WO2013035671A1 - 電力変換装置、制御方法、及び、プログラム - Google Patents

電力変換装置、制御方法、及び、プログラム Download PDF

Info

Publication number
WO2013035671A1
WO2013035671A1 PCT/JP2012/072371 JP2012072371W WO2013035671A1 WO 2013035671 A1 WO2013035671 A1 WO 2013035671A1 JP 2012072371 W JP2012072371 W JP 2012072371W WO 2013035671 A1 WO2013035671 A1 WO 2013035671A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
terminal
switch
period
Prior art date
Application number
PCT/JP2012/072371
Other languages
English (en)
French (fr)
Inventor
高範 磯部
Original Assignee
株式会社MERSTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社MERSTech filed Critical 株式会社MERSTech
Publication of WO2013035671A1 publication Critical patent/WO2013035671A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • the present invention relates to a power conversion device, a control method, and a program.
  • the power conversion device for example, there is one using a full bridge type magnetic energy regenerative switch (for example, Patent Document 1).
  • Patent Document 1 the power converter described in Patent Document 1 is an AC / DC rectifier circuit, and could not convert DC power into AC power.
  • there is a conventional technique that uses a magnetic energy regenerative switch to convert DC power to AC power but conventionally, the same magnetic energy regenerative switch is used to convert DC power to AC power, and AC power. It was difficult to alternatively convert DC to DC power.
  • the present invention has been made in view of the above points, and an object thereof is conversion of DC power to AC power or conversion of AC power to DC power using a magnetic energy regenerative switch,
  • An object of the present invention is to provide a power conversion device, a control method, and a program capable of performing conversion with less distortion of current of AC power after conversion.
  • a power conversion device, a control method, and a program that can alternatively perform conversion of DC power to AC power and conversion of AC power to DC power using the same magnetic energy regeneration switch. The other purpose is to provide.
  • a power conversion device includes: An AC terminal to which AC power is input or output; A DC terminal from which DC power is output or input; A switch part that is conductive in both directions when on, and one direction when off; One end is connected to the AC terminal, the other end is connected to the DC terminal via the switch unit, and the AC power input to the AC terminal is obtained using magnetic energy stored in a predetermined inductor.
  • the switch unit is connected between the DC terminal and the magnetic energy regenerative switch in a direction in which the power supplied from the magnetic energy regenerative switch to the DC terminal is always conducted,
  • the magnetic energy regenerative switch includes a plurality of reverse conduction type switches that are conductive in both directions when turned on and conduct in one direction when turned off, and the plurality of reverse conduction switches are voltages of the AC power. For each group corresponding to the positive and negative of, on and off is switched at a frequency higher than the frequency of the voltage of the AC power, The switch unit is turned on during a part of an on period that switches for each group. It is characterized by that.
  • a control method includes: An AC terminal to which AC power is input or output; A DC terminal from which DC power is output or input; A switch part that is conductive in both directions when on, and one direction when off; One end is connected to the AC terminal, the other end is connected to the DC terminal via the switch unit, and the AC power input to the AC terminal is obtained using magnetic energy stored in a predetermined inductor.
  • the switch unit is connected between the DC terminal and the magnetic energy regenerative switch in a direction in which the power supplied from the magnetic energy regenerative switch to the DC terminal is always conducted,
  • the magnetic energy regenerative switch is a control method for controlling a power conversion device including a plurality of reverse conducting switches that are conductive in both directions when turned on and conductive in one direction when turned off, The plurality of reverse conducting switches are switched on and off at a frequency higher than the frequency of the AC power voltage for each group corresponding to the positive / negative of the voltage of the AC power, and the switch unit is Including turning on at least a portion of the on period that switches from group to group, It is characterized by that.
  • a program according to the third aspect of the present invention provides: An AC terminal to which AC power is input or output; A DC terminal from which DC power is output or input; A switch part that is conductive in both directions when on, and one direction when off; One end is connected to the AC terminal, the other end is connected to the DC terminal via the switch unit, and the AC power input to the AC terminal is obtained using magnetic energy stored in a predetermined inductor.
  • Magnetic energy for performing rectifying operation for converting to DC power and outputting from the DC terminal, or inverter operation for converting DC power input to the DC terminal to AC power and outputting from the AC terminal A regenerative switch,
  • the switch unit is connected between the DC terminal and the magnetic energy regenerative switch in a direction in which the power supplied from the magnetic energy regenerative switch to the DC terminal is always conducted,
  • the magnetic energy regenerative switch is in a conductive state in both directions when turned on, and a computer that controls the power converter that controls the power converter including a plurality of reverse conducting switches that are turned on in one direction when turned off.
  • the plurality of reverse conducting switches are switched on and off at a frequency higher than the frequency of the AC power voltage for each group corresponding to the positive / negative of the voltage of the AC power, and the switch unit is Control to turn on at least a part of the on period that switches for each group, It is characterized by that.
  • conversion of DC power to AC power using a magnetic energy regenerative switch or conversion of AC power to DC power is performed. It is conversion, and conversion with little distortion of the current of the AC power after conversion or after conversion can be performed.
  • conversion of DC power to AC power and conversion of AC power to DC power can be performed alternatively using the same magnetic energy regeneration switch.
  • the power conversion apparatus 100 can also convert (rectify and convert) AC power (AC current) into DC power (DC current), and convert DC power (DC current) into AC power ( AC current) can also be converted (inverter conversion). That is, the power converter 100 can alternatively perform either rectification conversion or inverter conversion.
  • the power conversion apparatus 100 includes an AC input / output unit 101, a DC input / output unit 102, a filter 103, an inductor L, a magnetic energy regenerative switch (hereinafter referred to as MERS) 105, a switch unit 107, and a smoothing capacitor.
  • Cs, the control part 110, the input part 115, and the voltmeter 117 are provided.
  • the AC input / output unit 101 includes a pair of terminals connected to the outside, and is connected to either an AC power source 11 (for example, a commercial power source) or an AC load 13 (for example, an AC motor) to input / output AC power.
  • the AC input / output unit 101 may have any specific configuration as long as AC power is input / output.
  • the DC input / output unit 102 includes a pair of terminals connected to the outside, and is connected to either the DC load 15 (for example, a DC motor) or the DC power source 17 to input / output DC power.
  • the DC power supply 17 is, for example, a battery, a DC voltage source, or the like.
  • the DC input / output unit 102 may have any specific configuration as long as DC power is input / output.
  • the filter 103 is connected to the AC input / output unit 101.
  • the filter 103 is a low-pass filter formed by a combination of a capacitor, an inductor, and the like.
  • the inductor L is composed of a choke coil or the like, and one end of the inductor L is connected to the filter 103 and the other end is connected to the MERS 105.
  • the MERS 105 includes connection points N1 to N4, first to fourth switches SW1 to SW4, and a capacitor CM.
  • the first switch SW1 and the fourth switch SW4 located on the diagonal form a first group
  • the second switch SW2 and the third switch SW3 located on the diagonal form a second group. It is a full bridge type MERS.
  • the MERS 105 may be of a vertical half type. In this case, the MERS does not have the second switch SW2 and the fourth switch SW4, and includes first and third switches SW1 to SW3, a capacitor CM, a diode, and the like.
  • the first group is configured only by the first switch SW1
  • the second group is configured only by the third switch SW3 (that is, the group may be configured by one reverse conducting switch). Good).
  • connection point N1 The other end of the inductor L is connected to the connection point N1, and is thereby connected to one terminal of the AC input / output unit 101.
  • the connection point N2 is connected to the filter 103 and thereby connected to the other terminal of the AC input / output unit 101.
  • connection point N1 and the connection point N2 form one end of the MERS 105, and this one end is connected to the AC input / output unit 101.
  • the connection point N3 is connected to the plus terminal of the DC input / output unit 102 via the switch unit 107.
  • the connection point N4 is connected to the negative terminal of the DC input / output unit 102.
  • the connection point N3 and the connection point N4 form the other end of the MERS 105, and the other end is connected to the DC input / output unit 102.
  • connection includes not only directly connecting two components, but also connecting via other components (that is, indirectly connecting).
  • the first switch SW1 is a reverse conduction type switch composed of a switching element S1 and a diode D1 connected in parallel (including a case of being connected in parallel in an equivalent circuit).
  • the first switch SW1 includes, for example, a plurality of elements in which a diode element and a switching element (for example, an IGBT (Insulated Gate Bipolar Transistor)) are connected in parallel.
  • the first switch SW1 may be a reverse conducting semiconductor switch such as an N-channel silicon MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
  • the switching element S1 is composed of, for example, a self-extinguishing element portion of an N-channel silicon MOSFET, and the diode D1 is composed of a parasitic diode portion of the N-channel silicon MOSFET.
  • the switching element S1 includes a gate (control terminal) G1.
  • a control signal that is, either an on signal or an off signal is supplied from the control unit 110 to the gate G1.
  • the switching element S1 is turned on when an ON signal among the control signals is supplied to the gate G1.
  • the on state of the switching element S1 is also the on state of the first switch SW1.
  • the switching element S1 becomes conductive and short-circuits both ends of the diode D1. That is, the first switch SW1 becomes conductive when the ON signal is supplied and turned ON.
  • the switching element S1 is turned off when an off signal of the control signal is supplied to the gate G1. Switching off the switching element S1 is also turning off the first switch SW1.
  • the switching element S1 is turned off when turned off. That is, the first switch SW1 functions as the diode D1 when the OFF signal is supplied and the first switch SW1 is turned off.
  • the second to fourth switches SW2 to SW4 have the same configuration as the first switch SW1.
  • Each of the switching elements S2 to S4 corresponds to the switching element S1
  • each of the gates G2 to G4 corresponds to the gate G1
  • each of the diodes D2 to D4 corresponds to the diode D1.
  • the second to fourth switches SW2 to SW4 become conductive when turned on by the supply of the on signal of the control signals, and the off signals of the control signals. Functions as a diode when turned off by supply.
  • the first switch SW1 is connected between the connection point N1 and the connection point N3 in such a direction that the anode of the diode D1 is connected to the connection point N1 and the cathode is connected to the connection point N3.
  • the second switch SW2 is connected between the connection point N2 and the connection point N3 in such a direction that the anode of the diode D2 is connected to the N2 and the cathode is connected to the connection point N3.
  • the third switch SW3 is connected between the connection point N4 and the connection point N1 in such a direction that the anode of the diode D3 is connected to the connection point N4 and the cathode is connected to the N1.
  • the fourth switch SW4 is connected between the connection point N4 and the connection point N3 in such a direction that the anode of the diode D4 is connected to the connection point N4 and the cathode is connected to the connection point N2.
  • the capacitor CM has one end (positive electrode side) connected to the connection point N3 and the other end (negative electrode side) connected to the connection point N4.
  • the switch unit 107 is located between the MERS 105 and the DC input / output unit 102, and is connected to the MERS 105 (connection point N3) and the DC input / output unit 102.
  • the switch unit 107 is composed of a reverse conduction type switch including a switching element SD and a diode DD.
  • the configuration of the reverse conduction type switch is the same as that of the first switch SW1 used in the MERS 105 and the detailed description thereof is omitted.
  • the switching element SD corresponds to the switching element S1
  • the gate GD corresponds to the gate G1
  • the diode DD corresponds to the diode D1.
  • a control unit 110 is connected to the gate GD, and a control signal, that is, an on signal or an off signal is supplied from the control unit 110.
  • the switch unit 107 becomes conductive when turned on by supplying an ON signal among control signals, and functions as a diode DD when turned OFF by supplying an OFF signal among control signals. To do.
  • the switch unit 107 is connected to the MERS 105 and the DC input / output unit 102 in such a direction that the anode of the diode DD is connected to the MERS 105 (connection point N3). That is, the switch unit 107, when outputting DC power from the DC input / output unit 102 (when rectification conversion is performed), the direction of the current flowing between the MERS 105 and the DC input / output unit 102 and the forward direction of the diode DD. Are connected to the DC input / output unit 102 and the MERS 105 in the same direction.
  • the smoothing capacitor Cs has one end (positive electrode side) connected to the other of the switch unit 107 and the other end connected to a connection point N4. Further, both ends of the smoothing capacitor Cs are connected to the DC input / output unit 102, and the capacitor CM is connected in parallel with the DC power supply 15 or the DC load 17 as viewed from the MERS 105.
  • the control unit 110 controls the MERS 105 and controls to switch the switch unit 107 on and off.
  • the control unit 110 is configured by a predetermined circuit or the like that can perform processing described later.
  • control unit 110 includes a CPU (Central Processing Unit) 111, a RAM (Random Access Memory) 112, and a ROM (Read Only). Memory) 113 and an input / output unit 114.
  • the storage unit of the control unit 110 is configured by the RAM 112 and the ROM 113, but this storage unit may be configured to include other storage devices.
  • the storage unit may be outside the control unit 110.
  • at least a part of the control unit 110 may be configured by a dedicated circuit (ASIC (Application Specific Integrated Circuit) or the like) that executes at least a part of the following processing performed by the CPU 111.
  • ASIC Application Specific Integrated Circuit
  • the CPU 111 executes the following processing performed by the control unit 110 in accordance with a program stored in the ROM 113.
  • the RAM 112 functions as a main memory for the CPU 111.
  • the ROM 113 stores programs and various data used by the CPU 111 during the following processing.
  • the CPU 111 performs the following processing using data stored in the ROM 113 as appropriate.
  • the input / output unit 114 includes various ports. Control signals, various data, and the like input / output to / from the control unit 110 are input / output to / from the CPU 111 via the input / output unit 114.
  • the control unit 110 is connected to the gates G1 to G4 of the first to fourth switches SW1 to SW4 of the MERS 105, respectively.
  • the control unit 110 controls the MERS 105 by supplying a control signal to each of the gates G1 to G4 and switching each of the first to fourth switches SW1 to SW4 on and off. That is, in this way, the control unit 110 can control each of the first to fourth switches SW1 to SW4 and switch each of the first to fourth switches SW1 to SW4 on and off.
  • the control unit 110 is also connected to the gate GD of the switch unit 107.
  • the control unit 110 also supplies a control signal to the gate GD and switches the switch unit 107 on and off.
  • the input unit 115 receives an operation from the user, and supplies an operation signal corresponding to the received operation to the control unit 110.
  • the control unit 110 changes the control content of the MERS 105 and the control content of the switch unit 107 in accordance with the operation signal supplied from the input unit 115.
  • the voltmeter 117 is connected to the AC input / output unit 101 via the connection points N5 and N6, and the voltage applied to the AC input / output unit 101 (that is, the AC power supply 11 (or an AC such as a commercial power supply described below)
  • the AC power supply 11 or an AC such as a commercial power supply described below
  • An AC voltage input to the AC input / output unit 101 from an AC load 13 constituted by an AC power source to which electric power can be supplied, or an AC load 13 (for example, an AC motor) applied from the AC input / output unit 101
  • the detected voltage value is supplied to the control unit 110.
  • the AC side voltage is positive when the connection point N5 has a higher potential than the connection point N6.
  • the AC power supply 11 and the AC load 13 may be the same.
  • the AC power supply 11 and the AC load 13 are configured by an AC power supply (AC voltage source) that can be supplied with AC power, such as a commercial power supply.
  • the DC load 15 and the DC power supply 17 may be the same.
  • the DC load 15 and the DC power source 17 are configured by a DC power source that can be supplied with DC power, such as a rechargeable battery.
  • the power conversion device 100 converts AC power from the AC power supply 11 into DC power, and converts it.
  • a first conversion operation for supplying the direct-current power to the direct-current load 12 is performed. This conversion is performed by the operation of the MERS 105. In this conversion, magnetic energy accumulated in a predetermined inductor (here, inductor L) is used.
  • the power conversion device 100 converts the DC power from the DC power source 17 into AC power and converts it.
  • the second conversion operation for supplying the AC power to the AC load 13 is performed. This conversion is performed by the operation of the MERS 105. In this conversion, magnetic energy accumulated in a predetermined inductor (here, inductor L) is used.
  • First conversion operation For example, when a user wishes to charge a rechargeable battery with a commercial power supply connected to the AC input / output unit 101 and a rechargeable battery connected to the DC input / output unit 102, the user converts the power converter 100
  • the input unit 105 is operated to instruct to perform the first conversion operation (for example, switching of the switch of the input unit 105).
  • the input unit 105 supplies an operation signal corresponding to this operation to the control unit 110.
  • the control unit 110 controls the MERS 105 and the switch unit 107 so that the power conversion device 100 performs the first conversion operation (first conversion control).
  • the commercial power source corresponds to the AC power source 11
  • the rechargeable battery corresponds to the DC load 15.
  • the control unit 110 detects the positive / negative of the AC side voltage based on the voltage value supplied from the voltmeter 117, and determines the negative of the AC side voltage based on the detected positive / negative of the AC side voltage.
  • the first control signal is supplied to each of the first switch SW1 and the fourth switch SW4, which are the reverse conducting switches constituting the first group corresponding to the period, and corresponds to the positive period of the AC side voltage.
  • a second control signal is supplied to each of the second switch SW2 and the third switch SW3, which are reverse conducting switches constituting the second group. Further, the control unit 110 supplies a third control signal to the switch unit 107.
  • the first control signal is a control signal that turns off when the detected AC-side voltage is positive, and alternately turns on and off during the negative period.
  • the second control signal is a control signal in which the ON signal and the OFF signal are alternately switched when the detected AC side voltage is positive, and becomes the OFF signal during the negative period.
  • the third control signal is an off signal control signal as shown in FIG.
  • the frequency of the AC side voltage is 50 Hz (a frequency in a commercial power supply, which may be 60 Hz)
  • the switching frequency (frequency of switching timing from the off signal to the on signal in a period in which the on signal and the off signal are alternately present) is, for example, 20 kHz.
  • the frequency of switching from the off signal to the on signal in the first control signal and the second control signal is larger than the frequency of the AC side voltage.
  • the frequency of switching from the off signal to the on signal is substantially the switching frequency of the reverse conducting switch (or switch unit 107) (the frequency of the switching timing from off to on in the period in which on and off are alternately switched). In the following, it is collectively referred to as a switching frequency.
  • the ON / OFF of the second switch SW2 and the ON / OFF of the third switch SW3 are switched at the same timing. Furthermore, when the AC side voltage is negative, the on / off of the second switch SW2 and the on / off of the third switch SW3 are switched at the same timing.
  • the MERS 105 performs a rectifying operation for converting AC power from the AC power source 11 into DC power and supplying it to the DC load 15.
  • the switch unit 107 is always off.
  • FIG. 8 shows the waveform simulation results of the voltage Vcm across the capacitor CM, the current Iswd flowing through the switch unit 107, the current Isw1 flowing through the first switch SW1, and the second control signal in the periods Pconv1 to Pconv5.
  • the circuit constants were set to the following values.
  • ⁇ Capacitor CM 0.066 ⁇ F Smoothing capacitor Cs: None (to treat the DC load 15 as a pure voltage source)
  • ⁇ Inductor L 200 ⁇ H ⁇ AC side voltage: 200Vrms, 50Hz
  • Switching frequency 20 kHz ⁇ Voltage across DC load: 380V ⁇
  • Inductor of filter 103 400 ⁇ H -Filter 103 capacitor: 2.2 ⁇ H
  • the value of the current Iswd is negative (minus) when the current flows in the forward direction of the diode DD of the switch unit 107.
  • the current Isw1 has a negative value when the current flows in the forward direction of the diode D1 of the first switch SW1.
  • the capacitor CM is discharged as shown in FIG. For this reason, the current flows from the capacitor CM to the connection point N3, further flows to the second switch SW2 (switching element S2) that is turned on, and flows from the connection point N2 toward the AC power supply 11. Further, the current flows through the filter 103 and the inductor L, flows to the connection point N1, the third switch SW3 that is turned on (switching element S3), and flows from the connection point N4 toward the capacitor CM.
  • the period Pconv1 corresponds to a period from when the capacitor CM starts discharging until it is completed.
  • the current Iswd and the current Isw1 are 0 A, and no current flows through the switch unit 107 and the first switch SW1. Further, in the period Pconv1, it can be seen that the voltage Vcm of the capacitor CM is gradually decreased, and the capacitor CM is discharged.
  • the ON signal remains supplied to the second switch SW2 and the third switch SW3 (see also FIG. 8). That is, both switches remain on.
  • the current from the AC power supply 11 flows from the inductor L to the connection point N1 and branches at the connection point N1, as shown in FIG.
  • One of the branched currents passes through the first switch SW1 that is turned off (that is, the diode D1), the connection point N3, the second switch SW2 that is turned on (that is, the switching element S2), and the connection point. Flows to N2.
  • the other of the branched currents passes through the third switch SW3 that is turned on (that is, the switching element S3), the connection point N3, the fourth switch SW4 that is turned off (that is, the diode D4), and the connection point. Flows to N2. Both currents flowing through the connection point N2 merge and flow toward the AC power supply 11.
  • the current Iswd is 0 A, and no current flows through the switch unit 107.
  • the voltage Vcm of the capacitor CM is substantially 0 V, and it can be seen that the capacitor CM is not charged while being discharged.
  • the current Isw1 increases in the minus direction, and a forward current flows through the diode D1 of the first switch SW1.
  • an off signal is supplied to the second switch SW2 and the third switch SW3, and both switches are turned off (see also FIG. 8). That is, in the period Pconv3, all of the first to fourth switches SW1 to SW4 are off.
  • the current from the AC power supply 11 flows from the AC power supply 11 to the inductor L and the connection point N1, passes through the first switch SW1 that is turned off (that is, the diode D1), and is connected. It flows to the point N3.
  • connection point N3 the connection point N4 via the capacitor CM
  • the fourth switch SW4 that is, the diode D4 that is turned off and the connection point N2, toward the AC power source 11.
  • the capacitor CM is charged by such a current flow.
  • the period Pconv3 is a period from the start of charging of the capacitor CM to the end thereof.
  • the current Iswd is 0 A, and no current flows through the switch unit 107.
  • the voltage Vcm increases and the capacitor CM is charged.
  • the current Isw1 shows a negative current value, and it can be seen that a forward current flows through the diode D1 of the first switch SW1.
  • the OFF signal is supplied to the second switch SW2 and the third switch SW3, and both switches are OFF (see also FIG. 8). That is, all of the first to fourth switches SW1 to SW4 remain off.
  • the current from the AC power supply 11 does not flow in the direction of the capacitor CM, but flows from the inductor L to the connection point N1 and is turned off as shown in FIG. 6 (that is, the diode D1). , And flows through the connection point N3 and the switch unit 107 that is turned off (that is, the diode DD).
  • the current is smoothed by the smoothing capacitor Cs (see the dotted arrow), flows to the DC load 15, and then flows to the fourth switch SW4 that is turned off (that is, the diode D1), and further to the connection point N2. Flows toward the AC power supply 11. As a result, a current path passing through both the AC power supply 11 and the DC load 15 is formed, and power is supplied to the DC load 15.
  • the current Iswd increases rapidly, and the magnetic energy accumulated in the inductor L before the period Pconv4 causes the current to flow through the switch unit 107 (that is, the DC load 15). Can be seen at once. Since this current flows even when the voltage of the DC load 15 is higher than the voltage of the AC power supply 11, the AC voltage (AC side voltage) output from the AC power supply 11 is boosted. In the period Pconv4, since the voltage Vcm is constant while maintaining the last voltage value of the period Pconv3, it can be seen that the capacitor CM is not discharged while being charged.
  • the period Pconv4 is a period until the current Iswd and the current Isw1 become zero.
  • the OFF signal is supplied to the second switch SW2 and the third switch SW3, and both switches are OFF (see also FIG. 8). That is, all of the first to fourth switches SW1 to SW4 remain off.
  • the current from the AC power supply 11 flows through the filter 103 and returns to the AC power supply 11 as shown in FIG. That is, the AC power supply 11 and the filter 103 constitute a closed series circuit.
  • the current Iswd and the current Isw1 are 0 A, and no current flows through the switch unit 107 and the first switch SW1.
  • the voltage Vcm of the capacitor CM shows a value as charged, and the capacitor CM is not discharged. Accordingly, it can be seen that in the period Pconv5, the AC power supply 11 and the filter 103 constitute a closed series circuit, and a current flows in the closed series circuit.
  • the period Pconv1 comes again after the period Pconv5. That is, an ON signal is supplied to the second switch SW2 and the third switch SW3, both switches are turned ON, and the capacitor CM starts discharging.
  • the power conversion apparatus 100 uses the magnetic energy accumulated in a predetermined inductor (here, the inductor L) to exchange the AC power from the AC power supply 11.
  • the electric power is converted into DC power and supplied to the DC load 15.
  • the MERS 105 performs the above-described operation (rectification operation) using magnetic energy accumulated in a predetermined inductor (in this case, the inductor L) under the control of the control unit 110 as an operation for performing this conversion. Will do.
  • the AC voltage (AC side voltage) from the AC power supply 11 is also boosted by the voltage across the charged capacitor CM and the magnetic energy.
  • FIGS. 9 to 11 are diagrams illustrating simulation results in the first conversion operation. The conditions of each element are the same as in FIG.
  • FIG. 9 shows the voltage Vsw3 across the third switch SW3, the voltage Vcm across the capacitor CM, the current Isw3 flowing through the third switch SW3, the current Ilac flowing through the inductor L, It is a figure which shows the waveform of 2 control signals and a 3rd control signal.
  • FIG. 10 shows the voltage Vsw1 across the first switch SW1, the voltage Vcm across the capacitor CM, the current Isw1 flowing through the first switch SW1, the current Ilac flowing through the inductor L during the period when the AC side voltage is positive, It is a figure which shows the waveform of 2 control signals and a 3rd control signal.
  • FIG. 11 shows the voltage Vswd across the switch unit 107, the voltage Vcm across the capacitor CM, the current Iswd flowing through the switch unit 107, the current Ilac flowing through the inductor L, and the second control, during the period when the AC side voltage is positive. It is a figure which shows the waveform of a signal and a 3rd control signal.
  • any one of the switch unit 107, the first switch SW1, and the third switch SW3 is switched by zero voltage switching or zero current switching (soft switching). Note that this soft switching is performed also for the second switch SW2 and the fourth switch SW4, and is performed in the same way even when the AC side voltage is negative.
  • soft switching is realized in the first to fourth switches SW1 to SW4 and the switch unit 107 of the MERS 105 during the first conversion operation. Conversion loss and burden on each element are reduced.
  • the control unit 110 determines the duty ratio of the ON signal of the first control signal for the negative period of the AC side voltage and the duty ratio of the ON signal of the second control signal for the positive period within each period.
  • the AC side voltage is changed according to the phase of the AC side voltage.
  • the control unit 110 may change the duty ratio of the two ON signals according to the phase of the AC side voltage.
  • the duty ratio of the ON signal is the ON signal period / OFF signal in a period (one cycle) from the ON signal switching timing of the control signal in which the ON signal and the OFF signal are alternately switched to the next ON signal switching timing. It is obtained in the ON signal period (one cycle).
  • the duty ratio of the ON signal is also substantially the ON duty ratio of the reverse conducting switch.
  • the ON duty ratio of the reverse conduction type switch is the ON period / OFF period in the period (one cycle) from the ON timing to the next ON timing in the period when the ON / OFF state of the reverse conduction switch is switched. It is obtained by the period and the ON period (one cycle).
  • the control unit 110 maximizes the duty ratio of the ON signal (ON duty ratio of the reverse conduction switch) at the zero crossing of the AC side voltage, and gradually increases from there. Decrease, minimize the positive or negative peak of the AC side voltage, gradually increase from there, and maximize at the zero crossing of the AC side voltage.
  • the control unit 110 changes the duty ratio of the ON signal as represented by the following Expression 1.
  • Equation 1 “d” is the duty ratio of the ON signal, and “Iac” is a command value (for example, the input unit 115) of the effective current value of the alternating current flowing in the element on the alternating current power supply 11 side such as the inductor L.
  • “Lac” is the inductance of the inductor L
  • “fsw” is the switching frequency of the first switch SW1 and the like.
  • “Vac” is a voltage value of the AC side voltage.
  • Vdc is a voltage value of a DC voltage (DC side voltage) applied to the DC input / output unit 102.
  • “ ⁇ ” is the phase angle of the input voltage input to the AC input / output unit 101 and changes from moment to moment.
  • the duty ratio d of the ON signal changes according to the change in the phase angle ⁇ . Further, when “Iac” is changed, the duty ratio “d” at that time also changes, and accordingly, the amount of power converted per unit time at that time also changes. Therefore, by changing “Iac”, the amount of power converted per unit time is adjusted, or by changing the duty ratio “d”, the amount of power converted per unit time is adjusted. You can also
  • the control unit 110 stores a table indicating the relationship between the duty ratio d of the ON signal satisfying the above Equation 1 and the phase angle ⁇ in the ROM 113, and the phase angle ⁇ based on the voltage value supplied from the voltmeter 117.
  • This table based on the specified phase angle ⁇ , and obtaining the duty ratio d of the corresponding on signal, and outputting the control signal of the obtained duty ratio d of the on signal.
  • the duty ratio d of the ON signal is controlled.
  • the control unit 110 may control the duty ratio d of the ON signal based on the phase angle ⁇ according to the above formula included in the program.
  • at least one of “Vac” and “Vdc” may be designated from the outside, for example, input via the input unit 115, or measured with a voltmeter or ammeter provided in the circuit. It may be a value.
  • the AC side current (here, from the AC power supply 11 to the terminal side directly connected to the connection point N5 in the first input / output unit 101)
  • the waveform of the flowing current which is a positive current flowing from the AC power supply 11 toward the connection point N5
  • approaches an ideal sine wave waveform see the input current in the upper graph of FIG. 12.
  • the distortion of the AC side current is reduced, and it is possible to solve problems such as legal restrictions and adverse effects on other devices.
  • the DC side voltage in the upper graph of FIG. 12 is fixed by the smoothing capacitor Cs.
  • the lower graph of FIG. 12 is a graph in which the duty ratio of the first control signal and the duty ratio of the second control signal are continuously connected (the same applies to FIGS. 13 and 26).
  • Duty ratio control 2 Although the distortion of the AC side current is reduced by the duty ratio control 1, the AC side current still contains not a few harmonic components at the time of the zero crossing of the AC side current in FIG. Yes. In order to reduce this harmonic component, the duty ratio of the ON signal may be changed as follows.
  • the control unit 110 changes the duty ratio of the ON signal (switch ON duty ratio) as shown in the lower graph of FIG. That is, the control unit 110 minimizes the duty ratio of the ON signal at the zero crossing of the AC side voltage, gradually increases and then decreases the AC side voltage, and minimizes the positive or negative peak time of the AC side voltage. The value is gradually increased and then gradually decreased, and is minimized at the zero crossing of the AC side voltage.
  • the minimum value of the duty ratio is set to be equal to or more than a value corresponding to a period during which all the electrostatic energy stored in the capacitor CM can be discharged (period during which discharge can be completed) in the period Pconv1 (see FIG. 14).
  • FIG. 14 shows the change in the duty ratio of the ON signal in FIG. 13 in detail.
  • a specific control method is the same as the duty ratio control 1 of the ON signal.
  • the harmonic component of the input current is further removed compared to the duty ratio control 1, and the input current is more ideal.
  • the power factor of the power supplied from the AC power supply 11 to the power conversion device 100 is also improved compared to the duty ratio control 1.
  • the efficiency of the upstream transformer is improved.
  • the upper graph of FIG. 13 shows the relationship between the AC side current, the AC side voltage, and the DC side voltage when the duty ratio is controlled as in the lower graph of FIG.
  • the circuit constant is the same as above, for example.
  • (Second conversion operation) For example, as in the first conversion operation, in a state where a commercial power source is connected to the AC input / output unit 101 and a rechargeable battery is connected to the DC input / output unit 102, the user can supply the power charged in the charging battery to the outside. If the user wants to supply power (for example, wants to sell power to an electric power company), the user performs an operation for instructing the power conversion device 100 to perform the second conversion operation (for example, switching the switch of the input unit 105). This is performed for the input unit 105. The input unit 105 supplies an operation signal corresponding to this operation to the control unit 110.
  • control unit 110 controls the MERS 105 and the switch unit 107 so that the power conversion device 100 performs the second conversion operation (second conversion control).
  • the commercial power source corresponds to the AC load 13 and the rechargeable battery corresponds to the DC power source 17.
  • the control unit 110 detects the positive / negative of the AC side voltage based on the voltage value supplied from the voltmeter 117, and determines the positive side of the AC side voltage based on the detected positive / negative of the AC side voltage.
  • a fourth control signal is supplied to each of the first switch SW1 and the fourth switch SW4, which are reverse conducting switches constituting the third group corresponding to the period, and corresponds to the negative period of the AC side voltage.
  • the fifth control signal is supplied to each of the second switch SW2 and the third switch SW3, which are the reverse conducting switches constituting the fourth group. Further, the control unit 110 supplies a sixth control signal to the switch unit 107.
  • the control unit 110 may supply the fourth to sixth control signals having the preset contents.
  • the fourth control signal is a control signal in which the ON signal and the OFF signal are alternately switched during the positive period of the AC side voltage and becomes the OFF signal during the negative period.
  • the fifth control signal is a control signal that becomes an off signal when the AC side voltage is negative, and the on signal and the off signal are switched during the negative period.
  • the sixth control signal is a control signal in which an ON signal and an OFF signal are alternately switched as shown in FIG.
  • the switching timing from the off signal to the on signal in the sixth control signal is the same as the switching timing in the fourth control signal and the fifth control signal, and the on signal to the off signal in the sixth control signal.
  • the switching timing to is before the switching timing in the fourth control signal and the fifth control signal (see FIG. 15).
  • the switching frequency in the fourth control signal and the fifth control signal is, for example, 20 kHz.
  • the switching frequency is larger than the frequency of the AC side voltage (the AC voltage of the AC power supply 11).
  • the on / off of the second switch SW2 and the on / off of the third switch SW3 are switched at the same timing. Furthermore, on / off of the second switch SW2 and on / off of the third switch SW3 are switched at the same timing. Further, the on / off of the switch unit 107 is switched according to the on / off of each reverse conduction type switch. By such switching, the MERS 105 performs an inverter operation for converting the DC power from the DC power source 17 into AC power and supplying the AC power to the AC load 17.
  • FIG. 22 shows the waveform simulation results of the voltage Vcm across the capacitor CM, the current Iswd flowing through the switch unit 107, the current Ilac flowing through the inductor L, and the fourth control signal in the periods Pinv1 to Pinv5.
  • the circuit constants were set to the following values.
  • ⁇ Capacitor CM 0.066 ⁇ F Smoothing capacitor Cs: None (to treat the DC load 15 as a pure voltage source)
  • ⁇ Inductor L 200 ⁇ H ⁇ AC side voltage: 200Vrms, 50Hz
  • Switching frequency 20 kHz ⁇ Voltage across DC load: 380V ⁇
  • Inductor of filter 103 400 ⁇ H -Filter 103 capacitor: 2.2 ⁇ H
  • the value of the current Iswd is positive (plus) when the current flows in the reverse direction of the diode DD of the switch unit 107.
  • the value of the current Ilac when the current flows from the connection point N1 toward the filter 103 is negative (minus).
  • an on signal is supplied to the first switch SW1 and the fourth switch SW4 (see also FIG. 22), both switches are turned on, and an on signal is also supplied to the switch unit 107 to be turned on.
  • the current flows from the DC power source 17, is smoothed by the smoothing capacitor Cs, and flows through the switch part 107 (switching element SD) that is turned on.
  • the inductor L, the filter 103, and the AC It flows to the connection point N2 through the load 13. Thereafter, the current flows from the connection point N2 to the fourth switch SW4 (switching element S4) that is turned on, and then flows toward the DC power supply 15. That is, in this period Pinv1, the capacitor CM is not discharged.
  • the current Iswd gradually increases, the amount of current flowing through the switch unit 107 increases, the current Ilac also gradually increases in the negative direction, and the amount of current flowing through the inductor L also increases. It has increased. Also, it can be seen that the voltage Vcm does not change and the capacitor CM remains charged.
  • the on signal remains supplied to the first switch SW1 and the fourth switch SW4 (see also FIG. 22), but the off signal is supplied to the switch unit 107, and the switch unit 107 is turned off. That is, the switch unit 107 is turned off earlier than the first switch SW1 and the fourth switch SW4.
  • the current from the DC power supply 17 cannot flow through the switch unit 107 that is off. For this reason, the capacitor CM is discharged during this period Pinv2. Therefore, as shown in FIG. 17, the current flows through the connection point N3 and the first switch SW1 (switching element S1) that is turned on, flows from the connection point N1 through the inductor L, and the like, and flows toward the AC load 13.
  • the current flowing through the AC load 13 flows from the connection point N2 to the fourth switch SW4 (switching element S4) that is turned on, flows to the connection point N4, and flows toward the capacitor CM.
  • the switch unit 107 is turned off before the first switch SW1 or the like, subsequent soft switching is realized (details will be described later).
  • the electrostatic energy accumulated in the capacitor CM is released by the discharge of the capacitor CM.
  • the period Pinv2 is a period until the discharge of the capacitor CM is completed.
  • the current Iswd is 0 A immediately after the start of the period Pinv2, and it can be seen that the current does not suddenly flow through the switch unit 107. Further, in the period Pinv2, it can be seen that the voltage Vcm of the capacitor CM is gradually decreased, and the capacitor CM is discharged. Further, it can be seen that the current Ilac decreases in accordance with the discharge of the capacitor CM, and the amount of current flowing through the inductor L (absolute value of the current value) starts to decrease.
  • the first switch SW1 and the fourth switch SW4 remain on (see also FIG. 22), and the switch unit 107 also remains off, but the discharge of the capacitor CM is finished. Therefore, current flows through a path different from the period Pinv2. Specifically, the current flows from the AC load 13 to the connection point N2 and branches as shown in FIG. One of the branched currents flows through the second switch SW3 (diode D3) that is off, flows through the connection point N3, the first switch SW1 (switching element S1) that is on, and flows through the connection point N1. .
  • the other of the branched currents flows through the fourth switch SW4 (switching element S4) that is turned on, the connection point N4, and the third switch SW3 (diode D3) that is turned off, and flows to the connection point N1.
  • Both currents flowing through the connection point N1 merge and flow toward the AC load 13 via the inductor L and the like.
  • FIG. 22 since the current flowing through the inductor L at the end of the period Pinv2 is not 0 A, magnetic energy is accumulated in the inductor L, and the inductor L tries to flow current by this magnetic energy. Current flow occurs.
  • the period Pinv3 is a short time. That is, the way of current flow as shown in FIG. 18 is only in a short time. That is, magnetic energy remains in the inductor L.
  • an off signal is supplied to the first switch SW1 and the fourth switch SW4, and both switches are turned off (see also FIG. 22).
  • the period starting after turning off is the period Pinv4.
  • the switch unit 107 remains off.
  • current tends to flow in the circuit due to the magnetic energy remaining in the inductor L.
  • the first switch SW1 and the fourth switch SW4 are turned off and no current flows in these switches, the current is The capacitor CM flows and the capacitor CM is charged. As shown in FIG. 19, the current from the AC load 13 flows from the AC load 13 side through the connection point N2, the second switch SW2 (diode D2) that is turned off, and the connection point N3, and charges the capacitor CM.
  • the current flows from the connection point N4 to the switch SW3 that is turned off (flows through the diode D3 and flows from the connection point N1 to the inductor L).
  • the capacitor CM is charged, the magnetic energy generated in the inductor L is accumulated in the capacitor CM as electrostatic energy.
  • the period Pinv4 is a period until the charging of the capacitor CM is completed.
  • the current Iswd is 0 A, and it can be seen that no current flows through the switch unit 107.
  • the amount of the current Ilac decreases toward 0 A, it can be seen that the current gradually stops flowing through the inductor L.
  • the voltage Vcm is rising. For this reason, it can be seen that the capacitor CM is charged. While no current flows through the inductor L, the capacitor CM is charged, so that it can be seen that the magnetic energy stored in the inductor L is stored in the capacitor CM as electrostatic energy.
  • the capacitor CM is charged up to the voltage of the DC power supply 17, so that the capacitor CM is not short-circuited by the DC power supply 17 in the period Pinv1.
  • the OFF signal is supplied to the first switch SW1 and the fourth switch SW4, and both switches are OFF (see also FIG. 22). That is, all of the first to fourth switches SW1 to SW4 remain off together with the switch unit 107. Since the charging of the capacitor CM is completed and the switch unit 105 remains off, a current flows even in the period Pinv5. Specifically, as shown in FIG. 20, the current from the AC load 13 flows through the second switch SW2 (diode D2) that is off from the connection point N2, and flows through the switch unit 107 (diode DD) that is off. Smoothed by the smoothing capacitor Cs and flows backward to the DC power source 17. Further, the backflow current from the DC power source 17 flows through the connection point N4, flows through the third switch SW3 (diode D3) that is turned off, and the connection point N1, and flows to the AC load 13 through the inductor L and the filter 103.
  • the OFF signal is supplied to the first switch SW1 and the fourth switch SW4, and both switches are OFF (see also FIG. 22). That is, all of the first to fourth switches SW1 to SW4 remain off together with the switch unit 107.
  • the current from the AC load 13 flows through the filter 103 and returns to the AC load 13 as shown in FIG. That is, the AC power supply 11 and the filter 103 constitute a closed series circuit.
  • the period Pinv1 comes again after the period Pinv6. That is, an ON signal is supplied to the first switch SW1, the fourth switch SW4, and the switch unit 107, both switches and the switch unit 107 are turned on, and the magnetic energy of the inductor L (a part of the magnetic energy stored by the inductor L). ) Starts to discharge.
  • the power conversion device 100 uses the magnetic energy stored in a predetermined inductor (here, the inductor L) to generate a direct current from the direct current power source 17.
  • the electric power is converted into AC power and supplied to the AC load 13.
  • MERS105 performs said operation
  • FIGS. 23 to 25 are diagrams illustrating simulation results in the first conversion operation. The conditions of each element are the same as in FIG.
  • FIG. 23 shows the voltage Vsw4 across the fourth switch SW4, the voltage Vcm across the capacitor CM, the current Isw3 flowing through the third switch SW4, and the inductor L applied to the AC input / output unit 101 during the positive period. It is a figure which shows the waveform of the electric current Ilac which flows in, a 1st control signal, and a 3rd control signal.
  • FIG. 24 shows the voltage Vsw2 across the second switch SW2, the voltage Vcm across the capacitor CM, the current Isw2 flowing through the second switch SW2, and the inductor L applied to the AC input / output unit 101 during the positive period. It is a figure which shows the waveform of the electric current Ilac which flows in, a 1st control signal, and a 3rd control signal.
  • FIG. 25 shows the voltage Vswd between both ends of the switch unit 107, the voltage Vcm between both ends of the capacitor CM, the current Iswd flowing through the switch unit 107, the current Ilac flowing through the inductor L, and the second control during the period in which the AC side voltage is positive. It is a figure which shows the waveform of a signal and a 3rd control signal.
  • the control unit 110 may supply only the ON signal as the sixth control signal to the switch unit 107 and keep the switch unit 107 ON. Even in this case, conversion of DC power to AC power is realized.
  • the sixth control signal is a control signal in which the ON signal and the OFF signal are alternately switched, and the switching timing from the ON signal to the OFF signal in the sixth control signal is set to the fourth control signal and the fifth control signal.
  • the MERS 105 By making the timing before the switching timing from the ON signal to the OFF signal in the control signal, that is, when the switch unit 107 is turned off before the first to fourth switches SW1 to SW4 of the MERS 105 are turned off, the MERS 105 The first to fourth switches SW1 to SW4 can be soft-switched.
  • control unit 110 determines the duty ratio of the ON signal of the fourth control signal for the positive period of the AC side voltage and the duty ratio of the ON signal of the fifth control signal for the negative period within each period. It is good to change according to the phase of AC side voltage (that is, for every half cycle of AC side voltage). See above for a description of the on signal duty ratio.
  • the control unit 110 minimizes the duty ratio of the ON signal (ON duty ratio of the reverse conduction switch) at the zero crossing of the AC side voltage, and gradually increases from there. Increase, maximize the positive or negative peak of the AC side voltage, decrease gradually from there, and minimize at the zero crossing of the AC side voltage.
  • the control unit 110 changes the duty ratio of the ON signal as represented by the following Expression 2.
  • each symbol of Formula 2 is the same as each symbol of Formula 1, description thereof is omitted. Further, the duty ratio of the ON signal is controlled by the control unit 110 in the same manner as described above.
  • the AC side current (here, from the AC power supply 11 to the terminal side directly connected to the connection point N5 in the first input / output unit 101)
  • the waveform of the flowing current which is a positive current flowing from the AC load 13 toward the connection point N5
  • the phase of the AC side current and the phase of the AC side voltage are shifted by 180 degrees. This is due to the positive and negative AC side current. It can be seen that the electric power is supplied to the AC load 13 because the phase is shifted by 180 degrees.
  • the DC side voltage in the upper graph of FIG. 26 is the output voltage of the DC power supply 15 and is therefore constant.
  • the upper graph in FIG. 26 shows the relationship between the AC side current, the AC side voltage, and the DC side voltage when the duty ratio is controlled as in the lower stage of FIG.
  • the circuit constant is the same as above, for example.
  • the power factor of the power supplied to the AC load 13 is also improved, and is 1 here. Thereby, unnecessary reactive power that can be supplied from the AC system on the AC load 13 side (commercial power supply side) can be eliminated or reduced.
  • the MERS 105 only needs to be able to use the magnetic energy accumulated in the inductor, for example, by accumulating and discharging the magnetic energy generated in the inductor as electrostatic energy in the capacitor CM in the inverter operation. Therefore, the inductor may be an inductor inside or outside the circuit including the MERS 105 of the power conversion device 100. For example, the inductor may be a stray inductance that exists between the filter 103 and the MERS 105.
  • Two inductors L may be provided.
  • the inductors L1 and L2 may be connected to the MERS 105 in parallel.
  • the inductor L1 is connected to the connection point N1
  • the inductor L2 is connected to the connection point N2.
  • the MERS 105 uses magnetic energy generated in the inductors L1 and L2.
  • the switch unit 107 may be provided in another place.
  • the switch unit 107 is arranged in the direction in which the anode of the diode DD is connected to the MERS 105 (connection point N4) in the middle of the wiring L1 (see FIG. 1) (between the MERS 105 and the DC input / output unit 102). It may be connected to the DC input / output unit 102.
  • the control unit 110 may be included in an appropriate control device that controls the MERS 105 and the switch unit 107.
  • the power conversion device 100 is a control device separately provided outside the power conversion device 100 without including the control unit 110, and includes a control unit that performs the same processing as the control unit 110. It may be controlled.
  • the program for executing the above processing is assumed to be stored from the beginning in a predetermined computer readable storage medium (in the above, RAM 112 and ROM 113 constituting the storage unit).
  • the programs for executing the above processing are flexible disk, CD-R (Compact Disc Recordable), CD-ROM (Compact It may be distributed by storing in a portable computer-readable storage medium such as Disk Read Only Memory.
  • the program for executing the above processing may be supplied to the computer via the Internet or the like so that the computer may be the power conversion device 100.
  • the program for executing the above process may be a program for executing the above process in cooperation with an OS (Operating System) or the like.
  • the dv / dt of the common mode voltage can be reduced by providing the inductor L divided into alternating current poles.
  • the dv / dt of the common mode voltage can be reduced by dividing the inductor in the filter 103 into both AC poles.
  • the dv / dt of the common mode voltage can be reduced by appropriately controlling the switch unit 107 by inserting the switching elements SD1 and SD2 into both poles on the DC side.
  • the zero cross detector 217 is used instead of the voltmeter 117 to determine whether the AC voltage output from the AC power supply 11 is positive or negative.
  • the zero cross detector 217 includes, for example, a voltage dividing circuit and a comparator connected to both ends of the AC power supply 11, and determines the zero cross of the voltage by checking the positive / negative of the AC voltage divided by the voltage dividing circuit. Based on positive / negative determined by the zero cross detector 217, the control unit 110 outputs a gate signal to each unit.
  • Modification 7 Applied control in rectification operation
  • the following applied control may be performed instead of the control performed in the first conversion operation.
  • the AC side is an AC power source 11 such as a commercial power source
  • the DC side is a DC power source 17 such as a secondary battery that is higher than the peak voltage of the AC power source 11.
  • the switch unit 107 is turned on simultaneously with the turning on of the second and third switches SW2, SW3 or the first and fourth switches SW1, SW4, and the second and third switches.
  • the switch unit 107 is turned off before the switches SW2 and SW3 or the first and fourth switches SW1 and SW4 are turned off.
  • the pair of switches SW1 to SW4 corresponding to the positive and negative of the AC power supply is opposite to the first conversion operation. That is, on / off of the first group and the second group is controlled. More precisely, as shown in FIG. 29, the aforementioned fourth control signal is supplied to the second and third switches, and the aforementioned fifth control signal is supplied to the first and fourth switches (the aforementioned first control signal). Can be supplied to the first and fourth switches, and the second control signal can be supplied to the second and third switches).
  • the second and third switches SW2 and SW3 and the switch unit 107 are turned on / off when the output voltage of the AC power supply 11 is positive, and the first and fourth switches SW1 and SW4 are turned on when the output voltage of the AC power supply 11 is negative.
  • the switch unit 107 is turned on / off.
  • the switching timing from the off signal to the on signal in the sixth control signal is the same as the switching timing in the fourth control signal and the fifth control signal, as in the inverter operation described above, and the sixth The switching timing from the ON signal to the OFF signal in the control signal is before the switching timing in the fourth control signal and the fifth control signal.
  • the duty ratio d (rec) of the fourth and fifth control signals is given by, for example, an expression represented by Expression 3 below.
  • This formula is only the inversion of + and-in the absolute value of Vac in Formula 2. That is, the control method is substantially the same as the above-described second conversion operation, except that the AC power supply 11 is opposite to the positive and negative. The current path and the like are the same except that the polarity of the output voltage of the AC power supply is reversed in the second conversion operation.
  • the circuit operates in the order of the following steps.
  • the first switch SW1 is the third switch SW3, the second switch SW2 is the fourth switch SW4, the third switch SW3 is the first switch SW1, and the fourth switch SW4 is the second switch SW1.
  • the second switch SW2 is the third switch SW3 is the first switch SW1, and the fourth switch SW4 is the second switch SW1.
  • (2 switch SW2, AC load 13 is replaced with AC power supply 11)
  • Step (a) (Reference: Fig. 16).
  • the second and third switches SW2 and SW3 and the switch unit 107 are turned on. Other switches are kept off.
  • a current flows from the DC power supply 17 to the AC power supply 11 via the second switch SW2.
  • Inductor L stores the electric power supplied from DC power supply 17 and AC power supply 11 as magnetic energy.
  • Step (b) (Reference: FIG. 17).
  • the switch unit 107 is turned off. Other switches are kept in state. Then, a current flows from the AC power supply 11 through a path for discharging the capacitor CM.
  • Step (c) (Reference: FIG. 18). As soon as the discharge of the capacitor CM is completed, a current flows from the AC power source to the inductor L through a path that flows in parallel between a path that flows through the first and second switches SW1 and SW2 and a path that flows through the third and fourth switches SW3 and SW4. Is supplied.
  • Step (d) (Reference: FIG. 19).
  • Step (e) (Reference: FIG. 20).
  • Step (f) (Reference: FIG. 21).
  • step (a) to (f) are repeated while the output voltage of the AC power supply 11 is positive.
  • the output voltage of the AC power supply 11 is negative
  • the control of the second and third switches SW2 and SW3 and the control of the first and fourth switches SW1 and SW4 in step (a) -step (f) are switched.
  • this control performs a rectification operation.
  • the switch unit 107 In the first conversion operation described above, the switch unit 107 is always off. However, in this control, the switch unit 107 is not always off. Similarly to the second conversion operation, the switch unit 107 is turned on simultaneously with the turning on of the second and third switches SW2, SW3 or the first and fourth switches SW1, SW4, and the second and third switches SW2, SW3 or first The switch unit 107 is turned off before the fourth switches SW1 and SW4 are turned off.
  • the waveform of the simulation result is shown in FIG.
  • the duty ratio of the ON signal is the minimum at the zero crossing of the AC side voltage, gradually increases and then gradually decreases, and reaches the minimum value at the positive or negative peak of the AC side voltage. Become. From there, it gradually increases and then gradually decreases, and becomes the minimum at the zero crossing of the AC side voltage.
  • the first conversion operation since the capacitor CM starts discharging immediately after the second and third switches SW2 and SW3 or the first and fourth switches SW1 and SW4 are turned on, the current is near the zero cross of the output voltage of the AC power supply 11. The waveform was distorted.
  • this rectification operation since the current flows in step (a) before the capacitor CM is discharged, the current disturbance is reduced as shown in FIG.
  • the capacitor CM is discharged when the fourth and fifth control signals are on and the sixth control signal is off. Therefore, it is preferable that the time difference in switching timing is longer than the discharge time of the capacitor CM.
  • the control of the second conversion operation and the application control are substantially the same control. Therefore, in the power conversion device 100, when the above-described second conversion operation is employed as the inverter operation and this application control is employed as the rectification operation, the consistency between the inverter operation and the rectification operation is high.
  • Modification 8 Second Conversion Operation and Application Control 1 of Modification 7
  • the discharge time of the capacitor CM is characterized in that the vicinity of the zero cross is longer than the vicinity of the peak.
  • the capacitor discharges during the period in which the first to fourth switches SW1 to SW4 corresponding to the positive and negative of the AC power supply 11 are on and the switch unit 107 is off, so that this period is matched with the capacitor CM discharge time. You may adjust it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

 スイッチ部(107)は、整流動作においてMERS(105)と直流入出力部(102)との間に流れる電流の向きとダイオード(DD)の順方向とが同じ向きになる向きで、直流入出力部(102)とMERS(105)とに接続されている。MERS(105)は、交流電圧の正負に対応して、オン・オフが切り替わる。スイッチ部(107)は、MERS(105)がオンである期間のうちの少なくとも一部の期間において、オンになる。

Description

電力変換装置、制御方法、及び、プログラム
 本発明は、電力変換装置、制御方法、及び、プログラムに関するものである。
 上記電力変換装置として、例えば、フルブリッジ型の磁気エネルギー回生スイッチを用いたものがある(例えば、特許文献1)。
特許第4534007号公報
 しかし、特許文献1記載の電力変換装置は、AC/DC整流回路であり、直流電力を交流電力に変換することが出来なかった。ここで、磁気エネルギー回生スイッチを用い、直流電力を交流電力に変換する従来技術も存在するが、従来は、同じ磁気エネルギー回生スイッチを用いて、直流電力を交流電力に変換することと、交流電力を直流電力に変換することとを択一的に行うことが難しかった。
 なお、磁気エネルギー回生スイッチを用いて、直流電力を交流電力に変換するにしても、磁気エネルギー回生スイッチを用いて、交流電力を直流電力に変換するにしても、変換後の電力の電流の歪みの少ない変換を行うことが望ましい。
 本発明は、上記点に鑑みてなされたものであり、その目的は、磁気エネルギー回生スイッチを用いた直流電力の交流電力への変換または交流電力の直流電力への変換であって、変換元または変換後の交流電力の電流の歪みの少ない変換を行うことが出来る電力変換装置、制御方法、及び、プログラムを提供することにある。
 また、直流電力の交流電力への変換と、交流電力の直流電力への変換と、を同じ磁気エネルギー回生スイッチを用いて択一的に行うことが出来る電力変換装置、制御方法、及び、プログラムを提供することを他の目的とする。
 上記目的を達成するため、本発明の第1の観点に係る電力変換装置は、
 交流電力が入力または出力される交流端子と、
 直流電力が出力または入力される直流端子と、
 オンのときに両方向に導通状態になり、オフのときに一方向に導通するスイッチ部と、
 一端が前記交流端子に接続され、他端が前記スイッチ部を介して前記直流端子に接続され、所定のインダクタに蓄積された磁気エネルギーを利用して、前記交流端子に入力された前記交流電力を前記直流電力に変換して前記直流端子から出力するための整流動作または前記直流端子に入力された前記直流電力を前記交流電力に変換して前記交流端子から出力するためのインバータ動作を行う磁気エネルギー回生スイッチと、を備え、
 前記スイッチ部は、前記磁気エネルギー回生スイッチから前記直流端子へ供給される電力を常に導通する向きに、前記直流端子と前記磁気エネルギー回生スイッチとの間に接続され、
 前記磁気エネルギー回生スイッチは、オンのときに両方向に導通状態になり、オフのときに一方向に導通する複数の逆導通型スイッチを備え、前記複数の逆導通型スイッチが、前記交流電力の電圧の正負に対応するグループ毎に、前記交流電力の電圧の周波数よりも高い周波数でオンとオフとが切り替わり、
 前記スイッチ部は、前記グループ毎に切り替わるオンの期間の一部の期間にオンになる、
 ことを特徴とする。
 上記目的を達成するため、本発明の第2の観点に係る制御方法は、
 交流電力が入力または出力される交流端子と、
 直流電力が出力または入力される直流端子と、
 オンのときに両方向に導通状態になり、オフのときに一方向に導通するスイッチ部と、
 一端が前記交流端子に接続され、他端が前記スイッチ部を介して前記直流端子に接続され、所定のインダクタに蓄積された磁気エネルギーを利用して、前記交流端子に入力された前記交流電力を前記直流電力に変換して前記直流端子から出力するための整流動作または前記直流端子に入力された前記直流電力を前記交流電力に変換して前記交流端子から出力するためのインバータ動作を行う磁気エネルギー回生スイッチと、を備え、
 前記スイッチ部は、前記磁気エネルギー回生スイッチから前記直流端子へ供給される電力を常に導通する向きに、前記直流端子と前記磁気エネルギー回生スイッチとの間に接続され、
 前記磁気エネルギー回生スイッチは、オンのときに両方向に導通状態になり、オフのときに一方向に導通する複数の逆導通型スイッチを備える電力変換装置を制御する制御方法であって、
 前記複数の逆導通型スイッチを、前記交流電力の電圧の正負に対応するグループ毎に、前記交流電力の電圧の周波数よりも高い周波数でオンとオフとが切り替え、かつ、前記スイッチ部を、前記グループ毎に切り替わるオンの期間の少なくとも一部の期間にオンにするステップを含む、
 ことを特徴とする。
 上記目的を達成するため、本発明の第3の観点に係るプログラムは、
 交流電力が入力または出力される交流端子と、
 直流電力が出力または入力される直流端子と、
 オンのときに両方向に導通状態になり、オフのときに一方向に導通するスイッチ部と、
 一端が前記交流端子に接続され、他端が前記スイッチ部を介して前記直流端子に接続され、所定のインダクタに蓄積された磁気エネルギーを利用して、前記交流端子に入力された前記交流電力を前記直流電力に変換して前記直流端子から出力するための整流動作または前記直流端子に入力された前記直流電力を前記交流電力に変換して前記交流端子から出力するためのインバータ動作を行う磁気エネルギー回生スイッチと、を備え、
 前記スイッチ部は、前記磁気エネルギー回生スイッチから前記直流端子へ供給される電力を常に導通する向きに、前記直流端子と前記磁気エネルギー回生スイッチとの間に接続され、
 前記磁気エネルギー回生スイッチは、オンのときに両方向に導通状態になり、オフのときに一方向に導通する複数の逆導通型スイッチを備える電力変換装置を制御する電力変換装置を制御するコンピュータに、
 前記複数の逆導通型スイッチを、前記交流電力の電圧の正負に対応するグループ毎に、前記交流電力の電圧の周波数よりも高い周波数でオンとオフとが切り替え、かつ、前記スイッチ部を、前記グループ毎に切り替わるオンの期間の少なくとも一部の期間にオンにする制御を行わせる、
 ことを特徴とする。
 本発明にかかる第1から第3の観点に係る電力変換装置、制御方法、及び、プログラムによれば、磁気エネルギー回生スイッチを用いた直流電力の交流電力への変換または交流電力の直流電力への変換であって、変換元または変換後の交流電力の電流の歪みの少ない変換を行うことが出来る。
 また、直流電力の交流電力への変換と、交流電力の直流電力への変換と、を同じ磁気エネルギー回生スイッチを用いて択一的に行うことが出来る。
本発明の一実施形態に係る電力変換装置の回路構成などを示す図である。 図1のMERSに入力される電圧と、図1のMERS及びスイッチ部にそれぞれ供給される制御信号との関係を示す図である。 図1の電力変換装置内の回路に流れる主な電流の経路(第1変換動作時)を示す図である。 図1の電力変換装置内の回路に流れる主な電流の経路(第1変換動作時)を示す図である。 図1の電力変換装置内の回路に流れる主な電流の経路(第1変換動作時)を示す図である。 図1の電力変換装置内の回路に流れる主な電流の経路(第1変換動作時)を示す図である。 図1の電力変換装置内の回路に流れる主な電流の経路(第1変換動作時)を示す図である。 図1の電力変換装置における電流、電圧、制御信号の波形(第1変換動作時)を示す図である。 図1の電力変換装置における電流、電圧、制御信号の波形(第1変換動作時)を示す図である。 図1の電力変換装置における電流、電圧、制御信号の波形(第1変換動作時)を示す図である。 図1の電力変換装置における電流、電圧、制御信号の波形(第1変換動作時)を示す図である。 デューティ比の制御を説明するための図である。 デューティ比の制御を説明するための図である。 デューティ比の制御を説明するための図である。 図1のMERSから出力される電圧と、図1のMERS及びスイッチ部にそれぞれ供給される制御信号との関係を示す図である。 図1の電力変換装置内の回路に流れる主な電流の経路(第2変換動作時)を示す図である。 図1の電力変換装置内の回路に流れる主な電流の経路(第2変換動作時)を示す図である。 図1の電力変換装置内の回路に流れる主な電流の経路(第2変換動作時)を示す図である。 図1の電力変換装置内の回路に流れる主な電流の経路(第2変換動作時)を示す図である。 図1の電力変換装置内の回路に流れる主な電流の経路(第2変換動作時)を示す図である。 図1の電力変換装置内の回路に流れる主な電流の経路(第2変換動作時)を示す図である。 図1の電力変換装置における電流、電圧、制御信号の波形(第1変換動作時)を示す図である。 図1の電力変換装置における電流、電圧、制御信号の波形(第1変換動作時)を示す図である。 図1の電力変換装置における電流、電圧、制御信号の波形(第1変換動作時)を示す図である。 図1の電力変換装置における電流、電圧、制御信号の波形(第1変換動作時)を示す図である。 デューティ比の制御を説明するための図である。 図1の電力変換装置の変形例の回路構成などを示す図である。 図1の電力変換装置の変形例の回路構成などを示す図である。 図28のMERSから出力される電圧と、図28のMERS及びスイッチ部にそれぞれ供給される制御信号との関係を示す図である。 図28の電力変換装置におけるデューティ比の制御を説明するための図である。
 本発明の一実施形態に係る電力変換装置を、図面を参照して説明する。本発明の一実施形態に係る電力変換装置100は、交流電力(交流電流)を直流電力(直流電流)に変換(整流変換)することも出来、また、直流電力(直流電流)を交流電力(交流電流)に変換(インバータ変換)することも出来る。つまり、電力変換装置100は、整流変換とインバータ変換とのうちのいずれかを択一的に行うことができる。
(電力変換装置100の構成)
 電力変換装置100は、図1に示すように、交流入出力部101、直流入出力部102、フィルタ103、インダクタL、磁気エネルギー回生スイッチ(以下、MERSという。)105、スイッチ部107、平滑キャパシタCs、制御部110、入力部115、電圧計117を備える。
 交流入出力部101は、外部と接続される一対の端子からなり、交流電源11(例えば、商用電源)又は交流負荷13(例えば、交流モータ)のいずれかに接続され、交流電力が入出力される。交流入出力部101は、交流電力が入出力されるものであれば、その具体的構成はどのようなものであってもよい。
 直流入出力部102は、外部と接続される一対の端子からなり、直流負荷15(例えば、直流モータ)又は直流電源17のいずれかに接続され、直流電力が入出力される。なお、直流電源17は、例えば、電池、直流電圧源などである。直流入出力部102は、直流電力が入出力されるものであれば、その具体的構成はどのようなものであってもよい。
 フィルタ103は、交流入出力部101に接続されている。フィルタ103は、キャパシタ、インダクタ等の組み合わせからなるローパスフィルタなどである。
 インダクタLは、チョークコイル等からなり、インダクタLの一端は、フィルタ103に接続され、他端はMERS105に接続されている。
 MERS105は、接続点N1乃至N4と、第1乃至第4スイッチSW1乃至SW4と、キャパシタCMと、を備える。MERS105は、対角に位置する第1スイッチSW1と第4スイッチSW4とが第1のグループを構成し、対角に位置する第2スイッチSW2と第3スイッチSW3とが第2のグループを構成する、フルブリッジ型のMERSである。MERS105は、縦ハーフ型のもであってもよい。この場合には、MERSは、第2スイッチSW2と第4スイッチSW4とが無く、第1及び第3スイッチSW1乃至SW3と、キャパシタCMと、ダイオードなどを備える。このとき、第1のグループは、第1スイッチSW1のみによって構成され、第2のグループは、第3スイッチSW3のみによって構成される(つまり、グループは、1つの逆導通型スイッチから構成されてもよい)。
 接続点N1には、インダクタLの他端が接続され、これによって、交流入出力部101の一方の端子に接続されている。接続点N2は、フィルタ103に接続され、これによって、交流入出力部101の他方の端子に接続されている。本実施形態では、このような構成よって、接続点N1と接続点N2とがMERS105の一端を形成し、この一端は交流入出力部101に接続さている。接続点N3は、スイッチ部107を介して、直流入出力部102のプラス端子に接続されている。接続点N4は、直流入出力部102のマイナス端子に接続されている。本実施形態では、このような構成によって、接続点N3と接続点N4とがMERS105の他端を形成し、この他端は直流入出力部102に接続さている。
 なお、上記で例示しているように、二つの構成要素(例えば、交流入出力部101とMERS105)が他の構成要素(例えば、インダクタL、フィルタ103など)を介して接続されていても、単に、「二つの構成要素が接続されている」と表現することがある。つまり、本発明において、接続とは、二つの構成要素を直接接続する他、他の構成要素を介して接続する場合(つまり、間接的に接続する場合)も含む。
 第1スイッチSW1は、並列に接続された(等価回路的に並列に接続されている場合も含む)、スイッチング素子S1とダイオードD1とから構成されている逆導通型のスイッチである。第1スイッチSW1は、例えば、ダイオード素子とスイッチング素子(例えば、IGBT(Insulated Gate Bipolar Transistor)など)とを並列に接続した複数の素子から構成されている。なお、第1スイッチSW1は、例えば、Nチャンネル型シリコンMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)等の逆導通型半導体スイッチであってもよい。この場合、スイッチング素子S1は、例えば、Nチャンネル型シリコンMOSFETの自己消弧型素子の部分から構成されており、ダイオードD1は、Nチャンネル型シリコンMOSFETの寄生ダイオードの部分から構成される。
 スイッチング素子S1は、ゲート(制御端子)G1を備える。ゲートG1には、制御部110から制御信号(ゲート信号)、つまり、オン信号又はオフ信号のいずれかが供給される。
 スイッチング素子S1は、ゲートG1に制御信号のうちのオン信号が供給されるとオンする。スイッチング素子S1のオンは、第1スイッチSW1のオンでもある。スイッチング素子S1は、オンによって、導通状態になり、ダイオードD1の両端を短絡させる。つまり、第1スイッチSW1は、オン信号が供給されてオンしたときに、導通状態になる。
 また、スイッチング素子S1は、ゲートG1に制御信号のうちのオフ信号が供給されるとオフする。スイッチング素子S1のオフは、第1スイッチSW1のオフでもある。スイッチング素子S1は、オフによって、非導通状態になる。つまり、第1スイッチSW1は、オフ信号が供給されてオフしたときに、ダイオードD1として機能する。
 第2乃至第4スイッチSW2乃至SW4は、それぞれが、第1スイッチSW1と同じ構成である。スイッチング素子S2乃至S4のそれぞれは、スイッチング素子S1に対応し、ゲートG2乃至G4のそれぞれは、ゲートG1に対応し、ダイオードD2乃至D4のそれぞれは、ダイオードD1に対応する。そして、第2乃至第4スイッチSW2乃至SW4は、それぞれ、第1スイッチSW1と同様に、制御信号のうちのオン信号の供給によってオンしたときに導通状態になり、制御信号のうちのオフ信号の供給によってオフしたときにダイオードとして機能する。
 第1スイッチSW1は、ダイオードD1のアノードが接続点N1に接続され、カソードが接続点N3に接続される向きで、接続点N1と接続点N3との間に接続されている。
 第2スイッチSW2は、ダイオードD2の、アノードがN2に接続され、カソードが接続点N3に接続される向きで、接続点N2と接続点N3との間に接続されている。
 第3スイッチSW3は、ダイオードD3の、アノードが接続点N4に接続され、カソードがN1に接続される向きで、接続点N4と接続点N1との間に接続されている。
 第4スイッチSW4は、ダイオードD4の、アノードが接続点N4に接続され、カソードが接続点N2に接続される向きで、接続点N4と接続点N3との間に接続されている。
 キャパシタCMは、一端(正極側)が接続点N3に接続され、他端(負極側)が接続点N4に接続されている。
 スイッチ部107は、MERS105と直流入出力部102との間に位置し、MERS105(接続点N3)と直流入出力部102とに接続されている。
 スイッチ部107は、スイッチング素子SDと、ダイオードDDとを含む逆導通型スイッチによって構成されている。逆導通型スイッチの構成等は、MERS105に使用されている第1スイッチSW1等と同じであるので、詳細な説明は省略する。スイッチング素子SDは、スイッチング素子S1に対応し、ゲートGDは、ゲートG1に対応し、ダイオードDDは、ダイオードD1に対応する。ゲートGDには、制御部110が接続され、制御部110から制御信号、つまり、オン信号又はオフ信号のいずれかが供給される。スイッチ部107は、第1スイッチSW1と同様に、制御信号のうちのオン信号の供給によってオンしたときに導通状態になり、制御信号のうちのオフ信号の供給によってオフしたときにダイオードDDとして機能する。
 スイッチ部107は、ダイオードDDのアノードがMERS105(接続点N3)に接続される向きで、MERS105と直流入出力部102とに接続されている。つまり、スイッチ部107は、直流入出力部102から直流電力を出力する場合(整流変換が行われる場合)に、MERS105と直流入出力部102との間に流れる電流の向きとダイオードDDの順方向とが同じ向きになる向きで直流入出力部102とMERS105とに接続されている。
 平滑キャパシタCsは、一端(正極側)がスイッチ部107の他方に接続され、他端が接続点N4に接続されている。また、平滑キャパシタCsは、その両端が直流入出力部102に接続されており、MERS105から見て、キャパシタCMは、直流電源15又は直流負荷17と並列に接続される。
 制御部110は、MERS105を制御するとともに、スイッチ部107のオンとオフとを切り替える制御を行う。制御部110は、後述の処理を行うことが可能な所定の回路等によって構成される。
 例えば、制御部110は、CPU(Central Processing Unit)111と、RAM(Random Access Memory)112と、ROM(Read Only
Memory)113と、入出力部114と、を備える。本実実施形態では、RAM112及びROM113によって、制御部110の記憶部が構成されているが、この記憶部は、他の記憶装置を含んで構成されてもよい。また、記憶部は、制御部110の外部にあってもよい。さらに、制御部110の少なくとも一部は、CPU111が行う下記処理の少なくとも一部を実行する専用回路(ASIC(Application Specific Integrated Circuit)など)によって構成されてもよい。
 CPU111は、ROM113が記憶するプログラムに従って、制御部110が行う下記処理を実行する。RAM112は、CPU111のメインメモリとして機能する。ROM113は、プログラムや、下記処理中にCPU111に使用される各種データを記憶する。CPU111は、下記処理を、ROM113が記憶するデータを適宜用いて行うものとする。入出力部114は、各種ポートから構成される。制御部110に入出力される制御信号、各種データ等は、入出力部114を介して、CPU111に入出力される。
 制御部110は、MERS105の第1乃至第4スイッチSW1乃至SW4それぞれのゲートG1乃至G4に接続されている。制御部110は、ゲートG1乃至G4それぞれに制御信号を供給し、第1乃至第4スイッチSW1乃至SW4それぞれのオンとオフとを切り替えることによって、MERS105を制御する。つまり、このようにして、制御部110は、第1乃至第4スイッチSW1乃至SW4それぞれを制御し、第1乃至第4スイッチSW1乃至SW4それぞれのオンとオフとを切り替えることができる。
 制御部110は、スイッチ部107のゲートGDにも接続されている。制御部110は、ゲートGDにも制御信号を供給し、スイッチ部107のオンとオフとを切り替える。
 入力部115は、ユーザからの操作を受け付け、受け付けた操作に応じた操作信号を制御部110に供給する。制御部110は、入力部115から供給される操作信号に応じて、MERS105の制御内容及びスイッチ部107の制御内容を変更する。
 電圧計117は、接続点N5及びN6を介して、交流入出力部101に接続され、交流入出力部101に印加される電圧(つまり、交流電源11(または、下記の、商用電源などの交流電力が供給されることが可能な交流電源によって構成される交流負荷13)から交流入出力部101に入力される交流電圧又は交流入出力部101から交流負荷13(例えば、交流モータなど)に印加される交流電圧であり、以下AC側電圧という。)の電圧値を検出して、検出した電圧値を制御部110に供給する。なお、AC側電圧は、接続点N6よりも接続点N5の方が高電位のときを正とする。
 なお、交流電源11と交流負荷13とは、同じものであってもよい。この場合、交流電源11と交流負荷13とは、例えば、商用電源などの、交流電力が供給されることが可能な交流電源(交流電圧源)によって構成される。例えば、直流負荷15と直流電源17とは、同じものであってもよい。この場合、直流負荷15と直流電源17とは、例えば、充電電池などの、直流電力が供給されることが可能な直流電源によって構成される。
(電力変換装置100の動作)
 交流入出力部101に交流電源11が接続され、直流入出力部102に直流負荷15が接続されている場合、電力変換装置100は、交流電源11からの交流電力を直流電力に変換し、変換した直流電力を直流負荷12に供給する第1変換動作を行う。この変換は、MERS105の動作によって行われる。そして、この変換では、所定のインダクタ(ここでは、インダクタL)に蓄積される磁気エネルギーを利用して行われる。
 交流入出力部101に交流負荷13が接続され、直流入出力部102に直流電源17が接続されている場合、電力変換装置100は、直流電源17からの直流電力を交流電力に変換し、変換した交流電力を交流負荷13に供給する第2変換動作を行う。この変換は、MERS105の動作によって行われる。そして、この変換では、所定のインダクタ(ここでは、インダクタL)に蓄積される磁気エネルギーを利用して行われる。
(第1変換動作)
 例えば、交流入出力部101に商用電源が接続され、直流入出力部102に充電電池が接続されている状態で、ユーザが充電電池を充電したいと思った場合、このユーザは、電力変換装置100に第1変換動作を行わせる指示の操作(例えば、入力部105のスイッチの切り替え)を入力部105に対して行う。入力部105は、この操作に応じた操作信号を制御部110に供給する。制御部110は、この操作信号が供給されると、電力変換装置100が第1変換動作を行うように、MERS105及びスイッチ部107を制御する(第1変換制御)。なお、上記例では、商用電源が交流電源11に該当し、充電電池が直流負荷15に該当する。
 制御部110は、第1変換制御において、電圧計117から供給される電圧値に基づいて、AC側電圧の正負を検出し、検出したAC側電圧の正負に基づいて、AC側電圧の負の期間に対応した第1のグループを構成する逆導通型スイッチである、第1スイッチSW1と第4スイッチSW4とのそれぞれに、第1制御信号を供給し、AC側電圧の正の期間に対応した第2のグループを構成する逆導通型スイッチである、第2スイッチSW2と第3スイッチSW3とのそれぞれに、第2制御信号を供給する。さらに、制御部110は、スイッチ部107に第3制御信号を供給する。
 第1制御信号は、図2のように、前記で検出したAC側電圧が正の期間では、オフ信号になり、負の期間では、オン信号とオフ信号とが交互に入れ替わる制御信号である。
 第2制御信号は、図2のように、前記で検出したAC側電圧が正の期間では、オン信号とオフ信号とが交互に入れ替わり、負の期間では、オフ信号になる制御信号である。
 第3制御信号は、図2のように、オフ信号の制御信号である。
 なお、図2のように、AC側電圧の周波数が、50Hz(商用電源における周波数。60Hzなどであってもよい。)である場合、第1制御信号及び第2制御信号におけるオンとオフとの切り替わりの周波数(オン信号とオフ信号が交互に存在する期間のオフ信号からオン信号への切り替わりタイミングの周波数)は、例えば、20kHzとする。このように、第1制御信号及び第2制御信号におけるオフ信号からオン信号への切り替わりの周波数は、AC側電圧の周波数よりも大きい。なお、オフ信号からオン信号への切り替わりの周波数は、実質的に逆導通型スイッチ(又はスイッチ部107)のスイッチング周波数(オンとオフとが交互に切り替わる期間のオフからオンへの切り替わりタイミングの周波数)と同じであるので、以下では、まとめてスイッチング周波数という。
 上記制御部110の第1変換制御によって、AC側電圧が正のときには、第2スイッチSW2のオン・オフと第3スイッチSW3のオン・オフとが同じタイミングで切り替わる。さらに、AC側電圧が負のときには、第2スイッチSW2のオン・オフと第3スイッチSW3のオン・オフとが同じタイミングで切り替わる。このような切り替わりによって、MERS105は、交流電源11からの交流電力を直流電力に変換して直流負荷15に供給するための整流動作を行うことになる。また、スイッチ部107は常時オフになる。
(第1変換動作における電流の流れなど)
 第1電力変換時において、電力変換装置100内に流れる主な電流の流れを、図3から図7を参照して説明する。ここでは、第1乃至第4スイッチSW1乃至SW4が全てオフの状態で、かつ、キャパシタCMが充電された状態からの電流の流れについて説明する。なお、以下では、AC側電圧が正の期間中において連続して経過する期間Pconv1から期間Pconv5についてのみ説明するが、AC側電圧が負の期間における電流の流れについても、同様の考え方で説明できる。この場合、交流電源11から流れる電流の方向は逆になり、オンとオフが切り替わる逆導通型スイッチも変更されるが、直流負荷15に流れる電流の向きは同じになる。つまり、直流負荷15には、直流電力が供給されることになる。
 また、期間Pconv1乃至5における期間の、キャパシタCMの両端間の電圧Vcm、スイッチ部107に流れる電流Iswd、第1スイッチSW1に流れる電流Isw1、第2制御信号の波形シミュレーション結果を図8に示す。なお、このシミュレーションにおいては、回路定数を以下のような値にした。
・キャパシタCM:0.066μF
・平滑キャパシタCs:なし(直流負荷15を純粋電圧源として扱うため)
・インダクタL:200μH
・AC側電圧:200Vrms、50Hz
・スイッチング周波数:20kHz
・直流負荷の両端間の電圧:380V
・フィルタ103のインダクタ:400μH
・フィルタ103のコンデンサ:2.2μH
 なお、電流Iswdの値は、スイッチ部107のダイオードDDの順方向に電流が流れた場合の値を負(マイナス)としている。電流Isw1は、第1スイッチSW1のダイオードD1の順方向に電流が流れた場合の値を負(マイナス)としている。
 期間Pconv1では、第2スイッチSW2及び第3スイッチSW3にオン信号が供給され、両スイッチがオンする(図8も参照)。期間Pconv1では、図3に示すように、キャパシタCMが放電する。このため、電流は、キャパシタCMから、接続点N3に流れ、さらに、オンしている第2スイッチSW2(スイッチング素子S2)に流れ、接続点N2から交流電源11に向かって流れる。さらに電流は、フィルタ103、インダクタLを流れ、接続点N1、オンしている第3スイッチSW3(スイッチング素子S3)に流れ、接続点N4からキャパシタCMに向かって流れる。期間Pconv1は、キャパシタCMが放電を開始してから完了するまでの期間に該当する。
 図8のように、期間Pconv1では、電流Iswd、電流Isw1は0Aであり、スイッチ部107及び第1スイッチSW1には電流が流れていないことが分かる。また、期間Pconv1では、キャパシタCMの電圧Vcmが徐々に減っており、キャパシタCMは放電していることが分かる。
 期間Pconv1に続いて、期間Pconv2でも、第2スイッチSW2及び第3スイッチSW3にはオン信号が供給されたままである(図8も参照)。つまり、両スイッチはオンのままである。この期間Pconv2では、交流電源11からの電流は、図4のように、インダクタLから、接続点N1に流れ、接続点N1で分岐する。分岐した電流のうちの一方の電流は、オフしている第1スイッチSW1(つまり、ダイオードD1)を通り、接続点N3、オンしている第2スイッチSW2(つまり、スイッチング素子S2)、接続点N2に流れる。分岐した電流のうちの他方の電流は、オンしている第3スイッチSW3(つまり、スイッチング素子S3)を通り、接続点N3、オフしている第4スイッチSW4(つまり、ダイオードD4)、接続点N2に流れる。接続点N2に流れる両電流は、合流し、交流電源11に向かって流れる。
 図8のように、期間Pconv2では、電流Iswdは、0Aであり、スイッチ部107には電流が流れていないことが分かる。また、期間Pconv2では、キャパシタCMの電圧Vcmが略0Vであり、キャパシタCMの放電が完了したまま充電されていないことが分かる。また、電流Isw1は、マイナス方向に増加しており、第1スイッチSW1のダイオードD1に順方向の電流が流れていることが分かる。
 期間Pconv2の後の期間Pconv3において、第2スイッチSW2及び第3スイッチSW3にオフ信号が供給され、両スイッチはオフになる(図8も参照)。つまり、期間Pconv3では、第1乃至第4スイッチSW1乃至SW4全てがオフである。この期間Pconv3では、交流電源11からの電流は、図5のように、交流電源11からインダクタL、接続点N1に流れ、オフしている第1スイッチSW1(つまり、ダイオードD1)を通り、接続点N3に流れる。電流は、その後、接続点N3からキャパシタCMを介して、接続点N4に流れ、その後、オフしている第4スイッチSW4(つまり、ダイオードD4)、接続点N2に流れ、交流電源11に向かって流れる。このような電流の流れによって、キャパシタCMは充電される。期間Pconv3は、キャパシタCMの充電が開始されて終了するまでの期間になっている。
 図8のように、期間Pconv3では、電流Iswdは、0Aであり、スイッチ部107には電流が流れていないことが分かる。また、期間Pconv3では、電圧Vcmが上昇しており、キャパシタCMが充電されていることが分かる。また、電流Isw1は、マイナスの電流値を示し、第1スイッチSW1のダイオードD1に順方向の電流が流れていることが分かる。
 期間Pconv3後の期間Pconv4においても、第2スイッチSW2及び第3スイッチSW3にオフ信号が供給され、両スイッチはオフになっている(図8も参照)。つまり、第1乃至第4スイッチSW1乃至SW4全てがオフになったままになっている。期間Pconv4では、交流電源11からの電流は、キャパシタCMの方向に流れず、図6のように、インダクタLから、接続点N1に流れ、オフしている第1スイッチSW1(つまり、ダイオードD1)を通り、接続点N3、オフしているスイッチ部107(つまり、ダイオードDD)を流れる。そして、電流は、平滑キャパシタCsで平滑化されて(点線矢印参照)、直流負荷15に流れ、その後、オフしている第4スイッチSW4(つまり、ダイオードD1)に流れ、さらに、接続点N2に流れ、交流電源11に向かって流れる。これによって、交流電源11と直流負荷15をいずれも通る電流経路が形成されて、直流負荷15に電力が供給されることになる。
 図8のように、期間Pconv4の開始直後では、電流Iswdは急激に増加しており、期間Pconv4前までにインダクタLに蓄積された磁気エネルギーによって、スイッチ部107(つまり、直流負荷15)に電流が一気に流れ込んでいるのが分かる。この電流は交流電源11の電圧より直流負荷15の電圧が高い場合でも流れるため、交流電源11が出力する交流電圧(AC側電圧)は昇圧されていることになる。また、期間Pconv4では、電圧Vcmが期間Pconv3の最後の電圧値を維持して一定になっているので、キャパシタCMが充電されたまま放電されていないことが分かる。電流Iswd及び電流Isw1は、期間Pconv4において、マイナスの電圧値が徐々に0に近づいており、電流が徐々に流れなくなっていることが分かる。これは、インダクタLの磁気エネルギーが徐々に減少することに起因している。期間Pconv4は、電流Iswd及び電流Isw1が0になるまでの期間である。
 期間Pconv4後の期間Pconv5においても、第2スイッチSW2及び第3スイッチSW3にオフ信号が供給され、両スイッチはオフになっている(図8も参照)。つまり、第1乃至第4スイッチSW1乃至SW4全てがオフになったままになっている。期間Pconv5では、交流電源11からの電流は、図7のように、フィルタ103を流れ、交流電源11に戻る。つまり、交流電源11とフィルタ103とが閉直列回路を構成している。
 図8のように、期間Pconv5では、電流Iswd、電流Isw1は0Aであり、スイッチ部107及び第1スイッチSW1には電流が流れていないことが分かる。また、期間Pconv1では、キャパシタCMの電圧Vcmが充電されたままの値を示し、キャパシタCMは放電していない。これによって、期間Pconv5では、交流電源11とフィルタ103とが閉直列回路を構成し、その閉直列回路内に電流が流れていることが分かる。
 AC側電圧が正の期間においては、期間Pconv5の後、再び期間Pconv1が到来することになる。つまり、第2スイッチSW2及び第3スイッチSW3にオン信号が供給され、両スイッチがオンし、キャパシタCMが放電を開始する。
 以上のような一連の期間Pconv1乃至conv5などが繰り返されることよって、電力変換装置100は、所定のインダクタ(ここでは、インダクタL)に蓄積される磁気エネルギーを利用して、交流電源11からの交流電力を直流電力に変換して、直流負荷15に供給する。そして、MERS105は、この変換をするための動作として、制御部110の制御のもと、所定のインダクタ(ここでは、インダクタL)に蓄積される磁気エネルギーを利用した上記の動作(整流動作)を行うことになる。なお、充電されたキャパシタCMの両端の電圧及び磁気エネルギーによって、交流電源11からの交流電圧(AC側電圧)は昇圧もされている。
(第1変換動作におけるソフトスイッチング)
 上記第1変換動作では、MERS105の第1乃至第4スイッチSW1乃至SW4と、スイッチ部107とは、ソフトスイッチングが実現されている。この点を図9乃至11を参照して説明する。図9乃至11は、第1変換動作におけるシミュレーション結果を示す図である。各素子の条件などは、図8のときと同様である。
 図9は、AC側電圧が正の期間における、第3スイッチSW3の両端間の電圧Vsw3、キャパシタCMの両端間の電圧Vcm、第3スイッチSW3に流れる電流Isw3、インダクタLに流れる電流Ilac、第2制御信号、第3制御信号の波形を示す図である。
 図10は、AC側電圧が正の期間における、第1スイッチSW1の両端間の電圧Vsw1、キャパシタCMの両端間の電圧Vcm、第1スイッチSW1に流れる電流Isw1、インダクタLに流れる電流Ilac、第2制御信号、第3制御信号の波形を示す図である。
 図11は、AC側電圧が正の期間における、スイッチ部107の両端間の電圧Vswd、キャパシタCMの両端間の電圧Vcm、スイッチ部107に流れる電流Iswd、インダクタLに流れる電流Ilac、第2制御信号、第3制御信号の波形を示す図である。
 図9乃至図11を参照すると、スイッチ部107、第1スイッチSW1、第3スイッチSW3いずれにおいても、ゼロ電圧スイッチングまたはゼロ電流スイッチングによってスイッチングされることがわかる(ソフトスイッチング)。なお、このソフトスイッチングは、第2スイッチSW2、第4スイッチSW4についても行われるし、AC側電圧が負の期間においても同様に行われる。
 このように、本実施形態に係る電力変換装置100では、第1変換動作時において、MERS105の第1乃至第4スイッチSW1乃至SW4及びスイッチ部107でのソフトスイッチングが実現されているため、電力の変換損失、各素子への負担が少なくなっている。
(デューティ比の制御1)
 なお、制御部110は、AC側電圧の負の期間についての第1制御信号のオン信号のデューティ比と、正の期間についての第2制御信号のオン信号のデューティ比とを、各期間内において(つまり、AC側電圧の半周期毎に)、AC側電圧の位相に応じて変化させる。例えば、制御部110は、AC側電圧の位相に応じて、前記二つのオン信号のデューティ比を変化させるとよい。オン信号のデューティ比は、オン信号とオフ信号とが交互にある制御信号のオン信号の切り替わりタイミングから次のオン信号の切り替わりタイミングまでの期間(1周期)における、オン信号の期間/オフ信号及びオン信号の期間(1周期)で求まる。なお、オン信号のデューティ比は、実質的に、逆導通型スイッチのオンのデューティ比でもある。逆導通型スイッチのオンのデューティ比は、逆導通型スイッチのオン・オフが切り替わっている期間において、オンするタイミングから次のオンするタイミングまでの期間(1周期)における、オンの期間/オフの期間及びオンの期間(1周期)で求まる。
 例えば、制御部110は、図12の下段のグラフのように、オン信号のデューティ比(逆導通型スイッチのオンのデューティ比)を、AC側電圧のゼロ交差時に最大にして、そこから徐々に減少させ、AC側電圧の正又は負のピーク時を最小にし、そこから徐々に増加させ、AC側電圧のゼロ交差時に最大にする。例えば、制御部110は、下記の数式1によって表される式のように、オン信号のデューティ比を変化させる。
Figure JPOXMLDOC01-appb-M000001
 なお、上記数式1において、「d」は、オン信号のデューティ比、「Iac」は、インダクタL等の交流電源11側の素子に流れる交流電流の電流実効値の指令値(例えば、入力部115を介して入力され、制御部110に設定されるなど、外部から指定される所望の値)、「Lac」は、インダクタLのインダクタンス、「fsw」は、第1スイッチSW1等のスイッチング周波数である。「Vac」は、AC側電圧の電圧値である。「Vdc」は、直流入出力部102に印加される直流電圧(DC側電圧)の電圧値である。「θ」は、交流入出力部101に入力される入力電圧の位相角であり時々刻々変化する。例えば、「Iac」を任意の値として設定することによって、オン信号のデューティ比dは、位相角θの変化に従って変化する。また、「Iac」を変化させると、そのときのデューティ比「d」も変化し、これによって、そのときの単位時間あたりに変換される電力量も変化する。よって、「Iac」を変化させることで、単位時間あたりに変換される電力量を調整したり、デューティ比「d」を変化させたりすることで、単位時間あたりに変換される電力量を調整することも出来る。
 制御部110は、例えば、ROM113に、上記数式1を満たすオン信号のデューティ比dと位相角θとの関係を示すテーブルを記憶し、電圧計117から供給される電圧値に基づいて位相角θを特定して、特定した位相角θに基づいて、このテーブルを参照して、対応するオン信号のデューティ比dを取得し、取得したオン信号のデューティ比dの制御信号を出力することによって、オン信号のデューティ比dの制御を行う。また、制御部110は、プログラムに含まれる上記式に従って、位相角θに基づいて、オン信号のデューティ比dの制御を行ってもよい。なお、「Vac」、「Vdc」の少なくともいずれかは、例えば、入力部115を介して入力されるなど、外部から指定されてもよいし、回路内に設けられた電圧計や電流計で測定した値であってもよい。
 このようなオン信号のデューティ比(スイッチのオンのデューティ比)の変化によって、AC側電流(ここでは、第1入出力部101における接続点N5に直接接続されている端子側に交流電源11から流れる電流であり、交流電源11から接続点N5に向かって流れる電流を正とする電流)の波形は、理想的な正弦波の波形に近づく(図12の上段のグラフの入力電流参照)。これによって、AC側電流の歪みなどが少なくなっており、法規制の問題、他の機器への悪影響の問題などを解決する事が出来る。また、図12の上段のグラフのDC側電圧は、平滑キャパシタCsによって一定になっている。図12の上段のグラフは、図12の下段のようにデューティ比の制御を行った場合における、AC側電流、AC側電圧、DC側電圧の関係である。回路定数は、例えば、上記同様。図12の下段のグラフは、第1制御信号のデューティ比と第2制御信号のデューティ比とを連続的に繋げて表したグラフである(図13、図26も同様。)
(デューティ比の制御2)
 なお、上記デューティ比の制御1によって、AC側電流の歪みを少なくしているが、図12における、AC側電流のゼロ交差時において、AC側電流には未だ高調波成分が少なからず含まれている。この高調波成分を少なくするために、オン信号のデューティ比を以下のように変化させてもよい。
 例えば、制御部110は、オン信号のデューティ比(スイッチのオンのデューティ比)を、図13の下段のグラフのように、変化させる。すなわち、制御部110は、オン信号のデューティ比を、AC側電圧のゼロ交差時に最小にして、そこから徐々に増加させてから徐々に減少させ、AC側電圧の正又は負のピーク時を極小値にし、そこから徐々に増加させてから徐々に減少させ、AC側電圧のゼロ交差時に最小にする。なお、デューティ比の最小値は、期間Pconv1においてキャパシタCMに蓄えられた静電エネルギーを全て放出できる期間(放電を完了できる期間)に対応した値以上にする(図14参照)。図14は、図13のオン信号のデューティ比の変化を詳細に示したものである。なお、具体的な制御方法は、オン信号のデューティ比の制御1と同様である。
 上記のように、オン信号のデューティ比(スイッチのオンのデューティ比)を変化させることによって、デューティ比の制御1に比べて、入力電流の高調波成分はさらに除去され、入力電流は、より理想的な正弦波に近づく(図13の上段のグラフ参照)。これによって、入力電流の歪みなどがより少なくなり、法規制の問題、他の機器への悪影響の問題などをより確実に解決出来る。また、デューティ比の制御1よりも、交流電源11が電力変換装置100に供給される電力の力率も良くなっている。また、上流のトランスなどの効率も良くなる。図13の上段のグラフは、図13の下段のグラフのようにデューティ比の制御を行った場合における、AC側電流、AC側電圧、DC側電圧の関係である。回路定数は、例えば、上記同様。
(第2変換動作)
 例えば、第1変換動作と同様に、交流入出力部101に商用電源が接続され、直流入出力部102に充電電池が接続されている状態で、ユーザが、充電電池に充電した電力を外部に供給したい(例えば、電力会社への売電をしたい)と思った場合、このユーザは、電力変換装置100に第2変換動作を行わせる指示の操作(例えば、入力部105のスイッチの切り替え)を入力部105に対して行う。入力部105は、この操作に応じた操作信号を制御部110に供給する。制御部110は、この操作信号が供給されると、電力変換装置100が第2変換動作を行うように、MERS105及びスイッチ部107を制御する(第2変換制御)。なお、上記例では、商用電源が交流負荷13に該当し、充電電池が直流電源17に該当する。
 制御部110は、第2変換制御において、電圧計117から供給される電圧値に基づいて、AC側電圧の正負を検出し、検出したAC側電圧の正負に基づいて、AC側電圧の正の期間に対応した第3のグループを構成する逆導通型スイッチである、第1スイッチSW1と第4スイッチSW4とのそれぞれに、第4制御信号を供給し、AC側電圧の負の期間に対応した第4のグループを構成する逆導通型スイッチである、第2スイッチSW2と第3スイッチSW3とのそれぞれに、第5制御信号を供給する。さらに、制御部110は、スイッチ部107に第6制御信号を供給する。なお、交流負荷13が、上記商用電源などのような電圧源的なもの(交流電力が供給されることが可能な交流電源)でなく、交流モータなどの受動的なものである場合に、AC側電圧の検出は不要であり、制御部110は、予め設定されている内容の第4乃至第6制御信号を供給すればよい。
 第4制御信号は、図15のように、AC側電圧が正の期間に、オン信号とオフ信号とが交互に入れ替わり、負の期間に、オフ信号になる制御信号である。
 第5制御信号は、図15のように、AC側電圧が負の期間に、オフ信号になり、負の期間に、オン信号とオフ信号とが入れ替わる制御信号である。
 第6制御信号は、図15のように、オン信号とオフ信号とが交互に入れ替わる制御信号である。本実施形態において、第6制御信号におけるオフ信号からオン信号への切り替わりタイミングは、第4制御信号及び第5制御信号における切り替わりタイミングと同じであり、かつ、第6制御信号におけるオン信号からオフ信号への切り替わりタイミングは、第4制御信号及び第5制御信号における切り替わりタイミングよりも前である(図15参照)。
 なお、図15のように、AC側電圧の周波数が、50Hz(商用電源における周波数。60Hzであってもよい。)である場合、第4制御信号及び第5制御信号におけるスイッチング周波数は、例えば、20kHzとする。このように、スイッチング周波数は、AC側電圧(交流電源11の交流電圧)の周波数よりも大きい。
 上記制御部110の第2変換制御では、第2スイッチSW2のオン・オフと第3スイッチSW3のオン・オフとが同じタイミングで切り替わる。さらに、第2スイッチSW2のオン・オフと第3スイッチSW3のオン・オフとが同じタイミングで切り替わる。また、上記、各逆導通型スイッチのオン・オフに応じて、スイッチ部107のオン・オフも切り替わる。このような切り替わりによって、MERS105は、直流電源17からの直流電力を交流電力に変換して交流負荷17に供給するためのインバータ動作を行うことになる。
(第2変換動作における電流の流れなど)
 第2電力変換時において、電力変換装置100内に流れる主な電流の流れを、図16から図21を参照して説明する。ここでは、第1乃至第4スイッチSW1乃至SW4が全てオフの状態で、かつ、キャパシタCMが充電された状態からの電流の流れについて説明する。なお、以下では、AC側電圧が正の期間中において連続して経過する期間Pinv1から期間Pinv6についてのみ説明するが、AC側電圧が負の期間における電流の流れについても、同様の考え方で説明できる。この場合、オンとオフが切り替わる逆導通型スイッチも変更され交流負荷13に流れる電流の方向も逆になる。これによって、交流負荷13に交流電力が供給されることになる。
 また、期間Pinv1乃至5における期間の、キャパシタCMの両端間の電圧Vcm、スイッチ部107に流れる電流Iswd、インダクタLに流れる電流Ilac、第4制御信号の波形シミュレーション結果を図22に示す。なお、このシミュレーションにおいては、回路定数を以下のような値にした。
・キャパシタCM:0.066μF
・平滑キャパシタCs:なし(直流負荷15を純粋電圧源として扱うため)
・インダクタL:200μH
・AC側電圧:200Vrms、50Hz
・スイッチング周波数:20kHz
・直流負荷の両端間の電圧:380V
・フィルタ103のインダクタ:400μH
・フィルタ103のコンデンサ:2.2μH
 なお、電流Iswdの値は、スイッチ部107のダイオードDDの逆方向に電流が流れた場合の値を正(プラス)としている。電流Ilacは、接続点N1からフィルタ103に向かって電流が流れた場合の値を負(マイナス)としている。
 期間Pinv1では、第1スイッチSW1及び第4スイッチSW4にオン信号が供給され(図22も参照)、両スイッチがオンするとともに、スイッチ部107にもオン信号が供給されてオンする。期間Pinv1では、電流は、図16に示すように、直流電源17から流れ、平滑キャパシタCsで平滑されて、オンしているスイッチ部107(スイッチング素子SD)を流れ、インダクタL、フィルタ103、交流負荷13を介して、接続点N2に流れる。その後、電流は、接続点N2から、オンしている第4スイッチSW4(スイッチング素子S4)に流れ、直流電源15に向かって流れる。つまり、この期間Pinv1では、キャパシタCMは放充電されていない。
 図22のように、期間Pinv1では、電流Iswdが徐々に増加し、スイッチ部107に流れる電流量が増加しており、電流Ilacも負の方向に徐々に増加し、インダクタLに流れる電流量も増加している。また、電圧Vcmは、変化せず、キャパシタCMは充電されたままであることが分かる。
 期間Pinv1に続いて、期間Pinv2では、第1スイッチSW1及び第4スイッチSW4にはオン信号が供給されたままである(図22も参照)が、スイッチ部107にはオフ信号が供給され、スイッチ部107はオフになる。つまり、第1スイッチSW1及び第4スイッチSW4よりも、スイッチ部107の方が先にオフに切り替わる。この期間Pinv2では、直流電源17からの電流はオフしているスイッチ部107を流れることができない。このため、この期間Pinv2では、キャパシタCMが放電する。このため、電流は、図17のように、接続点N3、オンしている第1スイッチSW1(スイッチング素子S1)に流れ、接続点N1からインダクタLなどを流れ交流負荷13に向かって流れる。交流負荷13を流れた電流は、接続点N2からオンしている第4スイッチSW4(スイッチング素子S4)に流れ、接続点N4に流れ、キャパシタCMに向かって流れる。なお、このように、スイッチ部107が第1スイッチSW1などよりも先にオフすることによって、後のソフトスイッチングが実現される(詳しくは後述)。キャパシタCMの放電によって、キャパシタCMに蓄積された静電エネルギーが放出される。期間Pinv2は、キャパシタCMの放電が終了するまでの期間である。
 図22のように、期間Pinv2では、電流Iswdは、期間Pinv2開始直後から0Aになっており、スイッチ部107には電流が急に流れなくなっていることが分かる。また、期間Pinv2では、キャパシタCMの電圧Vcmが徐々に減少しており、キャパシタCMが放電されていることが分かる。また、電流Ilacは、キャパシタCMの放電に応じて減少しており、インダクタLに流れている電流の量(電流値の絶対値)が減少に転じていることが分かる。
 期間Pinv2の後の期間Pinv3では、第1スイッチSW1及び第4スイッチSW4はオンになったままで(図22も参照)、スイッチ部107もオフになったままであるが、キャパシタCMの放電が終了しているため、期間Pinv2と異なる経路を電流が流れる。具体的には、電流は、図18のように、交流負荷13から、接続点N2に流れて分岐する。分岐した電流のうちの一方の電流は、オフしている第2スイッチSW3(ダイオードD3)を流れ、接続点N3,オンしている第1スイッチSW1(スイッチング素子S1)を流れ接続点N1を流れる。一方、分岐した電流のうちの他方の電流は、オンしている第4スイッチSW4(スイッチング素子S4)、接続点N4、オフしている第3スイッチSW3(ダイオードD3)を流れ、接続点N1に流れる。接続点N1を流れる両電流は、合流してインダクタLなどを介して、交流負荷13に向かって流れる。図22のように、期間Pinv2終了時にインダクタLに流れる電流は0Aになっていないので、インダクタLには磁気エネルギーが蓄積されており、この磁気エネルギーによってインダクタLが電流を流そうとして、図18の電流の流れが生じる。
 図22のように、期間Pinv3では、電圧Vcmが0Vになっており、キャパシタCMが放電を完了していることが分かる。一方で、ここでは、期間Pinv3は、短時間である。つまり、図18のような電流の流れ方は、短期間に過ぎない。つまり、インダクタLには磁気エネルギーが残る。
 キャパシタCMが放電を終了した後の所定のタイミングで、第1スイッチSW1及び第4スイッチSW4にオフ信号が供給され、両スイッチはオフになる(図22も参照)。このオフになってから始まる期間が、期間Pinv4である。なお、スイッチ部107はオフのままである。期間Pinv4では、インダクタLに残っている磁気エネルギーにより、この回路内に電流が流れようとするが、第1スイッチSW1及び第4スイッチSW4がオフし、これらスイッチに電流が流れなくなるので、電流はキャパシタCMに流れるようになり、キャパシタCMが充電されることになる。図19のように、交流負荷13からの電流は、交流負荷13側から接続点N2、オフしている第2スイッチSW2(ダイオードD2)、接続点N3を流れ、キャパシタCMを充電する。さらに、電流は、接続点N4から、オフしているスイッチSW3(ダイオードD3を流れ、接続点N1からインダクタLに流れる)。キャパシタCMが充電されることによって、インダクタLで発生した磁気エネルギーが静電エネルギーとしてキャパシタCMに蓄積される。期間Pinv4は、キャパシタCMの充電が完了するまでの間の期間である。
 図22のように、期間Pinv4では、電流Iswdは0Aであり、スイッチ部107に電流が流れていないことが分かる。また、電流Ilacの量も0Aに向かって減少しているので、インダクタLにも徐々に電流が流れなくなっていることが分かる。一方で、電圧Vcmは、上昇している。このため、キャパシタCMが充電されていることが分かる。インダクタLに電流が流れなくなる一方で、キャパシタCMが充電されていることからも、インダクタLに蓄積された磁気エネルギーが静電エネルギーとしてキャパシタCMに蓄積されていることが分かる。
 この期間で、キャパシタCMが直流電源17の電圧まで充電されるため、期間Pinv1において、直流電源17によってキャパシタCMが短絡されることがない。
 期間Pinv4後の期間Pinv5においても、第1スイッチSW1及び第4スイッチSW4にオフ信号が供給され、両スイッチはオフになっている(図22も参照)。つまり、第1乃至第4スイッチSW1乃至SW4全てがスイッチ部107とともにオフになったままになっている。キャパシタCMの充電が完了しているため、また、スイッチ部105がオフのままであるため、期間Pinv5でも電流は流れる。具体的には図20のように、交流負荷13からの電流は、接続点N2からオフしている第2スイッチSW2(ダイオードD2)を流れ、オフしているスイッチ部107(ダイオードDD)を流れ、平滑キャパシタCsで平滑されて、直流電源17に逆流する。さらに、直流電源17からの逆流電流は、接続点N4を流れ、オフしている第3スイッチSW3(ダイオードD3)、接続点N1を流れ、インダクタL、フィルタ103を介して交流負荷13に流れる。
 図22のように、期間Pinv5では、電流Iswdが負の値をとっているため、スイッチ部107(ダイオードDD)にはダイオードDDの順方向の電流がながれていることが分かる。また、期間Pinv5では、電流Ilacが減少し、期間Pinv5の最後には0Aになっている。つまり、インダクタLに流れる電流は減少して、最終的にはインダクタLに電流が流れなくなる。なお、期間Pinv5は、インダクタLに電流が流れなくなるまでの期間である。また、Vcmは変化していないので、キャパシタCMは充電されたままであることが分かる。
 期間Pinv5後の期間Pinv6においても、第1スイッチSW1及び第4スイッチSW4にオフ信号が供給され、両スイッチはオフになっている(図22も参照)。つまり、第1乃至第4スイッチSW1乃至SW4全てがスイッチ部107とともにオフになったままになっている。期間Pinv6では、交流負荷13からの電流が、図21のように、フィルタ103を流れ、交流負荷13に戻る。つまり、交流電源11とフィルタ103とが閉直列回路を構成している。
 図22のように、期間Pinv6では、電流Iswd、電流Ilacは0Aであり、スイッチ部107及びインダクタLには電流が流れていないことが分かる。また、期間Pconv6では、キャパシタCMの電圧Vcmが充電されたままの値を示し、キャパシタCMは放電していない。このように、期間Pinv6では、交流電源11とフィルタ103とが閉直列回路を構成し、その閉直列回路内に電流が流れていることが分かる。
 交流入出力部101に印加される電圧の正の期間においては、期間Pinv6の後、再び期間Pinv1が到来することになる。つまり、第1スイッチSW1及び第4スイッチSW4と、スイッチ部107とにオン信号が供給され、両スイッチ及びスイッチ部107がオンし、インダクタLの磁気エネルギー(インダクタLが蓄えた磁気エネルギーの一部)を静電エネルギーとして蓄えているキャパシタCMが放電を開始する。
 以上のような一連の期間Pinv1乃至inv6などが繰り返されることよって、電力変換装置100は、所定のインダクタ(ここでは、インダクタL)に蓄積される磁気エネルギーを利用して、直流電源17からの直流電力を交流電力に変換して、交流負荷13に供給する。そして、MERS105は、この変換をするための動作として、制御部110の制御のもと、所定のインダクタ(ここでは、インダクタL)に蓄積される磁気エネルギーを利用した上記の動作(インバータ動作)を行うことになる。
(第2変換動作におけるソフトスイッチング)
 上記第1変換動作では、MERS105の第1乃至第4スイッチSW1乃至SW4と、スイッチ部107とは、ソフトスイッチングが実現されている。この点を図23乃至25を参照して説明する。図23乃至25は、第1変換動作におけるシミュレーション結果を示す図である。各素子の条件などは、図22のときと同様である。
 図23は、交流入出力部101に印加されるが正の期間における、第4スイッチSW4の両端間の電圧Vsw4、キャパシタCMの両端間の電圧Vcm、第3スイッチSW4に流れる電流Isw3、インダクタLに流れる電流Ilac、第1制御信号、第3制御信号の波形を示す図である。
 図24は、交流入出力部101に印加されるが正の期間における、第2スイッチSW2の両端間の電圧Vsw2、キャパシタCMの両端間の電圧Vcm、第2スイッチSW2に流れる電流Isw2、インダクタLに流れる電流Ilac、第1制御信号、第3制御信号の波形を示す図である。
 図25は、AC側電圧が正の期間における、スイッチ部107の両端間の電圧Vswd、キャパシタCMの両端間の電圧Vcm、スイッチ部107に流れる電流Iswd、インダクタLに流れる電流Ilac、第2制御信号、第3制御信号の波形を示す図である。
 図23乃至25を参照すると、スイッチ部107、第2スイッチSW2、第4スイッチSW4いずれにおいても、ゼロ電圧スイッチングまたはゼロ電流スイッチングによってスイッチングされることがわかる(ソフトスイッチング)。また、特に、スイッチ部107のオフのタイミングをMERS105のオンしている逆導通型スイッチよりも早いタイミングでオフにすることにより、キャパシタCMに発生する電圧がゼロとなる状態が発生し、これによってソフトスイッチングが行われることがわかる。またこのときのスイッチ部107のスイッチングもまたソフトスイッチングである。なお、このソフトスイッチングは、第1スイッチSW1、第3スイッチSW3についても行われるし、AC側電圧が負の期間においても同様に行われる。
 このように、本実施形態に係る電力変換装置100では、第2変換動作時においても、MERS105の第1乃至第4スイッチSW1乃至SW4及びスイッチ部107でのソフトスイッチングが実現されているため、電力の変換損失、各素子への負担が少なくなっている。
(第2変換制御の他の例)
 なお、制御部110は、第2変換制御において、第6制御信号としてオン信号のみをスイッチ部107に供給し、スイッチ部107を常時オンにしてもよい。この場合であっても、直流電力を交流電力に変換することは実現される。しかし、上記のように、第6制御信号を、オン信号とオフ信号とが交互に入れ替わる制御信号とし、第6制御信号におけるオン信号からオフ信号への切り替わりタイミングを、第4制御信号及び第5制御信号におけるオン信号からオフ信号への切り替わりタイミングよりも前とすることによって、つまり、スイッチ部107がMERS105の第1乃至第4スイッチSW1乃至SW4がオフになる前にオフになることによって、MERS105の第1乃至第4スイッチSW1乃至SW4について、ソフトスイッチングが可能になる。
(デューティ比の制御)
 なお、制御部110は、AC側電圧の正の期間についての第4制御信号のオン信号のデューティ比と、負の期間についての第5制御信号のオン信号のデューティ比とを、各期間内において(つまり、AC側電圧の半周期毎に)、AC側電圧の位相に応じて変化させるとよい。オン信号のデューティ比の説明は、上記参照。
 例えば、制御部110は、図26の下段のグラフのように、オン信号のデューティ比(逆導通型スイッチのオンのデューティ比)を、AC側電圧のゼロ交差時に最小にして、そこから徐々に増加させ、AC側電圧の正又は負のピーク時を最大にし、そこから徐々に減少させ、AC側電圧のゼロ交差時に最小にする。例えば、制御部110は、下記の数式2によって表される式のように、オン信号のデューティ比を変化させる。
Figure JPOXMLDOC01-appb-M000002
 なお、上記数式2の各記号は、上記数式1の各記号と同じなので、説明を省略する。また、上記と同様にして、制御部110によってオン信号のデューティ比が制御される。
 オン信号のデューティ比(逆導通型スイッチのオンのデューティ比)の変化によって、AC側電流(ここでは、第1入出力部101における接続点N5に直接接続されている端子側に交流電源11から流れる電流であり、交流負荷13から接続点N5に向かって流れる電流を正とする電流)の波形は、理想的な正弦波の波形に近づく(図26の上段のグラフの入力電流参照)。なお、AC側電流の位相とAC側電圧の位相とは180度ずれる。これは、AC側電流の正負の取り方に起因している。位相が180度ずれていることで、電力は交流負荷13に供給されていることが分かる。上記の波形によって、AC側電流の歪みなどが少なくなっており、法規制の問題、他の機器への悪影響の問題などを解決する事が出来る。また、図26の上段のグラフのDC側電圧は、直流電源15の出力電圧であるので、一定になっている。図26の上段のグラフは、図26の下段のようにデューティ比の制御を行った場合における、AC側電流、AC側電圧、DC側電圧の関係である。回路定数は、例えば、上記同様。交流負荷13に供給される電力の力率も改善されており、ここでは1になっている。これによって、交流負荷13側(商用電源側)の交流系統から供給され得る不要な無効電力を無くすか少なくできる。
(まとめ)
 上記のように、本実施形態では、直流電圧の交流電圧への変換と、交流電圧の直流電圧への変換と、を同じ磁気エネルギー回生スイッチを用いて択一的に行うことが出来る。また、回路内の各素子におけるソフトスイッチングなども実現され、かつ、デューティ比の制御によって、電流の歪みも少なくできる。また、デューティ比を調整することで、単位時間あたりの電力の変換量を変化させることもできる。
(変形例等の説明)
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態や変形例は、本発明の実施例を説明するためのものであり、本発明の範囲を限定するものではない。下記に上記実施形態の変形例を例示するが、各変形例は適宜組み合わせることが可能である。
(変形例1)
 MERS105は、特にインバータ動作において、インダクタに発生する磁気エネルギーを静電エネルギーとしてキャパシタCMに蓄積、放出するなどして、インダクタに蓄積される磁気エネルギーを利用できればよい。そのため、そのインダクタは、電源変換装置100のMERS105を含む回路内外のインダクタであってもよい。例えば、インダクタは、フィルタ103とMERS105との間に存在する浮遊インダクタンスであってもよい。
(変形例2)
 また、インダクタLを二つとしてもよい。例えば、図27のように、インダクタL1及びL2をMERS105に並列に接続してもよい。例えば、インダクタL1は接続点N1と接続され、インダクタL2は接続点N2に接続される。この場合MERS105は、インダクタL1及びL2に発生する磁気エネルギーを利用する。
(変形例3)
 また、スイッチ部107は、他の場所に設けられていても良い。例えば、スイッチ部107は、配線L1(図1参照)の途中(MERS105と直流入出力部102との間)に、ダイオードDDのアノードがMERS105(接続点N4)に接続される向きで、MERS105と直流入出力部102とに接続されてもよい。
(変形例4)
 制御部110は、MERS105及びスイッチ部107を制御する適宜の制御装置が備えるものであってもよい。例えば、電力変換装置100は、制御部110を備えずに、電力変換装置100の外部に別途配置された制御装置であって、上記制御部110と同様の処理を行う制御部を備える制御装置によって制御されてもよい。
(変形例5)
 上記処理を実行させるプログラムは、上記実施形態では所定のコンピュータ読み取り可能な記憶媒体(上記では、記憶部を構成するRAM112、ROM113)にはじめから記憶されているものとしている。しかし、上記処理を実行させるプログラムは、フレキシブルディスク、CD-R (Compact Disc Recordable) 、CD-ROM(Compact
Disk Read Only Memory)などの持ち運び可能なコンピュータ読み取り可能な記憶媒体に格納して配布してもよい。また、上記処理を実行させるプログラムは、インターネットなどを介して、コンピュータに供給することによって、コンピュータを上記電力変換装置100としてもよい。また、上記処理を実行させるプログラムは、OS(Operating System)などと協働して上記処理を実行させるプログラムであってもよい。
(変形例6:コモンモード電圧のdv/dtを考慮した派生回路構成)
 コモンモード電圧(交流側が接地されている時の、直流側や半導体素子の対地電圧)の変動が大きい(急峻かつ高周波)場合、漂遊容量を通じて高周波電流が流れ電磁ノイズの原因となる。
 特にトランスレスの太陽光系統連系インバータでは,パネルの対地容量が大きいため問題になりやすい。
 本発明においては、図28に示すように、インダクタLを交流の両極に分割して設けることにより、コモンモード電圧のdv/dtを低減できる。
 同様に、フィルタ103内のインダクタを交流の両極に分割して設けることにより、コモンモード電圧のdv/dtを低減できる。 
 また、スイッチ部107を、スイッチング素子SD1およびSD2をDC側の両極に入れ適切に制御することでもコモンモード電圧のdv/dtを低減できる。前述したインダクタLの分割の組み合わせることにより、コモンモード電圧の変動をほぼゼロにすることが可能である。 
 また、この例では、電圧計117の代わりにゼロクロス検出器217を用いて、交流電源11の出力する交流電圧の正負を判定している。ゼロクロス検出器217は、例えば交流電源11の両端に接続された分圧回路とコンパレータからなり、分圧回路で分圧された交流電圧の正負を調べることで電圧のゼロクロスを判定する。ゼロクロス検出器217の判定する正負にもとづいて制御部110は、ゲート信号を各部へ出力する。
(変形例7:整流動作における応用制御)
 整流動作において、前述の第1変換動作で行った制御の代わりに、次の応用制御を行なってもよい。以下、図1の電力変換装置100において、本応用制御を採用した実施例について説明する。なお、交流側が商用電源などの交流電源11であり、直流側が交流電源11のピーク電圧より高い二次電池などの直流電源17であるとする。
 本応用制御では、前述の第2変換動作と同様に、第2及び第3スイッチSW2,SW3または第1及び第4スイッチSW1,SW4のオンと同時にスイッチ部107をオンし、第2及び第3スイッチSW2,SW3または第1及び第4スイッチSW1,SW4のオフの前にスイッチ部107をオフする。ただし、第1変換動作とは、交流電源の正負に対応するスイッチSW1乃至SW4のペアが逆である。つまり、前述の第1のグループ及び第2のグループのオン・オフが制御される。より正確には、図29に示すように、前述の第4制御信号を第2及び第3スイッチに、前述の第5制御信号を第1及び第4スイッチに供給する(前述の第1制御信号を第1及び第4スイッチに、前述の第2制御信号を第2及び第3スイッチに供給する、ということもできる)。結果、交流電源11の出力電圧が正の時に第2及び第3スイッチSW2,SW3並びにスイッチ部107がオン・オフされ、交流電源11の出力電圧が負の時に第1及び第4スイッチSW1,SW4並びにスイッチ部107をオン・オフされる。
 なお、第6の制御信号に変更はない。
 より正確には、第6制御信号におけるオフ信号からオン信号への切り替わりタイミングは、前述のインバータ動作と同様に、第4制御信号及び第5制御信号における切り替わりタイミングと同じであり、かつ、第6制御信号におけるオン信号からオフ信号への切り替わりタイミングは、第4制御信号及び第5制御信号における切り替わりタイミングよりも前である。
 この場合の第4及び第5制御信号のデューティ比d(rec)は、例えば、下記の数式3によって表される式のように与えられる。
Figure JPOXMLDOC01-appb-M000003
 この式は、数式2のVacの絶対値の+及び-が反転しているだけである。すなわち交流電源11の正負への対応が逆なだけで、前述の第2変換動作と実質的に同じ制御方法である。なお、電流の経路等は、第2変換動作において、交流電源の出力電圧の正負が逆であることを除いて、他は同様である。
 本制御に従い、回路は次のステップの順に動作する。(参考:図16乃至図21,ただし、図中の第1スイッチSW1を第3スイッチSW3,第2スイッチSW2を第4スイッチSW4,第3スイッチSW3を第1スイッチSW1,第4スイッチSW4を第2スイッチSW2,交流負荷13を交流電源11に読み替える)
・交流電源11の出力電圧が正の時
 ステップ(a)(参考:図16).第2及び第3スイッチSW2,SW3並びにスイッチ部107がオンさせる。他のスイッチはオフを保持させる。すると第2スイッチSW2を介して、直流電源17から交流電源11へ電流が流れる。インダクタLには直流電源17及び交流電源11から供給される電力が磁気エネルギーとして蓄積される。
 ステップ(b)(参考:図17).スイッチ部107をオフさせる。他のスイッチは状態を保持される。すると、コンデンサCMが放電する経路で交流電源11から電流が流れる。
 ステップ(c)(参考:図18).コンデンサCMの放電が完了しだい、第1及び第2スイッチSW1,SW2を流れる経路と、第3及び第4スイッチSW3,SW4を流れる経路と、を並列に流れる経路で、交流電源からインダクタLに電流が供給される。
 ステップ(d)(参考:図19).インダクタLを流れる電流によって蓄積される電力が所定の量になったところで第2及び第3スイッチSW2,SW3をオフさせる(実際には第2変換動作と同様に、予め計算されたデューティ比によって交流電圧の位相に応じてオフのタイミングは決定される)。他のスイッチはオフを保持される。すると、インダクタLを介して流れていた電流がコンデンサCMに流れ込む。これにより、コンデンサCMの電圧は上昇する。
 ステップ(e)(参考:図20).コンデンサCMの電圧が直流電源17の電圧になったところで、インダクタLに蓄積されている残りの電力は、直流電源17へ供給される。
 ステップ(f)(参考:図21).インダクタLに蓄積された電力がなくなると、直流電源17へ電流は流れなくなる。なお、この時間の長短によって変換電力量を調整することができる。
 以降交流電源11の出力電圧が正の間、上記ステップ(a)-ステップ(f)を繰り返す。
・交流電源11の出力電圧が負の時
 上記ステップ(a)-ステップ(f)における第2及び第3スイッチSW2,SW3の制御と第1及び第4スイッチSW1,SW4の制御が入れ替わる。
 このより、本制御により、前述の第2変換動作とほぼ同じ経路による電流が流れる。ただし、前述の第2変換動作がインバータ動作であったのに対し、本制御では、整流動作をすることになる。
 また、前述の第1変換動作では、スイッチ部107が常時オフであったが、この制御では、スイッチ部107が常時オフではないことが特徴的である。第2変換動作と同様に、第2及び第3スイッチSW2,SW3または第1及び第4スイッチSW1,SW4のオンと同時にスイッチ部107をオンし、第2及び第3スイッチSW2,SW3または第1及び第4スイッチSW1,SW4のオフの前にスイッチ部107をオフする。
 シミュレーション結果の波形を図30に示す。
 オン信号のデューティ比は、図13と同様に、AC側電圧のゼロ交差時に最小で、そこから徐々に増加してから徐々に減少し、AC側電圧の正又は負のピーク時で極小値になる。そこから徐々に増加してから徐々に減少し、AC側電圧のゼロ交差時に最小になる。
 第1変換動作では、第2及び第3スイッチSW2,SW3または第1及び第4スイッチSW1,SW4をオンした直後からコンデンサCMが放電を開始するため、交流電源11の出力電圧のゼロクロス付近で電流波形が乱れていた。
 他方、この整流動作では、コンデンサCMの放電前に、ステップ(a)で電流を流すため、図30に示すように電流の乱れは少なくなる。
 なお、第4及び第5制御信号がオンで第6制御信号がオフの時に、コンデンサCMが放電をしている。よって、切り替わりのタイミングの時差がコンデンサCMの放電時間より長いことが好ましい。
 前述したように、第2変換動作の制御と、本応用制御とは実質的に同じ制御である。よって、電力変換装置100において、インバータ動作として前述の第2変換動作を、整流動作として本応用制御を採用すると、インバータ動作と整流動作との整合性が高い。
(変形例8:第2変換動作及び変形例7の応用制御1)
 第2変換動作及び変形例7の整流動作において、コンデンサCMの放電時間は、ゼロクロス付近の方が、ピーク付近よりも長い、という特徴がある。コンデンサが放電を行うのは、交流電源11の正負に対応する第1乃至第4スイッチSW1乃至SW4がオンで、スイッチ部107がオフの期間であるので、この期間をコンデンサCM放電時間に合わせるように調整してもよい。
(変形例9:第2変換動作及び変形例7の応用制御2)
 数式2,3において、交流電源11の出力する交流電圧のゼロクロス(θ=0)付近では、コンデンサの放電時間より、交流電源11の正負に対応する第1乃至第4スイッチSW1乃至SW4のオン時間が短くなることがある。そのため、このオン時間をコンデンサCMの放電時間以上に調整してもよい。なお、ゼロクロス付近では電圧・電流共に、電力変換量に比べるとかなり小さい。そのため、この調整をしなくとも、ゼロクロス付近のスイッチング損失はとても小さい。
 本出願は、2011年9月5日に出願された日本国特許出願特願2011-192645に基づく。本明細書に、それらの明細書、請求の範囲、図面全体を参照として取り込むものとする。
11  交流電源
13  交流負荷
15  直流負荷
17  直流電源
100 電力変換装置
101 交流入出力部
102 直流入出力部
103 フィルタ
105 MERS
107 スイッチ部
110 制御部
115 入力部
117 電圧計
SW1 第1スイッチ
SW2 第2スイッチ
SW3 第3スイッチ
SW4 第4スイッチ
CM  キャパシタ
Cs  平滑キャパシタ

Claims (13)

  1.  交流電力が入力または出力される交流端子と、
     直流電力が出力または入力される直流端子と、
     オンのときに両方向に導通状態になり、オフのときに一方向に導通するスイッチ部と、
     一端が前記交流端子に接続され、他端が前記スイッチ部を介して前記直流端子に接続され、所定のインダクタに蓄積された磁気エネルギーを利用して、前記交流端子に入力された前記交流電力を前記直流電力に変換して前記直流端子から出力するための整流動作または前記直流端子に入力された前記直流電力を前記交流電力に変換して前記交流端子から出力するためのインバータ動作を行う磁気エネルギー回生スイッチと、を備え、
     前記スイッチ部は、前記磁気エネルギー回生スイッチから前記直流端子へ供給される電力を常に導通する向きに、前記直流端子と前記磁気エネルギー回生スイッチとの間に接続され、
     前記磁気エネルギー回生スイッチは、オンのときに両方向に導通状態になり、オフのときに一方向に導通する複数の逆導通型スイッチを備え、前記複数の逆導通型スイッチが、前記交流電力の電圧の正負に対応するグループ毎に、前記交流電力の電圧の周波数よりも高い周波数でオンとオフとが切り替わり、
     前記スイッチ部は、前記グループ毎に切り替わるオンの期間の少なくとも一部の期間にオンになる、
     ことを特徴とする電力変換装置。
  2.  前記交流端子は第1及び第2の交流端子を含み、前記交流電力は、前記第1及び第2の交流端子から入力または出力され、
     前記直流端子は第1及び第2の直流端子を含み、前記直流電力は、前記第1及び第2の直流端子から出力または入力され、
     前記複数の逆導通型スイッチは、第1乃至第4の逆導通型スイッチを含み、前記第1の逆導通型スイッチは前記第1の交流端子から第1の直流端子へ常に導通する向きで接続され、前記第2の逆導通型スイッチは前記第2の交流端子から第1の直流端子へ常に導通する向きで接続され、前記第3の逆導通型スイッチは前記第2の直流端子から第1の交流端子へ常に導通する向きで接続され、前記第4の逆導通型スイッチは前記第2の直流端子から第2の交流端子へ常に導通する向きで接続される、
     ことを特徴とする請求項1に記載の電力変換装置。
  3.  前記グループは、前記交流電力の前記第1の交流端子側の電圧が前記第2の交流端子側の電圧に対して負である期間に対応する前記第1と第4の逆導通型スイッチを含む第1グループと、前記交流電力の前記第1の交流端子側の電圧が前記第2の交流端子側の電圧に対して正である期間に対応する前記第2と第3の逆導通型スイッチを含む第2グループと、を含み、
     前記第1及び前記第2グループ毎に、前記交流電力の電圧の周波数よりも高い周波数でオンとオフとが切り替わり、前記スイッチ部が前記第1及び第2グループ毎に切り替わるオンの期間の少なくとも一部の期間にオンになることによって、入力された前記交流電力を前記直流電力に変換して出力する、
     ことを特徴とする請求項2に記載の電力変換装置。
  4.  前記第1及び前記第2グループ毎のオンの時間は、前記交流電力の電圧の半周期において、前記交流電力の電圧のピーク時に極小値となり、前記ピーク時を挟む二つのタイミングで極大値となるように変化する、
     ことを特徴とする請求項3に記載の電力変換装置。
  5.  前記第1及び前記第2グループ毎の前記オンの時間は、さらに、前記半周期において、前記ピーク時を挟む二つのタイミングを挟み、前記交流電力の電圧のゼロ交差時に到来する二つのタイミングで極小値となるように変化する、
     ことを特徴とする請求項4に記載の電力変換装置。
  6.  前記グループは、前記交流電力の前記第1の交流端子側の電圧が前記第2の交流端子側の電圧に対して正である期間に対応する前記第1と第4の逆導通型スイッチを含む第3グループと、前記交流電力の前記第1の交流端子側の電圧が前記第2の交流端子側の電圧に対して負である期間に対応する前記第2と第3の逆導通型スイッチを含む第4グループとを更に含み、
     前記第1及び前記第2グループ毎に、前記交流電力の電圧の周波数よりも高い周波数でオンとオフとが切り替わり、かつ、前記スイッチ部が前記第1及び第2グループ毎に切り替わるオンの期間の少なくとも一部の期間にオンになることによって、入力された前記交流電力を前記直流電力に変換して出力し、
     前記第3及び前記第4グループ毎に、前記交流電力の電圧の周波数よりも高い周波数でオンとオフとが切り替わり、かつ、前記スイッチ部が前記第3及び第4グループ毎に切り替わるオンの期間の少なくとも一部の期間にオンになることによって、入力された前記直流電力を前記交流電力に変換して出力する、
     ことを特徴とする請求項3に記載の電力変換装置。
  7.  前記グループは、前記交流電力の前記第1の交流端子側の電圧が前記第2の交流端子側の電圧に対して正である期間に対応する前記第1と第4の逆導通型スイッチを含む第3グループと、前記交流電力の前記第1の交流端子側の電圧が前記第2の交流端子側の電圧に対して負である期間に対応する前記第2と第3の逆導通型スイッチを含む第4グループとを含み
     前記第3及び前記第4グループ毎に、前記交流電力の電圧の周波数よりも高い周波数でオンとオフとが切り替わり、かつ、前記スイッチ部が前記第3及び第4グループ毎に切り替わるオンの期間の少なくとも一部の期間にオンになることによって、入力された前記直流電力を前記交流電力に変換して出力する、
     ことを特徴とする請求項2に記載の電力変換装置
  8.  前記第3及び前記第4グループ毎のオンの時間は、前記交流電力の電圧のピーク時に近い程大きくなり、前記交流電力の電圧のゼロ交差時に近い程小さくなるように変化する、
     ことを特徴とする請求項7に記載の電力変換装置。
  9.  前記グループは、前記交流電力の前記第1の交流端子側の電圧が前記第2の交流端子側の電圧に対して正である期間に対応する前記第2と第3の逆導通型スイッチを含む第1グループと、前記交流電力の前記第1の交流端子側の電圧が前記第2の交流端子側の電圧に対して負である期間に対応する前記第1と第4の逆導通型スイッチを含む第2グループとを更に含み、
     前記第3及び前記第4グループ毎に、前記交流電力の電圧の周波数よりも高い周波数でオンとオフとが切り替わり、かつ、前記スイッチ部が前記第3及び第4グループ毎に切り替わるオンの期間の少なくとも一部の期間にオンになることによって入力された前記直流電力を前記交流電力に変換して出力し、
     前記第1及び前記第2グループ毎に、前記交流電力の電圧の周波数よりも高い周波数でオンとオフとが切り替わり、かつ、前記スイッチ部がオフであることによって、入力された前記交流電力を前記直流電力に変換して出力する、
     ことを特徴とする請求項7に記載の電力変換装置。
  10.  前記第1及び前記第2グループ毎のオンの時間は、前記交流電力の電圧の半周期において、前記交流電力の電圧のピーク時に極小値となり、前記ピーク時を挟む二つのタイミングで極大値となるように変化する、
     ことを特徴とする請求項9に記載の電力変換装置。
  11.  前記第1及び前記第2グループ毎の前記オン時間は、さらに、前記半周期において、前記ピーク時を挟む二つのタイミングを挟み、前記交流電力の電圧のゼロ交差時に到来する二つのタイミングで極小値となるように変化する、
     ことを特徴とする請求項10に記載の電力変換装置。
  12.  交流電力が入力または出力される交流端子と、
     直流電力が出力または入力される直流端子と、
     オンのときに両方向に導通状態になり、オフのときに一方向に導通するスイッチ部と、
     一端が前記交流端子に接続され、他端が前記スイッチ部を介して前記直流端子に接続され、所定のインダクタに蓄積された磁気エネルギーを利用して、前記交流端子に入力された前記交流電力を前記直流電力に変換して前記直流端子から出力するための整流動作または前記直流端子に入力された前記直流電力を前記交流電力に変換して前記交流端子から出力するためのインバータ動作を行う磁気エネルギー回生スイッチと、を備え、
     前記スイッチ部は、前記磁気エネルギー回生スイッチから前記直流端子へ供給される電力を常に導通する向きに、前記直流端子と前記磁気エネルギー回生スイッチとの間に接続され、
     前記磁気エネルギー回生スイッチは、オンのときに両方向に導通状態になり、オフのときに一方向に導通する複数の逆導通型スイッチを備える電力変換装置を制御する制御方法であって、
     前記複数の逆導通型スイッチを、前記交流電力の電圧の正負に対応するグループ毎に、前記交流電力の電圧の周波数よりも高い周波数でオンとオフとが切り替え、かつ、前記スイッチ部を、前記グループ毎に切り替わるオンの期間の少なくとも一部の期間にオンにするステップを含む、
     ことを特徴とする制御方法。
  13.  交流電力が入力または出力される交流端子と、
     直流電力が出力または入力される直流端子と、
     オンのときに両方向に導通状態になり、オフのときに一方向に導通するスイッチ部と、
     一端が前記交流端子に接続され、他端が前記スイッチ部を介して前記直流端子に接続され、所定のインダクタに蓄積された磁気エネルギーを利用して、前記交流端子に入力された前記交流電力を前記直流電力に変換して前記直流端子から出力するための整流動作または前記直流端子に入力された前記直流電力を前記交流電力に変換して前記交流端子から出力するためのインバータ動作を行う磁気エネルギー回生スイッチと、を備え、
     前記スイッチ部は、前記磁気エネルギー回生スイッチから前記直流端子へ供給される電力を常に導通する向きに、前記直流端子と前記磁気エネルギー回生スイッチとの間に接続され、
     前記磁気エネルギー回生スイッチは、オンのときに両方向に導通状態になり、オフのときに一方向に導通する複数の逆導通型スイッチを備える電力変換装置を制御する電力変換装置を制御するコンピュータに、
     前記複数の逆導通型スイッチを、前記交流電力の電圧の正負に対応するグループ毎に、前記交流電力の電圧の周波数よりも高い周波数でオンとオフとが切り替え、かつ、前記スイッチ部を、前記グループ毎に切り替わるオンの期間の少なくとも一部の期間にオンにする制御を行わせる、
     ことを特徴とするプログラム。
PCT/JP2012/072371 2011-09-05 2012-09-03 電力変換装置、制御方法、及び、プログラム WO2013035671A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-192645 2011-09-05
JP2011192645 2011-09-05

Publications (1)

Publication Number Publication Date
WO2013035671A1 true WO2013035671A1 (ja) 2013-03-14

Family

ID=47832116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072371 WO2013035671A1 (ja) 2011-09-05 2012-09-03 電力変換装置、制御方法、及び、プログラム

Country Status (2)

Country Link
JP (1) JPWO2013035671A1 (ja)
WO (1) WO2013035671A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220913A (ja) * 2013-05-08 2014-11-20 ビステオン グローバル テクノロジーズ インコーポレイテッド ゼロカレントスイッチング回路及びフルブリッジ回路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193817A (ja) * 2007-02-06 2008-08-21 Tokyo Institute Of Technology 磁気エネルギー回生スイッチを用いた交流/直流電力変換装置
WO2010035338A1 (ja) * 2008-09-26 2010-04-01 株式会社MERSTech 電力変換装置
JP4534007B2 (ja) * 2007-12-11 2010-09-01 国立大学法人東京工業大学 ソフトスイッチング電力変換装置
JP2011147277A (ja) * 2010-01-14 2011-07-28 Merstech Inc 双方向電力変換回路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070159279A1 (en) * 2004-05-12 2007-07-12 Ryuichi Shimada Alternating-current power supply device recovering magnetic energy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193817A (ja) * 2007-02-06 2008-08-21 Tokyo Institute Of Technology 磁気エネルギー回生スイッチを用いた交流/直流電力変換装置
JP4534007B2 (ja) * 2007-12-11 2010-09-01 国立大学法人東京工業大学 ソフトスイッチング電力変換装置
WO2010035338A1 (ja) * 2008-09-26 2010-04-01 株式会社MERSTech 電力変換装置
JP2011147277A (ja) * 2010-01-14 2011-07-28 Merstech Inc 双方向電力変換回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220913A (ja) * 2013-05-08 2014-11-20 ビステオン グローバル テクノロジーズ インコーポレイテッド ゼロカレントスイッチング回路及びフルブリッジ回路

Also Published As

Publication number Publication date
JPWO2013035671A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
TWI750780B (zh) 適用於寬輸出電壓範圍的隔離式dc/dc轉換器及其控制方法
JP5575235B2 (ja) 電力変換装置
US10199927B2 (en) PWM scheme based on space vector modulation for three-phase rectifier converters
JP4534007B2 (ja) ソフトスイッチング電力変換装置
US10044278B2 (en) Power conversion device
US9444355B2 (en) Method and apparatus for determining a bridge mode for power conversion
US9401655B2 (en) Power conversion apparatus with inverter circuit and series converter circuit having power factor control
JP6782429B2 (ja) 誘導加熱用シングルステージ商用周波−高周波コンバータおよびその制御方法
JPWO2011161729A1 (ja) Dc−dcコンバータ
Fujiwara et al. A novel lossless passive snubber for soft-switching boost-type converters
WO2011052364A1 (ja) 電力変換装置
He et al. Novel high-efficiency frequency-variable buck–boost AC–AC converter with safe-commutation and continuous current
JP7121971B2 (ja) 三相ac-dcコンバータ
JPH07222444A (ja) Dc−dcコンバータ
KR101377124B1 (ko) 단일 스위치 절연형 공진 컨버터 및 이를 이용한 인터리빙 단일 스위치 절연형 공진 컨버터
JP5105819B2 (ja) Dc−dcコンバータ
JPWO2017090118A1 (ja) 電力変換装置および鉄道車両
WO2013035671A1 (ja) 電力変換装置、制御方法、及び、プログラム
Pan et al. Electrolytic capacitorless current-fed single-phase pulsating DC link inverter
JP2015228760A (ja) スイッチング電源装置
JP5748804B2 (ja) 電力変換装置
Lee et al. A high-power DC-DC converter for electric vehicle battery charger
JP4488130B2 (ja) 電力変換装置
Ando et al. Soft-switching-interleaved power factor correction converter with lossless snubber
JP2777892B2 (ja) 共振型インバータ式x線装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532585

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829582

Country of ref document: EP

Kind code of ref document: A1