WO2010035338A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2010035338A1 WO2010035338A1 PCT/JP2008/067553 JP2008067553W WO2010035338A1 WO 2010035338 A1 WO2010035338 A1 WO 2010035338A1 JP 2008067553 W JP2008067553 W JP 2008067553W WO 2010035338 A1 WO2010035338 A1 WO 2010035338A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- magnetic energy
- current
- voltage
- bridge circuit
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/11—DC charging controlled by the charging station, e.g. mode 4
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/22—Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/51—Photovoltaic means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/52—Wind-driven generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/67—Controlling two or more charging stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/25—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/219—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/20—AC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/70—Interactions with external data bases, e.g. traffic centres
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/92—Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
Definitions
- the present invention relates to a power conversion device capable of reverse conversion from AC power or DC power to DC power, and particularly to a power conversion device that can be used for a charge / discharge device for charging / discharging a secondary battery (battery) in an electric vehicle or the like. Is.
- Patent Documents 1, 2, 3, and 4 a system that efficiently charges a plurality of vehicles in consideration of cost-effectiveness (see Patent Document 2 above), and quick charging can be performed efficiently regardless of environmental changes.
- Various systems such as a system that performs charging (see Patent Document 3 above) and a system that performs charging from a three-phase AC power source (see Patent Document 4 above) have also been proposed. However, these systems all perform hard switching for power conversion and have a large switching loss. In addition, there is a problem in controlling the charging power regardless of the voltage value or frequency of the system voltage in terms of system stability.
- JP 2008-206300 A Special Table 2007-535282 JP 2007-049828 A JP 2007-097341 A Japanese Patent No. 3634982 International Publication No. 2008/096664 International Publication No. 2005/067117
- High-capacity charging devices are demanding high efficiency charging devices that are friendly to the system. For example, it is preferable that the number of electric vehicles becomes widespread and the number thereof increases, so that the utilization rate of nighttime power equipment increases in that the use of nighttime power proceeds.
- An object of the present invention is to perform AC / DC power conversion using a magnetic energy regenerative switch (MERS) that can soften switching operation of all switch elements, reduce high-frequency noise, reversible power direction, and boost voltage.
- An object of the present invention is to provide a power conversion device that can also be used as a charge / discharge device for a secondary battery (battery) in an electric vehicle or the like.
- Another object of the present invention is to use a magnetic energy regenerative switch (MERS) as a DC / DC power converter that is installed between a DC bus and a secondary battery (battery). While taking into consideration, charge control of each secondary battery (battery) is performed, and the voltage of the receiving point is controlled by generating a phase advance current, and if necessary, reverse from the secondary battery (battery) The purpose is to provide a system-friendly power conversion device that also has a function of reversely transmitting AC power.
- MERS magnetic energy regenerative switch
- a power conversion device stores a bridge circuit composed of four reverse conducting semiconductor switches and magnetic energy of a current at the time of current interruption.
- a magnetic energy regenerative switch configured by connecting a magnetic energy storage capacitor C to be connected between the DC terminals DC (P) and DC (N) of the bridge circuit is connected from the AC power source to the AC terminals AC and AC via the inductance Lac.
- a circuit configuration in which a DC power supply or a load is connected between the DC terminals DC (P) and DC (N) via a smoothing inductance Ldc.
- a gate control device for applying a control signal to the gate of the reverse conducting semiconductor switch to control on / off of the reverse conducting semiconductor switch, one pair of reverse conducting semiconductor switches located on the diagonal line of the bridge circuit On and off, the other pair of reverse conducting semiconductor switches are controlled to be turned off simultaneously, and one pair of reverse conducting semiconductor switches selected according to the direction of the current of the AC power supply is turned on and off at high speed.
- a secondary battery (battery) or means for flowing to a DC load, and the power conversion device is connected in series or in parallel with the secondary battery (battery) charging device.
- switch the series or parallel connection with an open / close switch to control the charging status such as the temperature and charge amount of the secondary battery for a long time, while delaying the power factor of the input current in the short term. Control from start to advance and adjust the current power factor in combination with the delay power factor of other power systems to reduce current and reduce joule loss, and correct voltage fluctuations, overvoltages and undervoltages at the receiving point It is characterized by that.
- a magnetic energy regenerative switch is connected in parallel to each of the two diodes and a bridge circuit composed of two reverse conducting semiconductor switches and two diodes facing the reverse conducting semiconductor switches. It may also be configured to have two magnetic energy storage capacitors connected in series.
- the magnetic energy regenerative switch is connected in parallel with two reverse conducting semiconductor switches connected in anti-series and two magnetic energy storage capacitors connected in series, and two reverse conducting type A configuration having a midpoint of the semiconductor switch and a wiring connected to the midpoints of the two magnetic energy storage capacitors may be employed.
- the on / off cycle of the magnetic energy regenerative switch is set longer than the discharge time determined by the electrostatic capacity (C) of the magnetic energy storage capacitor C and the inductance (Lac) of the inductance Lac to store the magnetic energy.
- C electrostatic capacity
- Lac inductance
- the bridge arm in the case of a single-phase AC is changed to three, and the configuration of a three-phase full-wave bridge with six reverse conducting semiconductor switches is used.
- a magnetic energy regenerative switch a magnetic energy storage capacitor is connected between the terminals P and N of the DC bus, and the two reverse conducting semiconductor switches of each arm are selected as reverse conducting semiconductor switches in the current direction of three-phase AC.
- the boost pulse voltage is generated between the terminals P and N of the DC bus line to convert the three-phase AC power. Good.
- the input power is a DC voltage
- only the pair of reverse conducting semiconductor switches located on one diagonal of the magnetic energy regenerative switch is turned on and off at high speed, but the other pair of reverse conducting semiconductor switches is always off.
- the power may be reversely converted from the secondary battery (battery) to the alternating current by reversing the current direction by using only the diode operation for reverse conduction.
- a control device that protects the reverse conducting semiconductor switch and controls on / off in consideration of the off time ratio and the switch cycle may be provided.
- a diode is used instead of the smoothing inductance Ldc of the pulse pulsation to prevent reverse current to the output capacitor, and when the magnetic energy regeneration switch is similarly turned off, at zero voltage, When the magnetic energy regenerative switch is turned on, zero voltage zero current switching, which is zero current, may be performed.
- a power conversion device includes a bridge circuit including four reverse conducting semiconductor switches and a DC terminal DC (P) or DC (N) of the bridge circuit. Is connected to the magnetic energy storage capacitor C for storing the magnetic energy of the current at the time of current interruption, and the control signal is given to the gate of each reverse conducting semiconductor switch to reverse one pair located on the diagonal of the bridge circuit
- the AC terminal AC of the bridge circuit can be connected to an AC or DC input power source via an AC inductance Lac
- the DC terminals DC (P) and DC (N) of the bridge circuit are connected to a DC output power source via a smoothing inductance Ldc.
- the gate control device performs a high-speed on / off operation on one pair of reverse conducting semiconductor switches selected according to the direction of the current of the input power supply, and turns off the other pair of reverse conducting semiconductor switches, Generate a boost pulse voltage at the DC terminal of the bridge circuit,
- the smoothing inductance Ldc smoothes the boost pulse voltage and converts it to a DC voltage
- the high-speed on / off operation is synchronized with a high-speed on / off control frequency lower than the resonance frequency of the bridge circuit determined by the capacitance (C) of the magnetic energy storage capacitor C and the inductance (Lac) of the inductance Lac.
- the power flow between the input power source and the DC bus is controlled by changing the on / off control frequency and / or the on / off time ratio.
- a pair of reverse conducting semiconductor switches that are selected according to the direction of the current of the input power supply and perform high-speed on / off operation alternately every time the current direction changes in synchronization with the frequency of the AC voltage. It may be configured to switch.
- the input voltage is a direct current voltage
- a power conversion device as still another exemplary aspect of the present invention includes a first bridge circuit including four first reverse conducting semiconductor switches, and a DC terminal DC (P of the bridge circuit). ), And a control signal is applied to the first magnetic energy storage capacitor C, which is connected between DC (N) and stores the magnetic energy of the current at the time of current interruption, and to the gate of each first reverse conducting semiconductor switch.
- a first magnetic energy regenerative switch including a first gate control device that performs on / off control of each first reverse conducting semiconductor switch; Connected between the second bridge circuit composed of four second reverse conducting semiconductor switches and the DC terminals DC (P) and DC (N) of the bridge circuit, and has a current at the time of current interruption A control signal is given to the second magnetic energy storage capacitor C for storing magnetic energy and the gates of the second reverse conducting semiconductor switches to perform on / off control of the second reverse conducting semiconductor switches.
- a power conversion device including a second magnetic energy regenerative switch including two gate control devices The AC terminals AC and AC of the first bridge circuit can be connected to an AC power supply via the first inductance Lac, and the DC terminals DC (P) and DC (N) of the first bridge circuit are the first smoothing inductance Ldc. Is connected to the DC bus via the second inductance Lac, and the second bridge circuit is connected to the AC terminal AC, AC, or the second smoothing inductance Ldc is connected to the DC terminal DC (P ) Or DC (N) can be connected to a DC bus, and the other can be connected to a secondary battery (battery).
- Both the first and second gate control devices cause one pair of reverse conducting semiconductor switches selected according to the direction of the current of the input power supply to perform high-speed on / off operation, and the other pair of reverse conducting semiconductor switches.
- the boost pulse voltage is generated at the DC terminal of the corresponding bridge circuit
- the smoothing inductance Ldc smoothes the boost pulse voltage and converts it to a DC voltage
- the high-speed on / off operation of the first magnetic energy regenerative switch is performed by the first bridge circuit determined by the capacitance (C) of the first magnetic energy storage capacitor C and the inductance (Lac) of the first inductance Lac.
- a pair of reverse conducting semiconductor switches that are synchronized with the first high-speed on / off control frequency lower than the resonance frequency and are selected according to the direction of the current of the input power supply and operated at high speed on / off are alternately synchronized with the frequency of the AC voltage.
- controlling the flow of power between the AC power source and the DC bus by changing the first high-speed on / off control frequency and / or the on / off time ratio The high-speed on / off operation of the second magnetic energy regenerative switch is performed by the second bridge circuit determined by the capacitance (C) of the second magnetic energy storage capacitor C and the inductance (Lac) of the second inductance Lac.
- a plurality of second magnetic energy regeneration switches are connected to the DC bus, and a plurality of secondary batteries (batteries) can be connected via the respective second magnetic energy regeneration switches. May be.
- the power converter includes an AC terminal AC of the second bridge circuit via the second inductance Lac, a second magnetic energy regenerative switch in which AC is connected to the DC bus, and a second smoothing inductance Ldc.
- the DC terminal DC (P), DC (N) of the second bridge circuit may include both of the second magnetic energy regenerative switches connected to the DC bus.
- the power conversion device increases the high-speed on / off control frequency and / or increases the on-time ratio of the on / off control, so that the bridge circuit, the first bridge circuit, and / or the second bridge circuit are Output connected to DC terminals DC (P) and DC (N) of the bridge circuit, the first bridge circuit, and / or the second bridge circuit You may comprise so that the forward conversion to a power supply may be performed.
- a central control unit is installed to manage and control the charge amount of each secondary battery (battery), and a large number of secondary batteries are being charged.
- the secondary battery (battery) charger changes its power / voltage fluctuation. You may utilize as an absorption element.
- the power storage devices are distributed, the utilization thereof can stabilize the power system, stabilize the voltage, and avoid a power failure.
- the target of charging is a secondary battery (battery) of an electric vehicle
- a large number of electric vehicles are connected to the power system via a charging device, so it is natural to use them as emergency power sources such as earthquakes and typhoons.
- Japan where there are many disasters, it is socially important in terms of energy safety and security.
- the reverse conversion of the AC / DC power converter using MERS also plays a role of SVC (Static Var Compensator) that generates a leading current. Therefore, when quick charging is required, it is possible to take power while compensating the voltage for several tens of kW in a short time.
- SVC Static Var Compensator
- a transformer with a small capacity When trying to acquire tens of kW of power from the power system in a short time, a transformer with a small capacity has a high impedance, so there is a voltage drop, but the reactance voltage is increased by a power factor current to compensate for the voltage drop. Is possible.
- a transformer with a small capacity When charging a large number of electric vehicles at a charging station, it may be possible to effectively use the connected electric vehicle while charging is already completed. It is an image of lending power to a car that needs quick charging. As a result, the power receiving contract can be reduced.
- the amount of power is managed on demand for 30 minutes, but the charging device should cooperate with the management system.
- the power that is free on the management side can be controlled, for example, by putting it in the gap of demand for 30 minutes.
- SW1, SW2, SW3, SW4 Reverse conducting semiconductor switch Lac: Inductance (Lac): Inductance (value) of inductance Lac Ldc: smoothing inductance (Ldc): inductance (value) of smoothing inductance Ldc C: Magnetic energy storage capacitor (C): Capacitance of magnetic energy storage capacitor Lfilter: Filter inductance Cfilter: Filter capacitor AC, AC: AC terminals DC (P), DC (N of the magnetic energy regenerative switch (MERS) ): DC terminal of magnetic energy regenerative switch (MERS) (magnetic energy storage capacitor connection side) P, N: DC bus terminal Vin: Input voltage (commercial power supply 100V, 50Hz) UY: On-gate signal VX of reverse conduction type semiconductor switches SW1, SW3: On-gate signal of reverse conduction type semiconductor switches SW2, SW4 Ifilter: Current Imers flowing through the filter capacitor Lfilter: Current Vmers flowing through the magnetic energy storage capacitor C: Magnetic energy storage Capacitor C voltage (step-up pulse voltage between DC terminals DC (
- FIG. 1 is a circuit block diagram showing a schematic configuration of a charging device for an electric vehicle according to an embodiment of the present invention, in which a power conversion device using a magnetic energy regenerative switch (MERS) is a main component.
- MERS Magnetic Energy Recovery Switch
- Patent Document 5 Magnetic Energy Recovery Switch
- the magnetic energy regenerative switch is connected between a bridge circuit composed of four reverse conducting semiconductor switches and the DC terminals DC (P) and DC (N) of the bridge circuit.
- a control signal is given to the magnetic energy storage capacitor C that stores the magnetic energy of the current and the gate of each reverse conducting semiconductor switch, and one pair of reverse conducting semiconductor switches located on the diagonal of the bridge circuit is turned on, the other Including a gate control device that controls to simultaneously perform the operation of turning off the pair of reverse conducting semiconductor switches, and the magnetic energy storage capacitor discharges to the load side through the reverse conducting semiconductor switch to which the on-gate is applied.
- It is a switch that regenerates. It is a switch that is bidirectional in current and can regenerate the magnetic energy of the circuit without loss.
- an AC or DC input power source can be connected via an inductance Lac.
- the DC terminals DC (P) and DC (N) of the bridge circuit are connected to the terminals P and N of the DC bus via a smoothing inductance Ldc.
- the gate control device performs a high-speed on / off operation on one pair of reverse conducting semiconductor switches selected according to the direction of the current of the input power supply, and turns off the other pair of reverse conducting semiconductor switches,
- a boost pulse voltage that pulsates at a high-speed on / off operation frequency is generated at the DC terminal of the bridge circuit, and this boost pulse voltage is smoothed by a smoothing inductance Ldc having sufficient inductance as viewed from the pulse frequency and converted to a DC voltage. Is done.
- the input power is an AC voltage
- the pair that performs high-speed on / off operation and the pair that is held off are alternately switched. For example, at AC 50 Hz, when the current direction is positive, the SW2 and SW4 pairs are turned on and off at high speed, and the SW1 and SW3 pairs are kept off, but when negative, the SW1 and SW3 pairs are fast. The on / off operation is performed, and the pair of SW2 and SW4 is kept off.
- the reverse conducting semiconductor switches SW2 and SW4 are turned on, the reverse conducting semiconductor switches SW1 and SW3 are kept off and function as diodes, The AC and AC terminals of the bridge circuit are in a conductive state, current increases, and magnetic energy is stored in the inductance Lac.
- the reverse conducting semiconductor switches SW2 and SW4 are turned off, the magnetic energy stored in the inductance Lac flows as a current through the magnetic energy storage capacitor C and the load. At this time, a current flows so that the voltage applied to the load is equal to the voltage applied to the magnetic energy storage capacitor C.
- the magnetic energy is boosted to supplement the power supplied by the power source, and the voltage across the magnetic energy storage capacitor C is increased.
- the degree of boosting differs depending on the impedance of the load and the impedance of the magnetic energy storage capacitor C. Also, it depends on the high-speed on / off control frequency.
- the high-speed on / off operation is performed at a high-speed on / off control frequency lower than the resonance frequency determined by the capacitance (C) of the magnetic energy storage capacitor C and the inductance (Lac) of the inductance Lac. For this reason, since the magnetic energy storage capacitor C has a period in which the voltage becomes zero after each discharge, each reverse conducting semiconductor switch can be turned off at zero voltage. Can be turned on with zero current, and zero current zero voltage switching is achieved.
- the high-speed on / off control frequency and / or the on / off time ratio (duty ratio) is continuously changed to continuously increase the boost pulse voltage between the DC terminals DC (P) and DC (N).
- the voltage on the input voltage side viewed from the DC bus side can be continuously changed.
- the power between the input power supply and the DC bus is changed by continuously changing the high-speed on / off control frequency in which both voltages are balanced and / or the region between the on / off time ratio (duty ratio).
- the flow can be continuously performed within a range of, for example, large current forward conversion, small current forward conversion, zero (no power conversion), small current reverse conversion, and large current reverse conversion.
- FIG. 2 shows a simulation circuit.
- the AC power supply is a commercial power supply 100 V, 50 Hz in Japan, which is connected to the bridge circuit via a 10 ⁇ H filter capacitor Lfilter and a 50 ⁇ H AC inductance (Lac).
- the electrostatic capacity (C) of the magnetic energy storage capacitor C is 10 ⁇ F.
- This circuit has a resonance frequency of about 7 KHz, determined by an inductance Lac of 50 ⁇ H and a magnetic energy storage capacitor C of 10 ⁇ F.
- the resistance load Rload corresponding to the DC bus is 10 ⁇ . Further, the current Iout flowing through the resistance load Rload and the voltage (DC load voltage) Vout applied to the resistance load Rload can be measured by an ammeter and a voltmeter.
- FIG. 3 is a graph showing a simulation result using the simulation circuit of FIG.
- the uppermost graph shows the high-speed on / off control signal together with the commercial power supply 100 V, 50 Hz in Japan as the input voltage.
- the frequency of the high-speed on / off control signal is 1 KHz, and the on / off time ratio (duty ratio) is 0.7.
- the reverse conduction type semiconductor switches to be controlled are switched, and each reverse conduction type semiconductor switch is switched at 1 KHz.
- the second graph from the top is the boost pulse voltage between the DC terminals DC (P) and DC (N), and the peak value can be boosted to about 1500V.
- the third graph from the top shows the voltage (DC load voltage) Vout applied to the resistance load Rload (10 ⁇ ), and the bottom graph shows the current Iout flowing through this resistance load.
- the DC load voltage Vout is boosted to an average of 680V. This load voltage can be continuously reduced by reducing the frequency of high-speed on / off operation and / or the on / off time ratio (on duty ratio), and can be adjusted to a desired value. .
- a charging device for an electric vehicle composed of a power conversion device using a magnetic energy regenerative switch (MERS) is a secondary battery (battery) of 200V DC or 400V DC using a commercial power supply 100V in Japan as an input power source. Can also be charged.
- both forward conversion and reverse conversion are soft switching of zero current and zero voltage, and there is little power conversion loss, and basically no high frequency noise is generated by switching.
- FIG. 4 shows a basic configuration of a bidirectional power conversion device using a magnetic energy regenerative switch (MERS).
- the power source A is an input power source and may be either AC power or DC power.
- the power source B is DC power or a DC bus.
- the forward conversion from the power source A to the power source B AC or DC to DC
- the reverse conversion from the power source B to the power source A DC to AC or DC
- the forward conversion / inverse conversion when the power source A is AC power and the power source B is DC power (or DC bus) is as described in detail in the description of FIGS.
- the power source A is DC power and the power source B is DC power (DC bus)
- the direction of the alternating current is alternately repeated in synchronization with the frequency, whereas the direction of the direct current is constant.
- the pair of reverse conducting semiconductor switches selected in accordance with the direction of the current of the input power supply is turned on / off at high speed, and the other pair is always turned off.
- the input power supply (DC power) is connected to AC terminals AC and AC of a bridge circuit of a magnetic energy regenerative switch (MERS) via an inductance Lac.
- the input power source (DC power) is, for example, a secondary battery (battery) of an electric vehicle.
- the DC terminals DC (P) and DC (N) of the bridge circuit are connected to the terminals P and N of the DC bus via a smoothing inductance Ldc.
- a boost pulse voltage pulsating at a high-speed on / off operation frequency is generated at the DC terminals DC (P) and DC (N) of the bridge circuit. Is smoothed by a smoothing inductance Ldc having a sufficient inductance as seen from FIG.
- the high-speed on / off operation is performed at high speed on / off lower than the resonance frequency determined by the capacitance (C) of the magnetic energy storage capacitor C and the inductance (Lac) of the inductance Lac. Performed at the control frequency.
- the magnetic energy storage capacitor C has a period in which the voltage becomes zero after every discharge, each reverse conducting semiconductor switch can be turned off at zero voltage, and even if it is turned on, the current flows due to the presence of the inductance Lac. It does not rise rapidly and can be turned on with zero current and zero current zero voltage switching is achieved.
- DC (N) can be continuously changed, whereby the voltage on the input voltage side viewed from the DC bus side can be continuously changed.
- the voltage on the input voltage side viewed from the DC bus side is higher than the voltage on the DC bus, the current flows in the positive direction from the input voltage side to the DC bus side, and forward conversion from DC to DC is performed.
- the voltage on the input voltage side viewed from the DC bus side is lower than the voltage on the DC bus, the current flows from the DC bus side to the input voltage side, and the direction of the current is reversed.
- the direction of the DC power current is the forward direction from the power source A to the power source B, for example, only the pair of SW2 and SW4 is turned on / off at high speed, and the pair of SW1 and SW3 is always turned off, although only the diode is controlled to operate, when the current direction is reversed, that is, when the current flows from the DC bus side to the input voltage side and reverse conversion is performed, only the pair of SW1 and SW3 Are switched on and off so that the pair of SW2 and SW4 is always turned off and only the diode for reverse conduction operates.
- This switching can be switched by measuring the current direction of the power source A connected to the AC terminals AC of the bridge circuit, or the voltage difference between the voltage on the input voltage side and the voltage on the DC bus viewed from the DC bus side. That's fine. Accordingly, the input voltage side voltage viewed from the DC bus side and the DC bus voltage continuously change in a region sandwiching the high-speed on / off control frequency and / or the on / off time ratio (duty ratio). Therefore, the flow of power between the input power supply and the DC bus is continuously within the range of, for example, large current forward conversion, small current forward conversion, zero (no power conversion), small current reverse conversion, and large current reverse conversion. Can be done automatically.
- the input power supply is DC power with a voltage of 100 V
- the simulation circuit shown in FIG. 2 when the simulation circuit shown in FIG. 2 is used, the DC load voltage is boosted to approximately 680 V, although not shown.
- the load voltage can be continuously reduced by reducing the frequency of the high-speed on / off operation and / or the on / off time ratio (on duty ratio), and can be adjusted to a desired value. be able to.
- a charging device for an electric vehicle composed of a power conversion device using a magnetic energy regenerative switch is a 100V DC power source, for example, a fully charged secondary battery (battery) of 100V, or a stationary device of 100V.
- a secondary battery (battery) of 200V or 400V can be charged using a secondary battery (battery) as an input power source.
- both forward conversion and reverse conversion are always operated so as to have a high-speed on / off control frequency lower than the resonance frequency determined by the capacitance (C) of the magnetic energy storage capacitor C and the inductance (Lac) of the inductance Lac.
- C capacitance
- Lac inductance
- the magnetic energy regenerative switch is connected between the bridge circuit formed by the four reverse conducting semiconductor switches SW1 to SW4 and the DC terminals DC (P) and DC (N) of the bridge circuit.
- the magnetic energy regenerative switch may be configured as follows.
- FIG. 7 and 8 are diagrams showing another aspect of the magnetic energy regenerative switch (MERS).
- the magnetic energy regenerative switch (MERS) shown in FIG. 7 is different from the above-described full bridge type magnetic energy regenerative switch (MERS) including the four reverse conducting semiconductor switches SW1 to SW4 and one magnetic energy storage capacitor C.
- This is a vertical half-bridge magnetic energy regenerative switch (MERS) composed of two reverse conducting semiconductor switches, two diodes, and two magnetic energy storage capacitors C.
- the vertical half-bridge magnetic energy regenerative switch (MERS) is provided in parallel with two reverse conducting semiconductor switches connected in series and the two reverse conducting semiconductor switches. , Two magnetic energy storage capacitors C connected in series, and two diodes connected in parallel with each of the two magnetic energy storage capacitors C.
- the magnetic energy regenerative switch (MERS) shown in FIG. 8 is a horizontal half-bridge magnetic energy regenerative switch (MERS).
- the horizontal half-bridge magnetic energy regenerative switch (MERS) is composed of two reverse conducting semiconductor switches and two magnetic energy storage capacitors C.
- this horizontal half-bridge magnetic energy regenerative switch includes two reverse-conducting semiconductor switches connected in anti-series and two magnetic energy storage capacitors C connected in series. Are connected in parallel to each other, and include a wiring connected to the midpoints of the two reverse conducting semiconductor switches and the midpoints of the two magnetic energy storage capacitors.
- FIG. 5 shows a charging device for an electric vehicle that uses the power conversion device described above, and is a charging station that can simultaneously charge a number of secondary batteries (batteries) for an electric vehicle.
- MERS1 is connected between, for example, a 100V commercial power system in Japan as an AC power source and a DC bus of an electric vehicle charging device, and is used as an AC / DC power converter, and forward conversion from the power system to the DC bus And reverse conversion from the DC bus to the power system.
- the direct current terminals DC (P) and DC (N) are connected to the direct current bus terminals P and N of the charging device for the electric vehicle, and the alternating current terminals AC and AC are respectively connected to the electric vehicle.
- MERS2, 3, and 4 show an example in the case of three, but may be one, two, or four or more.
- the secondary batteries (batteries) connected to the MERS 2, 3, and 4 may be the same voltage or different voltages.
- the voltage of the DC bus may be 110V
- a 48V secondary battery (battery) may be connected to MERS2
- a 72V secondary battery (battery) may be connected to MERS3
- a 24V secondary battery (battery) may be connected to MERS4. .
- the bus voltage of the DC bus may be a high voltage, for example, 400V, but the voltage of the DC bus may be, for example, 110V.
- the DC bus voltage is 110V, instead of a 48V secondary battery (battery), a secondary battery (battery) of 200V or 400V higher than the DC bus voltage is connected to MERS2.
- MERS2 The connection of MERS2 is reversed, AC terminals AC and AC of MERS2 are connected to a DC bus, and DC terminals DC (P) and DC (N) are connected to a secondary battery (battery) of 200V or 400V. .
- the other MERS3 and MERS4 are connected to the DC terminals DC (P) and DC (N) connected to the terminals P and N of the DC bus, and the AC terminals AC and AC are connected to the secondary battery ( Battery).
- the DC bus can be connected with the AC terminals AC and AC of the magnetic energy regenerative switch (MERS), or can be connected with the DC terminals DC (P) and DC (N).
- a stationary secondary battery (battery) corresponding to the DC bus voltage may be connected to the DC bus for the buffer.
- the gate of the reverse conduction type semiconductor switch of each magnetic energy regenerative switch (MERS) is controlled by a gate control device (not shown) corresponding to each magnetic energy regenerative switch (MERS), and each gate control device is controlled by a central control device ( (Not shown).
- the central control device can manage and control the voltage, current, and charge / discharge amount of each secondary battery (battery).
- a secondary battery (battery) for a specific electric vehicle needs to be quickly charged, the charging is already completed or almost completed while checking the voltage and current of the system power receiving point. Invert the power from many other secondary batteries (batteries) and stationary secondary batteries (batteries), and charge the secondary batteries (batteries) that need to be quickly charged together with the reverse-converted power can do. Thereby, the peak value of the received power received from the external commercial power source can be reduced.
- the case temperature of each secondary battery (battery) is measured, and charging can be suppressed when the temperature of a specific secondary battery (battery) is equal to or higher than a predetermined temperature.
- FIG. 6 further shows a power flow control MERS provided between the MERS 1 that converts AC power into DC power and the power system. What is necessary is just to use what was disclosed by patent document 7 as MERS for electric power flow control.
- This charging / discharging device contributes to overall power stabilization. That is, for example, when mitigating steep power fluctuations from the photovoltaic power generators in the system, the secondary battery (battery) being charged is expected to play a role of complementary operation so as to mitigate power fluctuations. Is done. Since the operation of the charging device has a high degree of freedom, such a function is also possible.
- a charging station that can charge a large number of vehicles simultaneously with a large number of charging devices is expected to have a quick charging function that is about 10 times faster than the conventional one.
- a stationary secondary battery battery
- the power received from the power system is smoothed to the average value, but even if there is no deferred secondary battery (battery), it is waiting at the charging station Alternatively, if there are a plurality of secondary batteries (batteries) that are being charged, it is possible to take out electric power from these secondary batteries (batteries) and perform rapid charging.
- this charging / discharging device includes a control device capable of exchanging information with the outside using a LAN, and can make a power receiving contract by selecting cheap power with particularly poor power quality.
- wind power generation causes power fluctuation at night and is an unfavorable power source for the system
- the electric power company holds the night charging power of the electric vehicle via the LAN for the purpose of controlling the frequency. This is beneficial to both the power company and the owner of the charge / discharge device.
- the voltage of the power receiving point can be controlled by making the alternating current “advance” by the magnetic energy regenerative switch (MERS). It has been difficult to realize this voltage control in combination with the conventional charging / discharging device using a magnetic energy regenerative switch (MERS). Even if a power failure occurs during charging, the DC / AC power converter using a magnetic energy regenerative switch (MERS) capable of reverse conversion is driven by the power from the secondary battery (battery), and the area is uninterrupted Since it becomes the structure similar to having installed the power supply, alternating current power can also be supplied.
- MERS magnetic energy regenerative switch
- the magnetic energy regenerative switch (MERS) described in Patent Document 5 is arranged as an AC bidirectional switch at the power receiving point, and the current flows from the power system to the direction of the in-region power system (forward direction). To control the gate.
- the switch is in a high impedance state with respect to the reverse current, and it is not necessary to detect the voltage and turn off the gate of the reverse conducting semiconductor switch in the magnetic energy regenerative switch (MERS).
- MERS magnetic energy regenerative switch
- the control completely changes the power situation of the home. For example, it is considered that everyone needs to increase the power receiving contract capacity along with the installation of the charging device for electric vehicles, but the basic charge of the power receiving contract is higher than the pay-as-you-go charge. About once a week, an electric vehicle of about 20 km travels about 80 km per month, and a small electric vehicle needs about 14 kWh. This electricity bill is about 336 yen at most, even if it is 24 yen / kWh.
- the charging device has a capacity of 1 kW so that it can be fully charged in 14 hours.
- An increase of 1 kW in contract power will increase by 1071 yen for low-voltage power.
- 1 kW up is about 300 yen, so this cannot be ignored. Therefore, in the charging / discharging device of the present invention, power is received until just before the breaker trips by taking into account the current history at the power receiving point, but it is reasonable to use the power and current power factor of the charging device as its adjustment factors.
- Charge / discharge device When a large number of electric vehicles are charged in parallel at an office, it is necessary to perform demand management according to the power reception contract. It can be set as the system which can utilize an electrical energy effectively and dynamically.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Inverter Devices (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Rectifiers (AREA)
- Secondary Cells (AREA)
Abstract
Description
逆導通型半導体スイッチのゲートに制御信号を与えて、逆導通型半導体スイッチのオン・オフ制御を行うゲート制御装置を具備し、ブリッジ回路の対角線上に位置する一方ペアの逆導通型半導体スイッチをオン、他方のペアの逆導通型半導体スイッチをオフにする動作を同時に行うように制御するとともに、交流電源の電流の方向により選択される1つのペアの逆導通型半導体スイッチを高速オン・オフ動作させ、直流端子DC(P)、DC(N)間に昇圧パルス電圧を発生させる手段と、昇圧パルス電圧を、平滑して直流電圧に変換するために平滑インダクタンスLdcを介して、直流電圧源、二次電池(バッテリー)、もしくは、直流負荷に流す手段と、を具備して、電力変換装置を二次電池(バッテリー)充電装置に直列または並列に、もしくは、直列、並列接続を開閉スイッチにて切り換えて、長時間的には、二次電池(バッテリー)の温度や充電量など充電状況を制御しながら、短期的には入力電流の力率を遅れから進みまで制御して、他の電力系の遅れ力率と併せて、電流力率を調整することによって電流を減らしてジュール損を低減し、受電点の電圧変動、過電圧、不足電圧を補正することを特徴とする。
ブリッジ回路の交流端子ACは交流インダクタンスLacを介して交流または直流の入力電源に接続でき、
ブリッジ回路の直流端子DC(P)、DC(N)は平滑インダクタンスLdcを介して直流の出力電源に接続され、
ゲート制御装置は、入力電源の電流の方向により選択される一方のペアの逆導通型半導体スイッチに高速オン・オフ動作をさせるとともに、他方のペアの逆導通型半導体スイッチをオフにすることにより、ブリッジ回路の直流端子に昇圧パルス電圧を発生させ、
平滑インダクタンスLdcは、昇圧パルス電圧を平滑して直流電圧に変換し、
高速オン・オフ動作は、磁気エネルギー蓄積コンデンサCの静電容量(C)とインダクタンスLacのインダクタンス(Lac)とで決まるブリッジ回路の共振周波数より低い高速オン・オフ制御周波数に同期しており、高速オン・オフ制御周波数、及び/またはオン・オフ時間比を変化させることにより入力電源と直流母線との間の電力の流れを制御することを特徴とする。
4個の第2の逆導通型半導体スイッチにて構成される第2のブリッジ回路と、該ブリッジ回路の直流端子DC(P)、DC(N)間に接続され、電流遮断時の電流の持つ磁気エネルギーを蓄積する第2の磁気エネルギー蓄積コンデンサCと、各第2の逆導通型半導体スイッチのゲートに制御信号を与えて、各第2の逆導通型半導体スイッチのオン・オフ制御を行う第2のゲート制御装置を含む第2の磁気エネルギー回生スイッチとを備えた電力変換装置であって、
第1のブリッジ回路の交流端子AC、ACは第1のインダクタンスLacを介して交流電源に接続でき、第1のブリッジ回路の直流端子DC(P)、DC(N)は第1の平滑インダクタンスLdcを介して直流母線に接続され、第2のインダクタンスLacを介して第2のブリッジ回路の交流端子AC、AC、または第2の平滑インダクタンスLdcを介して第2のブリッジ回路の直流端子DC(P)、DC(N)のいずれか一方は、直流母線に接続され、他方は、二次電池(バッテリー)に接続でき、
第1及び第2のゲート制御装置は、ともに入力電源の電流の方向により選択される一方のペアの逆導通型半導体スイッチに高速オン・オフ動作をさせるとともに、他方のペアの逆導通型半導体スイッチをオフにすることにより、対応するブリッジ回路の直流端子に昇圧パルス電圧を発生させ、
平滑インダクタンスLdcは、昇圧パルス電圧を平滑して直流電圧に変換し、
第1の磁気エネルギー回生スイッチの高速オン・オフ動作は、第1の磁気エネルギー蓄積コンデンサCの静電容量(C)と第1のインダクタンスLacのインダクタンス(Lac)とで決まる第1のブリッジ回路の共振周波数より低い第1の高速オン・オフ制御周波数に同期させ、入力電源の電流の方向により選択され高速オン・オフ動作させる逆導通型半導体スイッチのペアを、交流電圧の周波数に同期させて交互に切り替え、第1の高速オン・オフ制御周波数、及び/またはオン・オフ時間比を変化させることにより交流電源と直流母線との間の電力の流れを制御するとともに、
第2の磁気エネルギー回生スイッチの高速オン・オフ動作は、第2の磁気エネルギー蓄積コンデンサCの静電容量(C)と第2のインダクタンスLacのインダクタンス(Lac)とで決まる第2のブリッジ回路の共振周波数より低い第2の高速オン・オフ制御周波数に同期させ、入力電源の電流の方向により選択され高速オン・オフ動作させる逆導通型半導体スイッチのペアは一方のみであり、他方のペアは常時オフにし、第2の高速オン・オフ制御周波数、及び/またはオン・オフ時間比を変化させることにより直流母線と二次電池(バッテリー)との間の電力の流れを制御することを特徴とする。
Lac:インダクタンス
(Lac):インダクタンスLacのインダクタンス(値)
Ldc:平滑インダクタンス
(Ldc):平滑インダクタンスLdcのインダクタンス(値)
C:磁気エネルギー蓄積コンデンサ
(C):磁気エネルギー蓄積コンデンサの静電容量
Lfilter:フィルター用インダクタンス
Cfilter:フィルター用コンデンサ
AC、AC:磁気エネルギー回生スイッチ(MERS)の交流端子
DC(P)、DC(N):磁気エネルギー回生スイッチ(MERS)の直流端子(磁気エネルギー蓄積コンデンサ接続側)
P、N:直流母線の端子
Vin:入力電圧(商用電源100V、50Hz)
UY:逆導通型半導体スイッチSW1、SW3のオンゲート信号
VX:逆導通型半導体スイッチSW2、SW4のオンゲート信号
Ifilter: フィルター用コンデンサLfilterを流れる電流
Imers:磁気エネルギー蓄積コンデンサCを流れる電流
Vmers:磁気エネルギー蓄積コンデンサCの電圧(直流端子DC(P)、DC(N)間の昇圧パルス電圧)
Vout:抵抗負荷Rloadに加わる電圧(直流負荷電圧)
Iout:抵抗負荷Rloadに流れる電流
Rload:抵抗負荷
V:電圧計
A:電流計
MERS1、MERS2、MERS3、MERS4:フルブリッジ型磁気エネルギー回生スイッチ(MERS)
電源A:交流電源、直流電源、抵抗負荷、コンデンサ
電源B:直流電源、抵抗負荷、コンデンサ
図6は、さらに、交流電力を直流電力に変換するMERS1と電力系統の間に電力潮流制御用MERSを設けたものである。電力潮流制御用MERSとしては、特許文献7に開示されたものを用いればよい。
Claims (18)
- 交流電力から直流電力に、またはその逆変換をする電力変換装置であって、該電力変換装置は、
4個の逆導通型半導体スイッチで構成されるブリッジ回路と、電流遮断時の電流の持つ磁気エネルギーを蓄積する磁気エネルギー蓄積コンデンサCをブリッジ回路の直流端子DC(P)、DC(N)間に接続して構成される磁気エネルギー回生スイッチを、交流電源から、インダクタンスLacを介して交流端子AC、ACに接続し、さらに前記直流端子DC(P)、DC(N)間には、平滑インダクタンスLdcを介して、直流電源、もしくは負荷を接続した回路構成において、
前記逆導通型半導体スイッチのゲートに制御信号を与えて、前記逆導通型半導体スイッチのオン・オフ制御を行うゲート制御装置を具備し、ブリッジ回路の対角線上に位置する一方ペアの前記逆導通型半導体スイッチをオン、他方のペアの前記逆導通型半導体スイッチをオフにする動作を同時に行うように制御するとともに、交流電源の電流の方向により選択される1つの前記ペアの逆導通型半導体スイッチを高速オン・オフ動作させ、直流端子DC(P)、DC(N)間に昇圧パルス電圧を発生させる手段と、前記昇圧パルス電圧を、平滑して直流電圧に変換するために前記平滑インダクタンスLdcを介して、直流電圧源、二次電池(バッテリー)、もしくは、直流負荷に流す手段と、を具備して、
該電力変換装置を二次電池(バッテリー)充電装置に直列、または並列に、もしくは、直列、並列接続を開閉スイッチにて切り換えて、長時間的には、二次電池(バッテリー)の温度や充電量など充電状況を制御しながら、短期的には入力電流の力率を遅れから進みまで制御して、他の電力系の遅れ力率と併せて、電流力率を調整することによって電流を減らしてジュール損を低減し、受電点の電圧変動、過電圧、不足電圧を補正する電力変換装置。 - 前記磁気エネルギー回生スイッチが、2個の前記逆導通型半導体スイッチ及び該逆導通型半導体スイッチに対向する2個のダイオードにより構成されたブリッジ回路と、前記2個のダイオードのそれぞれに対して並列に接続され都合2個の直列に接続された磁気エネルギー蓄積コンデンサと、を有する構成である請求の範囲第1項に記載の電力変換装置。
- 前記磁気エネルギー回生スイッチが、逆直列に接続された2個の前記逆導通型半導体スイッチと、直列に接続された2個の磁気エネルギー蓄積コンデンサと、を並列に接続し、該2個の逆導通型半導体スイッチの中点と該2個の磁気エネルギー蓄積コンデンサの中点同士に結線された配線と、を有する構成である請求の範囲第1項に記載の電力変換装置。
- 前記磁気エネルギー回生スイッチのオン・オフ周期を前記磁気エネルギー回生スイッチの前記磁気エネルギー蓄積コンデンサCの容量(C)と前記インダクタンスLacのインダクタンス(Lac)で決まる放電時間より長く設定して、前記磁気エネルギー蓄積コンデンサCの電圧がサイクル毎に放電してゼロになり、前記逆導通型半導体スイッチがオフするとき、ゼロ電圧で、前記逆導通型半導体スイッチがオンするとき、ゼロ電流であることを特徴とする請求の範囲第1項乃至第3項のいずれか1項に記載の電力変換装置。
- 前記昇圧パルス電圧を発生する手段として、三相交流を電源とする場合、単相交流の場合のブリッジのアームを3つにして、6個の逆導通型半導体スイッチによる三相全波ブリッジの構成の磁気エネルギー回生スイッチとし、前記磁気エネルギー蓄積コンデンサCを直流母線の端子P、N間に接続し、各アームの2つの逆導通型半導体スイッチは三相交流の電流方向のスイッチを選択して、かつ、すべての選択された逆導通型半導体スイッチを同時に高速にオン・オフして、昇圧パルス電圧を直流母線の端子P、N端子間に発生させる方式のよる三相交流電力の変換を行う請求の範囲第1項に記載の電力変換装置。
- 入力電力が直流電圧である場合、前記磁気エネルギー回生スイッチの一方の対角線上に位置する逆導通型半導体スイッチのペアのみを高速にオン・オフするが、他方の逆導通型半導体スイッチのペアを常にオフにして逆導通用のダイオード動作のみとすることで、電流方向が逆になることで電力を二次電池(バッテリー)から交流へ逆変換する請求の範囲第1項、第2項及び第4項のいずれか1項に記載の電力変換装置。
- 前記磁気エネルギー回生スイッチの入力電圧または入力電流の大きさと方向、さらに直流出力もしくは交流出力の電圧と電流、さらに磁気エネルギー蓄積コンデンサの電圧を入力し、逆導通型半導体スイッチに印加するゲートパルス信号のオン・オフの時間比、スイッチ周期を考慮して前記逆導通型半導体スイッチの保護とオン・オフ制御を行う制御装置を具備した、請求の範囲第1項、第2項及び第4項乃至第6項のいずれか1項に記載の電力変換装置。
- 電力逆変換が不要である場合、パルス脈動の前記平滑インダクタンスLdcに換えてダイオードを備え、出力コンデンサへの逆電流阻止を行い、同様に前記逆導通型半導体スイッチがオフするとき、ゼロ電圧で、前記逆導通型半導体スイッチがオンするとき、ゼロ電流である、ゼロ電圧ゼロ電流スイッチングを行う請求の範囲第1項乃至第7項のいずれか1項に記載の電力変換装置。
- 4個の逆導通型半導体スイッチにて構成されるブリッジ回路と、該ブリッジ回路の直流端子間に接続され、電流遮断時の電流の持つ磁気エネルギーを蓄積する磁気エネルギー蓄積コンデンサCと、前記各逆導通型半導体スイッチのゲートに制御信号を与えて、前記ブリッジ回路の対角線上に位置する一方ペアの前記逆導通型半導体スイッチをオン、他方のペアの前記逆導通型半導体スイッチをオフにする動作を同時に行うように制御するゲート制御装置と、を含む磁気エネルギー回生スイッチを備えた電力変換装置であって、
前記ブリッジ回路の交流端子はインダクタンスLacを介して交流または直流の入力電源に接続でき、
前記ブリッジ回路の直流端子は平滑インダクタンスLdcを介して直流の出力電源に接続され、
前記ゲート制御装置は、入力電源の電流の方向により選択される一方のペアの前記逆導通型半導体スイッチに高速オン・オフ動作をさせるとともに、他方のペアの前記逆導通型半導体スイッチをオフにすることにより、前記ブリッジ回路の前記直流端子に昇圧パルス電圧を発生させ、
前記平滑インダクタンスLdcは、前記昇圧パルス電圧を平滑して直流電圧に変換し、
前記高速オン・オフ動作は、前記磁気エネルギー蓄積コンデンサCの静電容量と前記インダクタンスLacのインダクタンス(Lac)とで決まる前記ブリッジ回路の共振周波数より低い高速オン・オフ制御周波数に同期しており、前記高速オン・オフ制御周波数、及び/またはオン・オフ時間比を変化させることにより前記入力電源と直流の出力電源との間の電力の流れを制御することを特徴とする、電力変換装置。 - 入力電力が交流である場合、前記入力電源の電流の方向により選択され高速オン・オフ動作させる前記逆導通型半導体スイッチのペアを、前記交流電圧の周波数に同期させて電流の方向が変わる毎に交互に切り替えることを特徴とする、請求の範囲第9項に記載の電力変換装置。
- 入力電圧が直流である場合、前記入力電源の電流の方向により選択され高速オン・オフ動作させる前記逆導通型半導体スイッチのペアは一方のみであり、他方のペアは常時オフであることを特徴とする、請求の範囲第9項に記載の電力変換装置。
- 4個の第1の逆導通型半導体スイッチにて構成される第1のブリッジ回路と、該ブリッジ回路の直流端子DC(P)、DC(N)間に接続され、電流遮断時の電流の持つ磁気エネルギーを蓄積する第1の磁気エネルギー蓄積コンデンサCと、前記各第1の逆導通型半導体スイッチのゲートに制御信号を与えて、前記各第1の逆導通型半導体スイッチのオン・オフ制御を行う第1のゲート制御装置を含む第1の磁気エネルギー回生スイッチと、
4個の第2の逆導通型半導体スイッチにて構成される第2のブリッジ回路と、該ブリッジ回路の直流端子DC(P)、DC(N)間に接続され、電流遮断時の電流の持つ磁気エネルギーを蓄積する第2の磁気エネルギー蓄積コンデンサCと、前記各第2の逆導通型半導体スイッチのゲートに制御信号を与えて、前記各第2の逆導通型半導体スイッチのオン・オフ制御を行う第2のゲート制御装置を含む第2の磁気エネルギー回生スイッチとを備えた電力変換装置であって、
前記第1のブリッジ回路の交流端子AC、ACは第1のインダクタンスLacを介して交流電源に接続でき、前記第1のブリッジ回路の直流端子DC(P)、DC(N)は第1の平滑インダクタンスLdcを介して直流母線に接続され、第2のインダクタンスLacを介して前記第2のブリッジ回路の交流端子AC、AC、または第2の平滑インダクタンスLdcを介して前記第2のブリッジ回路の直流端子DC(P)、DC(N)のいずれか一方は、前記直流母線に接続され、他方は、二次電池(バッテリー)に接続でき、
前記第1及び第2のゲート制御装置は、ともに入力電源の電流の方向により選択される一方のペアの前記逆導通型半導体スイッチに高速オン・オフ動作をさせるとともに、他方のペアの前記逆導通型半導体スイッチをオフにすることにより、対応する前記ブリッジ回路の前記直流端子に昇圧パルス電圧を発生させ、
前記平滑インダクタンスLdcは、前記昇圧パルス電圧を平滑して直流電圧に変換し、
前記第1の磁気エネルギー回生スイッチの前記高速オン・オフ動作は、前記第1の磁気エネルギー蓄積コンデンサCの静電容量(C)と前記第1のインダクタンスLacのインダクタンス(Lac)とで決まる前記第1のブリッジ回路の共振周波数より低い第1の高速オン・オフ制御周波数に同期させ、前記入力電源の電流の方向により選択され高速オン・オフ動作させる前記逆導通型半導体スイッチのペアを、前記交流電圧の周波数に同期させて交互に切り替え、前記第1の高速オン・オフ制御周波数、及び/またはオン・オフ時間比を変化させることにより前記交流電源と前記直流母線との間の電力の流れを制御するとともに、
前記第2の磁気エネルギー回生スイッチの前記高速オン・オフ動作は、前記第2の磁気エネルギー蓄積コンデンサCの静電容量(C)と前記第2のインダクタンスLacのインダクタンス(Lac)とで決まる前記第2のブリッジ回路の共振周波数より低い第2の高速オン・オフ制御周波数に同期させ、前記入力電源の電流の方向により選択され高速オン・オフ動作させる前記逆導通型半導体スイッチのペアは一方のみであり、他方のペアは常時オフにし、前記第2の高速オン・オフ制御周波数、及び/またはオン・オフ時間比を変化させることにより前記直流母線と前記二次電池(バッテリー)との間の電力の流れを制御することを特徴とする、電力変換装置。 - 前記直流母線には、複数個の前記第2の磁気エネルギー回生スイッチが接続され、それぞれの前記第2の磁気エネルギー回生スイッチを介して、複数個の二次電池(バッテリー)が接続できることを特徴とする、請求の範囲第12項に記載の電力変換装置。
- 前記第2のインダクタンスLacを介して前記第2のブリッジ回路の交流端子AC、ACが前記直流母線に接続されている前記第2の磁気エネルギー回生スイッチ、及び前記第2の平滑インダクタンスLdcを介して前記第2のブリッジ回路の直流端子DC(P)、DC(N)が前記直流母線に接続されている前記第2の磁気エネルギー回生スイッチの両方を含むことを特徴とする、請求の範囲第13項に記載の電力変換装置。
- 前記高速オン・オフ制御周波数を高く、及び/またはオン・オフ制御のオン時間比を大きくすることにより、前記ブリッジ回路、前記第1のブリッジ回路、及び/または前記第2のブリッジ回路の交流端子AC、ACに接続している入力電源から、前記ブリッジ回路、前記第1のブリッジ回路、及び/または前記第2のブリッジ回路の直流端子DC(P)、DC(N)に接続している出力電源への順変換を行うことを特徴とする、請求の範囲第9項及び第12項乃至第14項のいずれか1項に記載の電力変換装置。
- 多数の二次電池(バッテリー)を同時に充電することのできる充電ステーションにおいて、個々の二次電池(バッテリー)の充電量を管理、制御する中央制御装置を設置し、多数の充電中の二次電池(バッテリー)から逆変換を行って、その逆変換した電力を合わせて、急速充電を必要とする特定の二次電池(バッテリー)の充電することで、外部から受ける受電電力のピーク値を低減することを特徴とする、請求の範囲第1項乃至第15項のいずれか1項に記載の電力変換装置。
- 二次電池(バッテリー)を充電する充電装置が、その系統内に太陽光発電装置、風力など、変動の大きな発電装置がある場合、その電力・電圧変動をバッテリー充電装置が変動吸収要素として利用することを特徴とする、請求の範囲第1項乃至第16項のいずれか1項に記載の電力変換装置。
- 電力系統との接続点に逆潮流を阻止する目的で前記磁気エネルギー回生スイッチを設置することで、系統電圧が短時間、低下するなど系統側の異常状態になると、逆位相電流に対して、高インピーダンスになって自動的に遮断することで、域内の電力、電圧の安定を図ることを特徴とする、請求の範囲第1項乃至第17項のいずれか1項に記載の電力変換装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/067553 WO2010035338A1 (ja) | 2008-09-26 | 2008-09-26 | 電力変換装置 |
CN2008801312075A CN102160014A (zh) | 2008-09-26 | 2008-09-26 | 电力变换装置 |
JP2009548509A JP4880762B2 (ja) | 2008-09-26 | 2008-09-26 | 電力変換装置 |
US13/062,512 US8482945B2 (en) | 2008-09-26 | 2008-09-26 | Power converter with magnetic recovery switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/067553 WO2010035338A1 (ja) | 2008-09-26 | 2008-09-26 | 電力変換装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010035338A1 true WO2010035338A1 (ja) | 2010-04-01 |
Family
ID=42059356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/067553 WO2010035338A1 (ja) | 2008-09-26 | 2008-09-26 | 電力変換装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8482945B2 (ja) |
JP (1) | JP4880762B2 (ja) |
CN (1) | CN102160014A (ja) |
WO (1) | WO2010035338A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102290851A (zh) * | 2011-08-15 | 2011-12-21 | 许继电源有限公司 | 一种大规模储能装置及其主电路 |
WO2011127449A3 (en) * | 2010-04-08 | 2012-07-12 | Qualcomm Incorporated | Wireless power transmission in electric vehicles |
DE102011079430A1 (de) * | 2011-07-19 | 2013-01-24 | Siemens Aktiengesellschaft | DC-Ladestation zum Aufladen mehrerer Energiespeichereinrichtungen |
WO2013035671A1 (ja) * | 2011-09-05 | 2013-03-14 | 株式会社MERSTech | 電力変換装置、制御方法、及び、プログラム |
JP2013074745A (ja) * | 2011-09-28 | 2013-04-22 | Toyota Industries Corp | 充電装置 |
JP2016116292A (ja) * | 2014-12-12 | 2016-06-23 | 新日鐵住金株式会社 | 大電流電源装置および通電加熱システム |
WO2018159022A1 (ja) * | 2017-03-02 | 2018-09-07 | パナソニックIpマネジメント株式会社 | 充電装置、及び車載電源装置 |
US10343535B2 (en) | 2010-04-08 | 2019-07-09 | Witricity Corporation | Wireless power antenna alignment adjustment system for vehicles |
CN111880005A (zh) * | 2020-07-23 | 2020-11-03 | 广东电网有限责任公司清远供电局 | 一种回路电阻测试仪及其控制方法 |
EP2660095B1 (fr) * | 2012-05-04 | 2022-11-23 | Schneider Electric Industries SAS | Etage de conversion, convertisseur électrique comportant un tel étage de conversion, dispositif de conversion d'un courant alternatif en un courant continu comportant un tel convertisseur, et borne de rechargement d'une batterie électrique comportant un tel convertisseur ou dispositif de conversion |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2517341B1 (en) * | 2009-12-23 | 2019-06-26 | Marvell World Trade Ltd. | Start-up supply for a switch mode power supply |
CN102457193B (zh) * | 2010-10-27 | 2015-08-19 | 台达电子工业股份有限公司 | 具有单级转换器的电源供应器 |
JP5844631B2 (ja) * | 2010-12-15 | 2016-01-20 | 東海旅客鉄道株式会社 | 受電装置、及び受電方法 |
US8766566B2 (en) * | 2010-12-20 | 2014-07-01 | Nippon Soken, Inc. | System for causing temperature rise in battery |
WO2012158496A2 (en) | 2011-05-16 | 2012-11-22 | Marvell World Trade Ltd. | High-voltage startup circuit |
FR2985105B1 (fr) * | 2011-12-21 | 2015-03-06 | Valeo Sys Controle Moteur Sas | Procede de charge par un reseau electrique delivrant une grandeur electrique continue ou alternative d'une unite de stockage d'energie electrique pour vehicule hybride ou electrique |
FR2986120B1 (fr) * | 2012-01-23 | 2015-08-21 | Commissariat Energie Atomique | Gestion combinee de deux sources de tension |
JP5831275B2 (ja) * | 2012-02-10 | 2015-12-09 | 日産自動車株式会社 | 電力変換装置及びその駆動方法 |
EP2688140A3 (en) * | 2012-07-18 | 2014-04-30 | Aisin Seiki Kabushiki Kaisha | Antenna drive apparatus |
KR101409152B1 (ko) * | 2012-07-18 | 2014-06-17 | 엘에스산전 주식회사 | 충전 장치 및 이의 동작 방법 |
US9793740B2 (en) * | 2012-11-26 | 2017-10-17 | Samsung Electronics Co., Ltd. | Apparatus and method for charge control in wireless charging system |
US9413271B2 (en) | 2013-03-14 | 2016-08-09 | Combined Energies, Llc | Power conversion system with a DC to DC boost converter |
US20140278709A1 (en) | 2013-03-14 | 2014-09-18 | Combined Energies LLC | Intelligent CCHP System |
CN105453371A (zh) * | 2013-07-31 | 2016-03-30 | 日本电气株式会社 | 电力管理系统和电力管理方法 |
JP5840669B2 (ja) * | 2013-12-17 | 2016-01-06 | 株式会社デンソー | 電力変換装置 |
US20150295421A1 (en) * | 2014-04-10 | 2015-10-15 | Ford Global Technologies, Llc | Active isolated circuit for precharging and discharging a high voltage bus |
FR3035282B1 (fr) * | 2015-04-15 | 2018-05-11 | Valeo Siemens Eautomotive France Sas | Chargeur de batterie, installation electrique et vehicule automobile |
DE102015111553A1 (de) * | 2015-07-16 | 2017-01-19 | Ipt Technology Gmbh | Vorrichtung und Verfahren zur induktiven Übertragung elektrischer Energie |
CN106696722A (zh) * | 2015-07-27 | 2017-05-24 | 湖南南车时代电动汽车股份有限公司 | 一种纯电驱动车及其配电系统 |
NL2015357B1 (en) * | 2015-08-27 | 2017-03-20 | Univ Delft Tech | DC switch yard and method to operate such a DC switch yard. |
KR101755897B1 (ko) | 2015-11-25 | 2017-07-07 | 현대자동차주식회사 | 친환경 차량의 저전압 직류 변환 장치 |
JP7044462B2 (ja) * | 2016-06-28 | 2022-03-30 | 日立ジョンソンコントロールズ空調株式会社 | 電力変換装置、及びこれを備える空気調和機 |
KR101959922B1 (ko) * | 2016-09-07 | 2019-03-19 | 현대자동차주식회사 | 완속충전기(On board charger, OBC) 제어 방법 및 장치 |
US20210006178A1 (en) * | 2016-09-29 | 2021-01-07 | Transportation Ip Holdings, Llc | Harmonic distortion reduction system for converters connected to a common bus |
TWI620467B (zh) * | 2017-05-26 | 2018-04-01 | Newvastek Co Ltd | Energy recovery device |
CN109119018A (zh) * | 2017-06-23 | 2019-01-01 | 兴澄股份有限公司 | 能量回收装置 |
DE102017115632B4 (de) * | 2017-07-12 | 2019-10-24 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Leistungselektronisches System für eine Stromtankstelle und entsprechende Stromtankstelle |
DE102017117888A1 (de) * | 2017-08-07 | 2019-02-07 | Infineon Technologies Austria Ag | Elektronische Schaltung mit einer Halbbrückenschaltung und einem Spannungsklemmelement |
KR101879675B1 (ko) * | 2017-11-22 | 2018-07-18 | 주식회사 피에스엔 | 다중모듈 방식 전기 자동차 충전기 제어 시스템, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체 |
EP3729599B1 (en) * | 2017-12-22 | 2022-05-11 | Heliox B.V. | A charging system and a method of charging an electrical energy storage device |
WO2019147143A1 (en) * | 2018-01-25 | 2019-08-01 | Auckland Uniservices Limited | A converter |
US11863062B2 (en) * | 2018-04-27 | 2024-01-02 | Raytheon Company | Capacitor discharge circuit |
EP3853988A4 (en) * | 2018-09-20 | 2022-04-27 | ABB Schweiz AG | POWER CONVERTER |
JP7370223B2 (ja) * | 2019-01-24 | 2023-10-27 | 株式会社Soken | 電力変換装置 |
DE102019112684A1 (de) * | 2019-05-15 | 2020-11-19 | innogy eMobility Solutions GmbH | Lademanagementvorrichtung für eine Ladeanordnung |
CN110137913B (zh) * | 2019-05-16 | 2022-03-22 | 宁波奥克斯电气股份有限公司 | 一种变频设备pfc控制方法、控制装置及变频设备 |
US11489356B2 (en) | 2019-07-02 | 2022-11-01 | Abb Schweiz Ag | MVDC link-powered battery chargers and operation thereof |
JP7160007B2 (ja) * | 2019-09-20 | 2022-10-25 | トヨタ自動車株式会社 | 電源装置 |
US11418125B2 (en) | 2019-10-25 | 2022-08-16 | The Research Foundation For The State University Of New York | Three phase bidirectional AC-DC converter with bipolar voltage fed resonant stages |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11355909A (ja) * | 1998-06-05 | 1999-12-24 | Toshiba Corp | 電力変換装置 |
WO2007122701A1 (ja) * | 2006-04-19 | 2007-11-01 | Mitsubishi Denki Kabushiki Kaisha | コンバータ装置 |
JP2008193817A (ja) * | 2007-02-06 | 2008-08-21 | Tokyo Institute Of Technology | 磁気エネルギー回生スイッチを用いた交流/直流電力変換装置 |
JP2008204810A (ja) * | 2007-02-20 | 2008-09-04 | Toshiba Corp | 非水電解質二次電池の充電方法および充電装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3634982B2 (ja) | 1999-06-11 | 2005-03-30 | 財団法人理工学振興会 | スナバーエネルギーを回生する電流順逆両方向スイッチ |
US7256516B2 (en) | 2000-06-14 | 2007-08-14 | Aerovironment Inc. | Battery charging system and method |
WO2005067117A1 (ja) | 2004-01-09 | 2005-07-21 | The Circle For The Promotion Of Science And Engineering | 電力制御装置 |
CN1954482A (zh) * | 2004-05-12 | 2007-04-25 | 财团法人理工学振兴会 | 使磁能量再生的交流电源装置 |
JP2007049828A (ja) | 2005-08-10 | 2007-02-22 | Daiken Kagaku Kogyo Kk | 電池急速充電方法、電池急速充電装置及び電池急速充電システム |
JP2007097341A (ja) | 2005-09-29 | 2007-04-12 | Toyota Motor Corp | 充電制御装置および電動車両 |
JP4406733B2 (ja) * | 2006-10-05 | 2010-02-03 | 国立大学法人東京工業大学 | インバータ電源装置 |
JP4144646B1 (ja) | 2007-02-20 | 2008-09-03 | トヨタ自動車株式会社 | 電動車両、車両充電装置および車両充電システム |
DE112008003666B4 (de) * | 2008-02-20 | 2012-06-14 | Merstech Inc. | Magnetenergie-Wiederherstellschalter mit Schutzschaltung |
US20110115417A1 (en) * | 2008-06-27 | 2011-05-19 | Merstech Inc. | Pm motor drive power supply apparatus |
WO2010001442A1 (ja) * | 2008-07-03 | 2010-01-07 | 株式会社MERSTech | 照明制御装置 |
-
2008
- 2008-09-26 US US13/062,512 patent/US8482945B2/en not_active Expired - Fee Related
- 2008-09-26 WO PCT/JP2008/067553 patent/WO2010035338A1/ja active Application Filing
- 2008-09-26 CN CN2008801312075A patent/CN102160014A/zh active Pending
- 2008-09-26 JP JP2009548509A patent/JP4880762B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11355909A (ja) * | 1998-06-05 | 1999-12-24 | Toshiba Corp | 電力変換装置 |
WO2007122701A1 (ja) * | 2006-04-19 | 2007-11-01 | Mitsubishi Denki Kabushiki Kaisha | コンバータ装置 |
JP2008193817A (ja) * | 2007-02-06 | 2008-08-21 | Tokyo Institute Of Technology | 磁気エネルギー回生スイッチを用いた交流/直流電力変換装置 |
JP2008204810A (ja) * | 2007-02-20 | 2008-09-04 | Toshiba Corp | 非水電解質二次電池の充電方法および充電装置 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011127449A3 (en) * | 2010-04-08 | 2012-07-12 | Qualcomm Incorporated | Wireless power transmission in electric vehicles |
US11491882B2 (en) | 2010-04-08 | 2022-11-08 | Witricity Corporation | Wireless power antenna alignment adjustment system for vehicles |
US11938830B2 (en) | 2010-04-08 | 2024-03-26 | Witricity Corporation | Wireless power antenna alignment adjustment system for vehicles |
US10493853B2 (en) | 2010-04-08 | 2019-12-03 | Witricity Corporation | Wireless power transmission in electric vehicles |
US10343535B2 (en) | 2010-04-08 | 2019-07-09 | Witricity Corporation | Wireless power antenna alignment adjustment system for vehicles |
US9561730B2 (en) | 2010-04-08 | 2017-02-07 | Qualcomm Incorporated | Wireless power transmission in electric vehicles |
DE102011079430A1 (de) * | 2011-07-19 | 2013-01-24 | Siemens Aktiengesellschaft | DC-Ladestation zum Aufladen mehrerer Energiespeichereinrichtungen |
CN102290851A (zh) * | 2011-08-15 | 2011-12-21 | 许继电源有限公司 | 一种大规模储能装置及其主电路 |
WO2013035671A1 (ja) * | 2011-09-05 | 2013-03-14 | 株式会社MERSTech | 電力変換装置、制御方法、及び、プログラム |
JPWO2013035671A1 (ja) * | 2011-09-05 | 2015-03-23 | 株式会社MERSTech | 電力変換装置、制御方法、及び、プログラム |
JP2013074745A (ja) * | 2011-09-28 | 2013-04-22 | Toyota Industries Corp | 充電装置 |
EP2660095B1 (fr) * | 2012-05-04 | 2022-11-23 | Schneider Electric Industries SAS | Etage de conversion, convertisseur électrique comportant un tel étage de conversion, dispositif de conversion d'un courant alternatif en un courant continu comportant un tel convertisseur, et borne de rechargement d'une batterie électrique comportant un tel convertisseur ou dispositif de conversion |
JP2016116292A (ja) * | 2014-12-12 | 2016-06-23 | 新日鐵住金株式会社 | 大電流電源装置および通電加熱システム |
WO2018159022A1 (ja) * | 2017-03-02 | 2018-09-07 | パナソニックIpマネジメント株式会社 | 充電装置、及び車載電源装置 |
US11043831B2 (en) | 2017-03-02 | 2021-06-22 | Panasonic Intellectual Property Management Co., Ltd. | Charging device and on board power supply device |
CN111880005B (zh) * | 2020-07-23 | 2022-07-08 | 广东电网有限责任公司清远供电局 | 一种回路电阻测试仪及其控制方法 |
CN111880005A (zh) * | 2020-07-23 | 2020-11-03 | 广东电网有限责任公司清远供电局 | 一种回路电阻测试仪及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102160014A (zh) | 2011-08-17 |
US20110176343A1 (en) | 2011-07-21 |
US8482945B2 (en) | 2013-07-09 |
JPWO2010035338A1 (ja) | 2012-02-16 |
JP4880762B2 (ja) | 2012-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4880762B2 (ja) | 電力変換装置 | |
CN102355042B (zh) | 一种基于超级电容的电站直流电源装置及其供电方法 | |
Pires et al. | Power converter interfaces for electrochemical energy storage systems–A review | |
JP5208374B2 (ja) | 系統連系パワーコンディショナおよび系統連系電源システム | |
JP4399405B2 (ja) | 進相電流による交流電圧制御装置 | |
JP2024042027A (ja) | 電気自動車用バッテリ充電器 | |
JP6215200B2 (ja) | マルチステージ高速充電システム | |
US10840814B2 (en) | Power conversion system | |
CN104218805B (zh) | 一种单双极性转换直流变换器 | |
WO2012144357A1 (ja) | 電力供給装置、電力供給装置の制御方法、および直流給電システム | |
CN104078992A (zh) | 一种储能电压平衡电力电子电能变换系统及其控制方法 | |
EP3776797A1 (en) | Charging station for electric vehicles | |
WO2012144358A1 (ja) | 電力供給装置、電力供給装置の制御方法、および直流給電システム | |
KR101865246B1 (ko) | 전기자동차용 충방전 장치 | |
CN202663185U (zh) | 一种单逆变器串并联ups电源 | |
CN210490732U (zh) | 储能变流器 | |
KR20110129043A (ko) | 전력품질개선 기능을 갖는 전기에너지 절전장치 | |
KR101027988B1 (ko) | 직렬 보상 정류기 및 이를 포함하는 직렬 보상 무정전 전원장치 | |
CN206060575U (zh) | 双级三相储能变流器 | |
CN111224419A (zh) | 储能逆变器 | |
WO2016000221A1 (en) | A system for charging battery of at least one electrical vehicle | |
US20120200162A1 (en) | Bi-Directional Grid-Tied Inverter with Series Capacitor for Regulating Voltage of DC Bus | |
US6961250B2 (en) | Non-isolated AC power supply device and method for controlling the same | |
JP2003067065A (ja) | バッテリ内蔵型電力変換装置 | |
CN109687433B (zh) | 一种柔性变电站结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880131207.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009548509 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08811272 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13062512 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2865/DELNP/2011 Country of ref document: IN |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08811272 Country of ref document: EP Kind code of ref document: A1 |