WO2010032821A1 - Memsセンサ - Google Patents

Memsセンサ Download PDF

Info

Publication number
WO2010032821A1
WO2010032821A1 PCT/JP2009/066355 JP2009066355W WO2010032821A1 WO 2010032821 A1 WO2010032821 A1 WO 2010032821A1 JP 2009066355 W JP2009066355 W JP 2009066355W WO 2010032821 A1 WO2010032821 A1 WO 2010032821A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
connection metal
metal layer
width dimension
substrate
Prior art date
Application number
PCT/JP2009/066355
Other languages
English (en)
French (fr)
Inventor
潔 小林
宜隆 宇都
一好 高橋
潤 鈴木
亨 高橋
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2010529807A priority Critical patent/JP5222947B2/ja
Publication of WO2010032821A1 publication Critical patent/WO2010032821A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/007Interconnections between the MEMS and external electrical signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0307Anchors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/092Buried interconnects in the substrate or in the lid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/082Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for two degrees of freedom of movement of a single mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Definitions

  • the present invention relates to a MEMS sensor formed by micromachining a silicon substrate, and more particularly to a bonding structure such as a support conduction portion (an anchor portion).
  • a movable electrode portion and a fixed electrode portion are formed by microfabrication of an SOI layer constituting an SOI (Silicon on Insulator) substrate.
  • This fine sensor is used as an acceleration sensor, a pressure sensor, a vibrating gyro, a micro relay, or the like by the operation of the movable electrode portion.
  • FIG. 18 is a partial cross-sectional view of a conventional MEMS sensor
  • FIG. 19 is an enlarged cross-sectional view showing a state before bonding of the support conducting part (an anchor part) shown in FIG.
  • the MEMS sensor illustrated in FIG. 18 includes an SOI substrate including a support substrate 200, an oxide insulating layer 203, and an SOI layer 210, and a wiring substrate 211 provided to face the SOI substrate.
  • the movable region 201 including the movable electrode portion and the fixed electrode portion, and the support conductive portions 202 of the movable electrode portion and the fixed electrode portion are formed by micromachining the SOI layer 210.
  • the first connection metal layer 212 is provided on the surface 202 a of the support conducting part 202.
  • the wiring board 211 is configured to include a silicon substrate 204, an insulating layer 205, a lead layer 206, and the like, and a second connection metal layer 213 is formed on the side facing the supporting conductive portion 202.
  • the second connection metal layer 213 is electrically connected to the lead layer 206.
  • the 1st connection metal layer 212 and the 2nd connection metal layer 213 are joined.
  • the width dimension T1 of the oxide insulating layer 203 interposed between the support conduction portion 202 and the support substrate 200 is narrower than the width dimension T2 of the support conduction portion 202.
  • the relationship between the width dimensions T1 and T2 is that, when the oxide insulating layer 203 other than the oxide insulating layer 203 located under the support conductive portion 202 is removed by etching, the oxidation under the outer periphery of the support conductive portion 202 is caused by overetching.
  • the insulating layer 203 is also partially corroded to form the cavity 214.
  • the width dimension T3 of the first connection metal layer 212 formed on the surface 202a of the support conduction portion 202 and the width dimension T4 of the second connection metal layer 213 provided on the wiring substrate 211 side are substantially the same.
  • the width dimensions T3 and T4 are wider than the width dimension T1 of the oxide insulating layer 203.
  • FIGS. 18 and 19 show the width dimensions in the X1-X2 direction
  • the width dimensions in the Y1-Y2 direction orthogonal to this are also in the same relationship as described above.
  • the support conduction portion 202 be formed as small as possible in order to widen the movable region 201 in order to improve detection accuracy. Therefore, the influence of the hollow portion 214 can not be relatively reduced by forming the support conduction portion 202 large.
  • the present invention solves the above-described conventional problems, and in particular, to provide a MEMS sensor capable of obtaining a bonding structure between a bonding layer such as a supporting conductive portion and a wiring substrate, which is more stable than the conventional.
  • the purpose is.
  • the MEMS sensor according to the present invention includes a first substrate on which a support substrate, an intermediate layer, and a functional layer are stacked in this order, a movable electrode portion formed on the functional layer facing the functional layer, and the fixed electrode portion And a wiring substrate having a conduction path with the A bonding layer fixed to and supported by the intermediate layer and bonded to the wiring substrate is formed on the functional layer.
  • the width dimension of the intermediate layer located between the bonding layer and the support substrate is smaller than the width dimension of the bonding layer,
  • the width dimension of one of the first connection metal layer formed on the surface of the bonding layer and the second connection metal layer formed on the surface of the wiring substrate and joined to the first connection metal layer is the same. It is characterized in that it is narrower than the other width dimension.
  • the load acting on the outer peripheral portion of the bonding layer (the portion facing the hollow portion formed between the support substrate and the bonding layer) can be reduced as compared to the prior art.
  • the connection metal layer on the side where the width dimension is narrowed is within the connection metal layer on the side where the width dimension is wide. Positioning can be performed with high accuracy so that the variation in bonding strength can be reduced.
  • the bonding surface between the first connection metal layer and the second connection metal layer can be more easily subjected to a uniform load than in the conventional case, and breakage of the outer peripheral portion of the bonding layer can be suppressed. You can get
  • the width of the connecting metal layer on the narrow side of the width is equal to or less than the width of the intermediate layer.
  • connection metal layer on the side where the width dimension is narrow is formed in a concavo-convex shape.
  • the connecting metal layer on the narrow side of the width is formed with Ge, and the connecting metal layer on the wide side of the width is formed of Al.
  • each connection metal layer is joined and the metal seal layer is formed.
  • the interfaces of the connecting metal layers can be more closely attached.
  • the connecting metal layer on the narrow side of the width as Ge and the side metal layer on the wide side of the width as Al
  • the irregular surface (joining surface) of the connecting metal layer hardly deforms at the time of joining. It can be pressed into the other connection metal layer, and the bonding surfaces can be more effectively in close contact. Therefore, bonding strength can be increased.
  • the metal seal layer as described above, it is possible to effectively improve the sealing airtightness as well as the bonding strength.
  • the bonding surface uneven, the bonding area can be increased as compared to bonding flat surfaces, and therefore, when the bonding surfaces are in close contact with each other at the time of bonding, per unit area The bonding pressure can be effectively reduced. Therefore, when joining, it can suppress that each connection metal layer is pushed in more than necessary, and can exhibit a stopper-like function.
  • a wiring substrate provided with a conduction path with the A bonding layer fixed to and supported by the intermediate layer and bonded to the wiring substrate is formed on the functional layer.
  • the width dimension of the intermediate layer located between the bonding layer and the support substrate is smaller than the width dimension of the bonding layer,
  • the width dimension of at least one of a first connection metal layer formed on the surface of the bonding layer, and a second connection metal layer formed on the surface of the wiring substrate and joined to the first connection metal layer Is equal to or less than the width dimension of the intermediate layer.
  • the load acting on the outer peripheral portion of the bonding layer (the portion facing the hollow portion formed between the support substrate and the bonding layer) can be reduced as compared with the prior art.
  • the bonding surface between the first connection metal layer and the second connection metal layer can be more easily subjected to a uniform load than in the conventional case, and breakage of the outer peripheral portion of the bonding layer can be suppressed. You can get
  • the bonding layer is a support conducting portion connected to each of the movable electrode portion and the fixed electrode portion.
  • the bonding layer is a frame layer formed separately from the movable electrode portion and the fixed electrode portion and surrounding the movable region of the movable electrode portion, and the first connection metal layer and the second connection metal layer are formed.
  • a metal seal layer surrounding the outer periphery of the movable region is formed by the connection metal layer.
  • the first connection metal layer and the second connection metal layer are eutectic-bonded or diffusion-bonded.
  • the first connection metal layer and the second connection metal layer can be strongly joined.
  • the thickness dimension of the bonding layer is thin, and the distance between the supporting substrate and the wiring substrate can be determined with high accuracy. Therefore, it is possible to make a MEMS sensor excellent in dimensional accuracy and strong in bonding strength.
  • the wiring substrate is electrically connected to the silicon substrate, the insulating layer, and the movable electrode portion and the fixed electrode portion embedded in the insulating layer on the surface of the silicon substrate.
  • it is formed to have a lead layer and the second connection metal layer.
  • the wiring substrate can be formed with a simple structure, and the thinning of the MEMS sensor can be realized.
  • the MEMS sensor in the present invention is An upper substrate, an upper connection metal layer formed on the lower surface of the upper substrate, a lower substrate, and a lower connection metal layer formed on the upper surface of the lower substrate;
  • the upper connection metal layer and the lower connection metal layer are joined to form a metal seal layer, Among the upper connection metal layer and the lower connection metal layer, one width dimension is narrower than the other width dimension.
  • connection metal layer on the side with the narrow width is formed in a concavo-convex shape.
  • connection metal layer on the narrow width side is contained in the connection metal layer on the wide width side, and the variation of the bonding strength can be reduced.
  • the interface between the connection metal layers can be more closely adhered by forming the bonding surface of the connection metal layer having the narrower width dimension in a concavo-convex shape.
  • the connecting metal layer on the narrow side of the width as Ge and the side metal layer on the wide side of the width as Al, the irregular surface (joining surface) of the connecting metal layer hardly deforms at the time of joining. It can be pressed into the other connection metal layer, and the bonding surfaces can be more effectively in close contact. Therefore, the bonding strength can be enhanced, and the sealing airtightness can be effectively improved.
  • the bonding surface uneven, the bonding area can be increased as compared to bonding flat surfaces, and therefore, when the bonding surfaces are in close contact with each other at the time of bonding, per unit area The bonding pressure can be effectively reduced. Therefore, when joining, it can suppress that each connection metal layer is pushed in more than necessary, and can exhibit a stopper-like function.
  • the first connection metal layer provided on the surface of the bonding layer fixedly supported on the support substrate via the intermediate layer, and the second connection metal formed on the surface of the wiring substrate Compared to the prior art, it is easier to apply a uniform load to the joint surface between layers, and it is possible to obtain a stable joint structure, such as being able to suppress breakage of the outer peripheral portion of the joint layer.
  • FIG. 5 A plan view showing a separation pattern of a movable electrode portion, a fixed electrode portion, and a frame layer of the MEMS sensor according to the embodiment of the present invention; An enlarged plan view of the arrow II in FIG. 1; An enlarged plan view of a portion III in FIG. 1; It is sectional drawing which shows the laminated structure of a MEMS sensor, and is equivalent to sectional drawing in the IV-IV line of FIG. A partially enlarged cross-sectional view showing a part of FIG. 4 in an enlarged manner; The plan view of FIG. 5 (however, the wiring board is omitted), FIG. 6 is a partially enlarged cross-sectional view of a MEMS sensor of another embodiment partially modified from the embodiment of FIG. 5; FIG.
  • FIG. 6 is a partially enlarged cross-sectional view of a MEMS sensor of another embodiment partially modified from the embodiment of FIG. 5;
  • FIG. 6 is a partially enlarged cross-sectional view of a MEMS sensor of another embodiment partially modified from the embodiment of FIG. 5;
  • FIG. 6 is a partially enlarged cross-sectional view of a MEMS sensor of another embodiment partially modified from the embodiment of FIG. 5;
  • FIG. A partial longitudinal sectional view showing a preferable configuration of a metal seal layer ((a) shows before bonding, (b) shows after bonding), 13 is a longitudinal sectional view of a metal seal layer showing a comparative example to the configuration of the metal seal layer of FIG.
  • Process drawing showing the manufacturing method of the connection metal layer on the side where the bonding surface is formed by the uneven surface
  • a perspective view of a MEMS sensor with a metal seal layer showing the state before bonding
  • Top view and longitudinal sectional view showing the configuration of another MEMS sensor
  • a partial sectional view of a conventional MEMS sensor, 18 is a partially enlarged cross-sectional view showing a state before bonding, which has been enlarged to explain the bonding structure of the support conducting part of FIG. 18;
  • FIG. 1 shows a MEMS sensor according to an embodiment of the present invention, and is a plan view showing a movable electrode portion, a fixed electrode portion, and a frame layer.
  • the support substrate and the wiring substrate are not shown.
  • FIG. 2 is an enlarged view of part II of FIG. 1
  • FIG. 3 is an enlarged view of part III.
  • FIG. 4 is a cross-sectional view showing the entire structure of the MEMS sensor, which corresponds to a cross-sectional view of FIG. 1 taken along line IV-IV.
  • 5 is a partial enlarged cross-sectional view showing a part of FIG. 4 in an enlarged manner
  • FIG. 6 is a plan view of FIG. 5 (however, the wiring board is omitted).
  • 7 to 10 are partially enlarged cross-sectional views of the MEMS sensor of another embodiment which is partially modified from the embodiment of FIG.
  • an SOI layer (functional layer) 10 is sandwiched between the support substrate 1 and the wiring substrate 2.
  • Each portion of the support substrate 1 and the SOI layer 10 is bonded via the oxidation insulating layers (intermediate layers) 3a, 3b and 3c.
  • the supporting substrate 1, the SOI layer 10, and the oxide insulating layers 3a, 3b, and 3c are formed, for example, by microfabrication of an SOI (Silicon on Insulator) substrate (first substrate).
  • SOI Silicon on Insulator
  • the first fixed electrode portion 11, the second fixed electrode portion 13, the movable electrode portion 15, and the frame layer 25 are formed separately. Further, a part of the oxide insulating layer is removed to form oxide insulating layers 3a, 3b and 3c separated from each other.
  • the planar shape of the SOI layer 10 is rotationally symmetric 180 degrees with respect to the center (center of gravity) O, and vertically with respect to a line extending in the X direction through the center O (Y direction It is symmetrical to).
  • the first fixed electrode portion 11 is provided on the Y1 side of the center O.
  • a rectangular support conduction portion (anchor portion) 12 is integrally formed at a position approaching the center O.
  • the support conducting portion 12 is fixed to the surface 1 a of the support substrate 1 by the oxide insulating layer 3 a.
  • the support conductive portion 12 is fixed to the surface 1a of the support substrate 1 by the oxide insulating layer 3a, and the other portion is the oxide insulating layer between the support substrate 1 It is removed, and the space
  • the first fixed electrode portion 11 has an electrode support portion 11a of a fixed width that linearly extends from the support conduction portion 12 in the Y1 direction.
  • a plurality of counter electrodes 11b are integrally formed on the X1 side of the electrode support 11a, and a plurality of counter electrodes 11c are integrally formed on the X2 side of the electrode support 11a.
  • One counter electrode 11c is shown in FIG.
  • Each of the plurality of counter electrodes 11c linearly extends in the X2 direction, and the width dimension in the Y direction is constant.
  • the plurality of counter electrodes 11c are arranged in a comb shape at regular intervals in the Y direction.
  • the other counter electrode 11b extending to the X1 side and the counter electrode 11c extending in the X2 direction are symmetrical with respect to a line extending in the Y direction through the center O.
  • the second fixed electrode portion 13 is provided on the Y2 side of the center O.
  • the second fixed electrode portion 13 and the first fixed electrode portion 11 are symmetrical in the vertical direction (Y direction) with respect to a line extending in the X direction through the center O. That is, the second fixed electrode portion 13 has a rectangular support conduction portion (anchor portion) 14 provided at a position approaching the center O, and a constant width dimension extending linearly from the support conduction portion 14 in the Y2 direction.
  • the electrode support 13a of A plurality of counter electrodes 13b integrally extending from the electrode support 13a is provided on the X1 side of the electrode support 13a, and a plurality of counter electrodes 13c integrally extending from the electrode support 13a on the X2 side of the electrode support 13a. Is provided.
  • the counter electrodes 13c extend linearly in the X2 direction, have a constant width dimension, and are formed parallel to each other at a constant interval in the Y direction.
  • the opposite electrode 13b on the X1 side linearly extends in the X1 direction with a constant width dimension, and extends in parallel in the Y direction at a constant interval.
  • the support conducting portion 14 is fixed to the surface 1 a of the support substrate 1 via the oxide insulating layer 3 a.
  • the oxide insulating layer between the surface 1a of the support substrate 1 and the electrode support 13a and the counter electrodes 13b and 13c, which are the other parts, are removed, and the electrode support 13a and the counter electrodes 13b and 13c are supported. Between the surface 1 a of the substrate 1 and a gap having a distance corresponding to the thickness of the oxide insulating layer is formed.
  • the inside of the rectangular frame layer 25 is the movable region, and in the movable region, the portion excluding the first fixed electrode portion 11 and the second fixed electrode portion 13 is the movable electrode portion It is fifteen.
  • the movable electrode portion 15 is formed separately from the first fixed electrode portion 11, the second fixed electrode portion 13 and the frame layer 25.
  • the movable electrode portion 15 has a first support arm portion 16 extending in the Y1-Y2 direction on the X1 side of the center O, and at a position close to the X1 side of the center O A rectangular support conduction portion (anchor portion) 17 integrally formed with the first support arm portion 16 is provided.
  • the movable electrode portion 15 has a second support arm 18 extending in the Y1-Y2 direction on the X2 side of the center O, and at a position close to the X2 side of the center O, the second support arm A rectangular support conduction portion (anchor portion) 19 integrally formed with 18 is provided.
  • the region between the first support arm 16 and the second support arm 18 and excluding the first fixed electrode portion 11 and the second fixed electrode portion 13 is a weight portion 20.
  • the edge on the Y1 side of the weight 20 is supported by the first support arm 16 via the elastic support 21 and is supported by the second support arm 18 via the elastic support 23.
  • the edge on the Y1 side of the weight 20 is supported by the first support arm 16 via the elastic support 22 and is supported by the second support arm 18 via the elastic support 24. There is.
  • a plurality of movable counter electrodes 20a extending integrally from the edge on the X1 side of the weight 20 to the X2 side are integrally formed, and on the X1 side from the edge on the X2 side of the weight 20
  • a plurality of extending movable counter electrodes 20b are integrally formed.
  • the movable counter electrode 20 b integrally formed with the weight portion 20 opposes the side on the Y 2 side of the counter electrode 11 c of the first fixed electrode portion 11 through a distance ⁇ 1 at rest.
  • the movable counter electrode 20a on the X1 side is also opposed to the side on the Y2 side of the counter electrode 11b of the first fixed electrode portion 11 via the distance ⁇ 1 at rest.
  • the weight portion 20 is integrally formed with a plurality of movable counter electrodes 20c extending in parallel in the X2 direction from the edge on the X1 side on the Y2 side with respect to the center O, and from the edge on the X2 side in the X1 direction
  • a plurality of movable counter electrodes 20d extending in parallel are integrally formed.
  • the movable counter electrode 20 d is opposed to the side on the Y1 side of the counter electrode 13 c of the second fixed electrode portion 13 through the distance ⁇ 2 at rest. This is the same between the movable counter electrode 20c on the X1 side and the counter electrode 13b.
  • the opposing distances ⁇ 1 and ⁇ 2 at rest are designed to have the same dimensions.
  • the support conduction portion 17 continuous with the first support arm portion 16 and the surface 1 a of the support substrate 1 are fixed via the oxide insulating layer 3 b, and the second support arm portion 18 is fixed.
  • the continuous support conduction portion 19 and the surface 1a of the support substrate 1 are also fixed via the oxide insulating layer 3b.
  • the oxide insulating layer 3b In the movable electrode portion 15, only the support conduction portion 17 and the support conduction portion 19 are fixed to the support substrate 1 by the oxide insulating layer 3b, and other portions, that is, the first support arm portion 16, the second support In the arm portion 18, the weight portion 20, the movable counter electrodes 20a, 20b, 20c, 20d and the elastic support portions 21, 22, 23, 24, the oxide insulating layer between the surface 1a of the support substrate 1 is removed, Between the respective portions and the surface 1 a of the support substrate 1, a gap having a distance corresponding to the thickness dimension of the oxide insulating layer 3 b is formed.
  • the elastic support portions 21, 22, 23, 24 are formed so as to form a meander pattern with thin plate spring portions. The deformation of the elastic support portions 21, 22, 23, 24 allows the weight portion 20 to move in the Y1 direction or the Y2 direction.
  • the frame layer 25 is formed by cutting out the SOI layer 10 in a square frame shape.
  • An oxide insulating layer 3 c is left between the frame layer 25 and the surface 1 a of the support substrate 1.
  • the oxide insulating layer 3 c is provided to surround the entire outer periphery of the movable region of the movable electrode portion 15.
  • the first fixed electrode portion 11, the second fixed electrode portion 13, the movable electrode portion 15, and the frame are formed on the surface of the SOI layer 10 before processing.
  • a resist layer covering the layer 25 is formed, and the SOI layer in a portion exposed from the resist layer is removed by ion etching means such as deep RIE using high density plasma, and the first fixed electrode portion 11, second The fixed electrode portion 13, the movable electrode portion 15, and the frame layer 25 are separated from each other.
  • micro holes 11 d formed in the counter electrode 11 c, micro holes 13 d formed in the counter electrode 13 c, and micro holes 20 e formed in the weight portion 20 are illustrated.
  • selective isotropic etching treatment capable of dissolving the oxide insulating layer (SiO 2 layer) without dissolving silicon is performed.
  • the etching solution or the etching gas penetrates into the groove separating the respective portions of the SOI layer 10, and further penetrates into the micropores, whereby the oxide insulating layer is removed.
  • the oxidation insulating layers 3a, 3b and 3c are left only between the support conducting portions 12, 14, 17 and 19 and the frame layer 25 and the surface 1a of the support substrate 1, and the insulating layer is otherwise Is removed.
  • the thickness of the support substrate 1 is about 0.2 to 0.7 mm, the thickness of the SOI layer 10 is about 10 to 30 ⁇ m, and the thickness of the oxide insulating layers 3a, 3b and 3c is about 1 to 3 ⁇ m. is there.
  • the silicon substrate 5 constituting the wiring substrate 2 is formed to have a thickness dimension of about 0.2 to 0.7 mm.
  • Insulating layer 30 is formed on surface 5 a of silicon substrate 5.
  • the insulating layer 30 is an inorganic insulating layer such as SiO 2, SiN, or Al 2 O 3, and is formed by a sputtering process or a CVD process.
  • As the inorganic insulating layer a material is selected in which the difference in thermal expansion coefficient with the silicon substrate is smaller than the difference in thermal expansion coefficients of the conductive metal forming the connection metal layer and the silicon substrate.
  • SiO2 or SiN having a relatively small difference in thermal expansion coefficient with the silicon substrate is used.
  • a second connection metal layer 31 is formed on the surface of the insulating layer 30 so as to face the support conducting portion 12 of the first fixed electrode portion 11.
  • a second connection metal layer 31 (not shown) facing the support conduction portion 14 is formed.
  • the second connection metal layer 32 facing the one support conduction portion 17 of the movable electrode portion 15 is formed on the surface of the insulating layer 30, and similarly, the second connection faces the other support conduction portion 19.
  • a metal layer 32 (not shown) is also formed.
  • a second seal connection metal layer 33 facing the surface of the frame layer 25 is formed on the surface of the insulating layer 30.
  • the second seal connection metal layer 33 is formed of the same conductive metal material as the second connection metal layers 31 and 32.
  • the second seal connection metal layer 33 is formed in a quadrangle facing the frame layer 25 and is formed on the outer periphery of the movable region of the movable electrode portion 15 so as to surround the entire periphery of the movable region .
  • the second connection metal layers 31 and 32 and the second seal connection metal layer 33 are formed of aluminum (Al).
  • a lead layer 34 electrically connected to one of the second connection metal layers 31 and a lead layer 35 electrically connected to the other second connection metal layer 32 are provided inside the insulating layer 30, a lead layer 34 electrically connected to one of the second connection metal layers 31 and a lead layer 35 electrically connected to the other second connection metal layer 32 are provided.
  • the lead layers 34 and 35 are formed of aluminum.
  • the plurality of lead layers 34 and 35 respectively conduct to the respective second connection metal layers 31 and 32.
  • the respective lead layers 34 and 35 pass through the inside of the insulating layer 30 and cross the portion where the second seal connection metal layer 33 is formed without contacting the second seal connection metal layer 33. , And extends outside the area surrounded by the second seal connection metal layer 33.
  • the wiring board 2 is provided with connection pads 36 electrically connected to the respective lead layers 34 and 35 outside the region.
  • the connection pad 36 is formed of aluminum, gold or the like which is a conductive material which is low in resistance and difficult to oxidize.
  • the surface on which the second connection metal layers 31 and 32 are formed and the surface on which the second seal connection metal layer 33 is formed are located on the same plane. Then, a recess 38 is formed in the insulating layer 30 in a region where the second connection metal layers 31 and 32 and the second seal connection metal layer 33 are not formed, toward the surface 5 a of the silicon substrate 5. .
  • the recess 38 is formed in the insulating layer 30 in all parts other than the surface facing the support conducting portions 12, 14, 17, 19 and the frame layer 25. In addition, the recess 38 is formed to a depth halfway to the inside of the insulating layer 30 so that the lead layers 34 and 35 are not exposed.
  • a first connection metal layer 41 facing the second connection metal layer 31 is formed on the surfaces of the support conductive portions 12 and 14 of the SOI layer 10, respectively.
  • a first connection metal layer 42 facing the respective second connection metal layers 32 is formed on the surface 19 by a sputtering process.
  • a first seal connection metal layer 43 facing the second seal connection metal layer 33 is formed on the surface of the frame layer 25 .
  • the first seal connection metal layer 43 is simultaneously formed of the same metal material as the first connection metal layers 41 and 42.
  • the first connection metal layers 41 and 42 and the first seal connection metal layer 43 are eutectic or diffusion bonded to aluminum forming the second connection metal layers 31 and 32 and the second seal connection metal layer 33. It is formed of Ge (germanium) which is a easy metal material.
  • the second connection metal layer 31 and the first connection metal layer 41 are made to face each other, the second connection metal layer 32 and the first connection metal layer 42 are made to face each other, and the second And the first seal connection metal layer 43 face each other. Then, the space between the support substrate 1 and the silicon substrate 5 is pressurized while heating. Thereby, the second connection metal layer 31 and the first connection metal layer 41 are subjected to eutectic bonding or diffusion bonding, and the second connection metal layer 32 and the first connection metal layer 42 are subjected to eutectic bonding or diffusion. Join.
  • the supporting conductive portions 12, 14, 17 and 19 become the oxide insulating layers 3a and 3b and the insulating layer 30.
  • the second seal connection metal layer 33 and the first seal connection metal layer 43 are eutectically bonded or diffusion bonded.
  • the frame layer 25 and the insulating layer 30 are firmly fixed, and the metal seal layer 45 surrounding the entire periphery of the movable region of the movable electrode portion 15 is formed.
  • FIG. 5 is a partially enlarged cross-sectional view showing the vicinity of the support conducting portion 12 in an enlarged manner.
  • FIG. 5 is shown upside down in FIG.
  • the width dimension T10 of the oxide insulating layer 3a interposed between the support conductive portion (bonding layer) 12 and the support substrate 1 is the support conductive portion 12 Narrower than the width dimension T11 of
  • the planar shape of the support conducting portion 12 and the oxide insulating layer 3a is substantially square, it is assumed that the width dimension in the X1-X2 direction and the Y1-Y2 direction orthogonal thereto is substantially the same.
  • the oxide insulating layer 3 a is formed substantially at the center of the bottom of the support conducting portion 12. For this reason, a hollow portion 9 having no oxidation insulating layer between the support substrate 1 and the lower surface of the outer peripheral portion 12 a of the support conducting portion 12 is formed.
  • the reason why the cavity 9 is formed is that, when the unnecessary oxide insulating layer 3a exposed by removing the unnecessary SOI layer 10 is removed by etching in the manufacturing process, the support conductor 12 is formed by over-etching. The oxide insulating layer under the outer peripheral portion 12a of the above is also removed.
  • the width dimension T12 of the first connection metal layer 41 formed on the surface 12b of the support conducting portion 12 is formed with the width dimension T10 or less of the oxide insulating layer 3a. Be done.
  • the width dimension T12 of the first connection metal layer 41 is smaller than the width dimension T10 of the oxide insulating layer 3a. Therefore, in plan view as shown in FIG. 6, the entire first connection metal layer 41 can be overlapped in the oxide insulating layer 3a. That is, the first connection metal layer 41 does not protrude in the X1-X2 direction or the Y1-Y2 direction from the oxide insulating layer 3a in a plan view.
  • the width dimension T13 of the second connection metal layer 31 disposed on the wiring board 2 side is larger than the width dimension T10 of the oxide insulating layer 3a.
  • the first connection metal layer 41 and the second connection metal layer 31 are joined by defining the width dimension of each layer, the first connection metal layer 41 and the first connection metal layer 41
  • the load area acting between the second connection metal layers 31 can be restricted by the joint surface of the first connection metal layer 41 having a narrow width dimension.
  • the width dimension T12 of the first connection metal layer 41 is smaller than the width dimension T10 of the oxide insulating layer 3a, and the entire first connection metal layer 41 can be It is possible to overlap in the plane of the oxide insulating layer 3a, and it is possible to effectively reduce the load acting on the outer peripheral portion 12a where the cavity 9 is located below the support conduction portion 12.
  • the width dimension T13 of the second connection metal layer 31 is made larger than the width dimension of the first connection metal layer 41.
  • a stable bonding structure can be formed between the support conducting portion 12 and the wiring board 2.
  • width dimension T19 of both the first connection metal layer 41 and the second connection metal layer 31 is made substantially the same, and both width dimensions T19 of the oxide insulating layer 3a are made equal. You may form so that it may become smaller than width dimension T10.
  • a recessed area 31 a is formed substantially at the center of the second connection metal layer 31.
  • the recessed region 31a is formed by forming a recess having a depth to which the surface of the lead layer is exposed in the insulating layer 30, and forming the second connection metal layer 31 by sputtering or the like so as to follow the recess.
  • Width dimension T16 of the 2nd connection metal layer 31 in this form is a straight line width between both ends 31b and 31b. Since the recessed area 31a formed in the second connection metal layer 31 is a non-joined area, in order to suppress a decrease in the bonding area, the second connection metal layer 31 is formed so that the recessed area 31a becomes smaller. Is preferred.
  • concave region 31a of second connection metal layer 31 is shifted so as not to face first connection metal layer 41 as shown by a dotted line in FIG. 9, to form connection region 31c extending long from one end of concave region 31a. It is more preferable that the flat connection region 31c and the flat first connection metal layer 41 be joined together.
  • the width dimension of the second connection metal layer 31 at this time is defined by the width dimension of the flat connection region 31 c.
  • the width dimension T17 of the first connection metal layer 41 is smaller than the width dimension T18 of the second connection metal layer 31, but the width dimension T10 of the oxide insulating layer 3a Slightly wider than.
  • the load area acting between the first connection metal layer 41 and the second connection metal layer 31 is restricted by the bonding surface of the first connection metal layer 41 having a narrow width dimension T17. it can. Therefore, compared with the conventional structure in which the width dimensions of both of the first connection metal layer 41 and the second connection metal layer 31 are equally large, the weight acting on the outer peripheral portion 12a of the support conductive portion 12 is conventionally It can be reduced compared with that.
  • the first connection metal layer 41 whose width dimension T17 is narrowed has a wide width dimension T18.
  • the alignment can be performed with high accuracy so as to be contained in the connection metal layer 31 and the variation in the bonding strength can be reduced.
  • the oxide insulating layer 3 c interposed between the frame layer 25 and the support substrate 1 is also smaller than the width dimension of the frame layer 25. Therefore, the width dimensions of the first seal connection metal layer 43 and the second seal connection metal layer 33 are also the same as the width dimensions of the first connection metal layers 41 and 42 and the second connection metal layers 31 and 32. It is preferable that the metal seal layer 45 that is strong can be formed and the sealability can be improved.
  • the metal seal layer 45 is not formed by bonding the first seal connection metal layer 43 and the second seal connection metal layer 33, only the width dimension of the bonding structure of the support conductive portions 12, 14, 17, 19 Should be regulated. Further, only the width dimension of the joint structure of a part of the supporting and conducting parts may be regulated. Alternatively, the above-described width dimension relationship may be restricted to only the metal seal layer 45 from the viewpoint of enhancing the sealability. However, as shown in FIG. 4, it is most preferable to restrict the above-described width dimension relationship to both the joint structure of all the supporting and conducting parts and the metal seal layer 45.
  • the MEMS sensor described above has a structure in which the SOI substrate and the wiring substrate 2 are stacked, and is thin as a whole.
  • the support conducting portions 12, 14, 17, 19 are joined to the wiring substrate 2 by eutectic bonding or diffusion bonding of the second connection metal layers 31, 32 and the first connection metal layers 41, 42.
  • this bonding layer is thin and small in area, and the support conducting portions 12, 14, 17, 19 and the support substrate 1 are bonded through the oxide insulating layers 3a and 3b of the inorganic insulating material. Therefore, even if the ambient temperature rises, the thermal stress of the bonding layer hardly affects the support structure of the support conducting portions 12, 14, 17 and 19, and the fixed electrode portions 11 and 13 and the movable electrode portion 15 due to the thermal stress. Distortion and the like are unlikely to occur.
  • the metal seal layer 45 surrounding the periphery of the movable region of the movable electrode portion 15 is a bonding layer formed thin between the frame layer 25 and the insulating layer 30, and the frame layer 25 has a sufficient thickness dimension Because of the thermal stress of the metal seal layer 45, distortion and the like are less likely to occur in the support substrate 1 and the silicon substrate 5 made of silicon.
  • the overall thickness of the MEMS sensor is substantially determined by the thickness of the support substrate 1 and the silicon substrate 5, the thickness of the SOI layer 10, and the thickness of the insulating layer 30.
  • the thickness dimensions of the respective layers can be managed with high accuracy, so that variations in thickness are less likely to occur.
  • the recess 38 facing the movable region of the movable electrode portion 15 is formed in the insulating layer 30, the movable electrode portion 15 has a movement margin (margin) in the thickness direction even if the whole is thin. Even if a large acceleration acts in the thickness direction from the outside, the weight 20 and the movable counter electrodes 20a, 20b, 20c, and 20d hardly hit the insulating layer 30, and malfunction does not easily occur.
  • the wiring substrate 2 is configured to have the silicon substrate 5 and the surface 5 a of the silicon substrate 5 including the insulating layer 30, the lead layers 34 and 35, and the second connection metal layer 31. Be done. Therefore, as shown in FIG. 12 which will be described later, the thinning can be realized with a simple structure as compared with the form in which the conduction path to the support conduction portion is secured using the through wiring penetrating to the silicon substrate.
  • the MEMS sensor can be used as an acceleration sensor that detects an acceleration in the Y1 direction or the Y2 direction.
  • the reaction causes the weight 20 of the movable electrode 15 to move in the Y2 direction.
  • an opposing distance ⁇ 1 between the movable counter electrode 20b and the fixed side counter electrode 11c shown in FIG. 2 is increased, and the capacitance between the movable counter electrode 20b and the counter electrode 11c is reduced.
  • the opposing distance ⁇ 2 between the movable counter electrode 20d and the counter electrode 13c shown in FIG. 3 is narrowed, and the capacitance between the movable counter electrode 20b and the counter electrode 13c is increased.
  • the weight portion 20 of the movable electrode portion 15 moves in the thickness direction in response to the acceleration in the direction orthogonal to the XY plane, and the counter electrodes 11b and 11c of the fixed electrode portions 11 and 13 move.
  • 13b, 13c and the movable counter electrodes 20a, 20b, 20c of the movable electrode section 15 are shifted in the thickness direction of the movable electrode section 15, changing the counter area, and the movable counter electrodes at this time It may be one that detects a change in electrostatic capacitance with the counter electrode.
  • the second connection metal layers 31 and 32 and the second seal connection metal layer 33 are aluminum, and the first connection metal layers 41 and 42 and the first seal connection metal layer 43 are Ge.
  • Au (gold) There are (gold) -Ge (germanium), Au (gold) -Sn (tin) and the like.
  • the combination of these metals makes it possible to perform bonding at a relatively low temperature of 450 ° C. or less, which is a temperature below the melting point of each metal.
  • FIG. 11 is a cross-sectional view showing a MEMS sensor according to still another embodiment.
  • an IC package 100 is used instead of the silicon substrate 5.
  • a detection circuit for detecting a change in electrostatic capacitance between the counter electrode and the movable counter electrode is incorporated.
  • An insulating layer 30 is formed on the top surface 101 of the IC package 100, and second connection metal layers 31 and 32 and a second seal connection metal layer 33 are formed on the surface of the insulating layer 30.
  • the second connection metal layers 31 and 32 are electrically connected to the electrode pads and the like appearing on the upper surface 101 of the IC package 100 through the connection layers 134 and 135 such as through holes penetrating the insulating layer 30. It is connected to the electric circuit inside.
  • the width dimension relationship of the bonding structure of the bonding layers is restricted to any of those shown in FIGS. Therefore, it is easier to apply a uniform load to the junction surface between the first connection metal layer and the second connection metal layer than in the conventional case, and it is possible to suppress the breakage of the outer peripheral portion of the junction layer. You can get
  • FIG. 12 is a cross-sectional view showing a MEMS sensor of still another embodiment.
  • a through wiring layer 28 which is also made of silicon and which penetrates the silicon substrate 27 constituting the wiring substrate 26 is provided.
  • An insulating layer 29 insulates between the through wiring layer 28 and the silicon substrate 27.
  • second connection metal layers 31 and 32 are formed on the surface 27 a of the silicon substrate 27 facing the SOI layer 10 in contact with the through wiring layer 28.
  • the insulating layer 29 covers the surface 27b opposite to the surface facing the SOI layer 10 of the silicon substrate 27, and as shown in FIG. 12, the lead layer 37 in contact with the through wiring layer 28 is formed inside the insulating layer 29. It is done.
  • the width dimension relationship of the bonding structure of the bonding layers is restricted to any of those shown in FIGS. Therefore, it is easier to apply a uniform load to the junction surface between the first connection metal layer and the second connection metal layer than in the conventional case, and it is possible to suppress the breakage of the outer peripheral portion of the junction layer. You can get
  • FIG. 13 schematically shows a preferred embodiment of the metal seal layer, in which (a) is a longitudinal sectional view showing a state before joining, and (b) is a longitudinal sectional view showing a state after joining .
  • the MEMS sensor includes, for example, a lower substrate 50 formed of silicon, an upper substrate 52, and a lower connection metal layer 51 formed on the upper surface of the lower substrate 50; And the upper connection metal layer 53 formed on the upper substrate 52.
  • the width dimension T20 of the upper connection metal layer 53 is smaller than the width dimension T21 of the lower connection metal layer 51.
  • the bonding surface 51a of the lower connection metal layer (wide connection metal layer) 51 is a flat surface, but the bonding surface 53a of the upper connection metal layer (narrow connection metal layer) is It is formed in the uneven shape.
  • the convex portion 54 formed on the bonding surface 53a of the upper connection metal layer 53 is formed in a tapered shape.
  • the convex portions 54 may be formed in a dot shape on the bonding surface 53 a in a dotted manner, or may be formed in a convex shape.
  • connection metal layer (narrow connection metal layer) 53 is formed of a metal material having a higher hardness at the time of bonding than the lower connection metal layer (wide connection metal layer) 51.
  • the upper connection metal layer 53 is preferably formed of, for example, a layer having Ge, in particular, a Ge layer.
  • the lower connection metal layer 51 is preferably formed of, for example, a layer containing Al, in particular, an Al layer or an AlCu layer.
  • the temperature is raised to a temperature at which the eutectic reaction starts, and pressure is applied between the lower substrate 50 and the upper substrate 52.
  • FIG. 14 shows a comparative example in which the bonding surface 53a of the upper connection metal layer (narrow connection metal layer) 53 is formed as a flat surface without being an uneven surface, unlike FIG. 13A.
  • the bonding surface 53a is formed with an uneven surface. While the convex portion 54 of the upper connection metal layer 53 bites into the lower connection metal layer 51 without any deformation due to high pressure at the initial stage of bonding, the lower connection metal layer 51 follows the uneven shape of the bonding surface 53a. As a result, formation of the void 55 and the unbonded region 56 shown in FIG. 14 at the bonded interface shown in FIG. 13B can be effectively suppressed. As shown in FIG. 13B, the interface between the lower connection metal layer 53 and the upper connection metal layer 53 is in close contact. Therefore, as compared with the configuration shown in FIG. 14, the bonding strength and the sealing airtightness can be improved.
  • the bonding surface 51a of the lower connection metal layer 51 is almost the same as that of the upper connection metal layer 53 as shown in FIG.
  • the bonding area can be made larger than in the configuration in which the flat surfaces are bonded as shown in FIG. 14, and the bonding pressure per unit area applied to the bonding surfaces of the connecting metal layers 51 and 53. Declines. Therefore, the upper connection metal layer (narrow connection metal layer) 53 can be suppressed from being pushed into the lower connection metal layer (wide connection metal layer) 51 more than necessary, and a stopper function can be exhibited.
  • connection metal layer 53 it is preferable to form the joint surface 53a of the connection metal layer 53 on the side where the width dimension is narrow by an uneven surface. Even if it is reversed, it is effective in improving the bonding strength and sealing air tightness as compared with the case of FIG. 14, but the uneven surface of the narrow connecting metal layer 53 on the bonding surface 51a of the wide connecting metal layer 51. By pressing (bonding surface 53a), the other connection metal layer 51 can be closely attached to the whole of the uneven surface, and the bonding strength can be more effectively improved.
  • FIG. 15 is process drawing (longitudinal sectional view) which shows the manufacturing method of the connection metal layer which has a joining surface of uneven
  • connection metal layer 58 is formed on the substrate 57.
  • the connection metal layer 58 is formed of, for example, a Ge layer.
  • the mask layer 59 is partially formed on the surface 58a of the connection metal layer 58.
  • the mask layer 59 is provided at the position of the convex portion 60 (see FIGS. 15 (c) and 15 (d)) formed on the surface 58a, but is formed with a width wider than the minimum width of the convex portion 60.
  • connection metal layer 58 not covered with the mask layer 59 is scraped.
  • the portion of the connection metal layer 58 located below the mask layer 59 is also scraped into, and a tapered convex portion 60 is formed below the mask layer 59.
  • the minimum width of the convex portion 60 is smaller than the width dimension of the mask layer 59.
  • connection metal layer 58 can be easily and appropriately formed in an uneven shape.
  • a frame-like sealing line 62 is formed on the upper surface 50a of the lower substrate 50 by the lower connecting metal layer 51 made of Al or the like shown in FIG.
  • a frame-like sealing line 61 is formed on the lower surface 52a of the upper substrate 52 by the upper connection metal layer 53 made of Ge or the like shown in FIG.
  • the shape of the vertical cross section of the sealing lines 62, 61 is the same as the shape of the vertical cross section of the connecting metal layers 51, 53 shown in FIG. 13 (a).
  • the inner configuration of the metal seal layer formed by joining the sealing lines 62 and 61 in FIG. 16 is not particularly limited, but can be applied to, for example, the structure shown in FIG.
  • FIG. 17 (a) is a plan view of the MEMS sensor
  • FIG. 17 (b) is a longitudinal sectional view taken along the line AA shown in FIG. 17 (a) and viewed from the arrow direction.
  • the metal seal layer 70 shown in FIG. 17 is formed by joining the sealing lines 62 and 61 shown in FIG. 16, and has an enlarged longitudinal cross section similar to that of FIG. 13 (b). Therefore, the MEMS sensor which is excellent in bonding strength and sealing airtightness can be realized.
  • three sensor areas 71, 72, 73 are juxtaposed with a space X1-X2 inside the metal seal layer 70 formed in a frame shape.
  • the acceleration in the Z direction can be detected by the operation of the movable body 74.
  • the acceleration in the Y direction can be detected by the operation of the movable body 75
  • the acceleration in the X direction can be detected by the operation of the movable body 76.
  • the present invention can also be applied to a form in which there is not a movable body but another sensor configuration inside the metal seal layer formed by joining the sealing lines 62 and 61.
  • connection metal layer shown in FIG. 13 can be applied to any of the configurations shown in FIGS. That is, for example, taking FIG. 5 as an example, the bonding surface 41 a of the first connection metal layer (narrow connection metal layer) 41 formed to have a narrow width T12 is formed as an uneven surface. Further, the first connection metal layer 41 is formed of a material having higher hardness at the time of bonding as compared to the second connection metal layer (wide connection metal layer) 31 in which the width dimension T13 is formed to be wide.
  • the bonding surface of the connection metal layer on the side formed of a material with high hardness at bonding is formed by the uneven surface. Be done.
  • Reference Signs List 1 support substrate 2 wiring substrate 3a, 3b, 3c oxide insulating layer 5, 27 silicon substrate 10 SOI layer 11 first fixed electrode portion 11b, 11c counter electrode 12 supporting conductive portion (anchor portion) 13 second fixed electrode portion 13b, 13c counter electrode 14 supporting conductive portion (anchor portion) 15 Movable electrode portion 16 First support arm portion 17 Support conducting portion (anchor portion) 18 Second Support Arm 19 Support Conductor (Anchor) Reference Signs List 20 weight portion 20a, 20b, 20c, 20d movable counter electrode 21, 22, 23, 24 elastic support portion 25 frame layer 28 through wiring layer 29, 30 insulating layer 31, 32 second connection metal layer 33 second seal Connection metal layer 34, 35 Lead layer 38 Recess 41, 42 First connection metal layer 43 First seal connection metal layer 45, 70 Metal seal layer 50 Lower substrate 51 Lower connection metal layer 51a Bonding surface 52 Upper substrate 53 Upper connection metal layer 53a Bonding surface (concave / convex surface) 54, 60 convex portion 58 connection metal layer 59 mask layer 61, 62 sealing line 71 to

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

【課題】 特に、従来に比べて、安定した支持導通部と配線基板間の接合構造を得ることが出来るMEMSセンサを提供することを目的としている。 【解決手段】 支持導通部(接合層)12は、酸化絶縁層3aに固定支持される。酸化絶縁層3aの幅寸法T10は、支持導通部12の幅寸法T11よりも狭い。支持導通部12の表面12bには第1の接続金属層41が形成される。配線基板側には第2の接続金属層31が形成され、各接続金属層31,41間が接合される。第1の接続金属層41の幅寸法T12は、第2の接続金属層31の幅寸法T13及び酸化絶縁層3aの幅寸法T10より小さくなっている。

Description

MEMSセンサ
 本発明は、シリコン基板を微細加工して形成されたMEMSセンサに係り、特に、支持導通部(アンカ部)等の接合構造に関する。
 MEMS(Micro-Electro-Mechanical Systems)センサは、SOI(Silicon on Insulator)基板を構成するSOI層を微細加工することで、可動電極部と固定電極部が形成される。この微細なセンサは、可動電極部の動作により、加速度センサ、圧力センサ、振動型ジャイロ、またはマイクロリレーなどとして使用される。
 図18は、従来のMEMSセンサの部分断面図、図19は、図18に示す支持導通部(アンカ部)の接合前の状態を示す拡大断面図である。
 図18に示すMEMSセンサは、支持基板200、酸化絶縁層203及びSOI層210にて構成されるSOI基板と、SOI基板に対向して設けられた配線基板211とを有して構成される。
 可動電極部及び固定電極部で構成される可動領域201と、可動電極部及び固定電極部の各支持導通部202は前記SOI層210を微細加工して形成されたものである。
 図18,図19に示すように支持導通部202の表面202aには第1の接続金属層212が設けられている。
 配線基板211は、シリコン基板204、絶縁層205、及び、リード層206等を備えて構成され、前記支持導通部202と対向する側に第2の接続金属層213が形成されている。第2の接続金属層213はリード層206と電気的に接続されている。そして、図18に示すように、第1の接続金属層212と第2の接続金属層213とが接合されている。
特開2005-236159号公報
 図19に示すように、支持導通部202と支持基板200との間に介在する酸化絶縁層203の幅寸法T1は、支持導通部202の幅寸法T2に比べて狭い。これら幅寸法T1,T2の関係は、支持導通部202下に位置する酸化絶縁層203以外の酸化絶縁層203をエッチングにて除去したときに、オーバーエッチングにより、支持導通部202の外周下の酸化絶縁層203も一部侵食されて、空洞部214が形成されたことによるものである。
 一方、支持導通部202の表面202aに形成された第1の接続金属層212の幅寸法T3と、配線基板211側に設けられた第2の接続金属層213の幅寸法T4は略同一であり、幅寸法T3,T4は、酸化絶縁層203の幅寸法T1よりも広い。
 なお、図18,図19では、X1-X2方向の幅寸法が図示されているが、これに直交するY1-Y2方向の幅寸法も上記と同様の関係にある。
 このため、第1の接続金属層212と第2の接続金属層213間を接合する際、図19のように下方向へ加重をかけたときに、支持導通部202の外周下に空洞部214が形成されていることで、支持導通部202の外周部202bが下方向へ撓み易い。これにより、第1の接続金属層212と第2の接続金属層213間の接合面に均一な加重をかけることができない。したがって、第1の接続金属層212と第2の接続金属層213間の接合強度がばらついたり、接合強度が低下する等の問題があった。また、支持導通部202の外周部202bが下方向に撓むことで、支持導通部202の外周部202bが破損する可能性もあった。
 また、支持導通部202は、検出精度を向上させるために可動領域201を広く取るべく、できる限り小さく形成されることが好適である。したがって、支持導通部202を大きく形成して相対的に空洞部214の影響を小さくすることはできなかった。
 このように従来では形成領域が限られた支持導通部202に対して、安定した接合構造を形成することが出来なかった。
 そこで本発明は上記従来の課題を解決するものであり、特に、従来に比べて、安定した支持導通部等の接合層と配線基板間の接合構造を得ることが出来るMEMSセンサを提供することを目的としている。
 本発明におけるMEMSセンサは、支持基板、中間層、及び機能層の順に積層される第1の基板と、前記機能層と対向して、前記機能層に形成される可動電極部及び前記固定電極部との導通経路を備える配線基板と、を有し、
 前記機能層には、前記中間層に固定支持されるとともに、前記配線基板と接合される接合層が形成されており、
 前記接合層と前記支持基板間に位置する中間層の幅寸法は、前記接合層の幅寸法よりも小さく、
 前記接合層の表面に形成された第1の接続金属層と、前記配線基板の表面に形成され前記第1の接続金属層と接合される第2の接続金属層のうち、一方の幅寸法が他方の幅寸法に比べて狭いことを特徴とするものである。
 これにより、第1の接続金属層と第2の接続金属層間に作用する加重領域を、幅寸法が狭い接続金属層の接合面で規制できる。よって、接合層の外周部(支持基板と接合層との間に形成された空洞部と対向する部分)に作用する加重を、従来に比べて低減できる。また、第1の接続金属層と第2の接続金属層の幅寸法に差をつけることで、幅寸法が狭くされた側の接続金属層が、幅寸法が広い側の接続金属層の内に収まるように、位置合わせを高精度に行うことが出来、接合強度のばらつきを小さくすることができる。以上により、第1の接続金属層と第2の接続金属層間の接合面に、従来に比べて均一な加重を作用させやすく、また接合層の外周部の破損を抑制できる等、安定した接合構造を得ることが出来る。
 本発明では、前記幅寸法が狭い側の接続金属層の前記幅寸法は、前記中間層の幅寸法以下であることが好ましい。これにより、より効果的に、第1の接続金属層と第2の接続金属層間の接合面に、均一な加重を作用させることが出来、より安定した接合構造を得ることが出来る。
 また本発明では、前記幅寸法が狭い側の接続金属層の接合面が凹凸形状で形成されていることが好ましい。このとき、前記幅寸法が狭い側の接続金属層は、Geを有して形成され、前記幅寸法が広い側の接続金属層はAlを有して形成されることが好ましい。
 また上記発明は、各接続金属層同士が接合されて、金属シール層が形成されている構成に好ましく適用される。
 上記のように、幅寸法が狭い側の接続金属層の接合面を凹凸形状としたことで、各接続金属層の界面をより密着させることができる。特に、幅寸法が狭い側の接続金属層をGeとし、幅寸法が広い側の続金属層をAlとすることで、接合時に前記接続金属層の凹凸面(接合面)がほとんど変形せずに他方の接続金属層内に押し込まれ、各接合面間をより効果的に密着させることが出来る。したがって、接合強度を高めることができる。特に上記したように金属シール層として用いる形態では、接合強度とともに封止気密性を効果的に向上させることが可能になる。
 また、接合面を凹凸面としたことで、平らな面同士の接合に比べて、接合面積を大きくでき、このため、接合時に、各接合面間がほぼ密着した状態になると、単位面積当たりの接合圧力を効果的に低下させることができる。したがって接合の際、各接続金属層同士が必要以上に押し込まれるのを抑制でき、ストッパ的な機能を発揮させることが出来る。
 あるいは本発明におけるMEMSセンサは、支持基板、中間層、及び機能層の順に積層される第1の基板と、前記機能層と対向して、前記機能層に形成される可動電極部及び前記固定電極部との導通経路を備える配線基板と、を有し、
 前記機能層には、前記中間層に固定支持されるとともに、前記配線基板と接合される接合層が形成されており、
 前記接合層と前記支持基板間に位置する中間層の幅寸法は、前記接合層の幅寸法よりも小さく、
 前記接合層の表面に形成された第1の接続金属層と、前記配線基板の表面に形成され前記第1の接続金属層と接合される第2の接続金属層のうち、少なくとも一方の幅寸法が前記中間層の幅寸法以下であることを特徴とするものである。
 これにより、接合層の外周部(支持基板と接合層との間に形成された空洞部と対向する部分)に作用する加重を、従来に比べて低減できる。以上により、第1の接続金属層と第2の接続金属層間の接合面に、従来に比べて均一な加重を作用させやすく、また接合層の外周部の破損を抑制できる等、安定した接合構造を得ることが出来る。
 また本発明では、具体的には、前記接合層は、前記可動電極部及び前記固定電極部の夫々に接続される支持導通部である。あるいは、前記接合層は、前記可動電極部及び前記固定電極部と分離して形成され、前記可動電極部の可動領域を囲む枠体層であり、前記第1の接続金属層と前記第2の接続金属層とで、前記可動領域の外周を囲む金属シール層が形成されている。
 また本発明では、前記第1の接続金属層と前記第2の接続金属層とが、共晶接合又は拡散接合されていることが好ましい。これにより、第1の接続金属層と第2の接続金属層間を強固に接合できる。また接合層の厚さ寸法は薄く、支持基板と配線基板の間隔を高精度に決めることができる。よって寸法精度に優れ接合強度が強いMEMSセンサに出来る。
 また本発明では、前記配線基板は、シリコン基板と、前記シリコン基板の表面に、絶縁層とこの絶縁層の内部に埋設された前記可動電極部及び前記固定電極部の夫々に電気的に接続されるリード層と、前記第2の接続金属層と、を有して形成されることが好ましい。これにより配線基板を簡単な構造で形成できると共に、MEMSセンサの薄型化を実現できる。
 また本発明におけるMEMSセンサは、
 上側基板と、前記上側基板の下面に形成された上側接続金属層と、下側基板と、前記下側基板の上面に形成された下側接続金属層と、を有し、
 前記上側接続金属層と前記下側接続金属層とが接合されて金属シール層が形成されており、
 前記上側接続金属層と、前記下側接続金属層とのうち、一方の幅寸法が他方の幅寸法に比べて狭いことを特徴とするものである。
 前記幅寸法が狭い側の接続金属層の接合面が凹凸形状で形成されていることが好ましい。
 上記により、上側接続金属層と下側接続金属層間に作用する加重領域を、幅寸法が狭い側の接続金属層の接合面で規制できる。また幅寸法が狭い側の接続金属層が、幅寸法が広い側の接続金属層の内に収まるように、位置合わせを高精度に行うことが出来、接合強度のばらつきを小さくすることができる。
 また本発明では、幅寸法が狭い側の接続金属層の接合面を凹凸形状としたことで、各接続金属層の界面をより密着させることができる。特に、幅寸法が狭い側の接続金属層をGeとし、幅寸法が広い側の続金属層をAlとすることで、接合時に前記接続金属層の凹凸面(接合面)がほとんど変形せずに他方の接続金属層内に押し込まれ、各接合面間をより効果的に密着させることが出来る。したがって、接合強度を高めることができるとともに封止気密性を効果的に向上させることが可能になる。
 また、接合面を凹凸面としたことで、平らな面同士の接合に比べて、接合面積を大きくでき、このため、接合時に、各接合面間がほぼ密着した状態になると、単位面積当たりの接合圧力を効果的に低下させることができる。したがって接合の際、各接続金属層同士が必要以上に押し込まれるのを抑制でき、ストッパ的な機能を発揮させることが出来る。
 本発明のMEMSセンサによれば、支持基板に中間層を介して固定支持される接合層の表面に設けられた第1の接続金属層と、配線基板の表面に形成された第2の接続金属層間の接合面に、従来に比べて均一な加重を作用させやすく、また接合層の外周部の破損を抑制できる等、安定した接合構造を得ることが出来る。
本発明の実施の形態のMEMSセンサの可動電極部と固定電極部および枠体層の分離パターンを示す平面図、 図1のII矢視部の拡大平面図、 図1のIII矢視部の拡大平面図、 MEMSセンサの積層構造を示す断面図であり、図1のIV-IV線での断面図に相当している、 図4の一部分を拡大して示した部分拡大断面図、 図5の平面図(ただし、配線基板は省略した)、 図5の実施形態と一部変更した他の実施形態のMEMSセンサの部分拡大断面図、 図5の実施形態と一部変更した他の実施形態のMEMSセンサの部分拡大断面図、 図5の実施形態と一部変更した他の実施形態のMEMSセンサの部分拡大断面図、 図5の実施形態と一部変更した他の実施形態のMEMSセンサの部分拡大断面図、 ICパッケージを使用した実施の形態を示す断面図、 図4,図11と異なる実施形態を示す断面図、 金属シール層の好ましい構成を示す部分縦断面図((a)は接合前、(b)は接合後を示す)、 図13の金属シール層の構成に対する比較例を示す金属シール層の縦断面図、 接合面が凹凸面で形成される側の接続金属層の製造方法を示す工程図(縦断面図)、 金属シール層を備えるMEMSセンサの斜視図(接合前の状態を示す)、 別のMEMSセンサの構成を示す平面図と縦断面図、 従来におけるMEMSセンサの部分断面図、 図18の支持導通部の接合構造を説明するために拡大したものであり、接合前の状態を示す部分拡大断面図、
 図1は本発明の実施の形態のMEMSセンサを示すものであり、可動電極部と固定電極部および枠体層を示す平面図である。図1では支持基板および配線基板の図示は省略している。図2は図1のII部の拡大図、図3はIII部の拡大図である。図4は、MEMSセンサの全体構造を示す断面図であり、図1をIV-IV線で切断した断面図に相当している。図5は、図4の一部分を拡大して示した部分拡大断面図、図6は図5の平面図(ただし、配線基板は省略した)である。図7ないし図10は、図5の実施形態と一部変更した他の実施形態のMEMSセンサの部分拡大断面図である。
 図4に示すように、MEMSセンサは、支持基板1と配線基板2の間に、SOI層(機能層)10が挟まれている。支持基板1とSOI層10の各部は、酸化絶縁層(中間層)3a,3b,3cを介して接合されている。
 支持基板1、SOI層10および酸化絶縁層3a,3b,3cは、例えば、SOI(Silicon on Insulator)基板(第1の基板)を微細加工して形成されたものである。
 SOI層10には、第1の固定電極部11、第2の固定電極部13、可動電極部15および枠体層25が分離して形成されている。さらに酸化絶縁層の一部が除去されて、互いに分離された酸化絶縁層3a,3b,3cが形成されている。
 図1に示すように、SOI層10の平面形状は、中心(図心)Oに対して180度の回転対称であり、且つ中心Oを通りX方向に延びる線に対して上下方向(Y方向)に対称である。
 図1に示すように、中心OよりもY1側に第1の固定電極部11が設けられている。第1の固定電極部11では、中心Oに接近する位置に四角形の支持導通部(アンカ部)12が一体に形成されている。図4に示すように、支持導通部12は酸化絶縁層3aによって支持基板1の表面1aに固定されている。第1の固定電極部11は、前記支持導通部12のみが前記酸化絶縁層3aによって支持基板1の表面1aに固定されており、その他の部分は、支持基板1との間の酸化絶縁層が除去されて、支持基板1の表面1aとの間に、酸化絶縁層3aの厚さに相当する間隔の隙間が形成されている。
 図1に示すように、第1の固定電極部11は、支持導通部12からY1方向に直線的に延びる一定の幅寸法の電極支持部11aを有している。電極支持部11aのX1側には、複数の対向電極11bが一体に形成されており、電極支持部11aのX2側には、複数の対向電極11cが一体に形成されている。図2には、一方の対向電極11cが示されている。複数の対向電極11cはいずれもX2方向へ直線的に延びており、Y方向の幅寸法は一定である。そして、複数の対向電極11cは、Y方向へ一定の間隔を空けて櫛歯状に配列している。X1側に延びる他方の対向電極11bと、X2方向に延びる前記対向電極11cは、中心Oを通ってY方向に延びる線に対して左右対称の形状である。
 中心OよりもY2側には第2の固定電極部13が設けられている。第2の固定電極部13と前記第1の固定電極部11は、中心Oを通ってX方向に延びる線に対して上下方向(Y方向)へ対称形状である。すなわち、第2の固定電極部13は、中心Oに接近する位置に設けられた四角形の支持導通部(アンカ部)14と、この支持導通部14からY2方向へ直線的に延びる一定の幅寸法の電極支持部13aを有している。電極支持部13aのX1側には、電極支持部13aから一体に延びる複数の対向電極13bが設けられ、電極支持部13aのX2側には、電極支持部13aから一体に延びる複数の対向電極13cが設けられている。
 図3に示すように、対向電極13cはX2方向へ直線状に延び幅寸法が一定であり、且つY方向へ一定の間隔で互いに平行に形成されている。X1側の対向電極13bも同様に一定の幅寸法でX1方向へ直線的に延び、Y方向へ一定の間隔で平行に延びている。
 第2の固定電極部13も、支持導通部14のみが酸化絶縁層3aを介して支持基板1の表面1aに固定されている。それ以外の部分である電極支持部13aおよび対向電極13b,13cは、支持基板1の表面1aとの間の酸化絶縁層が除去されており、電極支持部13aおよび対向電極13b,13cと、支持基板1の表面1aとの間に、酸化絶縁層の厚さに相当する間隔の隙間が形成されている。
 図1に示すSOI層10は、四角形の枠体層25の内側が可動領域であり、可動領域では、前記第1の固定電極部11と第2の固定電極部13を除く部分が可動電極部15となっている。可動電極部15は、前記第1の固定電極部11と第2の固定電極部13および枠体層25から分離されて形成されている。
 図1に示すように、可動電極部15は、中心OよりもX1側に、Y1-Y2方向に延びる第1の支持腕部16を有しており、中心OのX1側に接近した位置に、第1の支持腕部16と一体に形成された四角形の支持導通部(アンカ部)17が設けられている。可動電極部15は、中心OよりもX2側に、Y1-Y2方向に延びる第2の支持腕部18を有しており、中心OのX2側に接近した位置に、第2の支持腕部18と一体に形成された四角形の支持導通部(アンカ部)19が設けられている。
 第1の支持腕部16と第2の支持腕部18とで挟まれた領域で、且つ第1の固定電極部11と第2の固定電極部13を除く部分が、錘部20となっている。錘部20のY1側の縁部は、弾性支持部21を介して第1の支持腕部16に支持されているとともに弾性支持部23を介して第2の支持腕部18に支持されている。錘部20のY1側の縁部は、弾性支持部22を介して第1の支持腕部16に支持されているとともに、弾性支持部24を介して第2の支持腕部18に支持されている。
 中心OよりもY1側では、錘部20のX1側の縁部からX2側に延びる複数の可動対向電極20aが一体に形成されているとともに、錘部20のX2側の縁部からX1側に延びる複数の可動対向電極20bが一体に形成されている。図2に示すように、錘部20と一体に形成された可動対向電極20bは、第1の固定電極部11の対向電極11cのY2側の辺に対して静止時に距離δ1を介して対向している。同様に、X1側の可動対向電極20aも、第1の固定電極部11の対向電極11bのY2側の辺に対して静止時に距離δ1を介して対向している。
 錘部20には、中心OよりもY2側において、X1側の縁部からX2方向に平行に延びる複数の可動対向電極20cが一体に形成されているとともに、X2側の縁部からX1方向に平行に延びる複数の可動対向電極20dが一体に形成されている。
 図3に示すように、可動対向電極20dは、第2の固定電極部13の対向電極13cのY1側の辺に対して静止時に距離δ2を介して対向している。これは、X1側の可動対向電極20cと対向電極13bとの間においても同じである。静止時の対向距離δ1とδ2は、同じ寸法となるようように設計されている。
 図4に示すように、第1の支持腕部16に連続する支持導通部17と支持基板1の表面1aとが酸化絶縁層3bを介して固定されており、第2の支持腕部18に連続する支持導通部19と支持基板1の表面1aも酸化絶縁層3bを介して固定されている。可動電極部15は、支持導通部17と支持導通部19のみが前記酸化絶縁層3bによって支持基板1に固定されており、それ以外の部分、すなわち第1の支持腕部16、第2の支持腕部18、錘部20、可動対向電極20a,20b,20c,20dおよび弾性支持部21,22,23,24は、支持基板1の表面1aとの間の酸化絶縁層が除去されており、これら各部と支持基板1の表面1aとの間に酸化絶縁層3bの厚さ寸法に相当する間隔の隙間が形成されている。
 弾性支持部21,22,23,24は、薄い板バネ部でミアンダパターンとなるように形成されている。弾性支持部21,22,23,24が変形することで、錘部20がY1方向またはY2方向へ移動可能となっている。
 図1に示すように、枠体層25は、SOI層10を四角い枠状に切り出すことで形成されている。この枠体層25と支持基板1の表面1aとの間には、酸化絶縁層3cが残されている。この酸化絶縁層3cは、可動電極部15の可動領域の外側の全周を囲むように設けられている。
 図1,図4に示す形状のSOI層10の製造方法は、加工前のSOI層10の表面に、第1の固定電極部11、第2の固定電極部13、可動電極部15および枠体層25を覆うレジスト層を形成し、レジスト層から露出している部分のSOI層を、高密度プラズマを使用した深堀RIEなどのイオンエッチング手段で除去し、第1の固定電極部11、第2の固定電極部13、可動電極部15および枠体層25を互いに分離させる。
 このとき、支持導通部12,14,17,19および枠体層25を除く全ての領域に、前記深堀RIEによって、多数の微細孔を形成しておく。図2と図3には、対向電極11cに形成された微細孔11d、対向電極13cに形成された微細孔13d、および錘部20に形成された微細孔20eが図示されている。
 深堀RIEなどによってパターン加工した後に、シリコンを溶解せずに酸化絶縁層(SiO2層)を溶解できる選択性の等方性エッチング処理を行う。このときエッチング液又はエッチングガスは、SOI層10の前記各部を分離した溝内に浸透し、さらに前記微細孔内に浸透して、酸化絶縁層が除去される。
 その結果、支持導通部12,14,17,19および枠体層25と、支持基板1の表面1aとの間のみ、酸化絶縁層3a,3b,3cが残され、それ以外の部分で絶縁層が除去される。
 なお、支持基板1は、厚さ寸法が0.2~0.7mm程度、SOI層10の厚さ寸法は10~30μm程度、酸化絶縁層3a,3b,3cの厚さは1~3μm程度である。
 配線基板2を構成するシリコン基板5は、厚さ寸法が0.2~0.7mm程度で形成される。シリコン基板5の表面5aに絶縁層30が形成される。絶縁層30は、SiO2、SiNまたはAl2O3などの無機絶縁層であり、スパッタ工程やCVD工程で形成される。無機絶縁層としては、シリコン基板との熱膨張係数の差が、接続金属層を構成する導電性金属とシリコン基板の熱膨張係数の差よりも小さい材料が選択される。好ましくは、シリコン基板との熱膨張係数の差が比較的小さいSiO2またはSiNが使用される。
 図4に示すように、絶縁層30の表面に、第1の固定電極部11の支持導通部12に対面する第2の接続金属層31が形成され、同様に第2の固定電極部13の支持導通部14に対面する第2の接続金属層31(図示せず)が形成される。また、絶縁層30の表面に、可動電極部15の一方の支持導通部17に対面する第2の接続金属層32が形成され、同様に、他方の支持導通部19と対面する第2の接続金属層32(図示せず)も形成されている。
 絶縁層30の表面には、前記枠体層25の表面に対向する第2のシール接続金属層33が形成されている。この第2のシール接続金属層33は、前記第2の接続金属層31,32と同じ導電性金属材料によって形成されている。第2のシール接続金属層33は、枠体層25に対面して四角形に形成されており、可動電極部15の可動領域の外周でこの可動領域の周囲全周を囲むように形成されている。第2の接続金属層31,32および第2のシール接続金属層33はアルミニウム(Al)で形成されている。
 絶縁層30の内部には、一方の第2の接続金属層31に導通するリード層34と、他方の第2の接続金属層32に導通するリード層35が設けられている。リード層34,35はアルミニウムで形成されている。複数のリード層34,35は、それぞれの第2の接続金属層31,32に個別に導通している。そして、それぞれのリード層34,35は、絶縁層30の内部を通過し、第2のシール接続金属層33と接触することなく、第2のシール接続金属層33が形成されている部分を横断して、第2のシール接続金属層33で囲まれている領域の外側へ延びている。配線基板2には、前記領域の外側において、それぞれのリード層34,35に導通する接続パッド36が設けられている。接続パッド36は、低抵抗で酸化しにくい導電性材料であるアルミニウムや金などで形成されている。
 絶縁層30は、第2の接続金属層31,32が形成されている表面および第2のシール接続金属層33が形成されている表面が同一平面上に位置している。そして、絶縁層30には、第2の接続金属層31,32と第2のシール接続金属層33が形成されていない領域に、シリコン基板5の表面5aに向けて凹部38が形成されている。この凹部38は、絶縁層30において、支持導通部12,14,17,19および枠体層25に対向する前記表面以外の全ての部分に形成されている。また、凹部38は、絶縁層30の内部の途中までの深さであって、リード層34,35が露出しない深さに形成されている。
 図4に示すように、SOI層10の支持導通部12,14の表面には、それぞれ前記第2の接続金属層31に対面する第1の接続金属層41が形成され、支持導通部17,19の表面には、それぞれの第2の接続金属層32に対面する第1の接続金属層42がスパッタ工程で形成される。さらに、枠体層25の表面には、第2のシール接続金属層33に対面する第1のシール接続金属層43が形成される。第1のシール接続金属層43は、第1の接続金属層41,42と同じ金属材料で同時に形成される。
 第1の接続金属層41,42と第1のシール接続金属層43は、第2の接続金属層31,32および第2のシール接続金属層33を形成するアルミニウムと共晶接合あるいは拡散接合しやすい金属材料であるGe(ゲルマニウム)で形成されている。
 図4に示すように、第2の接続金属層31と第1の接続金属層41とを対面させ、第2の接続金属層32と第1の接続金属層42とを対面させ、さらに第2のシール接続金属層33と第1のシール接続金属層43とを対面させる。そして、加熱しながら支持基板1とシリコン基板5間を加圧する。これにより、第2の接続金属層31と第1の接続金属層41とが共晶接合あるいは拡散接合し、第2の接続金属層32と第1の接続金属層42とが共晶接合あるいは拡散接合する。第2の接続金属層31,32と第1の接続金属層41,42との共晶接合あるいは拡散接合により、支持導通部12,14,17,19が酸化絶縁層3a,3bと絶縁層30との間で動かないように挟持されるとともに、第2の接続金属層31,31と支持導通部12,14とが個別に導通し、第2の接続金属層32,32と支持導通部17,19とが個別に導通する。
 同時に、第2のシール接続金属層33と第1のシール接続金属層43とが共晶接合あるいは拡散接合する。この接合により、枠体層25と絶縁層30とが強固に固定されるとともに、可動電極部15の可動領域の周囲全周を囲む金属シール層45が形成される。
 図5は、支持導通部12の付近を拡大して示した部分拡大断面図である。図5は図4の上下を逆にして示した。
 図5,図6(図5の部分平面図)に示すように、支持導通部(接合層)12と支持基板1との間に介在する酸化絶縁層3aの幅寸法T10は、支持導通部12の幅寸法T11よりも狭い。なおこの実施形態では、支持導通部12及び酸化絶縁層3aの平面形状が略正方形であるとして、X1-X2方向及びそれに直交するY1-Y2方向への幅寸法が略同一であるとする。
 図5,図6に示すように、酸化絶縁層3aは、支持導通部12の真下の略中央に形成される。このため、支持導通部12の外周部12aの下面には支持基板1との間に酸化絶縁層が無い空洞部9が形成されている。
 このように、空洞部9が形成される理由は、製造過程において、不要なSOI層10が除去されて露出した不要な酸化絶縁層3aをエッチングで除去するとき、オーバーエッチングによって、支持導通部12の外周部12a下にある酸化絶縁層までも除去されてしまうからである。
 本実施形態では、図5,図6に示すように、支持導通部12の表面12bに形成される第1の接続金属層41の幅寸法T12が、酸化絶縁層3aの幅寸法T10以下で形成される。図5,図6では、第1の接続金属層41の幅寸法T12は、酸化絶縁層3aの幅寸法T10よりも小さく形成されている。このため図6のように平面視で、第1の接続金属層41の全体を酸化絶縁層3a内に重ねることができる。すなわち平面視にて、第1の接続金属層41が、酸化絶縁層3aからX1-X2方向あるいはY1-Y2方向にはみ出さない。
 一方、図5の実施形態では、配線基板2側に配置される第2の接続金属層31の幅寸法T13は、酸化絶縁層3aの幅寸法T10より大きくなっている。
 図5のように、各層の幅寸法を規定することで、第1の接続金属層41と第2の接続金属層31間を接合する際、加重をかけると、第1の接続金属層41と第2の接続金属層31間に作用する加重領域を、幅寸法が狭い第1の接続金属層41の接合面で規制できる。そして、図5,図6の実施形態では、さらに、第1の接続金属層41の幅寸法T12が酸化絶縁層3aの幅寸法T10より小さく、平面視にて第1の接続金属層41全体を酸化絶縁層3aの平面内に重ねることができ、支持導通部12の下に空洞部9がある外周部12aに作用する加重を効果的に低減できる。
 上記により、従来に比べて、第1の接続金属層41と第2の接続金属層31との間の接合面に均一な加重を作用させやすい。よって接合強度のばらつきを小さくでき、強く安定した接合強度を得ることが出来る。また支持導通部12の外周部12aに作用する加重を低減できるので、外周部12aの破損等を抑制できる。
 さらに、図5に示す実施形態では、第2の接続金属層31の幅寸法T13を第1の接続金属層41の幅寸法より大きくしている。これにより、第1の接続金属層41と第2の接続金属層31間を接合するとき、多少、両者間に位置ずれが生じても、幅寸法T12が狭い第1の接続金属層41の全体を、幅寸法T13が広い第2の接続金属層31の平面内に収めやすく接合面積のばらつきを抑制できる。
 以上により、支持導通部12と配線基板2との間に、安定した接合構造を形成することが出来る。
 図7の他の実施形態に示すように、第2の接続金属層31の幅寸法T14を、第1の接続金属層41の幅寸法T15及び酸化絶縁層3aの幅寸法T10より小さくしてもよい。
 また図8の他の実施形態に示すように、第1の接続金属層41及び第2の接続金属層31の双方の幅寸法T19を略同一にし、双方の幅寸法T19を酸化絶縁層3aの幅寸法T10より小さくなるように形成してもよい。
 図9に示す他の実施形態では、第2の接続金属層31の略中央に凹領域31aが形成されている。凹領域31aは、絶縁層30にリード層の表面が露出する深さの凹部を形成し、この凹部に倣うようにスパッタ等で第2の接続金属層31を成膜することで形成される。かかる形態における第2の接続金属層31の幅寸法T16は、両端部31b,31b間の直線幅である。第2の接続金属層31に形成された凹領域31aは未接合領域であるので接合面積の減少を抑制するには、凹領域31aが小さくなるように第2の接続金属層31を形成することが好適である。
 あるいは図9の点線で示すように第2の接続金属層31の凹領域31aを第1の接続金属層41と対向しないようにずらし、凹領域31aの一方端から長く延びる接続領域31cを形成して、平坦な接続領域31cと同じく平坦な第1の接続金属層41とが接合される構造であると、なお良い。このときの第2の接続金属層31の幅寸法は、平坦な接続領域31cの幅寸法で定義される。
 図10に示す他の実施形態では、第1の接続金属層41の幅寸法T17は、第2の接続金属層31の幅寸法T18より小さく形成されるが、酸化絶縁層3aの幅寸法T10に比べてやや広い。
 ただし図10の形態であっても、第1の接続金属層41と第2の接続金属層31間に作用する加重領域を、幅寸法T17が狭い第1の接続金属層41の接合面で規制できる。よって、第1の接続金属層41及び第2の接続金属層31の双方の幅寸法を同じように大きく形成した従来構造に比べて、支持導通部12の外周部12aに作用する加重を従来に比べて低減できる。
 また、第1の接続金属層41と第2の接続金属層31の幅寸法に差をつけることで、幅寸法T17が狭くされた第1の接続金属層41が、幅寸法T18が広い第2の接続金属層31の内に収まるように、位置合わせを高精度に行うことが出来、接合強度のばらつきを小さくすることができる。
 上記では支持導通部12の接合構造について説明したが、他の支持導通部14,17,19についても同様の接合構造となっている。
 また図4の実施形態では、枠体層25と支持基板1との間に介在する酸化絶縁層3cも、枠体層25の幅寸法より小さくなる。よって、第1のシール接続金属層43と第2のシール接続金属層33との幅寸法も、第1の接続金属層41,42と第2の接続金属層31,32との幅寸法と同様の関係を満たしていることが強固な金属シール層45を形成でき、シール性を向上させることができて好適である。
 なお、第1のシール接続金属層43と第2のシール接続金属層33との接合による金属シール層45が形成されない形態では、支持導通部12,14,17,19の接合構造の幅寸法のみを規制すればよい。また、一部の支持導通部の接合構造の幅寸法のみ規制する形態でもよい。あるいは、シール性を高める観点から、上記した幅寸法関係を、金属シール層45だけに規制することもあり得る。ただし図4のように、全ての支持導通部の接合構造と金属シール層45の双方に上記した幅寸法関係を規制することが最も好適である。
 上記したMEMSセンサは、SOI基板と配線基板2を重ねた構造であり、全体に薄型である。
 また、支持導通部12,14,17,19が配線基板2に、第2の接続金属層31,32と第1の接続金属層41,42との共晶接合あるいは拡散接合で接合されているが、この接合層は薄く且つ面積が小さく、しかも支持導通部12,14,17,19と支持基板1とが無機絶縁材料の酸化絶縁層3a,3bを介して接合されている。そのため、周囲温度が高くなったとしても、接合層の熱応力が支持導通部12,14,17,19の支持構造に影響を与えにくく、熱応力による固定電極部11,13や可動電極部15の歪みなどが発生しにくい。
 同様に、可動電極部15の可動領域の周囲を囲む金属シール層45は、枠体層25と絶縁層30との間で薄く形成された接合層であり、枠体層25が十分な厚み寸法を有しているため、金属シール層45の熱応力によって、シリコンで形成された支持基板1やシリコン基板5に歪みなどが発生しにくい。
 このMEMSセンサは、支持基板1とシリコン基板5の厚さ寸法、およびSOI層10の厚さ寸法、さらに絶縁層30の厚さ寸法によって、全体の厚さ寸法がほぼ決められる。それぞれの層の厚さ寸法は、高精度に管理できるため、厚さのばらつきが生じにくくなる。しかも、絶縁層30には、可動電極部15の可動領域に対向する凹部38が形成されているため、全体が薄型であっても、可動電極部15に厚さ方向の移動余裕(マージン)を与えることができ、外部から厚さ方向への大きな加速度が作用しても、錘部20および可動対向電極20a,20b,20c,20dが絶縁層30に当たりにくく、誤動作を生じにくい。
 また図4に示す実施形態では、配線基板2は、シリコン基板5と、シリコン基板5の表面5aに、絶縁層30とリード層34,35と第2の接続金属層31とを有して構成される。したがって後述する図12のようにシリコン基板に貫通する貫通配線を用いて支持導通部との導通経路を確保する形態に比べて、簡単な構造で薄型化を実現できる。
 このMEMSセンサは、Y1方向またはY2方向の加速度を検知する加速度センサとして使用することができる。例えば、MEMSセンサにY1方向への加速度が作用すると、その反作用により可動電極部15の錘部20がY2方向へ移動する。このとき、図2に示す、可動対向電極20bと固定側の対向電極11cとの対向距離δ1が広がって、可動対向電極20bと対向電極11cとの間の静電容量が低下する。同時に、図3に示す、可動対向電極20dと対向電極13cとの対向距離δ2が狭くなって、可動対向電極20bと対向電極13cとの間の静電容量が増大する。
 静電容量の減少と増大を電気回路で検出し、対向距離δ1の増大による出力の変化と対向距離δ2の減小による出力の変化との差を求めることにより、Y1方向へ作用した加速度の変化や加速度の大きさを検知することができる。
 なお、本発明は、可動電極部15の錘部20が、X-Y平面と直交する向きの加速度に反応して厚さ方向へ移動して、固定電極部11,13の対向電極11b,11c,13b,13cと、可動電極部15の可動対向電極20a,20b,20cとの対向状態が、可動電極部15の厚さ方向へずれて、対向面積が変化し、このときの可動対向電極と対向電極との間の静電容量の変化を検知するものであってもよい。
 なお、前記実施の形態では、第2の接続金属層31,32および第2のシール接続金属層33がアルミニウムで、第1の接続金属層41,42および第1のシール接続金属層43がGeであるが、共晶接合あるいは拡散接合が可能な金属の組み合わせとしては、Al(アルミニウム)-Zn(亜鉛)、Au(金)-Si(シリコン)、Au(金)In(-インジウム)、Au(金)-Ge(ゲルマニウム)、Au(金)-Sn(錫)などがある。これら金属の組み合わせにより、それぞれの金属の融点以下の温度である450℃以下の比較的低い温度で接合を行うことが可能になる。
 図11は、さらに他の実施の形態のMEMSセンサを示す断面図である。
 このMEMSセンサは、シリコン基板5の代わりにICパッケージ100が使用されている。ICパッケージ100内には、対向電極と可動対向電極との静電容量の変化を検出する検出回路などが内蔵されている。
 ICパッケージ100の上面101に絶縁層30が形成され、この絶縁層30の表面に、第2の接続金属層31,32および第2のシール接続金属層33が形成されている。第2の接続金属層31,32は、絶縁層30を貫通するスルーホールなどの接続層134,135を介して、ICパッケージ100の上面101に現れている電極パッドなどに導通し、ICパッケージ100内の電気回路に接続されている。
 図11に示すMEMSセンサも、接合層(支持導通部12,14,17,19や枠体層25)の接合構造の幅寸法関係を図5~図10に示したいずれかに規制されているので、第1の接続金属層と、第2の接続金属層間の接合面に、従来に比べて均一な加重を作用させやすく、また接合層の外周部の破損を抑制できる等、安定した接合構造を得ることが出来る。
 図12は、さらに他の実施の形態のMEMSセンサを示す断面図である。
 図12に示す実施形態では、配線基板26を構成するシリコン基板27に貫通する同じくシリコンで形成された貫通配線層28が設けられている。貫通配線層28とシリコン基板27の間は絶縁層29にて絶縁されている。図12に示すように貫通配線層28に接してSOI層10と対向するシリコン基板27の表面27aに第2の接続金属層31,32が形成されている。また絶縁層29は、シリコン基板27のSOI層10との対向面と反対面27bを覆い、図12に示すように、絶縁層29の内部には、貫通配線層28に接するリード層37が形成されている。
 図12に示すMEMSセンサも、接合層(支持導通部12,14,17,19や枠体層25)の接合構造の幅寸法関係を図5~図10に示したいずれかに規制されているので、第1の接続金属層と、第2の接続金属層間の接合面に、従来に比べて均一な加重を作用させやすく、また接合層の外周部の破損を抑制できる等、安定した接合構造を得ることが出来る。
 次に、金属シール層の好ましい形態について説明する。
 図13は、金属シール層の好ましい形態を模式的に示したものであり(a)は、接合前の状態を示す縦断面図、(b)は、接合後の状態を示す縦断面図である。
 図13(a)に示すように、MEMSセンサは、例えばシリコンで形成された下側基板50と、上側基板52と、前記下側基板50の上面に形成された下側接続金属層51と、前記上側基板52に形成された上側接続金属層53とを有して構成される。
 図13(a)に示すように上側接続金属層53の幅寸法T20は、下側接続金属層51の幅寸法T21よりも小さく形成されている。
 また図13(a)に示すように下側接続金属層(幅広接続金属層)51の接合面51aは平坦面であるが、上側接続金属層(幅狭接続金属層)53の接合面53aは凹凸形状で形成されている。
 図13(a)の実施形態では、上側接続金属層53の接合面53aに形成された凸部54は、先細り形状で形成されている。凸部54は、接合面53aに、ドット状に複数、点在して形成されてもよいし、あるいは凸条形状で形成されてもよい。
 また、上側接続金属層(幅狭接続金属層)53は、下側接続金属層(幅広接続金属層)51よりも接合時の硬度が高い金属材料で形成されている。上側接続金属層53は例えばGeを有する層、特に、Ge層で形成されることが好ましい。また下側接続金属層51は、例えばAlを有する層、特に、Al層あるいはAlCu層で形成されることが好ましい。
 そして、共晶反応を始める温度まで昇温するとともに、下側基板50と上側基板52間に圧力を加える。
 図14は、図13(a)と異なって、上側接続金属層(幅狭接続金属層)53の接合面53aを凹凸面とせず平坦面で形成した場合の比較例を示す。
 図14に示すように、下側接続金属層51と上側接続金属層53間に圧力を加え、各接合面51a,53a間で反応させるとき、自然酸化膜や汚れ等で反応しにくい部分がボイド55や未接合領域56として残りやすくなる。このため接合強度及び封止気密性の低下を招きやすい問題があった。
 そこで、図13(a)に示す構造とすることで、下側基板50と上側基板52間に圧力を加えたとき、図13(b)に示すように、接合面53aが凹凸面で形成された上側接続金属層53の凸部54が、接合初期時に高い圧力により、下側接続金属層51内にほとんど変形することなく食い込むとともに、下側接続金属層51は接合面53aの凹凸形状に倣って変形し、その結果、図13(b)に示す接合界面において、図14に示すボイド55や未接合領域56が形成されるのを効果的に抑制できる。図13(b)に示すように、下側接続金属層53と上側接続金属層53との界面は密着した状態になる。したがって、図14に示す構成に比べて、接合強度及び封止気密性の向上を図ることが出来る。
 また図13(b)に示す構成では、接合面53aを凹凸面で形成したことで、図13(b)のように下側接続金属層51の接合面51aがほぼ、上側接続金属層53の接合面53aに倣って変形するところまで進むと、図14のように平面同士を接合する形態に比べて接合面積を大きくでき、接続金属層51,53の接合面に加わる単位面積あたりの接合圧力は低下する。このため上側接続金属層(幅狭接続金属層)53が必要以上に下側接続金属層(幅広接続金属層)51内に押し込まれるのを抑制でき、ストッパ的な機能を発揮させることが出来る。
 なお図13に示すように幅寸法が狭い側の接続金属層53の接合面53aを凹凸面で形成することが好ましい。逆にしても、図14の場合に比べて接合強度及び封止気密性の向上には効果があるが、幅広の接続金属層51の接合面51aに、幅狭の接続金属層53の凹凸面(接合面53a)を押し付けるほうが、前記凹凸面の全体に他方の接続金属層51を密着させることができ、接合強度の向上をより効果的に図ることが可能である。
 続いて図15は、凹凸形状の接合面を有する接続金属層の製造方法を示す工程図(縦断面図)である。
 図15(a)の工程では、基板57上に接続金属層58を形成する。接続金属層58を例えばGe層で形成する。
 次に図15(b)の工程では、接続金属層58の表面58aにマスク層59を部分的に形成する。前記マスク層59を前記表面58aに形成される凸部60(図15(c)(d)参照)の位置に設けるが凸部60の最小幅よりも広い幅で形成する。
 次に図15(c)の工程では、例えばCF4ガスを用いてドライエッチング(等方性エッチング)を行い、前記マスク層59に覆われていない接続金属層58を削り込む。このとき、マスク層59の下側に位置する接続金属層58の部分も削りこまれ、マスク層59の下側に先細り形状の凸部60が形成される。このため凸部60の最小幅は、前記マスク層59の幅寸法よりも小さくなる。そして図15(d)の工程では、前記マスク層59を除去する。
 上記により接続金属層58の表面58aを簡単且つ適切に凹凸形状に形成できる。
 本実施形態では、例えば図16に示すように、下側基板50の上面50aに枠状の封止ライン62を図13(a)に示すAl等から成る下側接続金属層51で形成する。
 また図16に示すように、上側基板52の下面52aに、枠状の封止ライン61を図13(a)に示すGe等からなる上側接続金属層53で形成する。
 封止ライン62,61の縦断面の形状は図13(a)に示す接続金属層51,53の縦断面の形状と同様である。
 そして図16に示す上下方向から、下側基板50と上側基板52との間に圧力を加えると、図13(b)で説明したように、封止ライン62,61の接合面同士が密着して接合されて枠状の金属シール層が形成され、この結果、接合強度及び封止気密性に優れたMEMSセンサを実現できる。
 図16における封止ライン62,61間を接合して成る金属シール層の内側の構成は特に限定されるものでないが、例えば図17に示す構造に適用できる。
 図17(a)は、MEMSセンサの平面図、(b)は、(a)に示すA-A線に沿って切断し矢印方向から見た縦断面図である。
 図17に示す金属シール層70は、図16に示す封止ライン62,61を接合して形成されたものであり、図13(b)と同様の拡大縦断面を備えている。よって、接合強度及び封止気密性に優れるMEMSセンサを実現できる。
 図17に示すように、枠形状で形成された金属シール層70よりも内側には、3つのセンサ領域71,72,73がX1-X2に間隔を空けて並設されている。センサ領域71では、可動体74の動作により、Z方向の加速度を検知できる。また、センサ領域72では、可動体75の動作により、Y方向の加速度を検知でき、センサ領域73では、可動体76の動作により、X方向の加速度を検知できる。
 あるいは図16のMEMSセンサにおいて、封止ライン62,61間を接合して成る金属シール層の内側に可動体でなく他のセンサ構成がある形態にも適用できる。
 図13に示した接続金属層の構成は、図5~図10のいずれの構成にも適用できる。すなわち例えば、図5を例にとると、幅寸法T12が幅狭で形成された第1の接続金属層(幅狭接続金属層)41の接合面41aが凹凸面で形成される。また第1の接続金属層41は、幅寸法T13が幅広で形成された第2の接続金属層(幅広接続金属層)31に比べて接合時における硬度が高い材質で形成される。
 また図18の構成においては、第1の接続金属層41と第2の接続金属層31のうち、接合時の硬度が高い材質で形成された側の接続金属層の接合面が凹凸面で形成される。
1 支持基板
2 配線基板
3a,3b,3c 酸化絶縁層
5、27 シリコン基板
10 SOI層
11 第1の固定電極部
11b,11c 対向電極
12 支持導通部(アンカ部)
13 第2の固定電極部
13b,13c 対向電極
14 支持導通部(アンカ部)
15 可動電極部
16 第1の支持腕部
17 支持導通部(アンカ部)
18 第2の支持腕部
19 支持導通部(アンカ部)
20 錘部
20a,20b,20c,20d 可動対向電極
21,22,23,24 弾性支持部
25 枠体層
28 貫通配線層
29、30 絶縁層
31,32 第2の接続金属層
33 第2のシール接続金属層
34,35 リード層
38 凹部
41,42 第1の接続金属層
43 第1のシール接続金属層
45、70 金属シール層
50 下側基板
51 下側接続金属層
51a 接合面
52 上側基板
53 上側接続金属層
53a 接合面(凹凸面)
54、60 凸部
58 接続金属層
59 マスク層
61、62 封止ライン
71~73 センサ領域
74~76 可動体
100 ICパッケージ

Claims (12)

  1.  支持基板、中間層、及び機能層の順に積層される第1の基板と、前記機能層と対向して、前記機能層に形成される可動電極部及び前記固定電極部との導通経路を備える配線基板と、を有し、
     前記機能層には、前記中間層に固定支持されるとともに、前記配線基板と接合される接合層が形成されており、
     前記接合層と前記支持基板間に位置する中間層の幅寸法は、前記接合層の幅寸法よりも小さく、
     前記接合層の表面に形成された第1の接続金属層と、前記配線基板の表面に形成され前記第1の接続金属層と接合される第2の接続金属層のうち、一方の幅寸法が他方の幅寸法に比べて狭いことを特徴とするMEMSセンサ。
  2.  前記幅寸法が狭い側の接続金属層の前記幅寸法は、前記中間層の幅寸法以下である請求項1記載のMEMSセンサ。
  3.  前記幅寸法が狭い側の接続金属層の接合面が凹凸形状で形成されている請求項1又は2に記載のMEMSセンサ。
  4.  前記幅寸法が狭い側の接続金属層は、Geを有して形成され、前記幅寸法が広い接続金属層はAlを有して形成される請求項3記載のMEMSセンサ。
  5.  各接続金属層同士とが接合されて、金属シール層が形成されている請求項3又は4に記載のMEMSセンサ。
  6.  支持基板、中間層、及び機能層の順に積層される第1の基板と、前記機能層と対向して、前記機能層に形成される可動電極部及び前記固定電極部との導通経路を備える配線基板と、を有し、
     前記機能層には、前記中間層に固定支持されるとともに、前記配線基板と接合される接合層が形成されており、
     前記接合層と前記支持基板間に位置する中間層の幅寸法は、前記接合層の幅寸法よりも小さく、
     前記接合層の表面に形成された第1の接続金属層と、前記配線基板の表面に形成され前記第1の接続金属層と接合される第2の接続金属層のうち、少なくとも一方の幅寸法が前記中間層の幅寸法以下であることを特徴とするMEMSセンサ。
  7.  前記接合層は、前記可動電極部及び前記固定電極部の夫々に接続される支持導通部である請求項1ないし6のいずれか1項に記載のMEMSセンサ。
  8.  前記接合層は、前記可動電極部及び前記固定電極部と分離して形成され、前記可動電極部の可動領域を囲む枠体層であり、前記第1の接続金属層と前記第2の接続金属層とで、前記可動領域の外周を囲む金属シール層が形成されている請求項1ないし7のいずれか1項に記載のMEMSセンサ。
  9.  前記第1の接続金属層と前記第2の接続金属層とが、共晶接合又は拡散接合されている請求項1ないし8のいずれか1項に記載のMEMSセンサ。
  10.  前記配線基板は、シリコン基板と、前記シリコン基板の表面に、絶縁層とこの絶縁層の内部に埋設された前記可動電極部及び前記固定電極部の夫々に電気的に接続されるリード層と、前記第2の接続金属層と、を有して形成される請求項1ないし9のいずれか1項に記載のMEMSセンサ。
  11.  上側基板と、前記上側基板の下面に形成された上側接続金属層と、下側基板と、前記下側基板の上面に形成された下側接続金属層と、を有し、
     前記上側接続金属層と前記下側接続金属層とが接合されて金属シール層が形成されており、
     前記上側接続金属層と、前記下側接続金属層とのうち、一方の幅寸法が他方の幅寸法に比べて狭いことを特徴とするMEMSセンサ。
  12.  前記幅寸法が狭い側の接続金属層の接合面が凹凸形状で形成されている請求項11記載のMEMSセンサ。
PCT/JP2009/066355 2008-09-22 2009-09-18 Memsセンサ WO2010032821A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010529807A JP5222947B2 (ja) 2008-09-22 2009-09-18 Memsセンサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-242368 2008-09-22
JP2008242368 2008-09-22

Publications (1)

Publication Number Publication Date
WO2010032821A1 true WO2010032821A1 (ja) 2010-03-25

Family

ID=42039642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066355 WO2010032821A1 (ja) 2008-09-22 2009-09-18 Memsセンサ

Country Status (2)

Country Link
JP (1) JP5222947B2 (ja)
WO (1) WO2010032821A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038872A (ja) * 2009-08-10 2011-02-24 Alps Electric Co Ltd Memsセンサ
JP2012232405A (ja) * 2011-04-22 2012-11-29 Alps Electric Co Ltd Memsセンサ及びその製造方法
WO2013163125A1 (en) * 2012-04-27 2013-10-31 Analog Devices, Inc. Method for creating asperities in metal for metal-to-metal bonding
JP2014500498A (ja) * 2010-12-07 2014-01-09 アトランティック・イナーシャル・システムズ・リミテッド 加速度計
KR101405561B1 (ko) * 2012-07-19 2014-06-10 현대자동차주식회사 멤스 센서 패키징 방법
WO2017047663A1 (ja) * 2015-09-17 2017-03-23 株式会社村田製作所 Memsデバイス、及びその製造方法
EP3333579A1 (en) 2016-12-07 2018-06-13 Seiko Epson Corporation Physical quantity sensor, physical quantity sensor device, electronic apparatus, and vehicle
US10712157B2 (en) 2017-04-05 2020-07-14 Seiko Epson Corporation Physical quantity sensor, electronic device, and vehicle
CN113302833A (zh) * 2019-01-16 2021-08-24 株式会社鹭宫制作所 Mems梁构造以及mems振动发电元件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189716A (ja) * 1995-11-07 1997-07-22 Temic Telefunken Microelectron Gmbh 超小型機械的加速度センサ
JPH1167820A (ja) * 1997-08-08 1999-03-09 Denso Corp 半導体装置及びその製造方法
JP2005514221A (ja) * 2001-12-28 2005-05-19 コミサリヤ・ア・レネルジ・アトミク 2つの微細構造基板間をシールするための方法およびゾーン
WO2006101769A2 (en) * 2005-03-18 2006-09-28 Invesense Inc. Method of fabrication of ai/ge bonding in a wafer packaging environment and a product produced therefrom
WO2007061062A1 (ja) * 2005-11-25 2007-05-31 Matsushita Electric Works, Ltd. ウェハレベルパッケージ構造体の製造方法
WO2007078472A1 (en) * 2005-12-16 2007-07-12 Innovative Micro Technology Wafer level hermetic bond using metal alloy with raised feature
US7276789B1 (en) * 1999-10-12 2007-10-02 Microassembly Technologies, Inc. Microelectromechanical systems using thermocompression bonding
JP2009033091A (ja) * 2007-07-02 2009-02-12 Denso Corp 半導体装置およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189716A (ja) * 1995-11-07 1997-07-22 Temic Telefunken Microelectron Gmbh 超小型機械的加速度センサ
JPH1167820A (ja) * 1997-08-08 1999-03-09 Denso Corp 半導体装置及びその製造方法
US7276789B1 (en) * 1999-10-12 2007-10-02 Microassembly Technologies, Inc. Microelectromechanical systems using thermocompression bonding
JP2005514221A (ja) * 2001-12-28 2005-05-19 コミサリヤ・ア・レネルジ・アトミク 2つの微細構造基板間をシールするための方法およびゾーン
WO2006101769A2 (en) * 2005-03-18 2006-09-28 Invesense Inc. Method of fabrication of ai/ge bonding in a wafer packaging environment and a product produced therefrom
WO2007061062A1 (ja) * 2005-11-25 2007-05-31 Matsushita Electric Works, Ltd. ウェハレベルパッケージ構造体の製造方法
WO2007078472A1 (en) * 2005-12-16 2007-07-12 Innovative Micro Technology Wafer level hermetic bond using metal alloy with raised feature
JP2009033091A (ja) * 2007-07-02 2009-02-12 Denso Corp 半導体装置およびその製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038872A (ja) * 2009-08-10 2011-02-24 Alps Electric Co Ltd Memsセンサ
JP2014500498A (ja) * 2010-12-07 2014-01-09 アトランティック・イナーシャル・システムズ・リミテッド 加速度計
US10101357B2 (en) 2010-12-07 2018-10-16 Atlantic Inertial Systems Limited Accelerometer
JP2012232405A (ja) * 2011-04-22 2012-11-29 Alps Electric Co Ltd Memsセンサ及びその製造方法
WO2013163125A1 (en) * 2012-04-27 2013-10-31 Analog Devices, Inc. Method for creating asperities in metal for metal-to-metal bonding
KR101405561B1 (ko) * 2012-07-19 2014-06-10 현대자동차주식회사 멤스 센서 패키징 방법
CN107848789B (zh) * 2015-09-17 2020-10-27 株式会社村田制作所 Mems设备及其制造方法
WO2017047663A1 (ja) * 2015-09-17 2017-03-23 株式会社村田製作所 Memsデバイス、及びその製造方法
CN107848789A (zh) * 2015-09-17 2018-03-27 株式会社村田制作所 Mems设备及其制造方法
JPWO2017047663A1 (ja) * 2015-09-17 2018-03-29 株式会社村田製作所 Memsデバイス、及びその製造方法
US10934161B2 (en) 2015-09-17 2021-03-02 Murata Manufacturing Co., Ltd. MEMS device and method for producing same
EP3333579A1 (en) 2016-12-07 2018-06-13 Seiko Epson Corporation Physical quantity sensor, physical quantity sensor device, electronic apparatus, and vehicle
US10830789B2 (en) 2016-12-07 2020-11-10 Seiko Epson Corporation Physical quantity sensor, physical quantity sensor device, electronic apparatus, and vehicle
US10712157B2 (en) 2017-04-05 2020-07-14 Seiko Epson Corporation Physical quantity sensor, electronic device, and vehicle
CN113302833A (zh) * 2019-01-16 2021-08-24 株式会社鹭宫制作所 Mems梁构造以及mems振动发电元件
CN113302833B (zh) * 2019-01-16 2024-02-06 株式会社鹭宫制作所 Mems梁构造以及mems振动发电元件

Also Published As

Publication number Publication date
JPWO2010032821A1 (ja) 2012-02-16
JP5222947B2 (ja) 2013-06-26

Similar Documents

Publication Publication Date Title
WO2010032821A1 (ja) Memsセンサ
JP5315350B2 (ja) Memsセンサ
EP2165970B1 (en) Substrate bonded MEMS sensor
JP5177311B1 (ja) 静電容量型センサ及びその製造方法
JP5350339B2 (ja) 微小電気機械システムおよびその製造方法
JP2012225920A (ja) マイクロ−電子機械システム(mems)デバイス
JP5175152B2 (ja) Memsセンサ
WO2010032818A1 (ja) Memsセンサ及び検出装置
JP5237733B2 (ja) Memsセンサ
JP2010238921A (ja) Memsセンサ
JP5000625B2 (ja) Memsセンサ及びその製造方法
JP5512926B2 (ja) Zオフセットmems装置および方法
JP6123613B2 (ja) 物理量センサおよびその製造方法
JP5442277B2 (ja) Memsセンサ及びその製造方法
WO2011118785A1 (ja) シリコン配線埋込ガラス基板及びその製造方法
WO2011016348A1 (ja) Memsセンサ
WO2010032819A1 (ja) Memsセンサ
JP5314979B2 (ja) Memsセンサ
WO2010032822A1 (ja) Memsセンサ
JP6555238B2 (ja) 力学量センサおよびその製造方法
JP5118923B2 (ja) 半導体装置
JP4817287B2 (ja) 力学量センサの製造方法
JP5929645B2 (ja) 物理量センサ
JP2024042442A (ja) Memsセンサ及びmemsセンサの製造方法
JP2010156577A (ja) Memsセンサおよびmemsセンサの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814665

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529807

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814665

Country of ref document: EP

Kind code of ref document: A1