性層54の井戸層54bのIn組成(約20%)よりも大きい約33%のIn組成を有している。これにより、緑色半導体レーザ素子330a~330cの利得が最大化される光導波路(リッジ340)の延びる方向と、青色半導体レーザ素子部350の利得が最大化される光導波路(リッジ360)の延びる方向とが同じ方向([-1-123]方向)になるように構成されている。
 なお、上記した緑色半導体レーザ素子330a~330cの利得が最大化される光導波路(リッジ340)の延びる方向と、青色半導体レーザ素子部350の利得が最大化される光導波路(リッジ360)の延びる方向とが同じ方向([-1-123]方向)になるのは、In組成が約30%以上の場合において、(11-22)面の主面を有するInGaNからなる井戸層の厚みが約3nm未満であれば、(11-22)面内における主たる偏光方向が90°回転([1-100]方向)から[-1-123]方向に回転)する現象が見い出されたことに基づいている。これにより、井戸層34bが約30%以上のIn組成を有する場合、井戸層34bの厚みt6は、約3nm以上であるのがより好ましい。また、約33%のIn組成を有するとともに、(11-22)面の主面を有するInGaNからなる井戸層34bの厚みを約3.5nm(約3nm以上)の厚みt6を有するように構成することによって、緑色半導体レーザ素子330a~330cの光学利得が最大化される光導波路(リッジ340)の延びる方向が、青色半導体レーザ素子部350の光学利得が最大化される光導波路(リッジ360)の延びる方向に対して90°変化しないように構成することが可能である。ここで、井戸層34bの面内格子定数は、n型GaN基板331(図10参照)の面内の格子定数よりも大きいので、面内方向に圧縮歪が印加されている。また、緑色半導体レーザ素子部330の井戸層34bの圧縮歪は、青色半導体レーザ素子部350の井戸層54bの圧縮歪よりも大きい。また、極性面であるc面((0001)面)および他の半極性面を活性層34の主面にする場合と比べて、(11-22)面を活性層34の主面とすることによって、活性層34におけるピエゾ電界を小さくすることが可能である。
 また、図12に示す緑色半導体レーザ素子330a~330cの活性層34の井戸層34bの厚みt6(約3.5nm)は、図11に示す青色半導体レーザ素子部350の活性層54の井戸層54bの各層の厚みt5(約3nm)よりも大きく(t6>t5)なるように構成されている。
 また、図10に示すように、緑色半導体レーザ素子330a~330cは、活性層34の上面上に、約100nmの厚みを有するMgドープp型In0.05Ga0.95Nからなるp型光ガイド層35aと、約20nmの厚みを有するMgドープp型Al0.20Ga0.80Nからなるp型キャリアブロック層35bと、約700nmの厚みを有するMgドープp型Al0.10Ga0.90Nからなるp型クラッド層35cと、約10nmの厚みを有するMgドープp型In0.02Ga0.98Nからなるp型コンタクト層35dとが形成されている。
 また、緑色半導体レーザ素子330a~330cのB方向(B1方向およびB2方向)の略中央部に形成されたストライプ状のリッジ340は、(11-22)面に[0001]方向を投影した方向である光導波路の延びる方向([-1-123]方向)に沿って延びるように形成されている。
 また、緑色半導体レーザ素子330a~330cのn型クラッド層33aおよびp型クラッド層35cのAl組成(約10%)は、青色半導体レーザ素子部350のn型クラッド層53aおよびp型クラッド層55cのAl組成(約7%)に比べて大きくなるように構成されている。また、緑色半導体レーザ素子330a~330cのn型キャリアブロック層33bおよびp型キャリアブロック層35bのAl組成(約20%)は、青色半導体レーザ素子部350のn型キャリアブロック層53bおよびp型キャリアブロック層55bのAl組成(約16%)に比べて大きくなるように構成されている。また、緑色半導体レーザ素子330a~330cのn型光ガイド層33cおよびp型光ガイド層35aのIn組成(約5%)は、青色半導体レーザ素子部350のn型光ガイド層53cおよびp型光ガイド層55aのIn組成(約2%)に比べて大きくなるように構成されている。上述の構成によって、屈折率の小さい緑色光を青色光と同程度クラッド層およびキャリアブロック層と光ガイド層との間に閉じ込めることが可能になるので、緑色半導体レーザ素子330a~330cにおいて、青色半導体レーザ素子部350と同程度の光の閉じ込めを確保することが可能である。
 ここで、緑色半導体レーザ素子330a~330cのn型クラッド層33a、n型キャリアブロック層33b、p型キャリアブロック層35bおよびp型クラッド層35cのAl組成は、それぞれ、青色半導体レーザ素子350aおよび350bのn型クラッド層53a、n型キャリアブロック層53b、p型キャリアブロック層55bおよびp型クラッド層55cのAl組成と比べて大きい方が好ましい。一方、青色半導体レーザ素子350aおよび350b、および、緑色半導体レーザ素子330a~330cのAl組成を小さくすることによって、光の閉じ込め機能は低下する一方、AlGaNとn型GaN基板331との結晶格子の格子定数が異なることに起因する亀裂や反りの発生を低減させることが可能である。
 また、緑色半導体レーザ素子330a~330cのn型光ガイド層33cおよびp型光ガイド層35aのIn組成は、青色半導体レーザ素子350aおよび350bのn型光ガイド層53cおよびp型光ガイド層55aのIn組成と比べて大きい方が好ましい。
 また、p型コンタクト層35dの上面上には、青色半導体レーザ素子部350のp側オーミック電極56と同様の材料からなるp側オーミック電極36が形成されている。
 また、2波長半導体レーザ素子部370は、図10に示すように、n型GaN基板331上に、2波長半導体レーザ素子部370の上面(C2側の面)からn型GaN層32に達する凹部7を隔てて3つの緑色半導体レーザ素子330a~330cが形成されるとともに、2波長半導体レーザ素子部370の上面からn型GaN基板331に達する凹部8を隔てて緑色半導体レーザ素子330a側に隣接するように、2つの青色半導体レーザ素子350aおよび350bが2波長半導体レーザ素子部370の上面からn型GaN層52に達する凹部6を隔てて形成されている。
 また、図10に示すように、緑色半導体レーザ素子330a~330cのリッジ340の両側面、p型クラッド層35cの平坦部、および、凹部7の内側面および底面を覆うようにSiOからなる電流ブロック層376が形成されている。また、この電流ブロック層376は、凹部8の内側面および底面、青色半導体レーザ素子350のリッジ360の両側面およびp型クラッド層55cの平坦部を覆うように形成されている。
 また、図10に示すように、緑色半導体レーザ素子330a~330cの電流ブロック層376上には、p側オーミック電極36と電気的に接続されるように、p側オーミック電極36から近い順に、約100nmの厚みを有するTi層と、約100nmの厚みを有するPd層と、約3μmの厚みを有するAu層とが積層されたp側パッド電極337が形成されるとともに、青色半導体レーザ素子350aおよび350bの電流ブロック層376上には、p側パッド電極337と同様の構造を有しp側オーミック電極56と電気的に接続されるp側パッド電極357が形成されている。また、n型GaN基板331の下面(C1側の面)上には、n型GaN基板331側から近い順に、約10nmの厚みを有するAl層と、約20nmの厚みを有するPt層と、約300nmの厚みを有するAu層とからなるn側電極378が形成されている。
 また、図9に示すように、青色半導体レーザ素子350aおよび350b、および、緑色半導体レーザ素子330a~330cには、それぞれ、光導波路の延びる方向([-1-123]方向)に対して垂直な共振器面が形成されている。すなわち、青色半導体レーザ素子部350と緑色半導体レーザ素子部330とは、同一の面方位からなる共振器面を有するように構成されている。なお、2波長半導体レーザ素子部370を構成する緑色半導体レーザ素子330a~330c、および、青色半導体レーザ素子350aおよび350bのその他の構成は、それぞれ、上記第2実施形態における緑色半導体レーザ素子部230および青色半導体レーザ素子部250と同様である。
 また、図9に示すように、基台391上のB1側に赤色半導体レーザ素子10が配置されるとともに、B2側に2波長半導体レーザ素子部370が配置されている。ここで、赤色半導体レーザ素子10の共振器長(約2mm)は、2波長半導体レーザ素子部370の共振器長(約1mm)よりも長い。
 また、赤色半導体レーザ素子10は、p側パッド電極17にワイヤボンディングされた金属線371を介してリード端子201に接続されている。また、2波長半導体レーザ素子部370の緑色半導体レーザ素子330は、p側パッド電極337にワイヤボンディングされた金属線372を介してリード端子203に接続されている。また、青色半導体レーザ素子部350は、p側パッド電極357にワイヤボンディングされた金属線373を介してリード端子202に接続されている。なお、第3実施形態による半導体レーザ装置300のその他の構造は、上記第2実施形態と同様である。
 次に、図9および図10を参照して、第3実施形態による半導体レーザ装置300の製造プロセスについて説明する。
 第3実施形態による半導体レーザ装置300の製造プロセスでは、まず、図10に示すように、MOCVD法により、(11-22)面からなる主面を有するn型GaN基板331の上面上に、青色半導体レーザ素子350となるn型GaN層52、n型クラッド層53a、n型キャリアブロック層53b、n型光ガイド層53c、活性層54、p型光ガイド層55a、p型キャリアブロック層55bおよびp型クラッド層55cを順次形成する。その後、n型GaN層52からp型クラッド層55cまでの半導体層の一部をエッチングしてn型GaN基板331の一部を露出させて、その露出した部分の一部に、凹部8となる領域を残して緑色半導体レーザ素子部330となるn型GaN層32、n型クラッド層33a、n型キャリアブロック層33b、n型光ガイド層33c、活性層34、p型光ガイド層35a、p型キャリアブロック層35bおよびp型クラッド層35cを順次形成する。その後、半導体層を青色半導体レーザ素子350aおよび350bに分離するために、底面がn型GaN層52に達する凹部6を形成する。また、同様に、半導体層を緑色半導体レーザ素子330a、330bおよび330cに分離するために、底面がn型GaN層32に達する凹部7を形成する。
 続いて、光導波路の延びる方向([-1-123]方向)に沿って延びる2つのリッジ360および3つのリッジ340を形成した後、各々のリッジ上にp型コンタクト層35dおよび55dと、p側オーミック電極36および56とを形成する。その後、p型クラッド層35c(55c)の表面と、凹部6、凹部7および凹部8の各々の側面および底面とを覆うように電流ブロック層376を形成する。さらに、電流ブロック層376の所定領域と、p側オーミック電極36および56とを覆うように、p側パッド電極337および357を各々のレーザ素子に対して形成する。これにより、凹部7の側面上および底面上に形成されるとともに、緑色半導体レーザ素子330a~330cに共通に用いられるp側パッド電極337が形成される。また、凹部6の側面上および底面上に形成されるとともに、青色半導体レーザ素子350aおよび350bに共通に用いられるp側パッド電極357が形成される。
 ここで、青色半導体レーザ素子部350を形成した後、青色半導体レーザ素子部350が形成されたn型GaN基板331と同一のn型GaN基板331の表面上に、緑色半導体レーザ素子部330を形成することによって、In組成が大きいことにより熱によって劣化しやすい緑色半導体レーザ素子部330の活性層34が、青色半導体レーザ素子部350を形成する際の熱の影響を受けないようにすることが可能である。このようにして、底部がn型GaN基板331に達する凹部8によりB方向に所定の間隔で隔てられた青色半導体レーザ素子部350および緑色半導体レーザ素子部330を作製する。
 その後、n型GaN基板331の下面を厚みが約100μmになるまで研磨した後、n型GaN基板331の下面上にn側電極378を形成して2波長半導体レーザ素子部370のウェハを作製する。その後、エッチングにより所定の位置において、光導波路の延びる方向([-1-123]方向)に対して垂直な共振器面を形成する。なお、共振器面の形成は、ウェハの所定の位置を劈開することによって行ってもよい。さらに、共振器方向([-1-123]方向)に沿って素子分割してチップにすることにより、2波長半導体レーザ素子部370(図9参照)が複数形成される。
 その後、図9に示すように、赤色半導体レーザ素子10と、2波長半導体レーザ素子部370とを基台391に対して押圧しながらAuSn半田などの導電性接着層を介して固定することによりRGB3波長半導体レーザ素子部390を形成する。なお、第3実施形態のその他の製造プロセスは、上記第2実施形態と同様である。
 第3実施形態では、上記のように、緑色半導体レーザ素子部330および青色半導体レーザ素子部350を共通のn型GaN基板331上に形成することによって、緑色半導体レーザ素子部330および青色半導体レーザ素子部350を別々の基板上に形成した後に、所定の間隔を隔ててパッケージ内(基台391上)に配置する場合と比較して、緑色半導体レーザ素子部330および青色半導体レーザ素子部350が共通のn型GaN基板331上に集積化された2波長半導体レーザ素子部370として形成されるので、集積化される分、2波長半導体レーザ素子部370のB方向の幅を小さくすることができる。これにより、レーザ発光部の数を多く必要とする場合(たとえば緑色半導体レーザ素子部330では3つ)においても、2波長半導体レーザ素子部370をパッケージ内(基台391上)に容易に配置することができる。
 また、第3実施形態では、緑色半導体レーザ素子部330を構成する緑色半導体レーザ素子330a~330cの、(11-22)面からなる主面を有する活性層34の井戸層34bを、約3.5nmの厚みt6を有するように構成することによって、青色半導体レーザ素子350aおよび350bの光学利得が最大化される光導波路の延びる方向([-1-123]方向)と緑色半導体レーザ素子部330の光学利得が最大化される光導波路の延びる方向([-1-123]方向)とを一致させることができる。
 また、第3実施形態では、井戸層34bのIn組成を少なくとも約30%にするとともに、井戸層34bの厚みを少なくとも約3nmにすることによって、青色半導体レーザ素子350の光学利得が最大化される光導波路の延びる方向([-1-123]方向)と緑色半導体レーザ素子部330の光学利得が最大化される光導波路の延びる方向([-1-123]方向)とを一致させることができる。
 また、第3実施形態では、緑色半導体レーザ素子部330の活性層34の井戸層34bが、青色半導体レーザ素子部350の活性層54の井戸層54bのIn組成よりも大きいIn組成を有するInGaNからなるように構成することによって、青色半導体レーザ素子部350の光学利得が最大化される光導波路の延びる方向([-1-123]方向)と緑色半導体レーザ素子部330の光学利得が最大化される光導波路の延びる方向([-1-123]方向)とを一致させることができる。
 また、第3実施形態では、井戸層34bの厚みt6(約3.5nm:図12参照)を、井戸層54bの厚みt5(約3nm:図11参照)よりも大きく(t6>t5)することによって、青色半導体レーザ素子部350の活性層54において、In組成の大きい井戸層54bの結晶格子と、井戸層54bが成長されているIn組成の小さい下地層(障壁層54a)の結晶格子との格子定数が異なることにより生じるミスフィット転位の発生を抑制することができる。
 また、第3実施形態では、半極性面として約58°傾いた面である(11-22)面を用いることによって、より確実に、緑色半導体レーザ素子部330と青色半導体レーザ素子部350とで光学利得が最大化される光導波路の延びる方向を略一致させることができる。
 また、第3実施形態では、青色半導体レーザ素子部350および緑色半導体レーザ素子部330に、各々、(11-22)面に[0001]方向を投影した方向([-1-123]方向)に延びる光導波路を設けることによって、青色半導体レーザ素子350および緑色半導体レーザ素子部330のそれぞれの光学利得を最大化することができるとともに、青色半導体レーザ素子部350の青色光と緑色半導体レーザ素子部330の緑色光とを共通の共振器面から出射させることができる。
 また、第3実施形態では、青色半導体レーザ素子部350の活性層54がn型GaN基板331と同一の主面である(11-22)面の主面を有するInGaNからなるとともに、緑色半導体レーザ素子部330の活性層34がn型GaN基板331と同一の主面である(11-22)面の主面を有するInGaNからなることによって、緑色半導体レーザ素子部330の活性層34および青色半導体レーザ素子部350の活性層54と同一の(11-22)面の主面を有し、GaNからなるn型GaN基板331の表面上に半導体層を成長させるだけで、(11-22)面の主面を有し、InGaNからなる活性層34を含んだ緑色半導体レーザ素子部330、および、(11-22)面の主面を有し、InGaNからなる活性層54を含んだ青色半導体レーザ素子部350を共に容易に形成することができる。
 また、第3実施形態では、青色半導体レーザ素子部350および緑色半導体レーザ素子部330に、各々、(11-22)面に[0001]方向を投影した方向([-1-123]方向)に延びる光導波路を設けることによって、青色半導体レーザ素子部350および緑色半導体レーザ素子部330のそれぞれの光学利得を最大化することができるとともに、青色半導体レーザ素子部350の青色光と緑色半導体レーザ素子部330の緑色光とを共通の共振器面から出射させることができる。
 また、第3実施形態では、緑色半導体レーザ素子部330のn型光ガイド層33cおよびp型光ガイド層35aのIn組成(約5%)が、青色半導体レーザ素子部350のn型光ガイド層53cおよびp型光ガイド層55aのIn組成(約2%)に比べて大きくなるように構成することによって、n型光ガイド層33cおよびp型光ガイド層35aはn型光ガイド層53cおよびp型光ガイド層55aよりも光をより活性層(活性層34および54)内に閉じ込めることができるので、緑色半導体レーザ素子部330の緑色光をより活性層34内に閉じ込めるができる。これにより、青色半導体レーザ素子部350と比べて発光効率が劣る緑色半導体レーザ素子部330において、青色半導体レーザ素子部350と同程度の光の閉じ込めを確保することができる。
 また、第3実施形態では、緑色半導体レーザ素子部330のn型キャリアブロック層33bおよびp型キャリアブロック層35bのAl組成(約20%)が、青色半導体レーザ素子350のn型キャリアブロック層53bおよびp型キャリアブロック層55bのAl組成(約16%)に比べて大きくなるように構成することによって、n型キャリアブロック層33bおよびp型キャリアブロック層35bはn型キャリアブロック層53bおよびp型キャリアブロック層55bよりも光をより活性層(活性層34および54)内に閉じ込めることができるので、緑色半導体レーザ素子部330の緑色光をより活性層34内に閉じ込めるができる。これにより、青色半導体レーザ素子部350と比べて発光効率が劣る緑色半導体レーザ素子部330において、青色半導体レーザ素子部350と同程度の光の閉じ込めを確保することができる。
 また、第3実施形態では、緑色半導体レーザ素子部330のn型クラッド層33aおよびp型クラッド層35cのAl組成(約10%)が、青色半導体レーザ素子350のn型クラッド層55aおよびp型クラッド層55cのAl組成(約7%)に比べて大きくなるように構成することによって、n型クラッド層33aおよびp型クラッド層35cはn型クラッド層55aおよびp型クラッド層55cよりも光をより活性層(活性層34および54)内に閉じ込めることができるので、緑色半導体レーザ素子部330の緑色光をより活性層34内に閉じ込めるができる。これにより、青色半導体レーザ素子部350と比べて発光効率が劣る緑色半導体レーザ素子部330において、青色半導体レーザ素子部350と同程度の光の閉じ込めを確保することができる。なお、第3実施形態のその他の効果は、上記第1実施形態と同様である。
 (第3実施形態の変形例)
 図10、図12および図13を参照して、第3実施形態の変形例について説明する。この第3実施形態の変形例では、上記第3実施形態と異なり、青色半導体レーザ素子350aおよび350bの活性層54の厚みが、緑色半導体レーザ素子330a~330cの活性層34の厚みよりも大きい場合について説明する。
 すなわち、第3実施形態の変形例による青色半導体レーザ素子350aおよび350bの活性層54は、図13に示すように、(11-22)面の主面を有するInGaNからなるSQW構造を有している。すなわち、活性層54は、n型光ガイド層53cの上面上に形成され、それぞれ約20nmの厚みを有するアンドープIn0.02Ga0.98Nからなる2層の障壁層54cと、2層の障壁層54cの間に配置され、約8nmの厚みt7を有するアンドープIn0.20Ga0.80Nからなる1層の井戸層54dとによって構成されている。ここで、井戸層54dの面内格子定数は、n型GaN基板331(図10参照)の面内の格子定数よりも大きいので、面内方向に圧縮歪が印加されている。なお、井戸層54dの厚みt7は、6nm以上15nm未満が好ましい。第3実施形態の変形例では、活性層54が、m面((1-100)面)およびa面((11-20)面)などの無極性面の主面を有する場合と異なり、(11-22)面の主面を有することによって、井戸層54dの結晶成長が困難になるのを抑制することが可能であるので、活性層54において、In組成が大きくなることによる結晶欠陥の増加を抑制することが可能である。なお、InGaNは、本発明の「窒化物系半導体」の一例であり、井戸層54dは、本発明の「第3井戸層」の一例である。
 また、図13に示す青色半導体レーザ素子350aおよび350bの活性層54の20%のIn組成を有する井戸層54dの厚みt7(約8nm)は、図12に示す緑色半導体レーザ素子330a~330cの活性層34の33%のIn組成を有する井戸層34bの厚みt6(約2.5nm)よりも大きく(t7>t6)なるように構成されている。なお、第3実施形態の変形例において、In組成が20%程度の場合、活性層の内の井戸層の厚みは、約10nm以下であることが結晶欠陥の発生を抑制する点で好ましく、In組成が30%程度の場合、井戸層の厚みは、約3nm以下であることが結晶欠陥の発生を抑制する点で好ましい。この際、活性層54がMQW構造を有する場合においては、活性層の各井戸層のそれぞれの厚みを合計した値が、上記数値内であることが好ましい。なお、井戸層34bは、本発明の「第4井戸層」の一例である。
 また、緑色半導体レーザ素子部330を構成する緑色半導体レーザ素子330a~330cのn型光ガイド層33cおよびp型光ガイド層35aのIn組成は、青色半導体レーザ素子部350を構成する青色半導体レーザ素子350aおよび350bのn型光ガイド層53cおよびp型光ガイド層55aのIn組成と比べて大きい方が好ましい。
 なお、第3実施形態の変形例におけるその他の構成および製造プロセスは、上記第3実施形態と同様である。
 第3実施形態の変形例では、上記のように、(11-22)面の主面を有するInGaNからなる活性層54を含む青色半導体レーザ素子部350が形成されたn型GaN基板331と同一のn型GaN基板331の表面上に、(11-22)面の主面を有するInGaNからなる活性層34を含む緑色半導体レーザ素子部330を形成することによって、c面((0001)面)を主面とする場合に比べて、活性層34および54に発生するピエゾ電界を小さくすることができるので、ピエゾ電界による活性層34の井戸層34bおよび活性層54の井戸層54bにおけるエネルギーバンドの傾きを小さくすることができる。これにより、青色半導体レーザ素子部350および緑色半導体レーザ素子部330の発振波長の変化量(変動幅)をより小さくすることができるので、同一のn型GaN基板331の表面上に形成された青色半導体レーザ素子部350および緑色半導体レーザ素子部330を備える半導体レーザ装置300の歩留まりの低下を抑制することができる。また、ピエゾ電界が小さいことにより、活性層34および54のキャリアの密度の変化量に対する、青色半導体レーザ素子部350および緑色半導体レーザ素子部330の発振波長の変化量(変動幅)をより小さくすることができる。これにより、青色半導体レーザ素子部350および緑色半導体レーザ素子部330の色合いの制御が困難になるのを抑制することができる。また、ピエゾ電界が小さいことにより、青色半導体レーザ素子部350および緑色半導体レーザ素子部330の発光効率を向上させることができる。
 また、第3実施形態の変形例では、(11-22)面は、他の半極性面と比べて、ピエゾ電界がより小さいので、青色半導体レーザ素子部350および緑色半導体レーザ素子部330の発振波長の変化量を小さくすることができる。また、c面((0001)面)に対して垂直な面であるm面((1-100)面)およびa面((11-20)面)などの無極性面を主面にする場合と比べて、(11-22)面を主面とすることによって、容易に、(11-22)面の主面を有する半導体層(活性層34および54)を形成することができる。
 また、第3実施形態の変形例では、青色半導体レーザ素子部350の活性層54の圧縮歪を有する井戸層54dの厚みt7(約8nm:図13参照)を、緑色半導体レーザ素子部330の活性層34の圧縮歪を有する井戸層34bの厚みt6(約2.5nm:図12参照)よりも大きく(t7>t6)することによって、In組成が大きいために結晶欠陥が発生しやすい井戸層34bにおいて、結晶欠陥が生じるのを抑制することができる。
 また、第3実施形態の変形例では、青色半導体レーザ素子部350の活性層54の井戸層54dをIn組成が約20%以下であるInGaNからなるように構成し、かつ、井戸層54dの厚みt7(約8nm)を約6nm以上約15nm以下にするとともに、緑色半導体レーザ素子部330の活性層34の井戸層34bをIn組成が約20%よりも大きいInGaNからなるように構成し、かつ、井戸層34bの厚みt6(約2.5nm)を約6nm未満にすることによって、確実に、青色半導体レーザ素子部350の井戸層54dおよび緑色半導体レーザ素子部330の井戸層34bにおいて、結晶欠陥が発生するのを抑制することができる。
 また、第3実施形態の変形例では、n型GaN基板331を、(11-22)面の主面を有するように構成することによって、青色半導体レーザ素子部350の活性層54および緑色半導体レーザ素子部330の活性層34と同一の(11-22)面の主面を有するn型GaN基板331上に半導体層を形成させるだけで、非極性面の主面を有する活性層54を含んだ青色半導体レーザ素子部350および非極性面の主面を有する活性層34を含んだ緑色半導体レーザ素子部330を容易に形成することができる。
 また、第3実施形態の変形例では、緑色半導体レーザ素子部330の活性層34がSQW構造を有することによって、活性層34がMQW構造を有する場合と比べて、活性層34の井戸層34bの厚みt6(図12参照)が過度に小さくなることに起因して活性層34が層構造ではなくなるのを抑制することができる。
 また、第3実施形態の変形例では、活性層34および54がそれぞれ(11-22)面を主面とすることによって、非極性面のうちのm面((1-100)面)およびa面((11-20)面)などの無極性面を主面とする場合と異なり、(11-22)面を主面とすることによって、活性層34および54における結晶成長が困難になるのを抑制することができるので、活性層34および54において、In組成が大きくなることによる結晶欠陥が増加するのを抑制することができる。
 また、第3実施形態の変形例では、半極性面である(11-22)面がc面((0001)面)から[11-20]方向に向かって約58°傾いた面からなることによって、半極性面のうちの(11-22)面の主面を有する活性層54を含む青色半導体レーザ素子部350の光学利得と、半極性面のうちの(11-22)面の主面を有する活性層34を含む緑色半導体レーザ素子部330の光学利得とをそれぞれより大きくすることができる。なお、第3実施形態の変形例におけるその他の効果は、上記第3実施形態と同様である。
 (第4実施形態)
 図14~図17は、本発明の第4実施形態による半導体レーザ装置の構造を示した平面図および断面図である。まず、図14~図17を参照して、この第4実施形態では、上記第3実施形態で用いた2波長半導体レーザ素子部370の表面上に、上記第2実施形態で用いた赤色半導体レーザ素子210を接合することによりRGB3波長半導体レーザ素子部490を構成する場合について説明する。なお、図15は、図14の4000-4000線に沿った断面を示している。また、図16は、図14の4100-4100線に沿った断面を示している。
 本発明の第4実施形態による半導体レーザ装置400では、図14に示すように、RGB3波長半導体レーザ素子部490が台座206の上面上に固定されている。
 ここで、第4実施形態では、約635nmの赤色光、約520nmの緑色光および約480nmの青色光を用いて白色光を得るためには、RGB3波長半導体レーザ素子部490における上記3種類の半導体レーザ素子のワット換算の出力比を、赤色:緑色:青色=9.2:9.9:7.2に調整することが要求される。
 したがって、図15に示すように、上記第2実施形態で用いた赤色半導体レーザ素子210(出力:約350mW)と、上記第3実施形態で用いた2波長半導体レーザ素子部370とを用いてRGB3波長半導体レーザ素子部490が構成されている。
 また、第4実施形態では、図15に示すように、RGB3波長半導体レーザ素子部490は、B方向に約400μmの幅を有する2波長半導体レーザ素子部370の表面上に形成されたSiOからなる絶縁膜480と、AuSn半田などからなる導電性接着層3とを介してB方向に約100μmの幅を有する赤色半導体レーザ素子210が接合されている。また、RGB3波長半導体レーザ素子部490は、図14に示すように、基台491上のB方向の各色の半導体レーザ素子が配列する方向(B方向)の略中央部から若干一方側(B2側)に寄せられた位置に配置されている。
 また、図17に示すように、絶縁膜480は、青色半導体レーザ素子部350のレーザ光の出射方向(A1方向)側におけるp側パッド電極357のA1側の一部の領域(ワイヤボンド領域357a)および緑色半導体レーザ素子部330のp側パッド電極337の一部の領域(B2側の端部近傍領域)が外部に露出するように形成されている。また、青色半導体レーザ素子350のレーザ光の出射方向とは反対(A2方向)側の端部近傍の所定領域には、絶縁膜480を覆うようにAuからなる電極層481が形成されている。これにより、赤色半導体レーザ素子210(図16参照)は、電極層481と上下方向(C方向)に対向する領域において、p側パッド電極17の一部が導電性接着層3を介して電極層481と電気的に接続されている。また、電極層481は、正面(図16参照)から見て青色半導体レーザ素子部350が形成された側(B1側)の端部領域(ワイヤボンド領域481a)が赤色半導体レーザ素子210の側方(B1側)において外部に露出するように形成されている。
 また、赤色半導体レーザ素子210は、電極層481のワイヤボンド領域481aにワイヤボンディングされた金属線471を介してリード端子202に接続されている。また、2波長半導体レーザ素子部370の緑色半導体レーザ素子部330は、p側パッド電極337のワイヤボンド領域337aにワイヤボンディングされた金属線472を介してリード端子203に接続されている。また、青色半導体レーザ素子部350は、p側パッド電極357のワイヤボンド領域357aにワイヤボンディングされた金属線473を介してリード端子201に接続されている。また、赤色半導体レーザ素子210のn側電極18は、金属線474を介して基台491に接続されている。なお、第4実施形態による半導体レーザ装置400のその他の構造は、上記第2実施形態と同様である。
 次に、図14~図17を参照して、第4実施形態による半導体レーザ装置400の製造プロセスについて説明する。
 第4実施形態による半導体レーザ装置400の製造プロセスでは、上記第2および第3実施形態と同様の製造プロセスにより、約400μm毎にリッジ20が形成されたウェハ状態の赤色半導体レーザ素子210と、ウェハ状態の2波長半導体レーザ素子部370とを作製する。
 その後、図17に示すように、p側パッド電極357のワイヤボンド領域357a(B1側)とp側パッド電極337のワイヤボンド領域337a(B2側)とを残して電流ブロック層376(図16参照)の上面を共振器方向(A方向)に覆うように絶縁膜480を形成する。その後、青色半導体レーザ素子部350が形成された側のp側パッド電極357を除く絶縁膜480の上面に、ワイヤボンド領域481aを有する電極層481を形成する。
 その後、2波長半導体レーザ素子部370が形成されたウェハと、赤色半導体レーザ素子210が形成されたウェハとを対向させながら導電性接着層3を用いて接合することにより、ウェハ状態のRGB3波長半導体レーザ素子部490が形成される。その後、幅が約100μmとなるように赤色半導体レーザ素子210が形成されたウェハの一部をエッチングする。その後、所定の共振器長を有するようにRGB3波長半導体レーザ素子部490が形成されたウェハをバー状に劈開するとともに共振器方向に素子分割することにより、RGB3波長半導体レーザ素子部490(図14参照)の複数個のチップが形成される。
 その後、図14に示すように、RGB3波長半導体レーザ素子部490を基台491に対して押圧しながら導電性接着層(図示せず)を介して固定することによりRGB3波長半導体レーザ素子部490を形成する。その後、金属線により、電極層(ワイヤボンド領域)とリード端子とをそれぞれ接続する。このようにして、第4実施形態による半導体レーザ装置400が形成される。
 第4実施形態では、上記のように、赤色半導体レーザ素子210を、2波長半導体レーザ素子部370の表面上に接合することによって、要求される個数が多いためにレーザ発光部の数(合計5個)を横並びに増やして形成した2波長半導体レーザ素子部370と赤色半導体レーザ素子210とを直線的に配置する(たとえば基台491上に横一列方向に並べる)場合と比較して、2波長半導体レーザ素子部370のレーザ発光部と赤色半導体レーザ素子210とのレーザ発光部とを接合方向(C方向)に所定の間隔を隔てて並列的に配置して互いに近づけることができるので、複数のレーザ発光部がパッケージ(基台491)の中央領域に集まるようにRGB3波長半導体レーザ素子部490を形成することができる。これにより、RGB3波長半導体レーザ素子部490から出射される複数のレーザ出射光を光学系の光軸に近づけることができるので、半導体レーザ装置400と光学系との調整を容易に行うことができる。なお、第4実施形態のその他の効果は、上記第1実施形態と同様である。
 (第5実施形態)
 図18~図20を参照して、本発明の第5実施形態について説明する。なお、図20には、図19に示したモノリシック型の2波長半導体レーザ素子部570の詳細な構造に関して図19とは上下方向(C1方向およびC2方向)を逆さにして示している。
 本発明の第5実施形態による半導体レーザ装置500では、図19に示すように、2波長半導体レーザ素子部570と赤色半導体レーザ素子210とからなるRGB3波長半導体レーザ素子部590が、AuSn半田などからなる導電性接着層4(4aおよび4b)を介してAlNなどからなる基台591の上面上にジャンクションダウン方式により接合されている。なお、導電性接着層4aおよび4bは、それぞれ、本発明の「第1融着層」および「第2融着層」の一例であり、基台591は、本発明の「支持基台」の一例である。
 また、青色半導体レーザ素子部550を構成するとともに凹部6を隔ててレーザ素子が配列する方向(B方向)に並んで配置された青色半導体レーザ素子550aおよび550bは、それぞれ、図20に示すように、n型GaN基板331の上面331a上に、約1μmの厚みを有するGeドープGaNからなるn型GaN層512と、約2μmの厚みを有するn型AlGaNからなるn型クラッド層513と、InGaNからなる量子井戸層および障壁層が交互に積層された活性層514と、約0.3μmの厚みを有するp型AlGaNからなるp型クラッド層515とが形成されている。なお、活性層514およびp型クラッド層515は、それぞれ、本発明の「第5活性層」および「第1半導体層」の一例である。
 また、p型クラッド層515は、凸部515aと、凸部515aの両側(B方向)に延びる平坦部とを有している。このp型クラッド層515の凸部515aによって、光導波路を構成するためのリッジ520が形成されている。またリッジ520上に、p型クラッド層515から近い順に、Cr層およびAu層からなるp側オーミック電極516が形成されている。また、p型クラッド層515の平坦部とリッジ520の側面とを覆うように、SiOからなる電流ブロック層517が形成されている。また、リッジ520および電流ブロック層517の上面上に、Auなどからなるp側パッド電極518が形成されている。なお、p側パッド電極518は、本発明の「第1パッド電極」の一例である。
 また、緑色半導体レーザ素子部530は、n型GaN基板331の上面上に青色半導体レーザ素子550とは反対側(B1側)に凹部8を隔てて形成されている。また、緑色半導体レーザ素子部530において凹部7を隔ててレーザ素子が配列する方向(B方向)に並んで配置された緑色半導体レーザ素子530a、530bおよび530cは、それぞれ、n型GaN基板331の上面上(上面331a上)に、約1μmの厚みを有するn型GaN層512と、約3μmの厚みを有するn型AlGaNからなるn型クラッド層533と、InGaNからなる量子井戸層および障壁層が交互に積層された活性層534と、約0.45μmの厚みを有するp型AlGaNからなるp型クラッド層535とが形成されている。なお、活性層534およびp型クラッド層535は、それぞれ、本発明の「第6活性層」および「第2半導体層」の一例である。
 また、p型クラッド層535は、凸部535aと、凸部535aの両側(B方向)に延びる平坦部とを有している。このp型クラッド層535の凸部535aによって、光導波路を構成するためのリッジ540が形成されている。またリッジ540上に、p型クラッド層535から近い順に、Cr層およびAu層からなるp側オーミック電極536が形成されている。また、p型クラッド層535の平坦部とリッジ540の側面とを覆うように、青色半導体レーザ素子部550から延びる電流ブロック層517が形成されている。また、リッジ540および電流ブロック層517の上面上に、Auなどからなるp側パッド電極538が形成されている。なお、p側パッド電極538は、本発明の「第2パッド電極」の一例である。
 なお、p側オーミック電極516(第1オーミック電極層)およびp側パッド電極518(第1パッド電極)は、本発明の「第1電極」の一例であり、p側オーミック電極536(第2オーミック電極層)およびp側パッド電極538(第2パッド電極)は、本発明の「第2電極」の一例である。ここで、第1半導体層と第1パッド電極との間に第1オーミック電極層を備え、第2半導体層と第2パッド電極との間に第2オーミック電極層を備えることにより、青色半導体レーザ素子部550および緑色半導体レーザ素子部530のp側の接触抵抗を低減することができる。また、n型GaN基板331の下面331b上に、n型GaN基板331側からTi層、Pt層およびAu層の順に積層されたn側電極539が形成されている。
 また、図18に示すように、基台591の共振器方向(A方向)の長さは、2波長半導体レーザ素子部570の共振器長よりも大きく形成されている。そして、基台591(図19参照)の上面上には、p側パッド電極518および538に対応する位置に、後述するAuからなる配線電極594および593がそれぞれ形成されている。また、配線電極593および594は、A方向(図19参照)に短冊状に延びるとともに2波長半導体レーザ素子部570の共振器長よりも長く形成されている。したがって、2波長半導体レーザ素子部570の青色半導体レーザ素子部550および緑色半導体レーザ素子部530は、図19に示すように、配線電極593および594のうちの2波長半導体レーザ素子部570が接合されていない領域にワイヤボンディングされる金属線を介して外部と接続されるように構成されている。
 ここで、第5実施形態では、図20に示すように、青色半導体レーザ素子部550および緑色半導体レーザ素子部530とを比較した場合、青色半導体レーザ素子部550におけるn型GaN基板331の下面331bからp型クラッド層515の凸部515aの上面までの半導体素子層の厚みt1よりも、緑色半導体レーザ素子部530におけるn型GaN基板331の下面331bからp型クラッド層535の凸部535aの上面までの半導体素子層の厚みt2が大きくなる(t1<t2であり、t2-t1=約1.2μm)ように構成されている。さらに、青色半導体レーザ素子部550のp側オーミック電極516の下面(凸部515aの上面)からp側パッド電極518の上面までの厚みt3は、緑色半導体レーザ素子部530のp側オーミック電極536の下面(凸部535aの上面)からp側パッド電極538までの厚みt4よりも大きく(t3>t4であり、t3-t4=約1.2μm)形成されている。これにより、青色半導体レーザ素子部550のn型GaN基板331の下面331bから導電性接着層4(4a)の下面までの厚み(t1+t3)と、緑色半導体レーザ素子部530のn型GaN基板331の下面331bから導電性接着層4(4b)の下面までの厚み(t2+t4)とは略同じ厚みを有している。なお、第5実施形態における「厚み」とは、凸部(リッジ)の上面と基台591の下面間における各電極および融着層の厚みを示している。
 また、第5実施形態では、上記t3>t4の関係に加えて、p側パッド電極518の厚みt13が、p側パッド電極538の厚みt14よりも大きく(t13>t14)形成されている。また、緑色半導体レーザ素子部530のp型クラッド層535の厚みが青色半導体レーザ素子部550のp型クラッド層515の厚みよりも大きく、かつ、緑色半導体レーザ素子部530のn型クラッド層533の厚みが青色半導体レーザ素子部550のn型クラッド層513の厚みよりも大きく形成されている。
 また、第5実施形態では、p側パッド電極518の上面(C2側の面)とp側パッド電極538の上面(C2側)とが略同一平面(破線で示す)に揃えられている。これにより、2波長半導体レーザ素子部570は、C方向に略同じ厚みを有する導電性接着層4aおよび4bを介して基台591に固定されている。なお、下面331bは、本発明の「他方側の表面」の一例であり、凸部515aの上面および凸部535aの上面は、それぞれ、本発明の「第1半導体層の表面」および「第2半導体層の表面」の一例である。
 また、図18および図19に示すように、基台591の上面のうちの赤色半導体レーザ素子210が接合される領域には、Auからなる配線電極592が形成されている。また、図18に示すように、導電性接着層1を介してp側パッド電極217(図19参照)と配線電極592とが接合されており、赤色半導体レーザ素子210は、基台591の上面上にジャンクションダウン方式により接合されている。また、配線電極592は、ワイヤボンディングされた金属線595を介してリード端子202に接続されている。また、n側電極218は、ワイヤボンディングされた金属線596を介して台座206に電気的に接続されている。また、緑色半導体レーザ素子部530のp側パッド電極538(図19参照)に電気的に接続された配線電極593は、ワイヤボンディングされた金属線597を介してリード端子201に接続されるとともに、青色半導体レーザ素子部550のp側パッド電極518(図19参照)に電気的に接続された配線電極594は、ワイヤボンディングされた金属線598を介してリード端子203に接続されている。また、2波長半導体レーザ素子部570は、n側電極539にワイヤボンディングされた金属線599を介して台座206に電気的に接続されている。これにより、半導体レーザ装置500は、各半導体レーザ素子のp側パッド電極(217、518および538)が、互いに絶縁されたリード端子に接続されるとともに、n側電極(218および539)が共通の負極端子に接続される状態(カソードコモン)に構成されている。なお、図18に示すように、RGB3波長半導体レーザ素子部590のA1側の共振器端面から各色のレーザ光が出射されるように構成されている。
 次に、図18~図26を参照して、第5実施形態による半導体レーザ装置500の製造プロセスについて説明する。
 第5実施形態による半導体レーザ装置500の製造プロセスでは、まず、図21に示すように、フォトリソグラフィを用いて、n型GaN基板331の上面331a上に、SiOからなる選択成長用のマスク541をパターニングする。マスク541は、B方向に所定の間隔を隔てた状態でA方向(紙面垂直方向)に延びるようにパターニングされる。その後、図22に示すように、MOCVD法を用いて、マスク541の開口部541aから露出するn型GaN基板331の上面331a上に、n型クラッド層513、活性層514およびp型クラッド層515を選択的に成長させて半導体素子層510cを形成する。
 その後、マスク541を除去する。次に、図23に示すように、フォトリソグラフィを用いて、n型GaN基板331の上面331aの所定領域および青色半導体レーザ素子部550となる半導体素子層510cの表面全体を覆うマスク542をパターニングする。この状態で、MOCVD法を用いて、マスク542の開口部542aから露出するn型GaN基板331の上面331a上に、n型クラッド層533、活性層534およびp型クラッド層535を選択的に成長させて半導体素子層530dを形成する。この際、半導体素子層530dは、青色半導体レーザ素子550となる半導体素子層510cよりも厚みが約1.2μm大きくなるように形成される。その後、マスク542を除去する。これにより、半導体素子層510cと530cとが、凹部8を隔てて形成される。
 そして、半導体素子層510cを青色半導体レーザ素子550aおよび550bに分離するための、底面がn型GaN層512に達する凹部6を形成するとともに、半導体素子層530cを緑色半導体レーザ素子530a、530bおよび530cに分離するための、底面がn型GaN層512に達する凹部7を形成した後、図24に示すように、p型クラッド層515および535の表面上にp側オーミック電極516および536をそれぞれ形成する。その後、フォトリソグラフィを用いて、p側オーミック電極516および536上に、A方向(紙面垂直方向)にストライプ状に延びるレジスト(図示せず)をパターニングするとともに、そのレジストをマスクとしてドライエッチングすることにより、p型クラッド層515および535の部分に2つのリッジ520および3つのリッジ540をそれぞれ形成する。これにより、n型GaN基板331(上面331a)上に、青色半導体レーザ素子部550の素子構造と緑色半導体レーザ素子部530の素子構造とが、素子の幅方向(B方向)B方向に所定の間隔を隔てて形成される。
 その後、図25に示すように、プラズマCVD法などを用いて、p側オーミック電極516および536の上面(C1側の面)以外の半導体素子層510cおよび530dの表面(凹部7および8の各々の側面および底面を含む)を覆うように電流ブロック層517を形成する。
 その後、フォトリソグラフィを用いて、電流ブロック層517の表面の所定領域を覆うようにレジスト543をパターニングする。この際、図25に示すように、レジスト543は、リッジ520(540)の上方およびリッジ520(540)の両側に続く電流ブロック層517の所定領域のみが露出するようにパターニングされる。また、レジスト543は、半導体素子層510cおよび530dの高さ方向(C方向)の厚みに対応して形成されるので、青色半導体レーザ素子部550の素子構造領域と緑色半導体レーザ素子部530の素子構造領域とでn型GaN基板331の上面331aからレジスト543の上面までの高さが異なるように形成される。そして、この状態で、レジスト543の開口部543a(p側オーミック電極516および536が露出した部分)に、真空蒸着法を用いてAu金属層545(545aおよび545b)を堆積させる。これにより、開口部543aはAu金属層545で略完全に埋め込まれる。
 そして、レジスト543(図25参照)を除去した後、図26に示すように、化学的機械的研磨(CMP)により、Au金属層545の上面(C1側の面)が略同一平面となるようにAu金属層545の厚みを調整する。この際、まず、緑色半導体レーザ素子部530が形成される側のAu金属層545bの上面から先にC2方向に向かって研磨が開始される。そして、n型GaN基板331の上面331aからAu金属層545bの上面までの高さH1が、n型GaN基板331の上面331aからAu金属層545aの上面までの高さH2と略等しくなったところでCMP工程を終了する。なお、この時点で、Au金属層545aがp側パッド電極518(厚みt13)となり、Au金属層545bがp側パッド電極538(厚みt14)となる。これにより、n型GaN基板331の下面331bからp側パッド電極518(538)の上面までの高さが略等しい2波長半導体レーザ素子部570が得られる。続いて、n型GaN基板331が約100μmの厚みを有するようにn型GaN基板331の下面331bを研磨した後、n型GaN基板331の下面331b上にn側電極539を形成する。これにより、ウェハ状態の2波長半導体レーザ素子部570が形成される。
 その後、A方向に約600μmの共振器長を有するようにウェハをB方向にバー状に劈開するとともに、破線800(図26参照)の位置でA方向(紙面に垂直な方向)に沿って素子分割することにより、2波長半導体レーザ素子部570(図18参照)の複数個のチップが形成される。
 一方、図19に示すように、短冊状の配線電極592、593および594が表面上に形成されるとともに所定の形状に形成された基台591を準備する。その際、配線電極592の表面上に、約1μmの厚みを有する導電性接着層1を予め形成するとともに、配線電極593および594の表面上に、約1μmの厚みを有する導電性接着層4を予め形成しておく。そして、図19に示すように、2波長半導体レーザ素子部570と基台591とを対向させながら熱圧着により接合する。この際、p側パッド電極518が配線電極594に対応するとともに、p側パッド電極538が配線電極593に対応するように接合する。また、図18に示すように、基台591のA1側の端部と2波長半導体レーザ素子部570のA1側(光出射側)の共振器端面とが略同一平面上に配置されるように2波長半導体レーザ素子部570と基台591とを接合する。
 また、赤色半導体レーザ素子210と基台591とを対向させながら熱圧着により接合する。この際、p側パッド電極17が配線電極592に対向するように接合する。また、図18に示すように、基台591のA1側の端部と赤色半導体レーザ素子210のA1側(光出射側)の共振器端面とが略同一平面上に配置されるように赤色半導体レーザ素子210と基台591とを接合する。
 最後に、基台591の下面591a(図19参照)を台座206(図18参照)の上面に接合するとともに、n側電極218および539や配線電極592~594に対して、それぞれ、金属線596、599、595、597および598をワイヤボンディングして電気的に接続する。このようにして、第5実施形態による半導体レーザ装置500(図18参照)が形成される。
 第5実施形態では、上記のように、p側オーミック電極516の下面(凸部515aの上面)からp側パッド電極518の上面までの厚みt3とp側オーミック電極536の下面(凸部535aの上面)からp側パッド電極538までの厚みt4とが、t3>t4の関係を有することによって、青色半導体レーザ素子550のn型GaN基板331の下面331bからp型クラッド層515の凸部515aの上面までの厚みt1と緑色半導体レーザ素子部530のn型GaN基板331の下面331bからp型クラッド層535の凸部535aの上面までの厚みt2とに差異が生じた場合であっても、p側電極層の部分に厚みの差(図18における厚みt3と厚みt4との差)を設けているので、青色半導体レーザ素子550の厚み(t1+t3)と緑色半導体レーザ素子部530の厚み(t2+t4)との差をより小さくすることができる。すなわち、青色半導体レーザ素子550および緑色半導体レーザ素子部530における半導体素子層の厚みt1およびt2に差が生じても、その差(厚みt1と厚みt2との差)をp側電極層の厚みの差(厚みt3と厚みt4との差)を利用して適切に調整することができる。これにより、共通のn型GaN基板331を含む青色半導体レーザ素子550および緑色半導体レーザ素子部530の厚みを略揃えることができるので、この半導体レーザ装置500(2波長半導体レーザ素子部570)をジャンクションダウン方式で導電性接着層4を介して基台591に接合する際、導電性接着層4に半導体レーザ素子の厚みの差を吸収させる必要がないので、導電性接着層4(4aおよび4b)を必要最小限の量に抑えることができる。この結果、接合後に余分な導電性接着層4がはみ出すことに起因してレーザ素子同志の電気的な短絡が生じるという不都合が抑制されるので、半導体レーザ装置500を形成する際の歩留まりを向上させることができる。
 また、第5実施形態では、p側パッド電極518の厚みt13と、p側パッド電極538の厚みt14とが、t13>t14の関係を有することによって、青色半導体レーザ素子550と緑色半導体レーザ素子部530との厚みの差を小さくすることができる。これにより、この半導体レーザ装置500をジャンクションダウン方式で基台591に接合する際、導電性接着層1を必要最小限の量に抑えることができる。
 また、第5実施形態では、導電性接着層4aの厚みと導電性接着層4bの厚みとが略同じであることによって、使用する導電性接着層4を、青色半導体レーザ素子550および緑色半導体レーザ素子部530と基台591との接合部分において、共に必要最小限の量に抑えることができる。
 また、第5実施形態では、p側パッド電極518および538は、それぞれ、p側オーミック電極516およびp側オーミック電極536に接触するパッド電極であるように構成することによって、p側パッド電極518および538の厚みをそれぞれ適切に調整することにより、共通のn型GaN基板331の表面上(上面331a上)に形成された青色半導体レーザ素子550および緑色半導体レーザ素子部530の厚みを容易に揃えることができる。
 また、第5実施形態では、緑色半導体レーザ素子部530のp型クラッド層535の厚みを青色半導体レーザ素子部550のp型クラッド層515の厚みよりも大きく形成することによって、一般的に青色半導体レーザ素子におけるp型クラッド層の光閉じ込め効果よりも弱い傾向にある緑色半導体レーザ素子のp型クラッド層の光閉じ込め効果を向上させることができる。なお、第5実施形態のその他の効果は、上記第1実施形態と同様である。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、上記第1~第5実施形態において、緑色半導体レーザ素子30、青色半導体レーザ素子50および赤色半導体レーザ素子10の各々の発振波長、定格出力および個数(レーザ発光部の数)は記載したものに限定されなく、たとえば、それぞれの実施形態に記載の緑色半導体レーザ素子30、青色半導体レーザ素子50および赤色半導体レーザ素子10の各々の発振波長、定格出力および個数を、他の実施形態にも適用することができる。たとえば、上記第1実施形態では、RGB3波長半導体レーザ素子部90を構成する緑色半導体レーザ素子30、青色半導体レーザ素子50および赤色半導体レーザ素子10の個数n1、n2およびn3を、それぞれ、3個、2個および1個からなるように構成した例について示したが、本発明はこれに限られない。本発明では、n1>n2>n3であればよく、緑色半導体レーザ素子30、青色半導体レーザ素子50および赤色半導体レーザ素子10の個数を、たとえば、4個、2個および1個からなるように構成してもよい。あるいは、赤色半導体レーザ素子10を複数有していてもよく、たとえば、緑色半導体レーザ素子30、青色半導体レーザ素子50および赤色半導体レーザ素子10の個数を、6個、4個および2個からなるように構成してもよい。あるいは、1つのレーザ発光部が約90mWの出力を有する緑色半導体レーザ素子を3個、同じく約200mWの出力を有する青色半導体レーザ素子を2個、および、約800mWの出力を有する赤色半導体レーザ素子を1個用いてRGB3波長半導体レーザ素子部を構成してもよいし、1つのレーザ発光部が約90mWの出力を有する緑色半導体レーザ素子を3個、同じく約150mWの出力を有する青色半導体レーザ素子を4個、および、約800mWの出力を有する赤色半導体レーザ素子を1個用いてRGB3波長半導体レーザ素子部を構成してもよい。
 また、また、上記第4実施形態では、約635nmの赤色光、約520nmの緑色光および約480nmの青色光を用いて白色光を得るようにRGB3波長半導体レーザ素子部490を構成した例について示したが、本発明はこれに限られない。すなわち、上記第3実施形態と同様に、約655nmの赤色光、約520nmの緑色光および約480nmの青色光を用いてRGB3波長半導体レーザ素子部を構成してもよい。
 また、上記第4実施形態では、上記第4実施形態では、緑色半導体レーザ素子330と青色半導体レーザ素子350とが集積されたモノリシック型の2波長半導体レーザ素子部370上に赤色半導体レーザ素子210を接合した例について示したが、本発明はこれに限られない。すなわち、上記第2実施形態の緑色半導体レーザ素子上に赤色半導体レーザ素子を接合してもよく、また、上記第2実施形態の青色半導体レーザ素子上に赤色半導体レーザ素子を接合してもよい。
 また、上記第1~第5実施形態では、RGB3波長半導体レーザ素子部が接合される基台(91、291、391、491および591)を、AlNからなる基板により構成した例について示したが、本発明はこれに限られない。本発明では、基台を、FeやCuなどからなる熱伝導率の良好な導電材料を用いて構成してもよい。
 また、上記第1~第5実施形態では、平坦な活性層上に、リッジを有する上部クラッド層を形成し、誘電体のブロック層をリッジの側面に形成したリッジ導波型半導体レーザによってRGB3波長半導体レーザ素子部を形成した例について示したが、本発明はこれに限られない。すなわち、半導体のブロック層を有するリッジ導波型半導体レーザや、埋め込みヘテロ構造(BH)の半導体レーザや、平坦な上部クラッド層上にストライプ状の開口部を有する電流ブロック層を形成した利得導波型の半導体レーザによってRGB3波長半導体レーザ素子部を形成してもよい。
 また、上記第3実施形態では、緑色半導体レーザ素子の活性層の井戸層を、約3.5nmの厚みを有するように構成した例について示したが、本発明はこれに限られない。たとえば、緑色半導体レーザ素子の活性層の井戸層を3nm以上の厚みを有するように構成してもよい。
 また、上記第3実施形態では、青色半導体レーザ素子のMQW構造を構成する多層の井戸層の全ての井戸層(1つの井戸層)を、約3nmの厚みを有するように構成した例について示したが、本発明はこれに限られない。すなわち、青色半導体レーザ素子の活性層の井戸層の厚みは、特に限定されない。ここで、青色半導体レーザ素子の活性層の井戸層の厚みは、緑色半導体レーザ素子の活性層の井戸層の厚みよりも小さい方が好ましい。
 また、上記第3実施形態では、青色半導体レーザ素子の活性層をMQW構造を有するように構成するとともに、緑色半導体レーザ素子の活性層をSQW構造を有するように構成した例について示したが、本発明はこれに限られない。すなわち、青色半導体レーザ素子の活性層をSQW構造を有するように構成してもよいし、緑色半導体レーザ素子の活性層をMQW構造を有するように構成してもよい。
 また、上記第3実施形態では、緑色半導体レーザ素子の活性層の井戸層を、33%のIn組成を有するInGaNからなるように構成した例について示したが、本発明はこれに限られない。すなわち、緑色半導体レーザ素子の活性層の井戸層の組成は特に限定されない。この際、緑色半導体レーザ素子の活性層の井戸層は、30%以上のIn組成を有するInGaNからなるように構成するのが好ましい。
 また、上記第3実施形態では、青色半導体レーザ素子の活性層および緑色半導体レーザ素子の活性層の主面の面方位として、非極性面の一例としての半極性面である(11-22)面を用いた例について示したが、本発明はこれに限られない。たとえば、(11-2x)面(x=2、3、4、5、6、8、10、-2、-3、-4、-5、-6、-8、-10)および(1-10y)面(y=1、2、3、4、5、6、-1、-2、-3、-4、-5、-6)などの他の半極性面を、青色半導体レーザ素子の活性層および緑色半導体レーザ素子の活性層の主面の面方位として用いてもよい。この際、青色半導体レーザ素子の活性層および緑色半導体レーザ素子の活性層の厚みおよびIn組成は適宜変更される。また、半極性面は、(0001)面または(000-1)面に対して約10度以上約70度以下傾いた面であることが好ましい。
 また、上記第3実施形態およびその変形例では、n型GaN基板の上面上に、(11-22)面の主面を有するInGaNからなる活性層を形成した例について示したが、本発明はこれに限られない。たとえば、Al、SiC、LiAlOおよびLiGaOなどからなる基板の上面上に、(11-22)面の主面を有するInGaNからなる活性層を形成してもよい。
 また、上記第3実施形態およびその変形例では、青色半導体レーザ素子の井戸層および緑色半導体レーザ素子の井戸層がInGaNからなる例について示したが、本発明はこれに限られない。たとえば、青色半導体レーザ素子の井戸層および緑色半導体レーザ素子の井戸層は、AlGaN、AlInGaNおよびInAlNなどからなるように構成してもよい。この際、青色半導体レーザ素子の活性層における厚みおよび組成は適宜変更される。
 また、上記第3実施形態およびその変形例では、青色半導体レーザ素子および緑色半導体レーザ素子の障壁層がInGaNからなる例について示したが、本発明はこれに限られない。たとえば、青色半導体レーザ素子および緑色半導体レーザ素子の障壁層は、GaNからなるように構成してもよい。
 また、上記第3実施形態では、(11-22)面の主面を有するn型GaN基板上に(11-22)面の主面を有するInGaNからなる活性層を形成した例について示したが、本発明はこれに限られない。すなわち、(11-22)面、(1―103)面または(1-126)面の主面を有する窒化物系半導体(たとえばInGaN)を予め成長させたr面((1-102)面)の主面を有するサファイア基板を用いてもよい。
 また、上記第3実施形態およびその変形例では、n型GaN基板上にInGaNからなる活性層(井戸層)を形成した例について示したが、本発明はこれに限られない。すなわち、AlGa1-xN基板にInGaNからなる活性層(井戸層)を形成してもよい。ここで、Al組成を大きくすることによって、垂直横モードにおける光強度分布の広がりを抑制することが可能である。これによって、AlGa1-xN基板から光が出射されるのを抑制することが可能になるので、レーザ素子から複数の垂直横モードの光が出射されるのを抑制することが可能である。また、InGa1-yN基板上にInGaNからなる活性層(井戸層)を形成してもよい。これによって、InGa1-yN基板のIn組成を調整することによって、活性層(井戸層)における歪を低減させることが可能である。この際、青色半導体レーザ素子の活性層(井戸層の厚みおよびIn組成、および、緑色半導体レーザ素子における活性層(井戸層)の厚みおよびIn組成は、それぞれ適宜変更される。
 また、上記第3実施形態の変形例では、青色半導体レーザ素子の活性層および緑色半導体レーザ素子の活性層の主面の面方位として、非極性面の一例としての半極性面である(11-22)面を用いた例について示したが、本発明はこれに限られない。本発明では、青色半導体レーザ素子の活性層および緑色半導体レーザ素子の活性層の主面の面方位は、その他の非極性面(無極性面および半極性面)を用いてもよい。たとえば、青色半導体レーザ素子の活性層および緑色半導体レーザ素子の活性層の主面の面方位として、a面((11-20)面)およびm面((1-100)面)などの無極性面を用いてもよいし、(11-2x)面(x=2、3、4、5、6、8、10、-2、-3、-4、-5、-6、-8、-10)および(1-10y)面(y=1、2、3、4、5、6、-1、-2、-3、-4、-5、-6)などの半極性面を用いてもよい。
 また、上記第3実施形態の変形例では、本発明の「窒化物系半導体」として、InGaNを用いた例について示したが、本発明はこれに限られない。本発明では、窒化物系半導体として、AlGaNなどを用いてもよい。この際、青色半導体レーザ素子の活性層および緑色半導体レーザ素子の活性層における厚みおよび組成は、適宜変更される。
 また、上記第5実施形態では、青色半導体レーザ素子550のp側パッド電極518の上面位置と、緑色半導体レーザ素子部530のp側パッド電極538の上面位置とが、略同じ位置の状態で基台591の下面に接合される例について示したが、本発明はこれに限られない。すなわち、p側パッド電極の上面位置に若干のずれが生じた状態で2波長半導体レーザ素子570が基台591の下面に接合されるように構成されていてもよい。
 また、上記第5実施形態では、青色半導体レーザ素子550のn型GaN基板331を含めた厚みが、緑色半導体レーザ素子530のn型GaN基板331を含めた厚みよりも小さく形成された例について示したが、本発明はこれに限られない。すなわち、青色半導体レーザ素子550のn型GaN基板331を含めた厚みが、緑色半導体レーザ素子530のn型GaN基板331を含めた厚みよりも大きく形成されて2波長半導体レーザ素子が構成されていてもよい。この場合、青色半導体レーザ素子550のp側パッド電極518の厚みは、緑色半導体レーザ素子部530のp側パッド電極538の厚みよりも小さく形成される。これにより、p側パッド電極518および538の上面(C2側)は略同一平面に揃えられるので、2波長半導体レーザ素子を、C方向に略同じ厚みの導電性接着層を介して基台591に固定することが可能である。
 また、上記第5実施形態では、n型GaN基板の表面上に青色半導体レーザ素子および緑色半導体レーザ素子を形成した例について示したが、本発明はこれに限られない。たとえば、成長用基板の表面上に剥離層や共通のn型コンタクト層などを形成した後に青色半導体レーザ素子および緑色半導体レーザ素子を形成してもよい。そして、この2波長半導体レーザ素子を支持基台または赤色半導体レーザ素子に接合した後に、成長用基板のみを剥離することにより、本発明の「基板」が、n型コンタクト層などのみからなる半導体レーザ装置を形成してもよい。なお、この場合、成長用基板の剥離後のn型コンタクト層の下面にn側電極が形成される。また、この場合、共通のn型コンタクト層は、一方のレーザ素子のn型クラッド層を兼ねていてもよい。
 また、上記第5実施形態では、緑色半導体レーザ素子のp型クラッド層の厚みを青色半導体レーザ素子のp型クラッド層の厚みよりも大きく形成した例について示したが、本発明はこれに限られない。たとえば、青色半導体レーザ素子の厚み(n型GaN基板の下面からp型クラッド層の上面までの厚み)が緑色半導体レーザ素子の厚み(n型GaN基板の下面からp型クラッド層の上面までの厚み)よりも大きい場合、青色半導体レーザ素子のp型クラッド層(第1半導体層)の厚みを緑色半導体レーザ素子のp型クラッド層(第2半導体層)の厚みよりも大きくなるように形成してもよい。

Claims (20)

  1.  1つまたは複数のレーザ発光部を有する緑色半導体レーザ素子と、
     1つまたは複数のレーザ発光部を有する青色半導体レーザ素子と、
     1つまたは複数のレーザ発光部を有する赤色半導体レーザ素子とを備え、
     前記緑色半導体レーザ素子、前記青色半導体レーザ素子および前記赤色半導体レーザ素子のうちの少なくとも2つの半導体レーザ素子は、相対的に合計出力の小さい前記半導体レーザ素子の前記レーザ発光部の個数が、相対的に合計出力が大きい前記複数のレーザ発光部を有する前記半導体レーザ素子の前記レーザ発光部の個数、または、相対的に出力が大きい前記1つのレーザ発光部を有する前記半導体レーザ素子の個数よりも多い関係を有する、半導体レーザ装置。
  2.  前記緑色半導体レーザ素子、前記青色半導体レーザ素子および前記赤色半導体レーザ素子の各々の前記レーザ発光部の個数を、それぞれ、n1、n2およびn3とした場合、n1>n2>n3の関係を有する、請求項1に記載の半導体レーザ装置。
  3.  前記緑色半導体レーザ素子および前記青色半導体レーザ素子は、前記緑色半導体レーザ素子と前記青色半導体レーザ素子とに共通の基板上に形成されている、請求項1に記載の半導体レーザ装置。
  4.  前記緑色半導体レーザ素子は、複数の前記レーザ発光部が形成されたモノリシック型であるとともに、前記青色半導体レーザ素子は、複数の前記レーザ発光部が形成されたモノリシック型である、請求項1に記載の半導体レーザ装置。
  5.  前記赤色半導体レーザ素子は、前記緑色半導体レーザ素子または前記青色半導体レーザ素子の少なくともいずれかに接合されている、請求項1に記載の半導体レーザ装置。
  6.  前記緑色半導体レーザ素子、前記青色半導体レーザ素子および前記赤色半導体レーザ素子が接合される基台と、
     外部と電気的に接続されるとともに互いに絶縁された複数の端子とをさらに備え、
     前記緑色半導体レーザ素子は、前記基台とは反対側の表面上に形成された電極を含み、
     前記緑色半導体レーザ素子の前記レーザ発光部の個数をn1とした場合、前記n1個のうちの少なくとも2つの前記緑色半導体レーザ素子の前記電極は、各々が異なる前記端子に接続されている、請求項1に記載の半導体レーザ装置。
  7.  前記緑色半導体レーザ素子は、前記基板の表面上に形成されるとともに半極性面の主面を有する第1活性層を含み、
     前記青色半導体レーザ素子は、前記基板の表面上に形成されるとともに前記半極性面と略同一の面方位の主面を有する第2活性層を含み、
     前記第1活性層は、圧縮歪を有するとともに3nm以上の厚みを有する第1井戸層を含み、前記第2活性層は、圧縮歪を有する第2井戸層を含む、請求項3に記載の半導体レーザ装置。
  8.  前記第1井戸層は、InGaNからなる、請求項7に記載の半導体レーザ装置。
  9.  前記第2井戸層は、InGaNからなる、請求項7に記載の半導体レーザ装置。
  10.  前記第1井戸層の厚みは、前記第2井戸層の厚みよりも大きい、請求項7に記載の半導体レーザ装置。
  11.  前記半極性面は、(0001)面または(000-1)面に対して約10度以上約70度以下傾いた面である、請求項7に記載の半導体レーザ装置。
  12.  前記青色半導体レーザ素子および前記緑色半導体レーザ素子は、それぞれ、前記半極性面の主面に[0001]方向を投影した方向に延びる光導波路をさらに含む、請求項7に記載の半導体レーザ装置。
  13.  前記青色半導体レーザ素子は、前記基板の表面上に形成されるとともに非極性面の主面を有する窒化物系半導体からなる第3活性層を含み、
     前記緑色半導体レーザ素子は、前記基板の表面上に形成されるとともに前記非極性面と略同一の面方位の主面を有する窒化物系半導体からなる第4活性層を含む、請求項3に記載の半導体レーザ装置。
  14.  前記第3活性層は、InGaNからなる第3井戸層を有する量子井戸構造を有し、前記第4活性層は、InGaNからなる第4井戸層を有する量子井戸構造を有し、
     前記第3井戸層の厚みは、前記第4井戸層の厚みよりも大きい、請求項13に記載の半導体レーザ装置。
  15.  前記非極性面は、略(11-22)面である、請求項13に記載の半導体レーザ装置。
  16.  前記基板の主面は、前記非極性面と略同一の面方位を有する、請求項13に記載の半導体レーザ装置。
  17.  前記青色半導体レーザ素子は、前記基板の一方側の表面上に形成されるとともに、前記基板側から第5活性層、第1半導体層および第1電極の順に積層されて構成され、
     前記緑色半導体レーザ素子は、前記青色半導体レーザ素子に対して隣接して並ぶように形成されるとともに、前記基板側から第6活性層、第2半導体層および第2電極の順に積層されて構成され、
     前記第1電極上に第1融着層を介して形成され、かつ、前記第2電極上に第2融着層を介して形成された支持基台をさらに備え、
     前記基板は、前記一方側と反対側に他方側の表面を有し、
     前記他方側の表面から前記一方側の前記第1半導体層の表面までの前記青色半導体レーザ素子の厚みをt1、前記他方側の表面から前記一方側の前記第2半導体層の表面までの前記緑色半導体レーザ素子の厚みをt2、前記第1電極の厚みをt3および前記第2電極の厚みをt4とした場合、t1<t2のときt3>t4の関係を有し、t1>t2のときt3<t4の関係を有する、請求項3に記載の半導体レーザ装置。
  18.  前記第1電極は、第1パッド電極からなり、前記第2電極は、第2パッド電極からなる、請求項17に記載の半導体レーザ装置。
  19.  t3>t4の場合、前記第1パッド電極の厚みは、前記第2パッド電極の厚みよりも大きく、t3<t4の場合、前記第2パッド電極の厚みは、前記第1パッド電極の厚みよりも大きい、請求項18に記載の半導体レーザ装置。
  20.  1つまたは複数のレーザ発光部を有する緑色半導体レーザ素子と、
     1つまたは複数のレーザ発光部を有する青色半導体レーザ素子と、
     1つまたは複数のレーザ発光部を有する赤色半導体レーザ素子とを備え、
     前記緑色半導体レーザ素子、前記青色半導体レーザ素子および前記赤色半導体レーザ素子のうちの少なくとも2つの半導体レーザ素子は、相対的に合計出力の小さい前記半導体レーザ素子の前記レーザ発光部の個数が、相対的に合計出力が大きい前記複数のレーザ発光部を有する前記半導体レーザ素子の前記レーザ発光部の個数、または、相対的に出力が大きい前記1つのレーザ発光部を有する前記半導体レーザ素子の個数よりも多い関係を有する半導体レーザ装置と、
     前記半導体レーザ装置からの光の変調を行う変調手段とを備える、表示装置。
PCT/JP2009/066226 2008-09-30 2009-09-17 半導体レーザ装置および表示装置 WO2010038621A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/812,715 US20100284433A1 (en) 2008-09-30 2009-09-17 Semiconductor laser device and display
CN2009801386567A CN102171899A (zh) 2008-09-30 2009-09-17 半导体激光装置和显示装置

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2008-251967 2008-09-30
JP2008251967 2008-09-30
JP2008-254553 2008-09-30
JP2008254553 2008-09-30
JP2008-286020 2008-11-07
JP2008286020 2008-11-07
JP2008317855 2008-12-15
JP2008-317855 2008-12-15
JP2009-214291 2009-09-16
JP2009214291A JP2010166023A (ja) 2008-09-30 2009-09-16 半導体レーザ装置および表示装置

Publications (1)

Publication Number Publication Date
WO2010038621A1 true WO2010038621A1 (ja) 2010-04-08

Family

ID=42073390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066226 WO2010038621A1 (ja) 2008-09-30 2009-09-17 半導体レーザ装置および表示装置

Country Status (4)

Country Link
US (1) US20100284433A1 (ja)
JP (1) JP2010166023A (ja)
CN (1) CN102171899A (ja)
WO (1) WO2010038621A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033733A (ja) 2010-07-30 2012-02-16 Sanyo Electric Co Ltd 半導体レーザ装置および光装置
US9170424B2 (en) 2010-07-30 2015-10-27 Sony Corporation Illumination unit and display
JP2012113223A (ja) * 2010-11-26 2012-06-14 Sony Corp 照明装置、投影型表示装置および直視型表示装置
JP5633695B2 (ja) * 2010-11-29 2014-12-03 ソニー株式会社 照明装置、投影型表示装置および直視型表示装置
JP5556749B2 (ja) * 2011-06-23 2014-07-23 住友電気工業株式会社 レーザダイオード組立体
JP5505379B2 (ja) * 2011-07-11 2014-05-28 住友電気工業株式会社 半導体レーザ装置
JP5565402B2 (ja) * 2011-12-16 2014-08-06 住友電気工業株式会社 光モジュール、窒化物半導体レーザ装置、サブマウント
JP5556830B2 (ja) * 2012-02-21 2014-07-23 住友電気工業株式会社 半導体装置、及び、半導体装置の作製方法
JP6094043B2 (ja) * 2012-03-16 2017-03-15 三菱電機株式会社 半導体レーザ素子
WO2015011857A1 (ja) * 2013-07-25 2015-01-29 パナソニックIpマネジメント株式会社 照明装置
JP2015079169A (ja) * 2013-10-18 2015-04-23 増田 麻言 投影装置
JP6053171B2 (ja) * 2013-10-18 2016-12-27 増田 麻言 走査型投影装置、および携帯型投影装置
JP6081564B2 (ja) * 2015-12-21 2017-02-15 増田 麻言 走査型投影装置、および携帯型投影装置
JP7022997B2 (ja) * 2016-06-24 2022-02-21 スージョウ レキン セミコンダクター カンパニー リミテッド 半導体素子およびこれを含む半導体素子パッケージ
BR112019001967A2 (pt) * 2016-08-10 2019-05-07 Kyocera Corporation pacote de montagem de elemento elétrico, pacote de matriz e dispositivo elétrico
JP6460082B2 (ja) * 2016-11-09 2019-01-30 住友電気工業株式会社 光アセンブリの製造方法、及び光アセンブリ
EP3732756A4 (en) * 2017-12-28 2021-08-18 Princeton Optronics, Inc. STRUCTURED LIGHT PROJECTION SYSTEM INCLUDING NARROW BEAM DIVERGENCE SEMICONDUCTOR SOURCES
DE112019003830T5 (de) * 2018-07-30 2021-04-15 Panasonic Corporation Lichtemittierende Halbleitervorrichtung und Laservorrichtung vom externen Resonanztyp
JP2020021842A (ja) * 2018-08-01 2020-02-06 ソニーセミコンダクタソリューションズ株式会社 光源装置、駆動方法、センシングモジュール
DE102019106674A1 (de) * 2019-03-15 2020-09-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zur Projektion einer Mehrzahl von Strhalungspunkten auf eine Oberfläche

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521722A (ja) * 1999-04-13 2003-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 発光素子を有する表示システム
JP2005064163A (ja) * 2003-08-08 2005-03-10 Sharp Corp 半導体発光装置
JP2005327826A (ja) * 2004-05-13 2005-11-24 Sony Corp 集積型半導体レーザ装置、集積型半導体レーザ装置の製造方法、集積型半導体発光装置、集積型半導体発光装置の製造方法、光学ピックアップ装置および光ディスク装置
JP2008034658A (ja) * 2006-07-28 2008-02-14 Rohm Co Ltd 窒化物半導体素子
JP2008252069A (ja) * 2007-03-06 2008-10-16 Sanyo Electric Co Ltd 半導体レーザ素子の製造方法および半導体レーザ素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459337A (en) * 1993-02-19 1995-10-17 Sony Corporation Semiconductor display device with red, green and blue emission
JP3486900B2 (ja) * 2000-02-15 2004-01-13 ソニー株式会社 発光装置およびそれを用いた光装置
KR100541110B1 (ko) * 2004-06-25 2006-01-11 삼성전기주식회사 다파장 반도체 레이저 제조방법
JP2006278576A (ja) * 2005-03-28 2006-10-12 Sanyo Electric Co Ltd 半導体レーザ装置、半導体レーザ装置の製造方法および光ピックアップ装置
WO2007097411A1 (ja) * 2006-02-23 2007-08-30 Rohm Co., Ltd. 2波長半導体発光装置及びその製造方法
US8085825B2 (en) * 2007-03-06 2011-12-27 Sanyo Electric Co., Ltd. Method of fabricating semiconductor laser diode apparatus and semiconductor laser diode apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521722A (ja) * 1999-04-13 2003-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 発光素子を有する表示システム
JP2005064163A (ja) * 2003-08-08 2005-03-10 Sharp Corp 半導体発光装置
JP2005327826A (ja) * 2004-05-13 2005-11-24 Sony Corp 集積型半導体レーザ装置、集積型半導体レーザ装置の製造方法、集積型半導体発光装置、集積型半導体発光装置の製造方法、光学ピックアップ装置および光ディスク装置
JP2008034658A (ja) * 2006-07-28 2008-02-14 Rohm Co Ltd 窒化物半導体素子
JP2008252069A (ja) * 2007-03-06 2008-10-16 Sanyo Electric Co Ltd 半導体レーザ素子の製造方法および半導体レーザ素子

Also Published As

Publication number Publication date
US20100284433A1 (en) 2010-11-11
CN102171899A (zh) 2011-08-31
JP2010166023A (ja) 2010-07-29

Similar Documents

Publication Publication Date Title
WO2010038621A1 (ja) 半導体レーザ装置および表示装置
WO2010035644A1 (ja) 半導体レーザ装置および表示装置
US11573374B2 (en) Gallium and nitrogen containing laser module configured for phosphor pumping
US9716369B1 (en) Laser package having multiple emitters with color wheel
US9595813B2 (en) Laser package having multiple emitters configured on a substrate member
US20100080000A1 (en) Laser diode device and display apparatus
US20100079359A1 (en) Semiconductor laser device and display
US8189640B2 (en) Laser light emitting device
US20100080001A1 (en) Semiconductor laser device and display
JP2010278098A (ja) 発光装置および表示装置
JP2010109147A (ja) 発光素子およびその製造方法
WO2019163274A1 (ja) 半導体発光素子
JP2010166036A (ja) 半導体レーザ装置および表示装置
JP3790677B2 (ja) 半導体発光装置及びその製造方法
US11545812B2 (en) Semiconductor laser element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138656.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817658

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12812715

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817658

Country of ref document: EP

Kind code of ref document: A1