WO2010035338A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2010035338A1
WO2010035338A1 PCT/JP2008/067553 JP2008067553W WO2010035338A1 WO 2010035338 A1 WO2010035338 A1 WO 2010035338A1 JP 2008067553 W JP2008067553 W JP 2008067553W WO 2010035338 A1 WO2010035338 A1 WO 2010035338A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
magnetic energy
current
voltage
bridge circuit
Prior art date
Application number
PCT/JP2008/067553
Other languages
English (en)
French (fr)
Inventor
雅人 志賀
忠幸 北原
諭 神子
小島 直人
志郎 福田
Original Assignee
株式会社MERSTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社MERSTech filed Critical 株式会社MERSTech
Priority to PCT/JP2008/067553 priority Critical patent/WO2010035338A1/ja
Priority to CN2008801312075A priority patent/CN102160014A/zh
Priority to JP2009548509A priority patent/JP4880762B2/ja
Priority to US13/062,512 priority patent/US8482945B2/en
Publication of WO2010035338A1 publication Critical patent/WO2010035338A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/52Wind-driven generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a power conversion device capable of reverse conversion from AC power or DC power to DC power, and particularly to a power conversion device that can be used for a charge / discharge device for charging / discharging a secondary battery (battery) in an electric vehicle or the like. Is.
  • Patent Documents 1, 2, 3, and 4 a system that efficiently charges a plurality of vehicles in consideration of cost-effectiveness (see Patent Document 2 above), and quick charging can be performed efficiently regardless of environmental changes.
  • Various systems such as a system that performs charging (see Patent Document 3 above) and a system that performs charging from a three-phase AC power source (see Patent Document 4 above) have also been proposed. However, these systems all perform hard switching for power conversion and have a large switching loss. In addition, there is a problem in controlling the charging power regardless of the voltage value or frequency of the system voltage in terms of system stability.
  • JP 2008-206300 A Special Table 2007-535282 JP 2007-049828 A JP 2007-097341 A Japanese Patent No. 3634982 International Publication No. 2008/096664 International Publication No. 2005/067117
  • High-capacity charging devices are demanding high efficiency charging devices that are friendly to the system. For example, it is preferable that the number of electric vehicles becomes widespread and the number thereof increases, so that the utilization rate of nighttime power equipment increases in that the use of nighttime power proceeds.
  • An object of the present invention is to perform AC / DC power conversion using a magnetic energy regenerative switch (MERS) that can soften switching operation of all switch elements, reduce high-frequency noise, reversible power direction, and boost voltage.
  • An object of the present invention is to provide a power conversion device that can also be used as a charge / discharge device for a secondary battery (battery) in an electric vehicle or the like.
  • Another object of the present invention is to use a magnetic energy regenerative switch (MERS) as a DC / DC power converter that is installed between a DC bus and a secondary battery (battery). While taking into consideration, charge control of each secondary battery (battery) is performed, and the voltage of the receiving point is controlled by generating a phase advance current, and if necessary, reverse from the secondary battery (battery) The purpose is to provide a system-friendly power conversion device that also has a function of reversely transmitting AC power.
  • MERS magnetic energy regenerative switch
  • a power conversion device stores a bridge circuit composed of four reverse conducting semiconductor switches and magnetic energy of a current at the time of current interruption.
  • a magnetic energy regenerative switch configured by connecting a magnetic energy storage capacitor C to be connected between the DC terminals DC (P) and DC (N) of the bridge circuit is connected from the AC power source to the AC terminals AC and AC via the inductance Lac.
  • a circuit configuration in which a DC power supply or a load is connected between the DC terminals DC (P) and DC (N) via a smoothing inductance Ldc.
  • a gate control device for applying a control signal to the gate of the reverse conducting semiconductor switch to control on / off of the reverse conducting semiconductor switch, one pair of reverse conducting semiconductor switches located on the diagonal line of the bridge circuit On and off, the other pair of reverse conducting semiconductor switches are controlled to be turned off simultaneously, and one pair of reverse conducting semiconductor switches selected according to the direction of the current of the AC power supply is turned on and off at high speed.
  • a secondary battery (battery) or means for flowing to a DC load, and the power conversion device is connected in series or in parallel with the secondary battery (battery) charging device.
  • switch the series or parallel connection with an open / close switch to control the charging status such as the temperature and charge amount of the secondary battery for a long time, while delaying the power factor of the input current in the short term. Control from start to advance and adjust the current power factor in combination with the delay power factor of other power systems to reduce current and reduce joule loss, and correct voltage fluctuations, overvoltages and undervoltages at the receiving point It is characterized by that.
  • a magnetic energy regenerative switch is connected in parallel to each of the two diodes and a bridge circuit composed of two reverse conducting semiconductor switches and two diodes facing the reverse conducting semiconductor switches. It may also be configured to have two magnetic energy storage capacitors connected in series.
  • the magnetic energy regenerative switch is connected in parallel with two reverse conducting semiconductor switches connected in anti-series and two magnetic energy storage capacitors connected in series, and two reverse conducting type A configuration having a midpoint of the semiconductor switch and a wiring connected to the midpoints of the two magnetic energy storage capacitors may be employed.
  • the on / off cycle of the magnetic energy regenerative switch is set longer than the discharge time determined by the electrostatic capacity (C) of the magnetic energy storage capacitor C and the inductance (Lac) of the inductance Lac to store the magnetic energy.
  • C electrostatic capacity
  • Lac inductance
  • the bridge arm in the case of a single-phase AC is changed to three, and the configuration of a three-phase full-wave bridge with six reverse conducting semiconductor switches is used.
  • a magnetic energy regenerative switch a magnetic energy storage capacitor is connected between the terminals P and N of the DC bus, and the two reverse conducting semiconductor switches of each arm are selected as reverse conducting semiconductor switches in the current direction of three-phase AC.
  • the boost pulse voltage is generated between the terminals P and N of the DC bus line to convert the three-phase AC power. Good.
  • the input power is a DC voltage
  • only the pair of reverse conducting semiconductor switches located on one diagonal of the magnetic energy regenerative switch is turned on and off at high speed, but the other pair of reverse conducting semiconductor switches is always off.
  • the power may be reversely converted from the secondary battery (battery) to the alternating current by reversing the current direction by using only the diode operation for reverse conduction.
  • a control device that protects the reverse conducting semiconductor switch and controls on / off in consideration of the off time ratio and the switch cycle may be provided.
  • a diode is used instead of the smoothing inductance Ldc of the pulse pulsation to prevent reverse current to the output capacitor, and when the magnetic energy regeneration switch is similarly turned off, at zero voltage, When the magnetic energy regenerative switch is turned on, zero voltage zero current switching, which is zero current, may be performed.
  • a power conversion device includes a bridge circuit including four reverse conducting semiconductor switches and a DC terminal DC (P) or DC (N) of the bridge circuit. Is connected to the magnetic energy storage capacitor C for storing the magnetic energy of the current at the time of current interruption, and the control signal is given to the gate of each reverse conducting semiconductor switch to reverse one pair located on the diagonal of the bridge circuit
  • the AC terminal AC of the bridge circuit can be connected to an AC or DC input power source via an AC inductance Lac
  • the DC terminals DC (P) and DC (N) of the bridge circuit are connected to a DC output power source via a smoothing inductance Ldc.
  • the gate control device performs a high-speed on / off operation on one pair of reverse conducting semiconductor switches selected according to the direction of the current of the input power supply, and turns off the other pair of reverse conducting semiconductor switches, Generate a boost pulse voltage at the DC terminal of the bridge circuit,
  • the smoothing inductance Ldc smoothes the boost pulse voltage and converts it to a DC voltage
  • the high-speed on / off operation is synchronized with a high-speed on / off control frequency lower than the resonance frequency of the bridge circuit determined by the capacitance (C) of the magnetic energy storage capacitor C and the inductance (Lac) of the inductance Lac.
  • the power flow between the input power source and the DC bus is controlled by changing the on / off control frequency and / or the on / off time ratio.
  • a pair of reverse conducting semiconductor switches that are selected according to the direction of the current of the input power supply and perform high-speed on / off operation alternately every time the current direction changes in synchronization with the frequency of the AC voltage. It may be configured to switch.
  • the input voltage is a direct current voltage
  • a power conversion device as still another exemplary aspect of the present invention includes a first bridge circuit including four first reverse conducting semiconductor switches, and a DC terminal DC (P of the bridge circuit). ), And a control signal is applied to the first magnetic energy storage capacitor C, which is connected between DC (N) and stores the magnetic energy of the current at the time of current interruption, and to the gate of each first reverse conducting semiconductor switch.
  • a first magnetic energy regenerative switch including a first gate control device that performs on / off control of each first reverse conducting semiconductor switch; Connected between the second bridge circuit composed of four second reverse conducting semiconductor switches and the DC terminals DC (P) and DC (N) of the bridge circuit, and has a current at the time of current interruption A control signal is given to the second magnetic energy storage capacitor C for storing magnetic energy and the gates of the second reverse conducting semiconductor switches to perform on / off control of the second reverse conducting semiconductor switches.
  • a power conversion device including a second magnetic energy regenerative switch including two gate control devices The AC terminals AC and AC of the first bridge circuit can be connected to an AC power supply via the first inductance Lac, and the DC terminals DC (P) and DC (N) of the first bridge circuit are the first smoothing inductance Ldc. Is connected to the DC bus via the second inductance Lac, and the second bridge circuit is connected to the AC terminal AC, AC, or the second smoothing inductance Ldc is connected to the DC terminal DC (P ) Or DC (N) can be connected to a DC bus, and the other can be connected to a secondary battery (battery).
  • Both the first and second gate control devices cause one pair of reverse conducting semiconductor switches selected according to the direction of the current of the input power supply to perform high-speed on / off operation, and the other pair of reverse conducting semiconductor switches.
  • the boost pulse voltage is generated at the DC terminal of the corresponding bridge circuit
  • the smoothing inductance Ldc smoothes the boost pulse voltage and converts it to a DC voltage
  • the high-speed on / off operation of the first magnetic energy regenerative switch is performed by the first bridge circuit determined by the capacitance (C) of the first magnetic energy storage capacitor C and the inductance (Lac) of the first inductance Lac.
  • a pair of reverse conducting semiconductor switches that are synchronized with the first high-speed on / off control frequency lower than the resonance frequency and are selected according to the direction of the current of the input power supply and operated at high speed on / off are alternately synchronized with the frequency of the AC voltage.
  • controlling the flow of power between the AC power source and the DC bus by changing the first high-speed on / off control frequency and / or the on / off time ratio The high-speed on / off operation of the second magnetic energy regenerative switch is performed by the second bridge circuit determined by the capacitance (C) of the second magnetic energy storage capacitor C and the inductance (Lac) of the second inductance Lac.
  • a plurality of second magnetic energy regeneration switches are connected to the DC bus, and a plurality of secondary batteries (batteries) can be connected via the respective second magnetic energy regeneration switches. May be.
  • the power converter includes an AC terminal AC of the second bridge circuit via the second inductance Lac, a second magnetic energy regenerative switch in which AC is connected to the DC bus, and a second smoothing inductance Ldc.
  • the DC terminal DC (P), DC (N) of the second bridge circuit may include both of the second magnetic energy regenerative switches connected to the DC bus.
  • the power conversion device increases the high-speed on / off control frequency and / or increases the on-time ratio of the on / off control, so that the bridge circuit, the first bridge circuit, and / or the second bridge circuit are Output connected to DC terminals DC (P) and DC (N) of the bridge circuit, the first bridge circuit, and / or the second bridge circuit You may comprise so that the forward conversion to a power supply may be performed.
  • a central control unit is installed to manage and control the charge amount of each secondary battery (battery), and a large number of secondary batteries are being charged.
  • the secondary battery (battery) charger changes its power / voltage fluctuation. You may utilize as an absorption element.
  • the power storage devices are distributed, the utilization thereof can stabilize the power system, stabilize the voltage, and avoid a power failure.
  • the target of charging is a secondary battery (battery) of an electric vehicle
  • a large number of electric vehicles are connected to the power system via a charging device, so it is natural to use them as emergency power sources such as earthquakes and typhoons.
  • Japan where there are many disasters, it is socially important in terms of energy safety and security.
  • the reverse conversion of the AC / DC power converter using MERS also plays a role of SVC (Static Var Compensator) that generates a leading current. Therefore, when quick charging is required, it is possible to take power while compensating the voltage for several tens of kW in a short time.
  • SVC Static Var Compensator
  • a transformer with a small capacity When trying to acquire tens of kW of power from the power system in a short time, a transformer with a small capacity has a high impedance, so there is a voltage drop, but the reactance voltage is increased by a power factor current to compensate for the voltage drop. Is possible.
  • a transformer with a small capacity When charging a large number of electric vehicles at a charging station, it may be possible to effectively use the connected electric vehicle while charging is already completed. It is an image of lending power to a car that needs quick charging. As a result, the power receiving contract can be reduced.
  • the amount of power is managed on demand for 30 minutes, but the charging device should cooperate with the management system.
  • the power that is free on the management side can be controlled, for example, by putting it in the gap of demand for 30 minutes.
  • SW1, SW2, SW3, SW4 Reverse conducting semiconductor switch Lac: Inductance (Lac): Inductance (value) of inductance Lac Ldc: smoothing inductance (Ldc): inductance (value) of smoothing inductance Ldc C: Magnetic energy storage capacitor (C): Capacitance of magnetic energy storage capacitor Lfilter: Filter inductance Cfilter: Filter capacitor AC, AC: AC terminals DC (P), DC (N of the magnetic energy regenerative switch (MERS) ): DC terminal of magnetic energy regenerative switch (MERS) (magnetic energy storage capacitor connection side) P, N: DC bus terminal Vin: Input voltage (commercial power supply 100V, 50Hz) UY: On-gate signal VX of reverse conduction type semiconductor switches SW1, SW3: On-gate signal of reverse conduction type semiconductor switches SW2, SW4 Ifilter: Current Imers flowing through the filter capacitor Lfilter: Current Vmers flowing through the magnetic energy storage capacitor C: Magnetic energy storage Capacitor C voltage (step-up pulse voltage between DC terminals DC (
  • FIG. 1 is a circuit block diagram showing a schematic configuration of a charging device for an electric vehicle according to an embodiment of the present invention, in which a power conversion device using a magnetic energy regenerative switch (MERS) is a main component.
  • MERS Magnetic Energy Recovery Switch
  • Patent Document 5 Magnetic Energy Recovery Switch
  • the magnetic energy regenerative switch is connected between a bridge circuit composed of four reverse conducting semiconductor switches and the DC terminals DC (P) and DC (N) of the bridge circuit.
  • a control signal is given to the magnetic energy storage capacitor C that stores the magnetic energy of the current and the gate of each reverse conducting semiconductor switch, and one pair of reverse conducting semiconductor switches located on the diagonal of the bridge circuit is turned on, the other Including a gate control device that controls to simultaneously perform the operation of turning off the pair of reverse conducting semiconductor switches, and the magnetic energy storage capacitor discharges to the load side through the reverse conducting semiconductor switch to which the on-gate is applied.
  • It is a switch that regenerates. It is a switch that is bidirectional in current and can regenerate the magnetic energy of the circuit without loss.
  • an AC or DC input power source can be connected via an inductance Lac.
  • the DC terminals DC (P) and DC (N) of the bridge circuit are connected to the terminals P and N of the DC bus via a smoothing inductance Ldc.
  • the gate control device performs a high-speed on / off operation on one pair of reverse conducting semiconductor switches selected according to the direction of the current of the input power supply, and turns off the other pair of reverse conducting semiconductor switches,
  • a boost pulse voltage that pulsates at a high-speed on / off operation frequency is generated at the DC terminal of the bridge circuit, and this boost pulse voltage is smoothed by a smoothing inductance Ldc having sufficient inductance as viewed from the pulse frequency and converted to a DC voltage. Is done.
  • the input power is an AC voltage
  • the pair that performs high-speed on / off operation and the pair that is held off are alternately switched. For example, at AC 50 Hz, when the current direction is positive, the SW2 and SW4 pairs are turned on and off at high speed, and the SW1 and SW3 pairs are kept off, but when negative, the SW1 and SW3 pairs are fast. The on / off operation is performed, and the pair of SW2 and SW4 is kept off.
  • the reverse conducting semiconductor switches SW2 and SW4 are turned on, the reverse conducting semiconductor switches SW1 and SW3 are kept off and function as diodes, The AC and AC terminals of the bridge circuit are in a conductive state, current increases, and magnetic energy is stored in the inductance Lac.
  • the reverse conducting semiconductor switches SW2 and SW4 are turned off, the magnetic energy stored in the inductance Lac flows as a current through the magnetic energy storage capacitor C and the load. At this time, a current flows so that the voltage applied to the load is equal to the voltage applied to the magnetic energy storage capacitor C.
  • the magnetic energy is boosted to supplement the power supplied by the power source, and the voltage across the magnetic energy storage capacitor C is increased.
  • the degree of boosting differs depending on the impedance of the load and the impedance of the magnetic energy storage capacitor C. Also, it depends on the high-speed on / off control frequency.
  • the high-speed on / off operation is performed at a high-speed on / off control frequency lower than the resonance frequency determined by the capacitance (C) of the magnetic energy storage capacitor C and the inductance (Lac) of the inductance Lac. For this reason, since the magnetic energy storage capacitor C has a period in which the voltage becomes zero after each discharge, each reverse conducting semiconductor switch can be turned off at zero voltage. Can be turned on with zero current, and zero current zero voltage switching is achieved.
  • the high-speed on / off control frequency and / or the on / off time ratio (duty ratio) is continuously changed to continuously increase the boost pulse voltage between the DC terminals DC (P) and DC (N).
  • the voltage on the input voltage side viewed from the DC bus side can be continuously changed.
  • the power between the input power supply and the DC bus is changed by continuously changing the high-speed on / off control frequency in which both voltages are balanced and / or the region between the on / off time ratio (duty ratio).
  • the flow can be continuously performed within a range of, for example, large current forward conversion, small current forward conversion, zero (no power conversion), small current reverse conversion, and large current reverse conversion.
  • FIG. 2 shows a simulation circuit.
  • the AC power supply is a commercial power supply 100 V, 50 Hz in Japan, which is connected to the bridge circuit via a 10 ⁇ H filter capacitor Lfilter and a 50 ⁇ H AC inductance (Lac).
  • the electrostatic capacity (C) of the magnetic energy storage capacitor C is 10 ⁇ F.
  • This circuit has a resonance frequency of about 7 KHz, determined by an inductance Lac of 50 ⁇ H and a magnetic energy storage capacitor C of 10 ⁇ F.
  • the resistance load Rload corresponding to the DC bus is 10 ⁇ . Further, the current Iout flowing through the resistance load Rload and the voltage (DC load voltage) Vout applied to the resistance load Rload can be measured by an ammeter and a voltmeter.
  • FIG. 3 is a graph showing a simulation result using the simulation circuit of FIG.
  • the uppermost graph shows the high-speed on / off control signal together with the commercial power supply 100 V, 50 Hz in Japan as the input voltage.
  • the frequency of the high-speed on / off control signal is 1 KHz, and the on / off time ratio (duty ratio) is 0.7.
  • the reverse conduction type semiconductor switches to be controlled are switched, and each reverse conduction type semiconductor switch is switched at 1 KHz.
  • the second graph from the top is the boost pulse voltage between the DC terminals DC (P) and DC (N), and the peak value can be boosted to about 1500V.
  • the third graph from the top shows the voltage (DC load voltage) Vout applied to the resistance load Rload (10 ⁇ ), and the bottom graph shows the current Iout flowing through this resistance load.
  • the DC load voltage Vout is boosted to an average of 680V. This load voltage can be continuously reduced by reducing the frequency of high-speed on / off operation and / or the on / off time ratio (on duty ratio), and can be adjusted to a desired value. .
  • a charging device for an electric vehicle composed of a power conversion device using a magnetic energy regenerative switch (MERS) is a secondary battery (battery) of 200V DC or 400V DC using a commercial power supply 100V in Japan as an input power source. Can also be charged.
  • both forward conversion and reverse conversion are soft switching of zero current and zero voltage, and there is little power conversion loss, and basically no high frequency noise is generated by switching.
  • FIG. 4 shows a basic configuration of a bidirectional power conversion device using a magnetic energy regenerative switch (MERS).
  • the power source A is an input power source and may be either AC power or DC power.
  • the power source B is DC power or a DC bus.
  • the forward conversion from the power source A to the power source B AC or DC to DC
  • the reverse conversion from the power source B to the power source A DC to AC or DC
  • the forward conversion / inverse conversion when the power source A is AC power and the power source B is DC power (or DC bus) is as described in detail in the description of FIGS.
  • the power source A is DC power and the power source B is DC power (DC bus)
  • the direction of the alternating current is alternately repeated in synchronization with the frequency, whereas the direction of the direct current is constant.
  • the pair of reverse conducting semiconductor switches selected in accordance with the direction of the current of the input power supply is turned on / off at high speed, and the other pair is always turned off.
  • the input power supply (DC power) is connected to AC terminals AC and AC of a bridge circuit of a magnetic energy regenerative switch (MERS) via an inductance Lac.
  • the input power source (DC power) is, for example, a secondary battery (battery) of an electric vehicle.
  • the DC terminals DC (P) and DC (N) of the bridge circuit are connected to the terminals P and N of the DC bus via a smoothing inductance Ldc.
  • a boost pulse voltage pulsating at a high-speed on / off operation frequency is generated at the DC terminals DC (P) and DC (N) of the bridge circuit. Is smoothed by a smoothing inductance Ldc having a sufficient inductance as seen from FIG.
  • the high-speed on / off operation is performed at high speed on / off lower than the resonance frequency determined by the capacitance (C) of the magnetic energy storage capacitor C and the inductance (Lac) of the inductance Lac. Performed at the control frequency.
  • the magnetic energy storage capacitor C has a period in which the voltage becomes zero after every discharge, each reverse conducting semiconductor switch can be turned off at zero voltage, and even if it is turned on, the current flows due to the presence of the inductance Lac. It does not rise rapidly and can be turned on with zero current and zero current zero voltage switching is achieved.
  • DC (N) can be continuously changed, whereby the voltage on the input voltage side viewed from the DC bus side can be continuously changed.
  • the voltage on the input voltage side viewed from the DC bus side is higher than the voltage on the DC bus, the current flows in the positive direction from the input voltage side to the DC bus side, and forward conversion from DC to DC is performed.
  • the voltage on the input voltage side viewed from the DC bus side is lower than the voltage on the DC bus, the current flows from the DC bus side to the input voltage side, and the direction of the current is reversed.
  • the direction of the DC power current is the forward direction from the power source A to the power source B, for example, only the pair of SW2 and SW4 is turned on / off at high speed, and the pair of SW1 and SW3 is always turned off, although only the diode is controlled to operate, when the current direction is reversed, that is, when the current flows from the DC bus side to the input voltage side and reverse conversion is performed, only the pair of SW1 and SW3 Are switched on and off so that the pair of SW2 and SW4 is always turned off and only the diode for reverse conduction operates.
  • This switching can be switched by measuring the current direction of the power source A connected to the AC terminals AC of the bridge circuit, or the voltage difference between the voltage on the input voltage side and the voltage on the DC bus viewed from the DC bus side. That's fine. Accordingly, the input voltage side voltage viewed from the DC bus side and the DC bus voltage continuously change in a region sandwiching the high-speed on / off control frequency and / or the on / off time ratio (duty ratio). Therefore, the flow of power between the input power supply and the DC bus is continuously within the range of, for example, large current forward conversion, small current forward conversion, zero (no power conversion), small current reverse conversion, and large current reverse conversion. Can be done automatically.
  • the input power supply is DC power with a voltage of 100 V
  • the simulation circuit shown in FIG. 2 when the simulation circuit shown in FIG. 2 is used, the DC load voltage is boosted to approximately 680 V, although not shown.
  • the load voltage can be continuously reduced by reducing the frequency of the high-speed on / off operation and / or the on / off time ratio (on duty ratio), and can be adjusted to a desired value. be able to.
  • a charging device for an electric vehicle composed of a power conversion device using a magnetic energy regenerative switch is a 100V DC power source, for example, a fully charged secondary battery (battery) of 100V, or a stationary device of 100V.
  • a secondary battery (battery) of 200V or 400V can be charged using a secondary battery (battery) as an input power source.
  • both forward conversion and reverse conversion are always operated so as to have a high-speed on / off control frequency lower than the resonance frequency determined by the capacitance (C) of the magnetic energy storage capacitor C and the inductance (Lac) of the inductance Lac.
  • C capacitance
  • Lac inductance
  • the magnetic energy regenerative switch is connected between the bridge circuit formed by the four reverse conducting semiconductor switches SW1 to SW4 and the DC terminals DC (P) and DC (N) of the bridge circuit.
  • the magnetic energy regenerative switch may be configured as follows.
  • FIG. 7 and 8 are diagrams showing another aspect of the magnetic energy regenerative switch (MERS).
  • the magnetic energy regenerative switch (MERS) shown in FIG. 7 is different from the above-described full bridge type magnetic energy regenerative switch (MERS) including the four reverse conducting semiconductor switches SW1 to SW4 and one magnetic energy storage capacitor C.
  • This is a vertical half-bridge magnetic energy regenerative switch (MERS) composed of two reverse conducting semiconductor switches, two diodes, and two magnetic energy storage capacitors C.
  • the vertical half-bridge magnetic energy regenerative switch (MERS) is provided in parallel with two reverse conducting semiconductor switches connected in series and the two reverse conducting semiconductor switches. , Two magnetic energy storage capacitors C connected in series, and two diodes connected in parallel with each of the two magnetic energy storage capacitors C.
  • the magnetic energy regenerative switch (MERS) shown in FIG. 8 is a horizontal half-bridge magnetic energy regenerative switch (MERS).
  • the horizontal half-bridge magnetic energy regenerative switch (MERS) is composed of two reverse conducting semiconductor switches and two magnetic energy storage capacitors C.
  • this horizontal half-bridge magnetic energy regenerative switch includes two reverse-conducting semiconductor switches connected in anti-series and two magnetic energy storage capacitors C connected in series. Are connected in parallel to each other, and include a wiring connected to the midpoints of the two reverse conducting semiconductor switches and the midpoints of the two magnetic energy storage capacitors.
  • FIG. 5 shows a charging device for an electric vehicle that uses the power conversion device described above, and is a charging station that can simultaneously charge a number of secondary batteries (batteries) for an electric vehicle.
  • MERS1 is connected between, for example, a 100V commercial power system in Japan as an AC power source and a DC bus of an electric vehicle charging device, and is used as an AC / DC power converter, and forward conversion from the power system to the DC bus And reverse conversion from the DC bus to the power system.
  • the direct current terminals DC (P) and DC (N) are connected to the direct current bus terminals P and N of the charging device for the electric vehicle, and the alternating current terminals AC and AC are respectively connected to the electric vehicle.
  • MERS2, 3, and 4 show an example in the case of three, but may be one, two, or four or more.
  • the secondary batteries (batteries) connected to the MERS 2, 3, and 4 may be the same voltage or different voltages.
  • the voltage of the DC bus may be 110V
  • a 48V secondary battery (battery) may be connected to MERS2
  • a 72V secondary battery (battery) may be connected to MERS3
  • a 24V secondary battery (battery) may be connected to MERS4. .
  • the bus voltage of the DC bus may be a high voltage, for example, 400V, but the voltage of the DC bus may be, for example, 110V.
  • the DC bus voltage is 110V, instead of a 48V secondary battery (battery), a secondary battery (battery) of 200V or 400V higher than the DC bus voltage is connected to MERS2.
  • MERS2 The connection of MERS2 is reversed, AC terminals AC and AC of MERS2 are connected to a DC bus, and DC terminals DC (P) and DC (N) are connected to a secondary battery (battery) of 200V or 400V. .
  • the other MERS3 and MERS4 are connected to the DC terminals DC (P) and DC (N) connected to the terminals P and N of the DC bus, and the AC terminals AC and AC are connected to the secondary battery ( Battery).
  • the DC bus can be connected with the AC terminals AC and AC of the magnetic energy regenerative switch (MERS), or can be connected with the DC terminals DC (P) and DC (N).
  • a stationary secondary battery (battery) corresponding to the DC bus voltage may be connected to the DC bus for the buffer.
  • the gate of the reverse conduction type semiconductor switch of each magnetic energy regenerative switch (MERS) is controlled by a gate control device (not shown) corresponding to each magnetic energy regenerative switch (MERS), and each gate control device is controlled by a central control device ( (Not shown).
  • the central control device can manage and control the voltage, current, and charge / discharge amount of each secondary battery (battery).
  • a secondary battery (battery) for a specific electric vehicle needs to be quickly charged, the charging is already completed or almost completed while checking the voltage and current of the system power receiving point. Invert the power from many other secondary batteries (batteries) and stationary secondary batteries (batteries), and charge the secondary batteries (batteries) that need to be quickly charged together with the reverse-converted power can do. Thereby, the peak value of the received power received from the external commercial power source can be reduced.
  • the case temperature of each secondary battery (battery) is measured, and charging can be suppressed when the temperature of a specific secondary battery (battery) is equal to or higher than a predetermined temperature.
  • FIG. 6 further shows a power flow control MERS provided between the MERS 1 that converts AC power into DC power and the power system. What is necessary is just to use what was disclosed by patent document 7 as MERS for electric power flow control.
  • This charging / discharging device contributes to overall power stabilization. That is, for example, when mitigating steep power fluctuations from the photovoltaic power generators in the system, the secondary battery (battery) being charged is expected to play a role of complementary operation so as to mitigate power fluctuations. Is done. Since the operation of the charging device has a high degree of freedom, such a function is also possible.
  • a charging station that can charge a large number of vehicles simultaneously with a large number of charging devices is expected to have a quick charging function that is about 10 times faster than the conventional one.
  • a stationary secondary battery battery
  • the power received from the power system is smoothed to the average value, but even if there is no deferred secondary battery (battery), it is waiting at the charging station Alternatively, if there are a plurality of secondary batteries (batteries) that are being charged, it is possible to take out electric power from these secondary batteries (batteries) and perform rapid charging.
  • this charging / discharging device includes a control device capable of exchanging information with the outside using a LAN, and can make a power receiving contract by selecting cheap power with particularly poor power quality.
  • wind power generation causes power fluctuation at night and is an unfavorable power source for the system
  • the electric power company holds the night charging power of the electric vehicle via the LAN for the purpose of controlling the frequency. This is beneficial to both the power company and the owner of the charge / discharge device.
  • the voltage of the power receiving point can be controlled by making the alternating current “advance” by the magnetic energy regenerative switch (MERS). It has been difficult to realize this voltage control in combination with the conventional charging / discharging device using a magnetic energy regenerative switch (MERS). Even if a power failure occurs during charging, the DC / AC power converter using a magnetic energy regenerative switch (MERS) capable of reverse conversion is driven by the power from the secondary battery (battery), and the area is uninterrupted Since it becomes the structure similar to having installed the power supply, alternating current power can also be supplied.
  • MERS magnetic energy regenerative switch
  • the magnetic energy regenerative switch (MERS) described in Patent Document 5 is arranged as an AC bidirectional switch at the power receiving point, and the current flows from the power system to the direction of the in-region power system (forward direction). To control the gate.
  • the switch is in a high impedance state with respect to the reverse current, and it is not necessary to detect the voltage and turn off the gate of the reverse conducting semiconductor switch in the magnetic energy regenerative switch (MERS).
  • MERS magnetic energy regenerative switch
  • the control completely changes the power situation of the home. For example, it is considered that everyone needs to increase the power receiving contract capacity along with the installation of the charging device for electric vehicles, but the basic charge of the power receiving contract is higher than the pay-as-you-go charge. About once a week, an electric vehicle of about 20 km travels about 80 km per month, and a small electric vehicle needs about 14 kWh. This electricity bill is about 336 yen at most, even if it is 24 yen / kWh.
  • the charging device has a capacity of 1 kW so that it can be fully charged in 14 hours.
  • An increase of 1 kW in contract power will increase by 1071 yen for low-voltage power.
  • 1 kW up is about 300 yen, so this cannot be ignored. Therefore, in the charging / discharging device of the present invention, power is received until just before the breaker trips by taking into account the current history at the power receiving point, but it is reasonable to use the power and current power factor of the charging device as its adjustment factors.
  • Charge / discharge device When a large number of electric vehicles are charged in parallel at an office, it is necessary to perform demand management according to the power reception contract. It can be set as the system which can utilize an electrical energy effectively and dynamically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)
  • Secondary Cells (AREA)

Abstract

 この電力変換装置は、弱い電力系統に接続した場合において、交流電流の進み制御により電圧の安定を図り、受電契約の範囲内で最大の充電を行うことを目的としており、少なくとも2個の逆導通型半導体スイッチを用いたブリッジ回路の直流端子に小容量の磁気エネルギー蓄積用コンデンサを接続した磁気エネルギー回生スイッチを用いて交流または直流から直流への電力変換とこれらの逆変換を行う。この電力変換装置を用いた複数の二次電池充電装置の直流部を共通直流母線で接続して、二次電池充電装置間で相互に電力を融通するように構成されている。

Description

電力変換装置
 本発明は、交流電力または直流電力から直流電力への逆変換可能な電力変換装置であって、特に電気自動車などにおける二次電池(バッテリー)を充放電する充放電装置に用いることができるものに関するものである。
 従来、自動車用バッテリーなどの二次電池を充電するために、日本国内では単相100Vを降圧する簡単な変圧器とダイオード整流器が用いられている。そして、大容量の充電においては、交流電力から直流電力への電力変換について様々な方式が実用化されている。そのような電力変換方式においては、高力率と高効率化が望まれており、また、構成部品が少ないことや制御が簡潔であることも求められている。
 最新の電力変換技術であるパワーMOSFETやIGBTなどのスイッチオフできる半導体スイッチを使って、PWMコンバータやフライバック回路を用いたPFC回路によって充電することができる。(特許文献1、2、3及び4参照)また、複数車両を費用対効果も考慮して効率的に充電するシステム(上記特許文献2参照)、急速充電を環境の変化に関係なく効率的に行うシステム(上記特許文献3参照)、及び三相交流電源からの充電を行うシステム(上記特許文献4参照)など様々なシステムも提案されている。しかし、これらのシステムは何れも電力変換にハードスイッチングを行っておりスイッチング損失が大きい。また、系統電圧の電圧値や周波数によらず、充電電力を制御することは系統安定度の点で問題がある。
 電力変換には高速半導体スイッチが望まれるが、一方、回路技術として、オン・オフ時に、電圧もしくは電流のいずれか、またはその両方をゼロにするソフトスイッチング技術は、変換効率の面において好ましいだけでなく、ノイズの発生を低減することができるという点においても好ましく、重要な解決策と言える。
 なお、4個の逆阻止能力を持たない、すなわち逆導通型の半導体素子(以下逆導通型半導体スイッチという)を用いて順逆両方向の電流をゲート制御のみでオン・オフ可能であり、かつ電流を遮断した際の電流の持つ磁気エネルギーをコンデンサに蓄積し、オンゲートが与えられた半導体素子を通して負荷側に放電して電流を回生することで、電流双方向であり、かつ回路の持つ磁気エネルギーをロスなく回生できるスイッチ(以下磁気エネルギー回生スイッチ(MERS)という)が提案されている(特許文献5参照)。また、この磁気エネルギー回生スイッチ(MERS)を用いて交流電源に同期したスイッチングを行う交流/直流電力変換装置が提案されている。(特許文献6参照)
 また、系統からの電力受電に関して安定した潮流制御を行うための装置が提案されている。(特許文献7参照)
特開2008-206300号公報 特表2007-535282号公報 特開2007-049828号公報 特開2007-097341号公報 特許第3634982号公報 国際公開2008/096664号公報 国際公開2005/067117号公報
 大容量の充電装置においては、系統に優しい高効率な充電装置が求められている。例えば、電気自動車が普及してその数が多くなると、夜間電力の利用が進むという点において夜間の電力設備の利用率が上がって好ましい。
 しかしながら、それが個人住宅の車庫において行われた場合、1kWから2kWもの電力が連続で消費されることとなる。電気自動車の普及に伴い、数百万台もの電気自動車の充電が夜間電力を消費することになるが、半導体制御された充電装置が電力負荷として一定電力の負荷であることは、系統の安定度を益々低下させて好ましくない。
 本発明の目的は、すべてのスイッチ素子のスイッチング動作をソフトスイッチング化して、高周波ノイズを低減し、電力方向が可逆で、昇圧も可能な磁気エネルギー回生スイッチ(MERS)を使用した交流/直流電力変換装置であって、特に電気自動車などにおける二次電池(バッテリー)の充放電装置としても利用できる電力変換装置を提供することにある。
 また、本発明の他の目的は、磁気エネルギー回生スイッチ(MERS)を直流母線と二次電池(バッテリー)の間に設置する直流/直流電力変換装置としても用いることにより、受電容量など受電契約を勘案しながら、個々の二次電池(バッテリー)の充電制御を行い、かつ進相電流を発生して受電点の電圧制御を行い、また、必要な場合は、二次電池(バッテリー)から逆に交流電力を逆送電する機能も持つ、系統に優しい電力変換装置を提供することにある。
 上記の目的を達成するために、本発明の例示的側面としての電力変換装置は、4個の逆導通型半導体スイッチにて構成されるブリッジ回路と、電流遮断時の電流の持つ磁気エネルギーを蓄積する磁気エネルギー蓄積コンデンサCをブリッジ回路の直流端子DC(P)、DC(N)間に接続して構成される磁気エネルギー回生スイッチを、交流電源から、インダクタンスLacを介して交流端子AC、ACに接続し、さらに直流端子DC(P)、DC(N)間には、平滑インダクタンスLdcを介して、直流電源、もしくは負荷を接続した回路構成において、
逆導通型半導体スイッチのゲートに制御信号を与えて、逆導通型半導体スイッチのオン・オフ制御を行うゲート制御装置を具備し、ブリッジ回路の対角線上に位置する一方ペアの逆導通型半導体スイッチをオン、他方のペアの逆導通型半導体スイッチをオフにする動作を同時に行うように制御するとともに、交流電源の電流の方向により選択される1つのペアの逆導通型半導体スイッチを高速オン・オフ動作させ、直流端子DC(P)、DC(N)間に昇圧パルス電圧を発生させる手段と、昇圧パルス電圧を、平滑して直流電圧に変換するために平滑インダクタンスLdcを介して、直流電圧源、二次電池(バッテリー)、もしくは、直流負荷に流す手段と、を具備して、電力変換装置を二次電池(バッテリー)充電装置に直列または並列に、もしくは、直列、並列接続を開閉スイッチにて切り換えて、長時間的には、二次電池(バッテリー)の温度や充電量など充電状況を制御しながら、短期的には入力電流の力率を遅れから進みまで制御して、他の電力系の遅れ力率と併せて、電流力率を調整することによって電流を減らしてジュール損を低減し、受電点の電圧変動、過電圧、不足電圧を補正することを特徴とする。
 また、磁気エネルギー回生スイッチが、2個の逆導通型半導体スイッチ及び該逆導通型半導体スイッチに対向する2個のダイオードにより構成されたブリッジ回路と、2個のダイオードのそれぞれに対して並列に接続され都合2個の直列に接続された磁気エネルギー蓄積コンデンサと、を有する構成であってもよい。
 また、磁気エネルギー回生スイッチが、逆直列に接続された2個の逆導通型半導体スイッチと、直列に接続された2個の磁気エネルギー蓄積コンデンサと、を並列に接続し、2個の逆導通型半導体スイッチの中点と2個の磁気エネルギー蓄積コンデンサの中点同士に結線された配線と、を有する構成であってもよい。
また、磁気エネルギー回生スイッチのオン・オフ周期を磁気エネルギー回生スイッチの磁気エネルギー蓄積コンデンサCの静電容量(C)とインダクタンスLacのインダクタンス(Lac)で決まる放電時間より長く設定して、磁気エネルギー蓄積コンデンサCの電圧がサイクル毎に放電してゼロになり、逆導通型半導体スイッチがオフするとき、ゼロ電圧で、逆導通型半導体スイッチがオンするとき、ゼロ電流であることを特徴としてもよい。
 昇圧パルス電圧を発生する手段として、三相交流を電源とする場合、単相交流の場合のブリッジのアームを3つにして、6個の逆導通型半導体スイッチによる三相全波ブリッジの構成の磁気エネルギー回生スイッチとし、磁気エネルギー蓄積コンデンサを直流母線の端子P、N間に接続し、各アームの2つの逆導通型半導体スイッチは三相交流の電流方向の逆導通型半導体スイッチを選択して、かつ、すべての選択された逆導通型半導体スイッチを同時に高速にオン・オフして、昇圧パルス電圧を直流母線の端子P、N間に発生させる方式による三相交流電力の変換を行ってもよい。
 入力電力が直流電圧である場合、磁気エネルギー回生スイッチの片方の対角線上に位置する逆導通型半導体スイッチのペアのみを高速にオン・オフするが、他方の逆導通型半導体スイッチのペアを常にオフにして逆導通用のダイオード動作のみとすることで、電流方向が逆になることで電力を二次電池(バッテリー)から交流へ逆変換してもよい。
 磁気エネルギー回生スイッチの入力電圧または入力電流の大きさと方向、さらに直流出力もしくは交流出力の電圧と電流、さらに磁気エネルギー蓄積コンデンサの電圧を入力し、逆導通型半導体スイッチに印加するゲートパルス信号のオン・オフの時間比、スイッチ周期を考慮して逆導通型半導体スイッチの保護とオン・オフ制御を行う制御装置を具備してもよい。
 電力逆変換は不要である場合は、パルス脈動の平滑インダクタンスLdcに換えてダイオードを用いて、出力コンデンサへの逆電流を阻止して、同様に磁気エネルギー回生スイッチがオフするとき、ゼロ電圧で、磁気エネルギー回生スイッチがオンするとき、ゼロ電流である、ゼロ電圧ゼロ電流スイッチングを行ってもよい。
 また、本発明の別の例示的側面としての電力変換装置は、4個の逆導通型半導体スイッチにて構成されるブリッジ回路と、該ブリッジ回路の直流端子DC(P)、DC(N)間に接続され、電流遮断時の電流の持つ磁気エネルギーを蓄積する磁気エネルギー蓄積コンデンサCと、各逆導通型半導体スイッチのゲートに制御信号を与えて、ブリッジ回路の対角線上に位置する一方ペアの逆導通型半導体スイッチをオン、他方のペアの逆導通型半導体スイッチをオフにする動作を同時に行うように制御するゲート制御装置とを含む磁気エネルギー回生スイッチを備えた電力変換装置であって、
 ブリッジ回路の交流端子ACは交流インダクタンスLacを介して交流または直流の入力電源に接続でき、
 ブリッジ回路の直流端子DC(P)、DC(N)は平滑インダクタンスLdcを介して直流の出力電源に接続され、
 ゲート制御装置は、入力電源の電流の方向により選択される一方のペアの逆導通型半導体スイッチに高速オン・オフ動作をさせるとともに、他方のペアの逆導通型半導体スイッチをオフにすることにより、ブリッジ回路の直流端子に昇圧パルス電圧を発生させ、
 平滑インダクタンスLdcは、昇圧パルス電圧を平滑して直流電圧に変換し、
 高速オン・オフ動作は、磁気エネルギー蓄積コンデンサCの静電容量(C)とインダクタンスLacのインダクタンス(Lac)とで決まるブリッジ回路の共振周波数より低い高速オン・オフ制御周波数に同期しており、高速オン・オフ制御周波数、及び/またはオン・オフ時間比を変化させることにより入力電源と直流母線との間の電力の流れを制御することを特徴とする。
 入力電力が交流電圧である場合、入力電源の電流の方向により選択され高速オン・オフ動作させる逆導通型半導体スイッチのペアを、交流電圧の周波数に同期させて電流の方向が変わる毎に交互に切り替えるように構成されてもよい。
 入力電圧が直流電圧である場合、入力電源の電流の方向により選択され高速オン・オフ動作させる逆導通型半導体スイッチのペアは一方のみであり、他方のペアは常時オフであるように構成されともよい。
 また、本発明のさらに別の例示的側面としての電力変換装置は、4個の第1の逆導通型半導体スイッチにて構成される第1のブリッジ回路と、該ブリッジ回路の直流端子DC(P)、DC(N)間に接続され、電流遮断時の電流の持つ磁気エネルギーを蓄積する第1の磁気エネルギー蓄積コンデンサCと、各第1の逆導通型半導体スイッチのゲートに制御信号を与えて、各第1の逆導通型半導体スイッチのオン・オフ制御を行う第1のゲート制御装置を含む第1の磁気エネルギー回生スイッチと、
 4個の第2の逆導通型半導体スイッチにて構成される第2のブリッジ回路と、該ブリッジ回路の直流端子DC(P)、DC(N)間に接続され、電流遮断時の電流の持つ磁気エネルギーを蓄積する第2の磁気エネルギー蓄積コンデンサCと、各第2の逆導通型半導体スイッチのゲートに制御信号を与えて、各第2の逆導通型半導体スイッチのオン・オフ制御を行う第2のゲート制御装置を含む第2の磁気エネルギー回生スイッチとを備えた電力変換装置であって、
 第1のブリッジ回路の交流端子AC、ACは第1のインダクタンスLacを介して交流電源に接続でき、第1のブリッジ回路の直流端子DC(P)、DC(N)は第1の平滑インダクタンスLdcを介して直流母線に接続され、第2のインダクタンスLacを介して第2のブリッジ回路の交流端子AC、AC、または第2の平滑インダクタンスLdcを介して第2のブリッジ回路の直流端子DC(P)、DC(N)のいずれか一方は、直流母線に接続され、他方は、二次電池(バッテリー)に接続でき、
 第1及び第2のゲート制御装置は、ともに入力電源の電流の方向により選択される一方のペアの逆導通型半導体スイッチに高速オン・オフ動作をさせるとともに、他方のペアの逆導通型半導体スイッチをオフにすることにより、対応するブリッジ回路の直流端子に昇圧パルス電圧を発生させ、
 平滑インダクタンスLdcは、昇圧パルス電圧を平滑して直流電圧に変換し、
 第1の磁気エネルギー回生スイッチの高速オン・オフ動作は、第1の磁気エネルギー蓄積コンデンサCの静電容量(C)と第1のインダクタンスLacのインダクタンス(Lac)とで決まる第1のブリッジ回路の共振周波数より低い第1の高速オン・オフ制御周波数に同期させ、入力電源の電流の方向により選択され高速オン・オフ動作させる逆導通型半導体スイッチのペアを、交流電圧の周波数に同期させて交互に切り替え、第1の高速オン・オフ制御周波数、及び/またはオン・オフ時間比を変化させることにより交流電源と直流母線との間の電力の流れを制御するとともに、
 第2の磁気エネルギー回生スイッチの高速オン・オフ動作は、第2の磁気エネルギー蓄積コンデンサCの静電容量(C)と第2のインダクタンスLacのインダクタンス(Lac)とで決まる第2のブリッジ回路の共振周波数より低い第2の高速オン・オフ制御周波数に同期させ、入力電源の電流の方向により選択され高速オン・オフ動作させる逆導通型半導体スイッチのペアは一方のみであり、他方のペアは常時オフにし、第2の高速オン・オフ制御周波数、及び/またはオン・オフ時間比を変化させることにより直流母線と二次電池(バッテリー)との間の電力の流れを制御することを特徴とする。
 また、直流母線には、複数個の第2の磁気エネルギー回生スイッチが接続され、それぞれの第2の磁気エネルギー回生スイッチを介して、複数個の二次電池(バッテリー)が接続できるように構成されてもよい。
 電力変換装置は、第2のインダクタンスLacを介して第2のブリッジ回路の交流端子AC、ACが直流母線に接続されている第2の磁気エネルギー回生スイッチ、及び第2の平滑インダクタンスLdcを介して第2のブリッジ回路の直流端子DC(P)、DC(N)が直流母線に接続されている第2の磁気エネルギー回生スイッチの両方を含むように構成してもよい。
 また、電力変換装置は、高速オン・オフ制御周波数を高く、及び/またはオン・オフ制御のオン時間比を大きくすることにより、ブリッジ回路、第1のブリッジ回路、及び/または第2のブリッジ回路の交流端子AC、ACに接続している入力電源から、ブリッジ回路、第1のブリッジ回路、及び/または第2のブリッジ回路の直流端子DC(P)、DC(N)に接続している出力電源への順変換を行うように構成してもよい。
 
 多数の二次電池(バッテリー)を同時に充電することのできる充電ステーションにおいて、個々の二次電池(バッテリー)の充電量を管理、制御する中央制御装置を設置し、多数の充電中の二次電池(バッテリー)から逆変換を行って、その逆変換した電力を合わせて、急速充電を必要とする特定の二次電池(バッテリー)の充電することで、外部から受ける受電電力のピーク値を低減してもよい。
 二次電池(バッテリー)を充電する充電装置が、その系統内に太陽光発電装置、風力など、変動の大きな発電装置がある場合、その電力・電圧変動を二次電池(バッテリー)充電装置が変動吸収要素として、利用してもよい。
 電力系統との接続点に逆潮流を阻止する目的で磁気エネルギー回生スイッチを設置することで、系統電圧が短時間、低下するなど系統側の異常状態になると、逆位相電流に対して、高インピーダンスになって自動的に遮断することで、域内の電力、電圧の安定を図ることを電力変換装置の主構成要素としてもよい。
 本発明によれば、電力貯蔵装置を分散させることとなるので、その活用により電力系統の安定、電圧の安定、停電の回避になりうる。充電対象が電気自動車の二次電池(バッテリー)である場合、多数の電気自動車が充電装置を介して電力系に繋がれているので、それを非常用電源として使うことは、地震、台風など自然災害の多い日本においては、エネルギーの安心・安全の面で社会的に重要である。
 一方、自動車の使用頻度の低い家庭において、夜間1kWの電力を充電装置に割くのはコスト的に割高となるが、受電契約電力、基本料金を上げずに、簡単に充電装置を動作させることができる。受電点の電流を検出して、充電装置をフィード・バック制御することにより、受電契約の範囲内で最大容量の充電をすればよい。不規則に断続する電流による充電であっても、二次電池(バッテリー)にとっては電流が積算的に充電されるので問題は無い。
 MERSを使用した交流直流電力変換装置の逆変換は、進み電流を発生するSVC(Static Var Compensator)の役割も担う。従って、急速充電が必要な場合は、それを利用して、数十kWの電力を短時間において電圧を補償しながら電力を取ることが可能である。
 電力系統から数十kWの電力を短時間で取得しようとすると、容量の小さな変圧器ではインピーダンスが高いので電圧降下があるが、リアクタンス電圧を進み力率の電流で上昇させて、電圧低下を補償することが可能である。多数の電気自動車を充電ステーションにおいて充電する場合、既に充電完了したまま接続状態の電気自動車を有効利用することも考えられる。急速充電を必要とする自動車に電力を貸し出すイメージである。その結果、受電契約を削減することができる。
 大口電力の場合、例えば、30分デマンドで電力量を管理するが、充電装置は管理システムと連携をとるべきである。その結果、管理側の自由となる電力は、30分デマンドの隙間に入れるなど、制御が可能である。
本発明の実施の形態に係る電力変換装置の概略構成を示す回路ブロック図である。 本発明の実施の形態に係る電力変換装置のシミレーション回路を示す回路図である。 シミレーション結果を示すグラフである。 磁気エネルギー回生スイッチによる交流または直流を直流に変換する基本回路図である。 多数の充電装置の間、交流系統との間で相互に電力を融通するシステム図である。 受電点に電力潮流制御用磁気エネルギー回生スイッチ(MERS)を配置して域内電力系統の電圧を維持するシステムの構成図である。 磁気エネルギー回生スイッチ(MERS)の他の様態を示す回路図である。 磁気エネルギー回生スイッチ(MERS)の他の様態を示す回路図である。
符号の説明
SW1、SW2、SW3、SW4:逆導通型半導体スイッチ
Lac:インダクタンス
(Lac):インダクタンスLacのインダクタンス(値)
Ldc:平滑インダクタンス
(Ldc):平滑インダクタンスLdcのインダクタンス(値)
C:磁気エネルギー蓄積コンデンサ
(C):磁気エネルギー蓄積コンデンサの静電容量
Lfilter:フィルター用インダクタンス
Cfilter:フィルター用コンデンサ
AC、AC:磁気エネルギー回生スイッチ(MERS)の交流端子
DC(P)、DC(N):磁気エネルギー回生スイッチ(MERS)の直流端子(磁気エネルギー蓄積コンデンサ接続側)
P、N:直流母線の端子
 
Vin:入力電圧(商用電源100V、50Hz)
UY:逆導通型半導体スイッチSW1、SW3のオンゲート信号
VX:逆導通型半導体スイッチSW2、SW4のオンゲート信号
Ifilter: フィルター用コンデンサLfilterを流れる電流
Imers:磁気エネルギー蓄積コンデンサCを流れる電流
Vmers:磁気エネルギー蓄積コンデンサCの電圧(直流端子DC(P)、DC(N)間の昇圧パルス電圧)
Vout:抵抗負荷Rloadに加わる電圧(直流負荷電圧)
Iout:抵抗負荷Rloadに流れる電流
Rload:抵抗負荷
V:電圧計
A:電流計
 
MERS1、MERS2、MERS3、MERS4:フルブリッジ型磁気エネルギー回生スイッチ(MERS)
電源A:交流電源、直流電源、抵抗負荷、コンデンサ
電源B:直流電源、抵抗負荷、コンデンサ
発明を実施するための形態
 以下、本発明に係る好適な実施の形態について、図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。
 図1は磁気エネルギー回生スイッチ(MERS)を用いた電力変換装置を主要構成要素とした、本発明の実施の形態に係る電気自動車用充電装置の概略構成を示す回路ブロック図である。本発明は、上記特許文献5において開示されたMERS(Magnetic Energy Recovery Switch:磁気エネルギー回生スイッチ)を主要な構成要素としている。
 磁気エネルギー回生スイッチ(MERS)は、4個の逆導通型半導体スイッチにて構成されるブリッジ回路と、そのブリッジ回路の直流端子DC(P)、DC(N)間に接続され、電流遮断時の電流の持つ磁気エネルギーを蓄積する磁気エネルギー蓄積コンデンサCと、各逆導通型半導体スイッチのゲートに制御信号を与えて、ブリッジ回路の対角線上に位置する一方ペアの逆導通型半導体スイッチをオン、他方のペアの逆導通型半導体スイッチをオフにする動作を同時に行うように制御するゲート制御装置を含み、オンゲートが与えられた逆導通型半導体スイッチを通して負荷側に磁気エネルギー蓄積コンデンサが放電することで電流を回生するスイッチである。電流双方向であり、かつ回路の持つ磁気エネルギーをロス無く回生できるスイッチである。ブリッジ回路の交流端子AC、AC間には、インダクタンスLacを介して交流または直流の入力電源に接続できる。ブリッジ回路の直流端子DC(P)、DC(N)は、平滑インダクタンスLdcを介して直流母線の端子P、Nに接続される。
 ゲート制御装置は、入力電源の電流の方向により選択される一方のペアの逆導通型半導体スイッチに高速オン・オフ動作をさせるとともに、他方のペアの逆導通型半導体スイッチをオフにすることにより、ブリッジ回路の直流端子に、高速オン・オフ動作周波数で脈動する昇圧パルス電圧を発生させ、この昇圧パルス電圧は、パルス周波数から見て十分なインダクタンスを有する平滑インダクタンスLdcにより平滑されて直流電圧に変換される。入力電力が交流電圧である場合、入力電源の電流の方向により選択され高速オン・オフ動作させる逆導通型半導体スイッチのペアを、交流電圧の周波数に同期させて電流の方向が変わる毎に交互に切り替えるように構成される。すなわち、交流において、交流の周波数に同期して電流の方向に変わる毎に、高速オン・オフ動作するペアとオフに保持されるペアとが交互に入れ替えられる。例えば、交流50Hzにおいて、電流方向が正の時には、SW2、SW4のペアが高速オン・オフ動作され、SW1、SW3のペアがオフに維持されるが、負の時には、SW1、SW3のペアが高速オン・オフ動作され、SW2、SW4のペアがオフに維持される。
 高速オン・オフ動作によって、電源電圧が正の半周期で、例えば逆導通型半導体スイッチSW2、SW4がオンになる時、逆導通型半導体スイッチSW1、SW3はオフに維持されておりダイオードとして働き、ブリッジ回路のAC、AC端子間は導通状態になり、電流が増加し磁気エネルギーがインダクタンスLacに蓄積される。逆導通型半導体スイッチSW2、SW4がオフになった時に、インダクタンスLacに蓄積された磁気エネルギーは、磁気エネルギー蓄積コンデンサCと負荷に電流となって流れる。このとき、負荷に加わる電圧と磁気エネルギー蓄積コンデンサCに加わる電圧が等しくなる電流が流れる。磁気エネルギーが電源により供給される電力を補うため昇圧され磁気エネルギー蓄積コンデンサCの両端電圧を上げる。昇圧の度合は、負荷のインピーダンスと磁気エネルギー蓄積コンデンサCのインピーダンスにより異なってくる。また、高速オン・オフ制御周波数などにより異なってくる。
 高速オン・オフ動作は、磁気エネルギー蓄積コンデンサCの静電容量(C)とインダクタンスLacのインダクタンス(Lac)とで決まる共振周波数より低い高速オン・オフ制御周波数にて行われる。このため、磁気エネルギー蓄積コンデンサCは毎回、放電の後電圧がゼロになる期間が生じるため、各逆導通型半導体スイッチはゼロ電圧でオフでき、またオンしてもインダクタンスの存在により電流が急速には上がらずゼロ電流でオンでき、ゼロ電流ゼロ電圧スイッチングが達成される。
 ここにおいて、高速オン・オフ制御周波数が高いほど、及び/またはオン・オフ時間比(デューティ比)のオン・デューティ比が高いほど、直流端子DC(P)、DC(N)間の昇圧パルス電圧が高くなり、高速オン・オフ制御周波数、及び/またはオン・オフ時間比(デューティ比)を連続的に変化させることにより、直流端子DC(P)、DC(N)間の昇圧パルス電圧を連続的に変化させることができ、これによって直流母線側から見た入力電圧側の電圧を連続的に変えることができる。直流母線側から見た入力電圧側の電圧が、直流母線の電圧より高い場合、電力は入力電圧側から直流母線側に流れ、交流から直流の順変換が行われる。逆に、直流母線の電圧より低い場合、電力は直流母線側から入力電圧側に流れ、直流から交流の逆変換が行われる。従って、両電圧がバランスする高速オン・オフ制御周波数、及び/またはオン・オフ時間比(デューティ比)を挟んだ領域で連続的に変化することにより、入力電源と直流母線との間の電力の流れを、例えば、大電流順変換、小電流順変換、ゼロ(電力変換なし)、小電流逆変換、大電流逆変換のレンジ内で連続的に行うことができる。
 図2は、シミュレーション回路を示す。交流電源は、日本国内の商用電源100V、50Hzであり、これは、10μHのフィルターコンデンサLfilter、及び50μHの交流インダクタンス(Lac)を介しブリッジ回路に接続されている。磁気エネルギー蓄積コンデンサCの静電容量(C)は、10μFである。この回路は、50μHのインダクタンスLacと10μFの磁気エネルギー蓄積コンデンサCとで決まる、約7KHzの共振周波数を有する。直流母線に相当する抵抗負荷Rloadは10Ωである。また、電流計、及び電圧計により、この抵抗負荷Rloadを流れる電流Iout及び抵抗負荷Rloadに加わる電圧(直流負荷電圧)Voutを計測できる。
 図3は、図2のシミュレーション回路を用いたシミュレーション結果を示すグラフである。最上部のグラフは、入力電圧である日本国内の商用電源100V、50Hzとともに、高速オン・オフ制御信号を示している。高速オン・オフ制御信号の周波数は、1KHzであり、オン・オフ時間比(デューティ比)はオン部分0.7としている。交流電圧の極性が変わると制御される逆導通型半導体スイッチが切り替えられ、それぞれの逆導通型半導体スイッチは1KHzでスイッチングされている。上から2番目のグラフは、直流端子DC(P)、DC(N)間の昇圧パルス電圧であり、ピーク値は1500V程度まで昇圧できている。上から3番目のグラフは、抵抗負荷Rload(10Ω)に加わる電圧(直流負荷電圧)Vout、最下部のグラフはこの抵抗負荷を流れる電流Ioutを示す。直流負荷電圧Voutは、平均680Vまで昇圧されている。この負荷電圧は、高速オン・オフ作動の周波数、及び/またはオン・オフ時間比(オンのデューティ比)を低下させることにより、連続的に低下させることができ、所望の値に合わせることができる。
 従って、磁気エネルギー回生スイッチ(MERS)を用いた電力変換装置から構成された電気自動車用充電装置は、日本国内の商用電源100Vを入力電源として、200V直流、または400V直流の二次電池(バッテリー)を充電することもできる。また、順変換、逆変換ともゼロ電流・ゼロ電圧のソフトスイッチングであり、電力変換損失も少なく、スイッチングに伴う高周波ノイズは基本的に発生しない。
 図4は、磁気エネルギー回生スイッチ(MERS)を使用した双方向の電力変換装置の基本構成を示す。電源Aは、入力電源であり、交流電力または直流電力のいずれでもよい。電源Bは、直流電力または直流母線である。この電力変換装置により、電源Aから電源Bへの順変換(交流または直流から直流へ)、及び電源Bから電源Aへの逆変換(直流から交流または直流へ)を逆導通型半導体スイッチのゲート信号制御で行うことができる。
 電源Aが交流電力であり、電源Bが直流電力(または直流母線)である場合の順変換/逆変換は、図1から図3の説明において詳述した通りである。次に、電源Aが直流電力であり、電源Bが直流電力(直流母線)である場合は、交流が電流の方向が周波数に同期して交互に繰り返すのに対して直流は電流の方向が一定であり、入力電源の電流の方向により選択されるペアの逆導通型半導体スイッチを高速オン・オフ動作させ、他方のペアを常時オフとする。すなわち、交流の場合には交流電圧の周波数に同期させて電流の方向が変わる毎に交互に高速オン・オフ動作するペアとオフに保持されるペアとが交互に入れ替えられるのに対して、直流の場合には、電流の方向が同じである間は高速オン・オフ動作するペアとオフに保持されるペアが変わらない。例えば、電流の方向が電源Aから電源Bへの順変換の時、SW2、SW4のペアのみが高速オン・オフ動作され、SW1、SW3のペアは常時オフにされ逆導通用のダイオードのみが動作を行う。
 図4に示す通り、入力電源(直流電力)は、インダクタンスLacを介して磁気エネルギー回生スイッチ(MERS)のブリッジ回路の交流端子AC、ACに接続される。入力電源(直流電力)は、具体的には、例えば電気自動車の二次電池(バッテリー)である。ブリッジ回路の直流端子DC(P)、DC(N)は、平滑インダクタンスLdcを介して直流母線の端子P、Nに接続される。同様に、高速オン・オフ動作によって、ブリッジ回路の直流端子DC(P)、DC(N)に、高速オン・オフ動作周波数で脈動する昇圧パルス電圧を発生させ、この昇圧パルス電圧は、パルス周波数から見て十分なインダクタンスを有する平滑インダクタンスLdcにより平滑されて直流電圧に変換される。
 また、入力電源が直流電力の場合においても、高速オン・オフ動作は、磁気エネルギー蓄積コンデンサCの静電容量(C)とインダクタンスLacのインダクタンス(Lac)とで決まる共振周波数より低い高速オン・オフ制御周波数にて行われる。このため、磁気エネルギー蓄積コンデンサCは毎回、放電の後、電圧がゼロになる期間が生じるため、各逆導通型半導体スイッチはゼロ電圧でオフでき、またオンしてもインダクタンスLacの存在により電流が急速には上がらずゼロ電流でオンでき、ゼロ電流ゼロ電圧スイッチングが達成される。
 また、入力電源が直流電力の場合においても、同様に、高速オン・オフ制御周波数が高いほど、及び/またはオン・オフ時間比(デューティ比)のオン・デューティ比が高いほど、直流端子DC(P)、DC(N)間の昇圧パルス電圧が高くなり、高速オン・オフ制御周波数、及び/またはオン・オフ時間比(デューティ比)を連続的に変化させることにより、直流端子DC(P)、DC(N)間の昇圧パルス電圧を連続的に変化させることができ、これによって直流母線側から見た入力電圧側の電圧を連続的に変えることができる。直流母線側から見た入力電圧側の電圧が、直流母線の電圧より高い場合、電流は入力電圧側から直流母線側に正方向に流れ、直流から直流への順変換が行われる。逆に、直流母線側から見た入力電圧側の電圧が、直流母線の電圧より低い場合、電流は直流母線側から入力電圧側に流れ、電流の方向が逆転する。
 直流電力の電流の方向が電源Aから電源Bへの順方向の時、例えば、SW2、SW4のペアのみが高速オン・オフ動作され、SW1、SW3のペアは常時オフにされ、逆導通用のダイオードのみが動作を行うように制御されているが、電流の方向が逆方向になる場合、すなわち電流が直流母線側から入力電圧側に流れ逆変換を行う場合には、SW1、SW3のペアのみが高速オン・オフ動作され、SW2、SW4のペアは常時オフにされ逆導通用のダイオードのみが動作を行うように、ペアが切り替えられる。この切り換えは、ブリッジ回路の交流端子AC、ACに接続されている電源Aの電流の方向、または直流母線側から見た入力電圧側の電圧と直流母線の電圧との電圧差を測定して切り替えればよい。従って、直流母線側から見た入力電圧側の電圧と直流母線の電圧がバランスする高速オン・オフ制御周波数、及び/またはオン・オフ時間比(デューティ比)を挟んだ領域で連続的に変化することにより、入力電源と直流母線との間の電力の流れを、例えば、大電流順変換、小電流順変換、ゼロ(電力変換なし)、小電流逆変換、大電流逆変換のレンジ内で連続的に行うことができる。
 また、入力電源が電圧100Vの直流電力の場合においても、図2に示すシミュレーション回路を用いた場合、図示しないが、直流負荷電圧は、ほぼ680Vまで昇圧される。この負荷電圧は、同様に、高速オン・オフ作動の周波数、及び/またはオン・オフ時間比(オンのデューティ比)を低下させることにより、連続的に低下させることができ、所望の値に合わせることができる。
 従って、磁気エネルギー回生スイッチ(MERS)を用いた電力変換装置から構成された電気自動車用充電装置は、100Vの直流電源、例えば100Vの十分充電されている二次電池(バッテリー)、または100Vの据え置き二次電池(バッテリー)を入力電源として、200V、または400Vの二次電池(バッテリー)を充電することもできる。二次電池(バッテリー)の接続を換えることなく、逆変換として、200V、または400Vの二次電池(バッテリー)から100Vの二次電池(バッテリー)、または100Vの据え置き二次電池(バッテリー)を充電することもできる。入力電源が、例えば12V、24Vの二次電池(バッテリー)であっても、磁気エネルギー回生スイッチ(MERS)を用いた電力変換装置で高速オン・オフ作動の周波数を高くすることで、200V、または400Vの二次電池(バッテリー)を充電することもできる。同様に逆変換も可能である。また、順変換、逆変換とも、常に磁気エネルギー蓄積コンデンサCの静電容量(C)とインダクタンスLacのインダクタンス(Lac)とで決まる共振周波数より低い高速オン・オフ制御周波数とするように動作させれば、常にゼロ電流ゼロ電圧のソフトスイッチングであり、電力変換損失も少なく、スイッチングに伴う高周波ノイズは基本的に発生しない。
 上述の電力変換装置では、磁気エネルギー回生スイッチ(MERS)は4つの逆導通型半導体スイッチSW1~SW4で形成されるブリッジ回路と、ブリッジ回路の直流端子DC(P)、DC(N)間に接続された磁気エネルギー蓄積コンデンサCとからなる構成であったが、磁気エネルギー回生スイッチ(MERS)は次のような構成であってもよい。
 図7及び図8は、磁気エネルギー回生スイッチ(MERS)の他の態様を示す図である。図7に示す磁気エネルギー回生スイッチ(MERS)は、上述の4つの逆導通型半導体スイッチSW1~SW4と1つの磁気エネルギー蓄積コンデンサCとからなるフルブリッジ型の磁気エネルギー回生スイッチ(MERS)に対して、2つの逆導通型半導体スイッチと2つのダイオード、及び2つの磁気エネルギー蓄積コンデンサCで構成される縦型のハーフブリッジ型磁気エネルギー回生スイッチ(MERS)となっている。
 より詳細には、この縦型のハーフブリッジ構造の磁気エネルギー回生スイッチ(MERS)は、直列に接続された2つの逆導通型半導体スイッチと、この2つの逆導通型半導体スイッチと並列に設けられた、直列に接続された都合2つの磁気エネルギー蓄積コンデンサCと、この2つの磁気エネルギー蓄積コンデンサCそれぞれと並列に接続された2つのダイオードと、を含んでいる。
 図8に示す磁気エネルギー回生スイッチ(MERS)は、横型のハーフブリッジ型磁気エネルギー回生スイッチ(MERS)である。横型のハーフブリッジ型磁気エネルギー回生スイッチ(MERS)は、2つの逆導通型半導体スイッチと2つの磁気エネルギー蓄積コンデンサCで構成されている。
 より詳細には、この横型のハーフブリッジ構造の磁気エネルギー回生スイッチ(MERS)は、逆直列に接続された2個の逆導通型半導体スイッチと、直列に接続された2個の磁気エネルギー蓄積コンデンサCと、を並列に接続し、2個の逆導通型半導体スイッチの中点と2個の磁気エネルギー蓄積コンデンサの中点同士に結線された配線と、を含んでいる。
 図5は、以上述べた電力変換装置を用いて電気自動車用充電装置を構成したものであり、多数の電気自動車用二次電池(バッテリー)を同時に充電することのできる充電ステーションである。MERS1は、交流電源としての例えば日本国内の100Vの商用電力系統と電気自動車用充電装置の直流母線の間に接続され、交流/直流電力変換装置として用いられ、電力系統から直流母線への順変換、及び直流母線から電力系統への逆変換ができる。MERS2、3、及び4は、それぞれの直流端子DC(P)、DC(N)が電気自動車用充電装置の直流母線の端子P、Nに接続され、それぞれの交流端子AC、ACをそれぞれ電気自動車の二次電池(バッテリー)に接続できる。MERS2、3、及び4は、3個の場合の例を示したものであるが、1個、2個、または4個以上でもよい。MERS2、3、及び4に接続される二次電池(バッテリー)は同じ電圧であっても、異なる電圧であってもよい。例えば、直流母線の電圧を110Vとし、MERS2に48Vの二次電池(バッテリー)を、MERS3に72Vの二次電池(バッテリー)を、MERS4に24Vの二次電池(バッテリー)を接続してもよい。
 200V、または400Vの高圧二次電池(バッテリー)を接続するには、直流母線の母線電圧を高電圧、例えば400Vにしてもよいが、直流母線の電圧が例えば110Vであっても可能である。例えば、直流母線電圧が110Vである場合において、MERS2に、48Vの二次電池(バッテリー)に代えて、直流母線電圧以上の200V、または400Vの二次電池(バッテリー)を接続しようとする場合は、MERS2の接続を逆転し、MERS2の交流端子AC、ACを直流母線に接続し、直流端子DC(P)、DC(N)を200V、または400Vの二次電池(バッテリー)に接続すればよい。他のMERS3、MERS4の接続は、上記の通り、それぞれの直流端子DC(P)、DC(N)が直流母線の端子P、Nに接続され、その交流端子AC、ACをそれぞれ二次電池(バッテリー)に接続できる。すなわち、直流母線には、磁気エネルギー回生スイッチ(MERS)の交流端子AC、ACで接続することも、またその直流端子DC(P)、DC(N)で接続することもできる。
 直流母線には、バッファー用に、その直流母線電圧に対応した据え置き二次電池(バッテリー)を接続してもよい。
 各磁気エネルギー回生スイッチ(MERS)の逆導通型半導体スイッチのゲートは、各磁気エネルギー回生スイッチ(MERS)に対応するゲート制御装置(図示しない)により制御され、各ゲート制御装置は、中央制御装置(図示しない)により制御される。これらの構成により、中央制御装置は、個々の二次電池(バッテリー)の電圧、電流、充放電量を管理、制御できる。
 制御の態様としては、例えば、特定の電気自動車用の二次電池(バッテリー)を急速充電する必要があるとき、系統受電点の電圧、電流を見ながら、既に充電が完了、またはほとんど完了している他の多数の二次電池(バッテリー)及び、据え置き二次電池(バッテリー)から電力逆変換を行って、その逆変換した電力を合わせて急速充電する必要のある二次電池(バッテリー)に充電することができる。これにより、外部商用電源から受ける受電電力のピーク値を低減できる。また、各二次電池(バッテリー)のケース温度を測定して、特定の二次電池(バッテリー)の温度が所定温度以上の場合、充電を抑制することもできる。
 充電中に電力障害が系統側にある場合、一時充電を抑えて、系統側へと電力を送ることができ、無停電電源の役割を担わせることができる。また、系統側の交流電力から充電用母線の直流電力に変換する場合も、磁気エネルギー回生スイッチ(MERS)を使用した交流直流電力変換装置を用いる。ここで、交流電流の力率を”進み”にすることができるので、受電点の電流力率の改善効果が期待できる。電流の力率を1にすることで、電流実効値が低減してジュール損が減るが、短時間的には受電点での電圧制御が期待される。充電装置が大電力を受電する場合の力率の悪い遅れ電流では、受電点での電圧低下は避けられないが、磁気エネルギー回生スイッチ(MERS)を使用した交流直流電力変換においては、進み電流を発生させて受電点の電圧を上昇させることができる。
 図6は、さらに、交流電力を直流電力に変換するMERS1と電力系統の間に電力潮流制御用MERSを設けたものである。電力潮流制御用MERSとしては、特許文献7に開示されたものを用いればよい。
 本充放電装置は、電力総合的な安定化に寄与する。すなわち、例えば、系内にある太陽光発電装置からの急峻な電力変動を緩和する際に、充電中の二次電池(バッテリー)が電力変動を緩和するように補完運転の役割を果たすことが期待される。充電装置の運転は自由度が大きいのでこのような機能も可能である。
 多数の充電装置によって多数の自動車を同時に充電することができる充電ステーションにおいては従来の10倍程度の急速充電の機能が期待されている。受電契約電力を大きくすることなしに短時間で充電するには、図3に示すように、直流母線に据置き型二次電池(バッテリー)を置いて対処することが考えられる。二次電池(バッテリー)間の充電放電が行われることにより、電力系統からの受電はその平均値に平滑化されるが、据置き二次電池(バッテリー)が無くても、充電ステーションに待機中または充電中の二次電池(バッテリー)が複数あれば、それらの二次電池(バッテリー)から電力を取り出して、急速充電を行うことも可能である。
 また、本充放電装置は外部とLANを利用した情報交換を行うことのできる制御装置を具備して、特に電力品質が悪く安価な電力を選択して受電契約をすることができる。
 特に、風力発電は、夜間の電力変動の原因となり、系統にとって好ましくない電力源であるので、それを補償する目的で風力発電情報を受け取ることにより充電電力を変化させることが可能である。電気自動車の夜間充電電力を、電力会社が周波数を制御する目的でLANを介して掌握することの意味は大きい。これは、電力会社、充放電装置の所有者の両方にとって利益となる。
 電圧制御も同様に、本充放電装置が常時運転中であれば、その交流電流を磁気エネルギー回生スイッチ(MERS)により”進み”にすることで受電点の電圧制御も可能である。この電圧制御をも併せて可能にすることは従来実現困難であったが、磁気エネルギー回生スイッチ(MERS)を使用した本充放電装置によって新規に実現可能となる。充電中に停電になった場合であっても、逆変換可能な磁気エネルギー回生スイッチ(MERS)を使用した直流交流電力変換装置は二次電池(バッテリー)からの電力で駆動され、域内は無停電電源を設置したのと同様の構成となるので、交流電力も供給できる。
 電力系統が地絡、短絡事故等によって受電点の電圧が低下した場合、逆変換可能な磁気エネルギー回生スイッチ(MERS)を使用した交流直流電力変換装置の逆変換動作によって域内の電圧を維持しようとすると電流が系統に流れ出し、域内の電圧を維持できない。そこで図4に示すように、受電点に上記特許文献5に記載の磁気エネルギー回生スイッチ(MERS)を交流双方向スイッチとして配置し、電流が電力系統から域内電力系統の方向(順方向)に流れるようにゲート制御する。これにより、逆方向電流に対してはスイッチが高インピーダンス状態となり、電圧を検出して磁気エネルギー回生スイッチ(MERS)内の逆導通型半導体スイッチのゲートをオフにする必要がないので、瞬低のような3サイクル程度の高速な電圧減少にも対処することができる。
 電気自動車用充電装置が各家庭における最大容量の電気機器になると、その制御はその家の電力事情を一変させる。例えば、誰もが電気自動車用充電装置の設置とともに、受電契約容量を上げる必要があると考えられるが、受電契約の基本料金は従量料金に比べて高いものなる。1週に1回程度、20km程度の電気自動車の走行では、月に80km程度の走行距離であり、小型電気自動車では14kWh程度の電力で足りる。この電気代は24円/kWhとしても、高々336円程度である。
 夜間電力においては電気代がもっと安価であることが電気自動車の魅力であるが、充電装置は14時間でフル充電にするべく、1kWの容量を持つ。1kWの契約電力量のアップは低圧電力では1071円のアップになる。家庭用でも1kWのアップは300円程度であるからこれは無視できない。そこで、本発明の充放電装置では、受電点においては電流履歴を勘案することによりブレーカーがトリップする直前まで受電するが、充電装置の電力、電流力率をその調整要素として用いることで、合理的な充放電装置となる。事業所で電気自動車を多数並列して充電する場合には、受電契約に合わせたデマンド管理を行う必要がある。電気エネルギーを有効に、かつダイナミックに利用することが可能なシステムとすることができる。
なお、本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうるものである。

Claims (18)

  1.  交流電力から直流電力に、またはその逆変換をする電力変換装置であって、該電力変換装置は、
     4個の逆導通型半導体スイッチで構成されるブリッジ回路と、電流遮断時の電流の持つ磁気エネルギーを蓄積する磁気エネルギー蓄積コンデンサCをブリッジ回路の直流端子DC(P)、DC(N)間に接続して構成される磁気エネルギー回生スイッチを、交流電源から、インダクタンスLacを介して交流端子AC、ACに接続し、さらに前記直流端子DC(P)、DC(N)間には、平滑インダクタンスLdcを介して、直流電源、もしくは負荷を接続した回路構成において、
     前記逆導通型半導体スイッチのゲートに制御信号を与えて、前記逆導通型半導体スイッチのオン・オフ制御を行うゲート制御装置を具備し、ブリッジ回路の対角線上に位置する一方ペアの前記逆導通型半導体スイッチをオン、他方のペアの前記逆導通型半導体スイッチをオフにする動作を同時に行うように制御するとともに、交流電源の電流の方向により選択される1つの前記ペアの逆導通型半導体スイッチを高速オン・オフ動作させ、直流端子DC(P)、DC(N)間に昇圧パルス電圧を発生させる手段と、前記昇圧パルス電圧を、平滑して直流電圧に変換するために前記平滑インダクタンスLdcを介して、直流電圧源、二次電池(バッテリー)、もしくは、直流負荷に流す手段と、を具備して、
     該電力変換装置を二次電池(バッテリー)充電装置に直列、または並列に、もしくは、直列、並列接続を開閉スイッチにて切り換えて、長時間的には、二次電池(バッテリー)の温度や充電量など充電状況を制御しながら、短期的には入力電流の力率を遅れから進みまで制御して、他の電力系の遅れ力率と併せて、電流力率を調整することによって電流を減らしてジュール損を低減し、受電点の電圧変動、過電圧、不足電圧を補正する電力変換装置。
  2.  前記磁気エネルギー回生スイッチが、2個の前記逆導通型半導体スイッチ及び該逆導通型半導体スイッチに対向する2個のダイオードにより構成されたブリッジ回路と、前記2個のダイオードのそれぞれに対して並列に接続され都合2個の直列に接続された磁気エネルギー蓄積コンデンサと、を有する構成である請求の範囲第1項に記載の電力変換装置。
  3.  前記磁気エネルギー回生スイッチが、逆直列に接続された2個の前記逆導通型半導体スイッチと、直列に接続された2個の磁気エネルギー蓄積コンデンサと、を並列に接続し、該2個の逆導通型半導体スイッチの中点と該2個の磁気エネルギー蓄積コンデンサの中点同士に結線された配線と、を有する構成である請求の範囲第1項に記載の電力変換装置。
  4.  前記磁気エネルギー回生スイッチのオン・オフ周期を前記磁気エネルギー回生スイッチの前記磁気エネルギー蓄積コンデンサCの容量(C)と前記インダクタンスLacのインダクタンス(Lac)で決まる放電時間より長く設定して、前記磁気エネルギー蓄積コンデンサCの電圧がサイクル毎に放電してゼロになり、前記逆導通型半導体スイッチがオフするとき、ゼロ電圧で、前記逆導通型半導体スイッチがオンするとき、ゼロ電流であることを特徴とする請求の範囲第1項乃至第3項のいずれか1項に記載の電力変換装置。
  5.  前記昇圧パルス電圧を発生する手段として、三相交流を電源とする場合、単相交流の場合のブリッジのアームを3つにして、6個の逆導通型半導体スイッチによる三相全波ブリッジの構成の磁気エネルギー回生スイッチとし、前記磁気エネルギー蓄積コンデンサCを直流母線の端子P、N間に接続し、各アームの2つの逆導通型半導体スイッチは三相交流の電流方向のスイッチを選択して、かつ、すべての選択された逆導通型半導体スイッチを同時に高速にオン・オフして、昇圧パルス電圧を直流母線の端子P、N端子間に発生させる方式のよる三相交流電力の変換を行う請求の範囲第1項に記載の電力変換装置。
  6.  入力電力が直流電圧である場合、前記磁気エネルギー回生スイッチの一方の対角線上に位置する逆導通型半導体スイッチのペアのみを高速にオン・オフするが、他方の逆導通型半導体スイッチのペアを常にオフにして逆導通用のダイオード動作のみとすることで、電流方向が逆になることで電力を二次電池(バッテリー)から交流へ逆変換する請求の範囲第1項、第2項及び第4項のいずれか1項に記載の電力変換装置。
  7.  前記磁気エネルギー回生スイッチの入力電圧または入力電流の大きさと方向、さらに直流出力もしくは交流出力の電圧と電流、さらに磁気エネルギー蓄積コンデンサの電圧を入力し、逆導通型半導体スイッチに印加するゲートパルス信号のオン・オフの時間比、スイッチ周期を考慮して前記逆導通型半導体スイッチの保護とオン・オフ制御を行う制御装置を具備した、請求の範囲第1項、第2項及び第4項乃至第6項のいずれか1項に記載の電力変換装置。
  8.  電力逆変換が不要である場合、パルス脈動の前記平滑インダクタンスLdcに換えてダイオードを備え、出力コンデンサへの逆電流阻止を行い、同様に前記逆導通型半導体スイッチがオフするとき、ゼロ電圧で、前記逆導通型半導体スイッチがオンするとき、ゼロ電流である、ゼロ電圧ゼロ電流スイッチングを行う請求の範囲第1項乃至第7項のいずれか1項に記載の電力変換装置。
  9.  4個の逆導通型半導体スイッチにて構成されるブリッジ回路と、該ブリッジ回路の直流端子間に接続され、電流遮断時の電流の持つ磁気エネルギーを蓄積する磁気エネルギー蓄積コンデンサCと、前記各逆導通型半導体スイッチのゲートに制御信号を与えて、前記ブリッジ回路の対角線上に位置する一方ペアの前記逆導通型半導体スイッチをオン、他方のペアの前記逆導通型半導体スイッチをオフにする動作を同時に行うように制御するゲート制御装置と、を含む磁気エネルギー回生スイッチを備えた電力変換装置であって、
     前記ブリッジ回路の交流端子はインダクタンスLacを介して交流または直流の入力電源に接続でき、
     前記ブリッジ回路の直流端子は平滑インダクタンスLdcを介して直流の出力電源に接続され、
     前記ゲート制御装置は、入力電源の電流の方向により選択される一方のペアの前記逆導通型半導体スイッチに高速オン・オフ動作をさせるとともに、他方のペアの前記逆導通型半導体スイッチをオフにすることにより、前記ブリッジ回路の前記直流端子に昇圧パルス電圧を発生させ、
     前記平滑インダクタンスLdcは、前記昇圧パルス電圧を平滑して直流電圧に変換し、
     前記高速オン・オフ動作は、前記磁気エネルギー蓄積コンデンサCの静電容量と前記インダクタンスLacのインダクタンス(Lac)とで決まる前記ブリッジ回路の共振周波数より低い高速オン・オフ制御周波数に同期しており、前記高速オン・オフ制御周波数、及び/またはオン・オフ時間比を変化させることにより前記入力電源と直流の出力電源との間の電力の流れを制御することを特徴とする、電力変換装置。
  10.  入力電力が交流である場合、前記入力電源の電流の方向により選択され高速オン・オフ動作させる前記逆導通型半導体スイッチのペアを、前記交流電圧の周波数に同期させて電流の方向が変わる毎に交互に切り替えることを特徴とする、請求の範囲第9項に記載の電力変換装置。
  11.  入力電圧が直流である場合、前記入力電源の電流の方向により選択され高速オン・オフ動作させる前記逆導通型半導体スイッチのペアは一方のみであり、他方のペアは常時オフであることを特徴とする、請求の範囲第9項に記載の電力変換装置。
  12.  4個の第1の逆導通型半導体スイッチにて構成される第1のブリッジ回路と、該ブリッジ回路の直流端子DC(P)、DC(N)間に接続され、電流遮断時の電流の持つ磁気エネルギーを蓄積する第1の磁気エネルギー蓄積コンデンサCと、前記各第1の逆導通型半導体スイッチのゲートに制御信号を与えて、前記各第1の逆導通型半導体スイッチのオン・オフ制御を行う第1のゲート制御装置を含む第1の磁気エネルギー回生スイッチと、
     4個の第2の逆導通型半導体スイッチにて構成される第2のブリッジ回路と、該ブリッジ回路の直流端子DC(P)、DC(N)間に接続され、電流遮断時の電流の持つ磁気エネルギーを蓄積する第2の磁気エネルギー蓄積コンデンサCと、前記各第2の逆導通型半導体スイッチのゲートに制御信号を与えて、前記各第2の逆導通型半導体スイッチのオン・オフ制御を行う第2のゲート制御装置を含む第2の磁気エネルギー回生スイッチとを備えた電力変換装置であって、
     前記第1のブリッジ回路の交流端子AC、ACは第1のインダクタンスLacを介して交流電源に接続でき、前記第1のブリッジ回路の直流端子DC(P)、DC(N)は第1の平滑インダクタンスLdcを介して直流母線に接続され、第2のインダクタンスLacを介して前記第2のブリッジ回路の交流端子AC、AC、または第2の平滑インダクタンスLdcを介して前記第2のブリッジ回路の直流端子DC(P)、DC(N)のいずれか一方は、前記直流母線に接続され、他方は、二次電池(バッテリー)に接続でき、
     前記第1及び第2のゲート制御装置は、ともに入力電源の電流の方向により選択される一方のペアの前記逆導通型半導体スイッチに高速オン・オフ動作をさせるとともに、他方のペアの前記逆導通型半導体スイッチをオフにすることにより、対応する前記ブリッジ回路の前記直流端子に昇圧パルス電圧を発生させ、
     前記平滑インダクタンスLdcは、前記昇圧パルス電圧を平滑して直流電圧に変換し、
     前記第1の磁気エネルギー回生スイッチの前記高速オン・オフ動作は、前記第1の磁気エネルギー蓄積コンデンサCの静電容量(C)と前記第1のインダクタンスLacのインダクタンス(Lac)とで決まる前記第1のブリッジ回路の共振周波数より低い第1の高速オン・オフ制御周波数に同期させ、前記入力電源の電流の方向により選択され高速オン・オフ動作させる前記逆導通型半導体スイッチのペアを、前記交流電圧の周波数に同期させて交互に切り替え、前記第1の高速オン・オフ制御周波数、及び/またはオン・オフ時間比を変化させることにより前記交流電源と前記直流母線との間の電力の流れを制御するとともに、
     前記第2の磁気エネルギー回生スイッチの前記高速オン・オフ動作は、前記第2の磁気エネルギー蓄積コンデンサCの静電容量(C)と前記第2のインダクタンスLacのインダクタンス(Lac)とで決まる前記第2のブリッジ回路の共振周波数より低い第2の高速オン・オフ制御周波数に同期させ、前記入力電源の電流の方向により選択され高速オン・オフ動作させる前記逆導通型半導体スイッチのペアは一方のみであり、他方のペアは常時オフにし、前記第2の高速オン・オフ制御周波数、及び/またはオン・オフ時間比を変化させることにより前記直流母線と前記二次電池(バッテリー)との間の電力の流れを制御することを特徴とする、電力変換装置。
  13.  前記直流母線には、複数個の前記第2の磁気エネルギー回生スイッチが接続され、それぞれの前記第2の磁気エネルギー回生スイッチを介して、複数個の二次電池(バッテリー)が接続できることを特徴とする、請求の範囲第12項に記載の電力変換装置。
  14.  前記第2のインダクタンスLacを介して前記第2のブリッジ回路の交流端子AC、ACが前記直流母線に接続されている前記第2の磁気エネルギー回生スイッチ、及び前記第2の平滑インダクタンスLdcを介して前記第2のブリッジ回路の直流端子DC(P)、DC(N)が前記直流母線に接続されている前記第2の磁気エネルギー回生スイッチの両方を含むことを特徴とする、請求の範囲第13項に記載の電力変換装置。
  15.  前記高速オン・オフ制御周波数を高く、及び/またはオン・オフ制御のオン時間比を大きくすることにより、前記ブリッジ回路、前記第1のブリッジ回路、及び/または前記第2のブリッジ回路の交流端子AC、ACに接続している入力電源から、前記ブリッジ回路、前記第1のブリッジ回路、及び/または前記第2のブリッジ回路の直流端子DC(P)、DC(N)に接続している出力電源への順変換を行うことを特徴とする、請求の範囲第9項及び第12項乃至第14項のいずれか1項に記載の電力変換装置。
  16.  多数の二次電池(バッテリー)を同時に充電することのできる充電ステーションにおいて、個々の二次電池(バッテリー)の充電量を管理、制御する中央制御装置を設置し、多数の充電中の二次電池(バッテリー)から逆変換を行って、その逆変換した電力を合わせて、急速充電を必要とする特定の二次電池(バッテリー)の充電することで、外部から受ける受電電力のピーク値を低減することを特徴とする、請求の範囲第1項乃至第15項のいずれか1項に記載の電力変換装置。
  17.  二次電池(バッテリー)を充電する充電装置が、その系統内に太陽光発電装置、風力など、変動の大きな発電装置がある場合、その電力・電圧変動をバッテリー充電装置が変動吸収要素として利用することを特徴とする、請求の範囲第1項乃至第16項のいずれか1項に記載の電力変換装置。
  18.  電力系統との接続点に逆潮流を阻止する目的で前記磁気エネルギー回生スイッチを設置することで、系統電圧が短時間、低下するなど系統側の異常状態になると、逆位相電流に対して、高インピーダンスになって自動的に遮断することで、域内の電力、電圧の安定を図ることを特徴とする、請求の範囲第1項乃至第17項のいずれか1項に記載の電力変換装置。
PCT/JP2008/067553 2008-09-26 2008-09-26 電力変換装置 WO2010035338A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2008/067553 WO2010035338A1 (ja) 2008-09-26 2008-09-26 電力変換装置
CN2008801312075A CN102160014A (zh) 2008-09-26 2008-09-26 电力变换装置
JP2009548509A JP4880762B2 (ja) 2008-09-26 2008-09-26 電力変換装置
US13/062,512 US8482945B2 (en) 2008-09-26 2008-09-26 Power converter with magnetic recovery switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/067553 WO2010035338A1 (ja) 2008-09-26 2008-09-26 電力変換装置

Publications (1)

Publication Number Publication Date
WO2010035338A1 true WO2010035338A1 (ja) 2010-04-01

Family

ID=42059356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/067553 WO2010035338A1 (ja) 2008-09-26 2008-09-26 電力変換装置

Country Status (4)

Country Link
US (1) US8482945B2 (ja)
JP (1) JP4880762B2 (ja)
CN (1) CN102160014A (ja)
WO (1) WO2010035338A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290851A (zh) * 2011-08-15 2011-12-21 许继电源有限公司 一种大规模储能装置及其主电路
WO2011127449A3 (en) * 2010-04-08 2012-07-12 Qualcomm Incorporated Wireless power transmission in electric vehicles
DE102011079430A1 (de) * 2011-07-19 2013-01-24 Siemens Aktiengesellschaft DC-Ladestation zum Aufladen mehrerer Energiespeichereinrichtungen
WO2013035671A1 (ja) * 2011-09-05 2013-03-14 株式会社MERSTech 電力変換装置、制御方法、及び、プログラム
JP2013074745A (ja) * 2011-09-28 2013-04-22 Toyota Industries Corp 充電装置
JP2016116292A (ja) * 2014-12-12 2016-06-23 新日鐵住金株式会社 大電流電源装置および通電加熱システム
WO2018159022A1 (ja) * 2017-03-02 2018-09-07 パナソニックIpマネジメント株式会社 充電装置、及び車載電源装置
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
CN111880005A (zh) * 2020-07-23 2020-11-03 广东电网有限责任公司清远供电局 一种回路电阻测试仪及其控制方法
EP2660095B1 (fr) * 2012-05-04 2022-11-23 Schneider Electric Industries SAS Etage de conversion, convertisseur électrique comportant un tel étage de conversion, dispositif de conversion d'un courant alternatif en un courant continu comportant un tel convertisseur, et borne de rechargement d'une batterie électrique comportant un tel convertisseur ou dispositif de conversion

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2517341B1 (en) * 2009-12-23 2019-06-26 Marvell World Trade Ltd. Start-up supply for a switch mode power supply
CN102457193B (zh) * 2010-10-27 2015-08-19 台达电子工业股份有限公司 具有单级转换器的电源供应器
JP5844631B2 (ja) * 2010-12-15 2016-01-20 東海旅客鉄道株式会社 受電装置、及び受電方法
US8766566B2 (en) * 2010-12-20 2014-07-01 Nippon Soken, Inc. System for causing temperature rise in battery
WO2012158496A2 (en) 2011-05-16 2012-11-22 Marvell World Trade Ltd. High-voltage startup circuit
FR2985105B1 (fr) * 2011-12-21 2015-03-06 Valeo Sys Controle Moteur Sas Procede de charge par un reseau electrique delivrant une grandeur electrique continue ou alternative d'une unite de stockage d'energie electrique pour vehicule hybride ou electrique
FR2986120B1 (fr) * 2012-01-23 2015-08-21 Commissariat Energie Atomique Gestion combinee de deux sources de tension
JP5831275B2 (ja) * 2012-02-10 2015-12-09 日産自動車株式会社 電力変換装置及びその駆動方法
EP2688140A3 (en) * 2012-07-18 2014-04-30 Aisin Seiki Kabushiki Kaisha Antenna drive apparatus
KR101409152B1 (ko) * 2012-07-18 2014-06-17 엘에스산전 주식회사 충전 장치 및 이의 동작 방법
US9793740B2 (en) * 2012-11-26 2017-10-17 Samsung Electronics Co., Ltd. Apparatus and method for charge control in wireless charging system
US9413271B2 (en) 2013-03-14 2016-08-09 Combined Energies, Llc Power conversion system with a DC to DC boost converter
US20140278709A1 (en) 2013-03-14 2014-09-18 Combined Energies LLC Intelligent CCHP System
CN105453371A (zh) * 2013-07-31 2016-03-30 日本电气株式会社 电力管理系统和电力管理方法
JP5840669B2 (ja) * 2013-12-17 2016-01-06 株式会社デンソー 電力変換装置
US20150295421A1 (en) * 2014-04-10 2015-10-15 Ford Global Technologies, Llc Active isolated circuit for precharging and discharging a high voltage bus
FR3035282B1 (fr) * 2015-04-15 2018-05-11 Valeo Siemens Eautomotive France Sas Chargeur de batterie, installation electrique et vehicule automobile
DE102015111553A1 (de) * 2015-07-16 2017-01-19 Ipt Technology Gmbh Vorrichtung und Verfahren zur induktiven Übertragung elektrischer Energie
CN106696722A (zh) * 2015-07-27 2017-05-24 湖南南车时代电动汽车股份有限公司 一种纯电驱动车及其配电系统
NL2015357B1 (en) * 2015-08-27 2017-03-20 Univ Delft Tech DC switch yard and method to operate such a DC switch yard.
KR101755897B1 (ko) 2015-11-25 2017-07-07 현대자동차주식회사 친환경 차량의 저전압 직류 변환 장치
JP7044462B2 (ja) * 2016-06-28 2022-03-30 日立ジョンソンコントロールズ空調株式会社 電力変換装置、及びこれを備える空気調和機
KR101959922B1 (ko) * 2016-09-07 2019-03-19 현대자동차주식회사 완속충전기(On board charger, OBC) 제어 방법 및 장치
US20210006178A1 (en) * 2016-09-29 2021-01-07 Transportation Ip Holdings, Llc Harmonic distortion reduction system for converters connected to a common bus
TWI620467B (zh) * 2017-05-26 2018-04-01 Newvastek Co Ltd Energy recovery device
CN109119018A (zh) * 2017-06-23 2019-01-01 兴澄股份有限公司 能量回收装置
DE102017115632B4 (de) * 2017-07-12 2019-10-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Leistungselektronisches System für eine Stromtankstelle und entsprechende Stromtankstelle
DE102017117888A1 (de) * 2017-08-07 2019-02-07 Infineon Technologies Austria Ag Elektronische Schaltung mit einer Halbbrückenschaltung und einem Spannungsklemmelement
KR101879675B1 (ko) * 2017-11-22 2018-07-18 주식회사 피에스엔 다중모듈 방식 전기 자동차 충전기 제어 시스템, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
EP3729599B1 (en) * 2017-12-22 2022-05-11 Heliox B.V. A charging system and a method of charging an electrical energy storage device
WO2019147143A1 (en) * 2018-01-25 2019-08-01 Auckland Uniservices Limited A converter
US11863062B2 (en) * 2018-04-27 2024-01-02 Raytheon Company Capacitor discharge circuit
EP3853988A4 (en) * 2018-09-20 2022-04-27 ABB Schweiz AG POWER CONVERTER
JP7370223B2 (ja) * 2019-01-24 2023-10-27 株式会社Soken 電力変換装置
DE102019112684A1 (de) * 2019-05-15 2020-11-19 innogy eMobility Solutions GmbH Lademanagementvorrichtung für eine Ladeanordnung
CN110137913B (zh) * 2019-05-16 2022-03-22 宁波奥克斯电气股份有限公司 一种变频设备pfc控制方法、控制装置及变频设备
US11489356B2 (en) 2019-07-02 2022-11-01 Abb Schweiz Ag MVDC link-powered battery chargers and operation thereof
JP7160007B2 (ja) * 2019-09-20 2022-10-25 トヨタ自動車株式会社 電源装置
US11418125B2 (en) 2019-10-25 2022-08-16 The Research Foundation For The State University Of New York Three phase bidirectional AC-DC converter with bipolar voltage fed resonant stages

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11355909A (ja) * 1998-06-05 1999-12-24 Toshiba Corp 電力変換装置
WO2007122701A1 (ja) * 2006-04-19 2007-11-01 Mitsubishi Denki Kabushiki Kaisha コンバータ装置
JP2008193817A (ja) * 2007-02-06 2008-08-21 Tokyo Institute Of Technology 磁気エネルギー回生スイッチを用いた交流/直流電力変換装置
JP2008204810A (ja) * 2007-02-20 2008-09-04 Toshiba Corp 非水電解質二次電池の充電方法および充電装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634982B2 (ja) 1999-06-11 2005-03-30 財団法人理工学振興会 スナバーエネルギーを回生する電流順逆両方向スイッチ
US7256516B2 (en) 2000-06-14 2007-08-14 Aerovironment Inc. Battery charging system and method
WO2005067117A1 (ja) 2004-01-09 2005-07-21 The Circle For The Promotion Of Science And Engineering 電力制御装置
CN1954482A (zh) * 2004-05-12 2007-04-25 财团法人理工学振兴会 使磁能量再生的交流电源装置
JP2007049828A (ja) 2005-08-10 2007-02-22 Daiken Kagaku Kogyo Kk 電池急速充電方法、電池急速充電装置及び電池急速充電システム
JP2007097341A (ja) 2005-09-29 2007-04-12 Toyota Motor Corp 充電制御装置および電動車両
JP4406733B2 (ja) * 2006-10-05 2010-02-03 国立大学法人東京工業大学 インバータ電源装置
JP4144646B1 (ja) 2007-02-20 2008-09-03 トヨタ自動車株式会社 電動車両、車両充電装置および車両充電システム
DE112008003666B4 (de) * 2008-02-20 2012-06-14 Merstech Inc. Magnetenergie-Wiederherstellschalter mit Schutzschaltung
US20110115417A1 (en) * 2008-06-27 2011-05-19 Merstech Inc. Pm motor drive power supply apparatus
WO2010001442A1 (ja) * 2008-07-03 2010-01-07 株式会社MERSTech 照明制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11355909A (ja) * 1998-06-05 1999-12-24 Toshiba Corp 電力変換装置
WO2007122701A1 (ja) * 2006-04-19 2007-11-01 Mitsubishi Denki Kabushiki Kaisha コンバータ装置
JP2008193817A (ja) * 2007-02-06 2008-08-21 Tokyo Institute Of Technology 磁気エネルギー回生スイッチを用いた交流/直流電力変換装置
JP2008204810A (ja) * 2007-02-20 2008-09-04 Toshiba Corp 非水電解質二次電池の充電方法および充電装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011127449A3 (en) * 2010-04-08 2012-07-12 Qualcomm Incorporated Wireless power transmission in electric vehicles
US11491882B2 (en) 2010-04-08 2022-11-08 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US11938830B2 (en) 2010-04-08 2024-03-26 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US10493853B2 (en) 2010-04-08 2019-12-03 Witricity Corporation Wireless power transmission in electric vehicles
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US9561730B2 (en) 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
DE102011079430A1 (de) * 2011-07-19 2013-01-24 Siemens Aktiengesellschaft DC-Ladestation zum Aufladen mehrerer Energiespeichereinrichtungen
CN102290851A (zh) * 2011-08-15 2011-12-21 许继电源有限公司 一种大规模储能装置及其主电路
WO2013035671A1 (ja) * 2011-09-05 2013-03-14 株式会社MERSTech 電力変換装置、制御方法、及び、プログラム
JPWO2013035671A1 (ja) * 2011-09-05 2015-03-23 株式会社MERSTech 電力変換装置、制御方法、及び、プログラム
JP2013074745A (ja) * 2011-09-28 2013-04-22 Toyota Industries Corp 充電装置
EP2660095B1 (fr) * 2012-05-04 2022-11-23 Schneider Electric Industries SAS Etage de conversion, convertisseur électrique comportant un tel étage de conversion, dispositif de conversion d'un courant alternatif en un courant continu comportant un tel convertisseur, et borne de rechargement d'une batterie électrique comportant un tel convertisseur ou dispositif de conversion
JP2016116292A (ja) * 2014-12-12 2016-06-23 新日鐵住金株式会社 大電流電源装置および通電加熱システム
WO2018159022A1 (ja) * 2017-03-02 2018-09-07 パナソニックIpマネジメント株式会社 充電装置、及び車載電源装置
US11043831B2 (en) 2017-03-02 2021-06-22 Panasonic Intellectual Property Management Co., Ltd. Charging device and on board power supply device
CN111880005B (zh) * 2020-07-23 2022-07-08 广东电网有限责任公司清远供电局 一种回路电阻测试仪及其控制方法
CN111880005A (zh) * 2020-07-23 2020-11-03 广东电网有限责任公司清远供电局 一种回路电阻测试仪及其控制方法

Also Published As

Publication number Publication date
CN102160014A (zh) 2011-08-17
US20110176343A1 (en) 2011-07-21
US8482945B2 (en) 2013-07-09
JPWO2010035338A1 (ja) 2012-02-16
JP4880762B2 (ja) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4880762B2 (ja) 電力変換装置
CN102355042B (zh) 一种基于超级电容的电站直流电源装置及其供电方法
Pires et al. Power converter interfaces for electrochemical energy storage systems–A review
JP5208374B2 (ja) 系統連系パワーコンディショナおよび系統連系電源システム
JP4399405B2 (ja) 進相電流による交流電圧制御装置
JP2024042027A (ja) 電気自動車用バッテリ充電器
JP6215200B2 (ja) マルチステージ高速充電システム
US10840814B2 (en) Power conversion system
CN104218805B (zh) 一种单双极性转换直流变换器
WO2012144357A1 (ja) 電力供給装置、電力供給装置の制御方法、および直流給電システム
CN104078992A (zh) 一种储能电压平衡电力电子电能变换系统及其控制方法
EP3776797A1 (en) Charging station for electric vehicles
WO2012144358A1 (ja) 電力供給装置、電力供給装置の制御方法、および直流給電システム
KR101865246B1 (ko) 전기자동차용 충방전 장치
CN202663185U (zh) 一种单逆变器串并联ups电源
CN210490732U (zh) 储能变流器
KR20110129043A (ko) 전력품질개선 기능을 갖는 전기에너지 절전장치
KR101027988B1 (ko) 직렬 보상 정류기 및 이를 포함하는 직렬 보상 무정전 전원장치
CN206060575U (zh) 双级三相储能变流器
CN111224419A (zh) 储能逆变器
WO2016000221A1 (en) A system for charging battery of at least one electrical vehicle
US20120200162A1 (en) Bi-Directional Grid-Tied Inverter with Series Capacitor for Regulating Voltage of DC Bus
US6961250B2 (en) Non-isolated AC power supply device and method for controlling the same
JP2003067065A (ja) バッテリ内蔵型電力変換装置
CN109687433B (zh) 一种柔性变电站结构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131207.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009548509

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08811272

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13062512

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2865/DELNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 08811272

Country of ref document: EP

Kind code of ref document: A1